Corporate Piping Spec
Short Description
Download Corporate Piping Spec...
Description
Corporate Piping at rial Specifications for Carbon Steel, Cr-Mo and Stainless Ste Piping Systems
PIM-SU-5112
National Fire Prevention Association (NFPA) NFPA 59A
2.
Standard for th Production, Storage, and Handling of Liquefied Natural Gas (LNG)
Company Documents
CPM-PC-5073
Positive Materials Identification Program (PMI) Projects
CPM-PU-5074
Positive Material Identification Program Specification for Source PMI
PPL-SU-4737
Induction Bending
3.
INTRODUCTION
3.1
Identification of Piping Material Specification Line Classes
Guidelines for Capital
1.
Piping Specification Line Classes are identified by means of combination of letters an digits similar to that of th system adopted by the Process Industry Practices (PIP) Piping Material Specification
2.
Th identifiers are preceded by tw Purchaser-specific letters, followed by tw digits to indicated flange rating, material applicaiton identifier, applicable corrosion allowance, an joint construction type. The last tw digits are Purchaser-dedicated serial numbers (e.g., CTOICA2S71, CT03CAIS72, CT06SAOS71, etc.) a.
Th first two letters "CT"' have been chosen as Purchaser identifier.
b.
The second field defines th pressure rating and is comprised of tw numbers.
c.
Th third field defines the piping material with two alphabetic characters.
d.
The fourth field defines th corrosion or erosion allowance an is
e.
Th fifth field defines the type ofjoint construction with single alphabetic character.
f.
Th last two digits will en Class.
in "7
single digit (number).
for each respective service Piping Specification Specification Line
Whenever there is major and/or minor technical content revision in the base material specification with compatible but different process service, the subsequent revised document will be identified and tagged as "72," "73,111174,11 etc. to indicate that it is separate specification for its dedicated service. and unique material specification
3.
Description of Piping Material Specification Line Class
aterial Specification Specification Line Class normally consists of Each Piping M aterial description of the contents is given below:
pages pe class.
short
Page Basic design information including applicable Piping Code and edition, piping material, coffosion allowance, flange rating on pressure and temperature per applicable material table, hydrostatic test pressure, etc.
No
2.
Piping material details on pipe sizes and respective wall thickness, nipples, pipe fittings and their associated ASTM Material Codes and Manufacturer Standards.
3.
Short material Item Code for each piping component used in the Piping Material Line Class, based on the Company's "Piping Item Description Database Classification Index".
mb
2006
vr
Corporation
of 24
Corporate Piping Material Specifications for Carbon Steel, Cr-Mo and Staini ss Steel Piping Systems
PIM-SU-5112
Page Descriptions of bulk material valves with applicable sizes and ratings, family of flanges and orifice flanges, gasket type/details and stud bolt material suitable for th design and/or service requirements.
Page Branch connection Legend and Chart for branch lines or stub-in connections between the headers and the branch pipes. Applicable notes regarding material design guidelines/clarifications and applicable material details. This last page also clearly identifies list of processes and/or utilities that th subject Piping Material specification is intended for dedicated service. cross reference table showing Piping Material Specifications for various refinery specific locations is included in Appendix B. Th Piping Item Description Database Classification Index (PIDD) is shown in Appendix D.
4.
DESIGN ENGINEERING PRINCIPLES
4.1
Piping Wall Thickness
All piping component wall thicknesses specified in the individual Piping M aterial Specification Line Classes are calculated in accordance with ASME B3 1. ASME B31.3, based on the internal design pressure an design temperature of the flange rating limits as specified in the respective piping line class. 2.
The calculation does not account for an additional loadings imposed, such as thermal loads due to thermal expansion stress range, sustained load due to weight, live loads, an other loadings other than those provided fo in ASME B3 1. ASNIE B31.3.
3. Th wall thickness specified in the Piping Material Line Classes will need to be verified for vacuum design conditions if applicable.
a. Line NP 30 and smaller pipes, which will be subjected to vacuum service, may require wall thicknesses to be increased in order to withstand partial or full vacuum design without stiffener rings.
4. 5.
b.
This follow-up action must be taken to ascertain that the pipe wall thickness adequacy du to elastic stability concern is ftilly addressed, as soon as the external pressure design requirement is identified on the Project.
c.
Application of stiffener rings for lines larger than NPS 30 shall be employed when vac-
is identified. condition designand Nominal uum sizes wall thicknesses of pipe, as specified in the Piping Material Specification Line Classes, are in accordance with ASME B36. OM and ASME B36.19M, as applicable.
Butt welded fittings not covered by ASME detailed design and engineering phase.
16.9 shall be determined during C ontractor'
a.
Internal weld seams of austenitic stainless steel reducers shall be ground flush with the adjacent base material an examined for surface discontinuities by means of liquid penetrant examination in accordance with ASME Section VIII, Division 1,Appendix 8.
b.
External weld seams shall be ground smooth an shall also receive liquid penetrant examination.
November 2006
vron Corporation
of 24
Corporat Piping Mat rial Specifications for Carbon Steel, Cr-Mo and Stainl ss Ste Piping Systems
4.
PIM-SU-5112
Pressure/Temperature Ratings 1.
Pressure/temperature ratings of flanged components in sizes NPS 1/2 through NPS 24 are based on ASME 16.5.
2.
Pressure/temperature ratings of flanged components larger than NPS 24 are based on ASME 16.47, Series B.
3.
Pressure is indicated in psig with temperature in degrees Fahrenheit, unless otherwise specified in the individual Piping Material Line Class. In Piping Line Classes where valves with soft (resilient) seats are applied, design limits shall be adapted in order to cope with pressure-temperature ratings capability as defined in the applicable valve standard.
5.
4.3
4.4
5.0
All piping classes wall thickness designs are based on respective material flange rating pressure-temperature design limitations.
Design Values 1.
Allowable stresses for pipe are derived from ASME B31.3 Table A- or applicable ASME B3 1.1 material allowable stress table, in reference to material specifications as mentioned in the piping classes.
2.
Internal pressure calculations for seamless pipe as well as fo 100% RT welded pipe have been performed based on weld joint factor E= 1.00 an wall thickness mill tolerance of 12.5%. This results in equal wall thickness requirements for butt welded fittings, such as elbows an tees. For these components not more than 87.5% of the nominal wall thickness shall be used, as defined in ASME B31.3 para. 302.2.2.
Branch Connections 1.
Reinforcement requirements for 90 degree branch connections have been sized for internal pressure in accordance with ASME 1331.3 para. 304.3.2/3, based on design limits of the individual piping classes.
2.
Th Supplier shall be responsible fo checking adequacy of branch connections for otherreinforcement requirements, such as thermal loading du to pipe weights, etc.
3.
In each line class, a table is developed in order to provide th proper type of branch connection, suitable for the design conditions of th respective piping material line class.
4.
Fo each 90 degree run-branch size relation, an alphabetic character refers to the selected type of connection. a.
Where reinforcement is required, branch fittings have been specified by preference.
b.
In the event that application of branch fittings is no feasible due to limited room, pipe-topipe branch connection with reinforcing pa ma be applied.
GENERAL PIPING DESIGN PRACTICES 1.
Pipe, valves, and fittings in sizes 1-1/4", 2-1/2", 3-1/2", 5" and 22" shall no be used.
2.
Th range of pipe sizes above 24", if economically justifiable, shall be restricted to the following line sizes to avoid purchase of various different diameter fittings and short pipe spools: 30", 36", 42", 48", 56", 64", 72", 84", and 96".
3.
Deviation from these standard pipe sizes shall require Purchaser prior approval.
ov mber
2006
Chevron Corp ration
of 24
Corporal: Piping Material Specifications for Carbon Steel, St el Piping Systems Cr-Mo and Staini
PIM-SU-5112
4.
Nominal sizes of flanges and valves shall no deviate from the above specified.
5.
Flanges larger than 64" diameter shall be based on ASME VIII (Division 1)an shall be developed by Supplier in consultation with the Purchaser.
6.
Pipe bending shall be in compliance with ASME B31.3 and Purchaser Technical Standard PPL-SU-4737.
7.
The stud bolt length shall be calculated in accordance with ASME
16.5.
a.
Where spectacle blinds, wafer type valves, etc., are to be installed, the stud bolt length shall be increased by the thickness of such devices an the extra gasket.
b.
Spectacle blinds shall be avoided in cold insulated piping systems.
8. Bolt lengths shall be extended by xD for the hydraulic bolt tensioning equipment. (D: diameter of bolt) 9.
Table shows th general recommendation on gear operator for each valve type. Refer to the respective Piping Material Specification Line Class and Valve Long Descriptions for details on lever vs. gear operator recommendations.
Table
General Recommendation on Gear Operator for Valve Types
Gate valves Class
20" and larger
15
Class 300
16
and larger
Class 600
12"
and larger
Class 900
10
and larger
Class 1500
8" and larger
Class
8" and larger
Globe valves 15
Class 300
6" nd larger
Class 600
4" and larger
Class 900
4" and larger
Class
8"and larger
Ball valves 15
Class 300
6" and larger
Class 600
4" and larger
Class 900
3" nd larger
Bufterfly valves
Class
and larger
15
Class 300
6" nd larger
10. The application of chain operators for valves shall require Purchaser approval. Valves in cold
temperature service may require extended bonnets without chain operator.
November 2006
Chevron Corporation
of 24
Corporate Piping at rial Specifications for Carbon Ste 1, Cr-Mo and Staini ss St el Piping Syst ms 11.
PIM-SU-5112
Impact Tested Carbon Steel (ITCS) piping classes specified with Post Weld Heat Treatment (PWHT) on fabricated pipes shall be in accordance with the Piping Material Specification ASTM A671. Pipe spool fabrication shall be stress-relieved after welding pe ASME B31.3.
12. Typical Vent/Drain/Bleed connections on piping NPS
a.
High point vent /Low point drain Vent Blind flange valve or plug as applicable Drain I ball/gate valve
b.
At battery limit
and larger shall be as follows:
Vents with valves fo vapor and liquid, on either side of the battery limit valve Line Size 10
NPS
c.
to 20
NPS
12
NP
24 and up
Ball/Gate Valve Size 1. 1-1/2" 2"
Bleeder for Control valve/Depressurizing valve I" ball/gate bleed valve upstream of the valve
d. Pump discharge I ball/gate drain valve between check and block valve 13
Impact Tested Carbon Steel (ITCS) fittings protectively coated by th manufacturer shall be internally grit blasted an in rust free, oil free, clean condition before pipe-spool fabrication.
14. Ball valve shall have the lever/hand wheel positioned so that it extends outside of the cold
insulation an encounters no interference during operation. Extended bonnet shall be an integral part of the valve body and be of weatherproof construction.
15
6.
Gate valve an ball valve in liquefied gas service shall have a self-relieving feature in order to prevent build-up of high pressure in the body cavity which can damage the valve. a.
Cavity vent shall be provided and shall be vented to the high pressure side, which will make the valve uni-directional.
b.
Valves in liquefied ga service shall be clearly marked to indicate the downstream (low pressure) side.
MISCELLANEOUS PIPING MATERIAL SPECIFICATION PRACTICES
1. Carbon steel piping material design temperature limit is 800'F. a.
corrosion allowance on CS piping material of 1/16" to 1/4" ma process service environment.
b. Lo c. 2.
Cr-Mo piping material ma
be applied based on
have corrosion allowance ranges from 1/16" to 3/16".
Corrosion allowance for stainless steel can be as low as 1/32" due to its material corrosion resistant properties.
Carbon steel seamless pipe to ASME A106-B is an acceptable material substitution for AP 5L-B.
ov mber 2006
Ch vron Corporation
of 24
Corporat Piping Material Specifications for Carbon Ste 1, Cr-Mo and Staini ss Ste Piping Systems
3. Carbon steel seamless pipe to shall be used.
PIM-SU-5112
06-B or API 5L-B, or API 5L-B double submerged arc pipe
Th application of electric resistance welded piping shall require prior Purchaser approval.
a.
b. It shall not be used in hydrocarbon, hazardous, firewater, seawater, freshwater and underground service. 4.
Straight seam welded pipe shall be used. Spiral seam welded pipe shall be avoided unless otherwise with prior approval from the Purchaser.
5.
Threaded piping shall not be used in process service lines.
6.
NPS
7.
Temperature application limit fo class 150# piping system shall be limited to 450'F.
1/2and smaller line sizes will be designated as socket welded piping in general. Exception to this is for lines which are to be applied in cryogenic temperature services.
8. Flanged connections with raised face configuration should be used up to 900# rating with temperature limit to 800*17. 9.
Carbon steel piping material application in hydrogen service shall have 300# flange rating and with design temperature no to exceed 450'F.
10
Stainless steel piping materials type 304/304L and 316/316L shall be specified with dual stamped or dual grade.
11.
Th minimum pipe wall thick for NPS
12
Joint efficiency for pipes other than seamless (JE= 1.0) shall be clearly identified and indicated in the Piping Material Line Class Specification documents.
13
Carbon steel pipe wall thickness
shall be Schedule 80.
and greater (ASTM A67
CC65-CL22) shall be used.
a.
Post weld heat treatment (PWHT) shall be in accordance with ASME 1331.3.
b.
Heat treating furnaces shall be equipped with recording pyrometers to ensure complete documentation of heat treatment.
14
Pipes and fittings specified as galvanized shall be ho dipped galvanized in accordance with ASTM 123. Galvanized pipes and fittings shall not be used in hydrocarbon service.
15
Threaded galvanized piping 1-1/2" and smaller shall have Teflon stuff thread lubricant applied at all threaded joints to minimize corrosion. All galvanizing damaged during pipe wrench tightening shall be touched up with zinc rich paint.
16
Glass fiber reinforced epoxy (GRE) and Fiber-Reinforced Plastic (FRP) pipe and fittings design and engineering requirements shall be in fiill compliance with manufacturer' standards.
17
Carbon steel fittings shall be protectively coated; internally grit blasted; an in rust free, oil free, clean condition before commencing pipe spool fabrication in the Vendor's shop.
18. Mechanical compression (LOKRING) fittings shall only be used in utility service (air, water,
nitrogen and steam).
19
a.
Mechanical compression fittings shall no be used in process service lines.
b.
Th use of LOKRING will require prior Purchaser approval.
All spiral wound gasket regardless of sizes should be equipped with inner rings.
a.
No
mb
Outer rings shall be provided for self-centering purpose.
2006
Chevron Corporation
10 of 24'
Corporate Piping Material Specifications for Carbon Steel, Cr-Mo and Stainl ss Ste Piping Syst rns b.
PIM-SU-5112
Inhibited graphite with 304L standard winding material shall be specified for design temperature in excess of 8000F.
20. Corrugated Metal Gasket (CMG) will be designated in class 150# and 300# piping material specifications as first issue for process service. Final decision on gasket application may be revised/upgraded pending Project/operation input. 21. Gate valves and ball valves in liquefied gas service shall have self-relieving feature, in order to prevent built-up of high pressure in the body cavity, which could damage the valve.
a.
Cavity vent shall be provided and it shall be vented to the high pressure side. This will make the valve unidirectional.
b.
Valve shall be clearly marked to indicate the downstream (low pressure) side.
22. Ball valves shall have the lever/hand wheel positioned in such cold insulation, and no interference occurs during operation.
wa that it extends outside th
a.
Stem extensions, if applicable, shall be integral with th valve body, and with proof construction.
b.
Stem extensions shall be
weather-
fail safe design with fire tested trim.
23. Th maximum recommended continuous service temperature fo ball valve is 290*F. Maximum design temperature for ball valve is 390'F.
24. Gate valves are suitable for most on-off, non-vibrating hydrocarbon and utilities service for all temperature ranges. 25. Ball and plug valves are used fo on-off hydrocarbon or utilities service with the maximum operating temperature limited by soft sealing material.
26. Globe valves can be applied where good throttling control is required. 27. Butterfly valves are suitable for coarse throttling and other applications where a tight shut-off is not required. High performance butterfly valves shall be employed when tight sea] is required. 28. Check valves are manufactured in a variety of designs, including swing check, lift check, ball, piston and split disc swing check.
a.
Swing check can be installed in the vertical pipe runs with flow in the upward direction.
a.
check valves are
for pulsating flow.
29. Diaphragm valves are used primarily fo low pressure water service. They are especially suitable for flow medium containing sand or other solids-e.g., pulp and paper industry. --30. Needle valves are fi-equently used for instrument and pressure gage block valves for throttling and reducing pressure pulsation in instrument lines. 31. Valves in sulfide service that will be subjected to stress corrosion cracking shall have their bodies an internal trim designed and fabricated in accordance with NACE MR-01-75
requirements.
32. Welded bonnet shall be employed fo API 602 valves in general to reduce valve weight. Vent an drain valves in steam service shall be equipped with full stellite trim. 33. Positive Material Identification (PMI) program specification an guidelines shall be in accordance with Purchaser Technical Standards CPM-PU-5074 and CPM-PC-5073.
Novemb
2006
Ch vron Corporation
11 of 24
Corporat Piping Material Specifications for Carbon Ste 1, Cr-Mo and Staini ss Steel Piping Systems
7.
PIM-SU-5112
ABBREVIATIONS AS
Asbestos
IR
Inner Ring
BA
Ball Valve Reduced Bore
LP
Low Pressure
BB
Bolted Bonnet
LR
Long Radius
BC
Bolted Cover
LT
Low Temperature
BC
Butterfly Valve, Concentric Type
LTCS
Low Temperature Carbon Steel
BE
Beveled En
MR
Mixed Refrigerant
BF
Boiler Feed Water
MOD
Modified
BG
Bolted Gland
NP
National Pipe Thread
BO
Butterfly Valve, Off-set Type (High performance)
OR
Outer Ring
BW
Butt Weld
OS&Y
Outside Screw and Yoke
CA
Corrosion Allowance
PE
Plain End
CA
Compressed Asbestos
PSB
Pressure Seal Bonnet
CD
Check Valve, Dual Plate Type
PS
CH
Check Valve
PWHT
Post Weld Heat Treatment
CL
Class
RF
Raised Face
CONC
Concentric
RSLJ
Rubber Seal Lock Joint
CR
Chromium
SA
Submerged Arc Weld
CS
Carbon Steel
SB
Screwed Bonnet
DS
Disc Seat
SC
Screwed Cover
EC
Eccentric
SC
Schedule
EFW
Electric Fusion Weld
SG
Screwed Gland
FF
Flat Face
SMLS
Seamless
FLG
Flange
so
Slip-on
FV
Full Vacuum
SPRG
Spring
GAV
Gate Valve
SPWD
Spiral Wound
GALV
Galvanized
SS
Stainless Steel
GLV
Globe Valve
ST
Standard Weight
Grade
ST
Stellite
GR
Glass-Fiber Reinforced Epoxy
SW
Socket Weld
GR
Glass Reinforced Vinylester
UB
Union Bonnet
HEX
Hexagonal
WN
Weld Neck
XS
Extra Strong
November
2006
Fiber
Chevron Corporation
Seal Cover
12 of 24
Corporate Piping Material Specifications
for
Carbon Steel,
Cr-Mo and Stainless Steel Piping Syst ms 8.0
PIM-SU-51 12
EQUIVALENT NOMINAL PIPE SIZES m~m
inch
DN
1/8
DN
1/4
ONl10
3/8
DNI15
1/2
DN 20
3/4
DN 25 DN 40
1-1/2
DN 50 DN 80
DN 100 DNI150 DN
20
DN 250
10
DN 30
12
DN 35
14
ON
400
16
ON
450
18
DN 50
20
DN 60
24
DN 650 DN 75
30
DN 90
36
DN 1050
42
ON
1200
48
ON
1400
56
ON 1600
64
ON 1800
72
November 2006
0Ch
vron Corporation
13
of 24
Corporate Piping Material Specifications for Carbon Steel, Piping Systems Cr-Mo and Staini ss Ste
PIM-SU-5112
APPENDIX LINE CLASS CROSS REFERENCE TO PROJECT SPEC NUMBERS CT Corporate Spec.
Project Spec.
Piping Material Carbon Steel
CT01CS1S72 CT01CS1S73 CT01CS2S71 CT01CS2S72 CT01CS3S71 CT03CS1S71 CT03CS1S72 CT03CSIS73 CT03CS1S74 CT03CS2S71 CT03CS2S72 CT03CS2S73 CT03CS2S74 CT03CS2S75 CT03CS3S71 CT03CS3S72 CT03CS3S73 CT06CS1S72 CT06CS1S73 CT09CS1S71 CT09CS1S73
1/4 Co
CT03CJ1S71
1/2 Mo
CT03CJIS72 CT03CJ1S73 CT03CJ1S74 CT03CJ2S71 CT03CJ2S72 CT06CAS71
CT06CJ1S72 CT06CJ2S71 CT06CJ2S72 CT06CJ2S73 CT06CJ2S74 CT09CAS71 CT09CAS72
CT09CJ2S71 CT09CJ2S72 CT15CAS71
ov
mber 2006
Chevron Corporation
14 of 24
Corporate Piping at rial Specifications for Carbon St el Cr-Mo and Stainless Ste Piping Syst ms CT
Corporate Spec.
Project Spec.
PIM-SU-5112 Piping Material
CT15CJ2S71 CT15CJ2S72 CT15CJ2S73 CT25CJ2S71
1/4 Co
CT15CK1S71
Mo
CT25CK1S71 CT01CL1S71
Cr
1/2Mo
CT03CL1S71 CT03CUS72
CT03CL2S71
CT03CL2S72 CT03CL4S71 CT03CL4S72 CT06CL1S71 CT06CL1S72 CT06CL2S71
CT06CL2S72 CT09CL1S71 CT09CUS72
CT01SA9S71
SS
304/304L
CT01SA9S73 CT03SA9S71 CT06SAOS71 CT06SA9S71 CT09SA9S71 CT15SAOS71 CT15SAOS72 CTO1SD9S71
SS 316/316L
CTO1SD9S72 CT03SD9S71 CT03SO9S72 CT06SD9S71 CT15SDOS73 CT03SJ2S71
SS321
CT03SJ2S72 CT06SJ1S71 CT09SJ9S71 CT15SJ9S71 CT25SAS71
Misc. Piping Materials
CT01NM1S71 CT01NU1S71
Novemb
2006
Chevron Corporation
15 of
24
Corporate Piping Material Sp cifications fo Carbon Ste 1, Cr-Mo and Staini ss Steel Piping Systems CT
Corporate Spec. CT01
Project Spec.
PIM-SU-51 12 Piping Material
SPOS71
CT03SPOS71
CT06SPOS71
CT OSDOL71 CT1 2PDOH71
OT 5CA1 S71 CT25CAI S71 CT7OCB1
CT70SDOL71
November 2006
vron Corporati
16
of 24
Corporate Piping Material Specifications for Carbon St Cr-Mo an
Stainless Ste
1,
Piping Systems
PIM-SU-51 12
APPENDIX LINE CLASS CROSS REFERENCE TABLE BY REFINERY CE
PASCAGOULA
TEXACO
CT01 CLI S71
J112B
CTOICSIS72
NONE
CTOICS1S73
J12A
RICHMOND
FZ700RIG REF
EL SEGUNDO
TBIC A131
AB
A132
NONE
AA2-CFP
AA2-PRCP E-FCC
E-MTBE E-NH3 OFFPLOT E-OIP E-ORIG REF E-PAM E-PEP E-PRCP E-PX66 E-PX96 CTO1CS2S71
NONE
NONE
CTOICS2S72
A134
CTOICS3S71
AB7
CTOINMlS7I
UB32
CTO1NU1S7I
AB6
J101
Vi-ORIG REF VI -PEP V1-PRCP
MB2
jCTO1SA9S71
GB1
10
CTOISA9S73
GB7
11
CTO1SD9S7I
120-18
ZI-PRCP
12
CTO1SD9S72
J120-18
Z1-PRCP
JB3
13
CT01SPOS71
14
CTO3CJ1S71
J334-12
LlPX66
RG1
RG1 RF1
15
CT03CJ1S72
J334-12
LlPX66
RG1
RG1 REI
16
CT03CJIS73
L5AROMAX@
NONE
NONE
17
CTO3CJ1S74
L5AROMAX@
Novemb
2006
*L5PRCP L6PRCP M-PEP TCRP *L5PRCP L6PRCP M-PEP TCRP
Chevron Corporation
G131
JB1A, JB6 J131A
17 of 24
Corporate Piping Material Specifications for Carbon Steel, Cr-Mo and Stainless St el Piping Syst ms
CE 18
TEXACO
RICHMOND
PASCAGOULA
1-YC-4-6 SHEET 14
CT03CJ2S71
PIM-SU-5112
ELSEGUNDO
RG
L4AROMAX
19
1-YC-4-6 SHEET 14
CT03CJ2S72
RG
L4AROMAX
20
CT03CL1S71
J319A J319B
J321-12
F-PEP FZ 10 O R G R E F SP FZ 15 O R G R E F SP SP4-PEP
TF1
TF1 OLD TF1C
SP6-PEP
SP8-CEP SP8-PRCP 21
CT03CL1S72
J319A J319B
J321-12
F-PEP FZ 10 O R G R E F SP FZ 15 O R G R E F SP SP4-PEP
TF1
TF1 OLD
TF1C
SP6-PEP
SP8-CEP SP8-PRCP 22
CT03CL2S71
Fl-PEP
TF
SP PEP SP9-CFP SP9-PRCP M8-CFP SPL-FCC 23
F1 PEP SP PEP SP9-CFP SP9-PRCP M8-CFP SPL-FCC
CT03CL2S72
TF TF21)
TF2
TF TF21)
24
CT03CL4S71
J329-9
TF
25
CT03CL4S72
J329-9
TF
26
CT03CS1S71
NONE
AF1
AF1
27
CT03CS1S72
NONE
AF
AF
28
CT03CSIS73
BF1
BF
AA3-CFP AA3-PRCP
29
CT03CS1S74
J34B
R1-01P
RI-PAM RI-RMP-PRCP*
Rl-FWEC-PRCP S-27/SWS SB-27/SWS SC-27/SWS 30
CT03CS2S71
NONE
AF
AF4
31
CT03CS2S72
NONE
AF6
AF
32
CT03CS2S73
NONE
AF8
AF8
No
mber 2006
Chevron Corporation
18 of 24
Corporate Piping Cr-Mo and Stainle ES
Specifications for Carbon Steel, Steel Piping Systems
at
rial
PIM-SU-5112 RICHMOND
PASCAGOULA
TEXACO
ELSEGUNDO
33
CT03CS2S74
NONE
AF2
AF
34
CT03CS2S75
NONE
AF9
AF9
35
CT03CS3S71
NONE
AF3
AF3
36
CT03CS3S72
NONE
AF5
37
CT03CS3S73
NONE
AF11
AF11
38
CT03SA9S71
GF1
GF
39
CT03SD9S71
JF2
JF1AJF25
40
CT03SD9S72
JF
JF1A
41
CT03SJ2S71
AROMAX
KF1
KF
HJ2-FCC
KF2
KF
NONE
YA-PEP
T12-PRCP 42
CT03SJ2S72
CT03SPOS71
44
CT06CJ1S71
AROMAX
KF1
KF
HJ2-FCC
KF2
KF
AF10
KG
K-CRP
J69-17
AF
KG
T12-PRCP 43
AF1
RK1
RK1
RK1
RK
M-CRP
45
CT06CJ1S72
K-CRP
J69-17
M-CRP
46
K8-PAM
CT06CJ2S71
RK2
L3-ORIG-REF L3-PEP M-CRP
02-ORIG RE 47
CT06CJ2S72
RK3
48
CT06CJ2S73
RK3
49
CT06CJ2S74
50
CT06CLlS71
NONE
RK
NONE
BJ
BJ1
M6-PRCP* M7-PRCP
51
M6-PRCP*
CT06CLlS72
M7-PRCP
52
CT06CL2S71
M7-PRCP*
J68AJ68B
M6-CFP
53
CT06CL2S72
M7-PRCP*
J68AJ68B
M6-CFP 54
CT06CS1S72
AA4-AROMAX
J66B
AA4-PRCP
T-27/SWS W2-PEP
r575[CT06CS1S73
ov
mber 2006
AJ1
Q
vron
rporation
19 of 24
cifications for Carbon Steel, Corp ra Piping Material Piping Syst ms Cr-Mo an Stainless St CE
PASCAGOULA
TEXACO
PIM-SU-51 12 RICHMOND
EL SEGUNDO
GJ6
NONE
56
CT06SAOS71
57
CTO6SA9S71
GJ1 GK
58
CTO6SD9S7I
JK3
59
CTO6SJIS7I
KK4
T3-PAM T3 OR REF T3-CPR
KK KK
r3-CFP
T-PAM HJI OR
REF
60
CT06SPOS71
61
CTO9CJ1S7I
J942-5
RI-
62
CTO9CJ1 S72
J942-5
RL1
63
CTO9CJ2S71
J942
FZ11-ORIG RE KIAREPU
SP
RL2
64
CTO9CJ2S72
J942
FZ11-ORIG REF SP KIAREPU
RL2
65
CTO9CL1 S71
J943
66
CTO9CL1S72
J943
67
CTO9CS1S7I
J911A
68
CTO9CS1S73
69
CTO9SA9S71
70
CT09SJ9S71
AL
GM1
T4-PAM T5-PAM
KI-4
KL-5
71
CTlOSDOL71
72
CT12PDOH71
73
CT15CAIS71
74
CTI5CJ1S71
75
CTI5CJ2S71
J72-7
76
CT15CJ2S72
77
CTI5CJ2S73
78
CT15CKIS71
79
CT15SAOS71
GP6
80
CT1 5SA0S72
GQ6
Novemb
2006
NONE
J033A
PN12PDOHOI
DP
DP
LI-ORIG REF
RP4
RP
J72-7
Li1-ORIG REF
RP4
RP
J72-7
Li1-ORIG REF
RP2
RP
MS-PEP M5-PRCP
SP4
M3 PE (Ref. RP#) L7-PRCP 01-ORIG REF L2 ORIG-REF
©C
vron Corporation
20 of 24
Corporat Piping Material Specifications for Carbon Ste 1, Cr-Mo an Stainless St el Piping Syst ms CE 81
CT15SDOS73
82
CTi5SJ9S7i
PASCAGOULA
TEXACO
CT25CAiS7i
84
CT25CJ2S71
85
CT25CKiS7i
86
CT25SJiS7i
87
CT7OCBIS7I
88
CT70SDOL71
November
2006
RICHMOND
EL SEGUNDO
GQ6
NONE
Ti-PEP
T2-PEP TI ORIG REF T2 ORIG REF 83
PIM-SU-51 12
KP4 KP5
KP1W KP4 KP5
DRi, DR4 NONE
NONE
RR
NONE
Sr4 KR4
NONE
NONE
NONE
Chevron Corporation
21
of 24
Corporate Piping Material Sp cifications fo Carbon Steel, Cr-Mo and Staini
PIM-SU-51 12
Steel Piping Systems APPENDIX
SAMPLE BLANK FORM
PIPING MATERIAL SPECIFICATION
Word version of this fonin is available with this specification, as PIM-DS-5 112.
(Spec. Number)
Chevron Corporation LIMITED BY: SERVICE:
MATERIAL:
RATING CLASS:
DESIGN CODE:
TEMPERATURE LIMIT:
STRESS RELIEF
NOMINAL CORROSION ALLOWANCE:
EXAMINATION.
VALVE TRIM:
HYDROTEST
TEMPERATURE RATINGS
PRESSURE
@AMIENT
TEMP
TEMP For NPS 3/4 through NPS 24 (Full flange attgs per ASME P-ig ~ag
16.5,Table 2-1.9.)
II III
IIIII IIIII
NOTES_
ITEM
NPS
PIPE
SCHIRAT
ITEM CODE
DESCRIPTION
ENDS
____________________ __
NIPPLES Braoch Branch Swage (CONC) Swage (CONC) FITTINGS
Sockolet Thredolet SW Elbolet
Latrolet Weldolet 90 ELL 45 ELL
____
Tee Tee (RED)
Union Plug Plug Couplrng
Cap Reduce (CONC) Reducer (ECC) 90 LR ELL 45 LR ELL
Tee Tee (RED)
Cap -VALVES
____
Gate Gate Gate_____________________
Gate Gate____
_____
Globe_____ Globe_____ Lift Check
Swiongheck
___________
Ball
Ball__
November 2006
_
_
_
©Chevron Corporation
_
_
_
_
_
22 of 24
Corporate Piping Material Specifications fo Carbon Steel, Cr-Mo and Staini ss St el Piping Syst ms
(Spec. Number)
Chevron Corporation ITEM
NOTES
PIM-SU-51 12
NPS
SCH/ItAT
ENDS
DESCRIPTION
ITEM
CODE
FLANGES
(SW)Socket Blind Blind Spectacle Spacer ing Blind Plae Weld Neck Weld Neck PI'e WN Online
Pate
Qtfice
GASKETS
BOLTING StudBolts
Novemb
2006
Chevron Corp ration
23
of 24
Corporat Piping Material Sp cifications for Carbon Steel, Cr-Mo and Stainless Ste Piping Syst ms
PIM-SU-5112
(Spec. Number)
Chevron Corporation 90* BRANCH CONNECTION, Legend and Chart
24 20 is i6
-e
14 12
z ADD AND REVISE NOTES AS APPLICABLE BASED ON NEW SPEC. REQUIREMENT
W
Reducing Tee Branch Weld w/ Reinforcing Pad (Pad thickness equals nin pipe thickness. Pad width equals 1/2 branch OD.) Equal Tee Sockolet Weldolet (Note 05)
NOTES: Where pipe schedule is shown under "SCH/RAT", it is adequate for full flange ratinX Where -Calc." is shown, the pressure limit my be lower than 01 Flange rating. All bunwe ded component thicknesses shall match pipe thicknesses. 03 Threadedi.ints arc permitted only at outlet ofvcnt and &am valves, at hydrostatic connections, at outlet of instrument take-off'valves. and to match equipment Integrally reinforced branch connections am permitted outside the sizes shown in the branch connection tables. Designer shall check weld thickness 05 of integrallyreinforced branch connections to determine if PWHT is required. 06 These valves shall be used only for vent, door and instrument connections. To be used when mating to flanged nozdes. 15 20 XXS pipe and pipe nipples shall be used for threaded connections for aiies NPS 1/1 1- 2. 26 To be used only when indicated on the P&ID. Install in hinutortal position with cover up 62 Install in himinimal position with cover up in in vertical position with upward flow.
REFERENCE NOTES FROM RK1 AND RICHMOND GENERAL NOTES: 17 USE WELD NECK FLANGES AND THROAT TAPS NPS 20" AND LARGER. USE RESTRICTED TO DRAINS, OPERATIONAL VENTS, AN INSTRUMENT ASSEMBLIES ONLY. THREADED NIPPLES TO BE SEAL 91 WELDED. NIPPLE LENGTHS SHALL BE IN ACCORDANCE WITH STANDARD DRAWING GD-L- 1057. USE RESTRICTED TO THERMOWELL ASSEMBLIES ONLY. 92 REDUCING TEES MAY BE SUBSTITUTED FOR ANY TYPE OF BRANCH CONNECTIONS. 99 119 THIS PIPING CLASSIFICATION IS SUITABLE FOR SERVICES CLASSIFIED AS "SEVERE CYCLICAL CONDITIONS" AS DEFINED IN ASME B31.3 FOR SUCH SERVICES. INCREASED ACCEPTANCE CWrERIA FOR WELDS SHALL FOLLOW TABLE 341.3.2.A. SERVICE:
Hydrogen with Hydrocarbons High temperature Process Air NON- Sour Services
No
rnber 2006
Chevron Corporati
24 of 24
o
C*4 T-
C14
:
cc
IT Lf) r:
q,
00
U)
fl-
N ca
N
M ca
N ca
r-
CO)
M
00
C14 Lf) 04 C14
0)
N 06 C-4
Im
cq
CL
LU
LL
LU
Cl) IL
C6
U)
a-
CO)
ir
LU
CO
Cl)
Z
LL
LU
(L
Cl)
LL
z
:13
CO C0 o
W
co
Cl)
mw
C/)
:C
F-
i2
F- F-
LL
C.) cj
LL
CO
co
U)
F-
L) 0
:j
:)
-j
r
ao
(M P: 0 :3
Ij
co
(D CO
a.
U)
0 U)
co
U)
W
Co
-i 5
z
in
U)
C6
W
qt 9:
:5 -j
C/)
w LU
rU
(D Y.
_j
CL
LL
U)
I,-
COO
:5
LL
(D
F-
C4
LU
--.%
cq
--) --) -J -J
-j -i
-1 -1 U) U)
LU
CO)
%.
L?
:3
C14
U?
LU
Lu LLI
LLI -1
a
LLJ
IL
wl
0
U)
LLJ
z
Im
LU
a z
it Lu
LU
0
(L
Z 4
0
IW 0 Z
it
t]
9
CL
0
<
L) LU 0U)
<
>-
0
w
IL
U.
-, , 0 z
LLI CL
(n
Lu
Ul
Z C.)
IL cl
IS
(3
LU
:5
LU LU
0 z
L) U)
C, LLJ
11
LU U)
0 w
IL
.0
CL
CA
CL
in
LU
zt
(L
0
a.
U)
>-
0
wk
ct
(L
C3
W0 U) U)
LQ
cz
Ct
Ct
Ct
CL
D
to FA
cc
cc .0 cc
13
.cCL
LU IL
to)
to Co C14
LLI Lu
IL
4) !2 >-
w0
04 V)
LL.
a:
0-
co
X m
IL
D
LL
LLI CL 0.
cl
LU
ir
ul
8
2
K
0:
co
z
wa
co D
Z
;-
;z
W
w
ui
0
a.
LU
zw ww
It
LU CL
'0 m
0-
IV 0
Lu CL sm
LL
% LLI
LLI
w
C.) LU
ui oqql
wI LU
13 ui
Lu
LU 13 C3 LU LU
LU LU
LU
ui
Or
LU
LU
ui
ZI
Lb
w-
U)
LU LU
LU
31
3i
LU W. icr OO It 0 8 0 0 8 0 3 0 W o u u Lu
Lu
WOW
( n r n c o MOSS
a:
ozLu
a8T9 ,:
LU
ww.w
r,
(L U) LU
mo0ow
0:
U) (., )
Sm
EL
0
a:
U)
>-
2
LU
Lu
0
Z
W
U)
U)
cr
cr
F-
U) U) > U)
CL U)
CL
D
CO
C3 LU cl
Ct
z rL
.c
w
D
>
U) IL
0:
uj
IL
a
LU CL
LU
V
L4
CM T-
LU iz
V-
Cj) (A
LU
U?
W.
Im al a.
LU
LU LU uj
V)
(4) U) LL uj
Z
M
w
IL
U)
m
ul uj LU IL
0-
U) LU
LLI
ca
(A
LL
Lu
LU uj v
w
w
w
o
0
o
w CL
LU IL
U)
0: 0 22700
(q C.) CL
z
J J
LUWW
_q
om
LU CL U)
() co
M
LU LU
8
-a
CO
(4
a. vi
16
U3
U) U)
Z
(A cc LU CL
D
LU ILU
=1
U, U) (D
LU 06
Ri CD
(L
IL
a:
0 V)
cr
cr
(D 40 C14
uj
Ld Lu
LU
uj
LU LULJI LU
CL
CL
LLI
ui
LU
CL
0) (1) U)
IL
IL
zz z g o g o 0 w w w 0 0 z 0 0 0 CL0 IL z CL m & 0. CL z
uj
m
CO) No.
W w w w w Z Z w w w w w W
uj LU LU
tu
LUZ
owLLLU =1 8 (L 0
as
Lff
105 9 I.cc
ir
cL
LU
iTL
cc
-
LU
vi
CL
LU
luu)
0
a.
CL
LLI co
CL M
z
w
LLI
LU
0-
D
0
U) (A co
cn LU CL
ca
J2
to
cc
93
z
dD
F-
D
P.
CL
CD 40
ui
LU U)
ui
IL
LU U) co
OZ Lj
-Kwmnt, cq
CL
LU (L
J)
< M 0 a
x
>-
LL,
LLI lu
LLI L,
LL.
(L w
w
w
w
a
z z z
LAj
w W
Lu EL U)
LL
Z
0
F-
D
L'i
LU Z
0 z W W
ui
11 a: <
LLJ co w Q =) ;;
ui CL U) Z
a
0
w
0) .S
LU 93
'i
!E
IA
cc .0
LU IL
J)
(D
04 CD
.E CL
LLI IL F<
LU
LU
LU
F'
LU F-
Ir
CO)
Lu cn
LU
uj
z =1 F-
-W
w
z =1
M
1-
Ix 0
'7
m
IL
ui
CL
z
z
z
!i
Z. 0.
uj
LU
0
LU
CZL o
z
w
a)
n
LU Ix
CL LU
cr ks
Ir
a.
a.
it
a: U)
-0
LU
LU LU lu
CL U)
Z5
a:
U3 U6
it
0 a.
CL
(a
LULUIL iL
>-
z
LL
LU U)
CL
uj
vi
44
CO ui
LU LU
LU
US
LU
LU
Lu
LU
LU
LU
.6
>
LUm
LL
co
in
U)
CL
w
LU !
LU
(9
LU
rn
(.) O)
0
a
LL
(1)
m
z
m
a
w
w
D
>
x
N
I
W
U) cc
LU
(9
LU
LU
ui CA
(A
(A
U)
co 8 8 8
7 U)
0) m
U-
LU .c
IL
oz
>;
3:
U-
'r
CO
LU
0
3.1 Lu
:erfL
a:
w
U,
co
CD
C4
U)
3:(o
ui
'n
zw
co
Cl
LU
o
CD
LU
Lu CL
U)
CIL
x
0z
z
ww t3z
210a-: ;Z;
t;
W,W,
6,
ug
21 LU
Z, IS 00
0000,0. a
m
k;
ci
Z,
x
3a
2
a U) tu
m >
a
21
>
a
SCL
1. 9
a '?
'L
.0 -0
c, E:
:,
OZ
ZO
r.
W8
Z Z
w
.;AU)
Zz
.00
!5
w '3
'D
m
v
M
a
00
MW T" X
0
0
0
0
0
x
D
a:
z
'?
tS
zK
ti 0
w 00
ZZ 03
cl
ti
0
0-0
z
0
0
=1
0
0
0
a
'?
x
A LL
L)
w
w
z
(D
a
ti
U) 2
-, u
CL
0 to 40
4D
li
LU OW CL
CL
U)
clo li
-f
'd
04
(A
C4
LLI
8
Ir.
q-
-4 ul
C) T-
(A
-J (3
ILU
U)
CO cc
IL
z
(a
LU
Z,
S2
0.11
Q: 3,0
(9
ca
LLI
12
LL
CY
.0
LLI
!2
-0
z
0 t
m
0 fil
m
EiE
11
ti
Om 3'
0 a
-w
w
w
0
0
1
z
cc 0
Z5
's
CD
U)
Is
;Z= a
IMI a.
3:
m
CL
tu
0)
CD
C*4
CIA
-j LLI IL
(0) LLI
LU
W§
LL,
03
V-
z
2:
cis IL LU LU
(L
Lul tj
LU
0:
LLJ
LU co
0
C) t5
0.
cn
d <
w
3:
0. C3
LOU
Lu Ixul a. w
F-
U) LU
LU LU
LU
LU
L-U
:3 LLJ
uj
E,
Ul
co
Lu
LU
z
>- >L Lu FtU) 1
U)
0
z
ca
w
Uui
Lu
LU 0. IL
LU
LU F-
U)
LU CL Q) C.)
LU
D
0. Z
U) LU
03
0w
(Uri
LU
V) U) (X CL
V)
y
IL
LU
U.
(.9
UJ 10 IL a:
CL
(r LU
o-
IL U)
U)
U)
>-
Q6 LU
V)
U)
LU
4)
Q9
Pk
Lu
a w
0:
U)
In w
LL
cl
LU w
:5
-,t
Q)
3:
m
cr
2
0
0 ui
:z
uj 'i cj C6 0
cc
Z
IL
LU LU Ix
'n
L)
ow
0
49
c:t
.cCL
LL LU IL
.L IL
00
ot Lq
(L
Ct
3:
>-
to
U)
C4
-i
LU
Lu IL
CO)
LU
(r
C4 T-
10
p ui
i=
at a.
Lu
t=
LZ uj
IL
LU L) LU CL
LU (L
U)
U)
U) co
LU
L)
LL
LLI
LU LU
>-
M
zi
LU Fcr Ir
LU
Lu
Lu
14
=1
LU Ir co
a.
w
3:
D
(a
LU
Ld
cj ui
a.
U)
LU
ti
"j
Lu
0
LU
Lu
LLI
0
Ir
m
U) F,
t;
Lu =)
UJ cc
t5
w
LU
CL
=3
!e
Cl) LU U) V) W-
0
0
cn W 0
3:
W
W 0
z
:5
U)
(0
cl
L)
z
cc
U.
w
3:
0 W
3'
0 w
0
0
0)
.
W
?,
3:
W
W
U)
.
31 31.
3:
U) CO) o . w
3:
. w
.
31 3: 3:
. w
cs
ci
LU CL
U)
D: 3:
Z
W
co 0 Lei
v;
!E
LU F-
C6
(A
=!
U)
L)
om :3
m
cc c4 CL
C.)
C3
0
CL
0-
U)
vi
>-
to C4
LU
:)
to
2L IL
a.
L4
cm V-
T-
%-
_j IL
C)
LLJ
E: cc
(A
CL
LLI
a-
F-
Lu
LU
a:
0
cr
cr
U)
LU
Q)
a LU
LU LU
LUui :5 IL m
Lu (4)
(j) N
m
JU
d:
LU
LU
P:
(.) Ix
LL. 02
co
_j
'.)
CL
IZU :1 0
LU zo L, Lu
LU t=
jj3
LL ;>
cl: (L
uj
ca (6 Ed d
d
Lu Lb I 5 5
LU
Lu
Lu
w Ir
(3
C,
F: U
W
LU
W
a,
.2
LU LU
U)
W
W
CL tu
(LLU a: W> ILw
U)U)
W>
0
U)
a 0
co
U) O-L a 0
U)
0
:s L)
U) ri)
0
U) U)
0
cn
LU 1
>-
D
m
w
U)
LU IL CL -i Ix
CD WJ OL 0
Lu
W
U-
CL
U) ui
cj ci
o
LLJ UJ LU t; LU CK
0
CL LU
ul
Ix U) w
<
co
C) LLJ
Lu
>-
Ew *6 1.2, Cc LLJ
LU =1 Lu
Zw ZJCLLU
F-
ui
I
:3
Re
U)
F-
U) U) (o U)
CS
url
CN!
C!
0 LU CL
I
U)
w
:9
>-
CL
0
0
Ix
g Ii d
'1
Ix
C6
2E
in
IL
>CL
.r
(5
U)
8t
LQ
a.E
22. IL
ch co
Lau
a-
8
Ct
8
m
I:t Ck C Lq
m
CR
LOU 0.
Cl
V-
LU
IL
g C3 LI
LLI a:
LU
co
LLI LL
ai
t:
Lu 5; 2: L) LL, C3
cr
U)
LLJ
ui
(L
2
!J
IL
F-
CO)
Lu
C, Z, LIJ
LU CL
co ui
zi st
LL. LU
F0)
>-
U
cq
L,
Lu U)
Lu
LA
tu
Lu
Lu
>-
Lu 0.
>-
140:
a.
Lu
LU U, Z
0
X
2
0
0
ox
LU CL
co z
m
w
U)
0
)co Dx
LU: LLI
CL IL
L (r IL
CL IL 0 LU LU
LL
L)
U) 0 co z
lu
Ft m
IL U)
0
U) it
ui
I.-
LL
Lu
Lou
3: LU It
U)
(1)
CL
L.
:3
-j
w
w
LLI w o z z
z
LU z
LU LL
LL
24
w 0
(on 0 3:
3:
31
U)
U)
0 0
0 0
0
3:
3:
3:
3:
3:
0 w
U)
.
w .
.
7 o .
w
31 3: 3:
9
z
x
0
lul
Can-
LU
10,
It LU LU
L) Me
vi
ui
Z3 Lij
(6
LU
2
M
0:
LQ
LQ
U) U)
(D
0-
X
ca
cc
0U)
CL .c LU
(A
CL
U)
F--
>-
IL
CD
IL
Cl
0) LU
j
:5 LU IL (a
CO) 4-
Lu Ir
In
LU
uj
LJ LLJ
LU
UJ
co
U)
(a
03
IL
LLJ
0
L) CL
LU LU
a:
a-
Lli
to
:3
UU),
a
M
x
V)
co
>-
LU uj
19
U)
)-M
LL. .6
Lu LL
.j LL
U)
LL
Z
0
ul
or
(L
(1)
U) U)
LuU, L) Lu 0: Lu a: -, '.. 05Lu 0 U) z
Lu 0. am, Cy X
LU
-Z
LU ca
CL
u)
F-
LU
(D
LU
tu
0
LL
LU
0
L6
4.-
Lu CL U)
0. 0.
a- CL
co
LU
ui
M
CL
'M
Lu t! 3.
Lu 0
L'UL'Ll
LU
LIU :5
U)U)
5
l9 :5
Lzu zi
coo
L) L)
w C? w LuLU ro a
U) 8 U)
ui LU LU I?
X:
Y-
w
co
I? LU LU U LU
Z
(L
0U)
D
cr -1
'o
co Lu -.=! V)
cr
F-
(2 !A
C6 uj
(d
Coo
U.
C-)
ui -1 Qui
0
z
a-
0
r4
co P
9
cc
In
8
8
8
U.
8
Cat
Sq
ul
CL C2 04 &-
af
co
LU LU
L?
-4
lu
IL
Cl) 4-
LU
IL
0
ZO
-9 'r
LU
Z9
sm
uj
EL
0
LU
0
zo
(A
ul
13
C3
Lu
C3 C3
LU LU
LL
LU
Lu IL m
In
IZ-1'r IL
L)
in
it
9
L,
a. U)w
w
D
MZCLOWW
Ir
S2 U) LU
Z
Lu IL V)
LU
CL
UA
CL
LU
LU Lu LL
LL
LL It w
LU
U) U) LL
F-
co 0 z
F-- D
W
>-
U) 3: LU
w
w
w
0
w
0
U. CO)
0
0
0
LL
L
LL LL
U)
LL
CL
CL
D
>-
LU
z0 55 In
0
.c
Lu .4
CL
C6
co
IL)
'a
m
>-
(L 0
LLJ
U) co
LU LU
D >
CL
Of
m
4)
a.
U) ()
.c
Y.
D
(D 42
lu
a-
.EL IL01
M
C14
V-
-j LU :S
L?
uj
LU LU
IL
LU LU
U) 06 .8 LU
cc
U?
0 IL
S2
d d z z
d z
Lu z *a CD LU I.- z 2 LU LU Ix 0 0
z LU 2 2 Lu LU a z
z
w
2 LU (D z
z
z
d z
z z z z (i ci
z
z z LU
z
z
z
z
0
a
a
0
LLI 0 0
ul
uj
z LU LU
uj
ui
uj
M
0
a
w 2 2 LU LU a
LU 2 2 Lu LU
ci z
z LU 2 LU
LU LU Lu ,
9 w <
Lu LU LL
U)
IL
U) CL
z LU 7:0 LU
F=
cc CL
z LU 20 LU
00
00): a:
3'
(n
a:
CL
V-
12
z
9Z LL
0
ui
CO) %-
LU LU
ui
LU
z
ad
I.
L,L,
LL LU
U,
LU
LU
t;
U)
o
Ix
a
Lu
CL
U) LU
>-
>
a
LL
ZI
f?
(i
0)
cq
C)
uj
CL ix CL
15 (A
LU
L) U)
3:
11 LU
!] lz Z)
;L
C3
U)
ILU >-
LU
a:
0: IL LU
LU ir W
LU w cc
Ir C,
w Q 0
ri
z
In
LZ z
0: 0:
w 0
z
LU
Ix Lu (D
P
cr
Ix
LL 9
9
3: LUr.
a:
3:
12
L) LU
tz
x
at cc La z
CL
D =3
IL
(a
Z
LL
0
a>m co
CL
LU
aw: LU O>-
lwn
(D U)
n:
CL
CL
(D
C, UJ
CD
LU
C3 w cc C3 3r
0-
co
LU CLL)
LLI
w
X: t)
Lzu 0:
0,
r4
CD
LU LU zZ C3 LU
U) U)
LLLL
a C3 a (1) z z
U)
a
co
LL
U) ca fn Q)
V) V)
LULU LU 3: 3:
LU LU 3: 3:
")
0 U) (1) (n LU ui 3'. 3:
3:
!2 cs
LU
3:
tu LU
>-
of U,LU
Lu cr
U)
L)
cc
0
Ot
CL
U) U) in
IL
>-
(n
z ct
Cq LU
!d
LL
Z M
a
Ix
CL
U)
ui
CL
U)
C.) LU 0U)
Q 0 0
3:
LL
!E (A
R!
x -
LL
M 0
co
U)
LU IL
"I
CD CD
a)
'31
(a
Cl
LLI
LLI
LLI IL LU
CW)
co
U) 0)
lull Z IL
C3C3 U)
ac
t-L
a:
D
(L
LU IL
Ian;
U)
0
ui
0
oi U)
Lu
<
LU
LU
CL 0
w
D
co C/)
LU EL U)
L, U)
U)
U)
F-
Ir co
a:
>
LU co
Cl)
ZLU CL CL
4.
uj U) LU
LU
CL
I 0)
LU
co
U)
3
0
z
0
CL
UJ
6.
:3
D
(L
LL 0
UJ zo
3E
L-U ui
U) U)
0
5 LL
0
(n
ci
LU LL C)
(D
c4
0 M
Lo
(.) ow U)
(L
ui
So
Lu
6
cc
U) L)
OM
ci
U)
Ne
CL
X
lu
um
co
D
U)
ca
(L
93
LU
LL
te
>-
CL .c
U) 11,
IL
L) co 21
IL
w
w
C4
cm fn
LU
U)
go.
L?
w
C)
w
(n
U)
(n
0
0
tu lu -j
w
w
CD
(4
IL U) ed
iL
Lu
Cc ix
C03 U, oz ca
U) C.)
LU
F-
LU
0 L,
LU CL
LL
Lu
0.
U)
a
IL
LU
LLJ
LU (.)
LU
13 LU (x
u9(L
LU
U) UJ
LL
LU o
EL9: CL CL a.
LL
LLf
F-
LU LLI
co LU
:3 M Z
Y.
w
Lu
U) (1)
or
<
co
cr 0:
ui
p
(n
M
LuLuLu I w w
U) U)
IL
M
Uj
F-
u1j: w: Ix Ix
(0
CL
.0
LU
LJ
LLJ
LULU
0!
cr
Lu LU
C.)
U,
w
13
-
F-
LU 0-
U) cd
Lu ui
LL
C6 w
(6 IL
Z
Li
m
LLJ
LL
LU
Cc, o
m
w
Ir
uj
IL co
Q
v
0
uj
0:
w
,
cn
U)
UJ
(n
tn
u)
U)
u)
L8
16 LU
Ic
CL
D
ui 0U)
>
(0 U)
IL
LL:
C3
LU
ui
co iD W F-
4:;
(.)
Ir
=)
U)
'd LLI
D -T
10
04
6; CO) LU Lu
LU
LU
LU LLJ
LU LL] LI x
(1)
4-
Cl
CO)
z
CO Lu LI LU LLJ
Ir
CO)
OD
CO)
IL
z CO UJ LL 0
Z
IC
CL (3
IX
LL
0)
Ir
0)
LU
ui
-2
cr
(n W,
zz
FW
F-
W, U) cow
0(L
a-
to
cc M
0
a
W
w
U)
X
IC
M
Z
0
0- 0
M
ui
Co ui
LU Lu
0)
'm
Uq
w
0.
MW 3: 3'
w
0
< M 0 0 w w 0
-j
t;89 :5
3:
w w w w
Ir
(A U) U) w
CD
3'
C.) U)
wwww
0 0 0 0 U.
LL
w M
Lu LLS LL
0 w
w
00
00
I-
a.
U)
(L
!e
Ck.
LU US
>
!2 ag
0:
LLC,
L.
-Z
LLJ
Cl) 00 cr
.
U)
LU
.
U)
am
<
m
LU ca
a
U)
w
y
U) U) U) V) CO U) U)
Z
M
m
(or iL
P:
ui
U) w
IL
0
>
U)
LU LU
Ct
LU
0.
U)
CL
IL
(0 CM
CS)
co
CM
Cl) 4-
W
UW)
m
0
91
(Y
,c
IL
LU
(L
cr
U) LU
0.
0 Lu Lu
I.- UJ
%44
ICL
uj
zz
YZW
'L .6uyi
g.29ER-, (L
ul
LU
LU Uzi
F-
C-)
Lu co co
LU Lu ui C, 0.
LU
U)
U) CL CY
LL
x
D
w
>-
LU
U)
uj
LU LU
cm,
U) U) (a (A U) <
U)
w 0
w
w
C,
U)
>-
IL
0
LLI
LLJ w
co us
co ,3
Ul ujLU
z Lu
L, t3 0 flLU co !izzw 5w 8.)8=lujw(Lm cw (LVsa a: Z(aWW3,www
LU CL Cl)
WAO
w
0
w
>- N
n
0
IL
ie
LU
z
CL
LU 0
-i
L.
F-
LU
LL
ui
Lu
Lu LL.
LLJ F-
U, X:
0
d
0
le
Z
Ui
0
a. U)
In
(L
IL
0
Lu LU ui
CL
0
IA
0
w
M
z
a
w
D
cc LU
cc
LU IL Lu
CL
U, W0 ZD IWO
(D
5 U.
0
w ; U) z w > cc z w
w 0 w m U) CL
d:
co Co Co
04 L.
;; (a
C14
C4 Lu LU cc
IL
7
xQ 1) CL
(a
w
U)U)
'I (3
'0 CO) co
a.
Lu
LU jj
Z
:3
EL
Z
0
:3 0)
Iz
u
<
Z
w
a
-M IL U)
CWLCL
LU
(n
LL
LU LLI
W
M
F-
(n rn
LLI
ui
co
w
z
L)
z
z
co
LU
co LU U)
at
0
0
-W U)
6
LU Lu CO) w
0
'M1
(1) y
Z
w
Lu
CL F-
W
w
LU IL U)
0
LU LU
U)
LLI
(Z'Z) LU ul
CL
=3
t=
ui
CO)
21) U)
(D
cj
UJ at
w0
0 LU
LU
2:
U)
IO
Ir Ir
ui
Lu CL
t1i
CL
2:
cr
(30:
Lu
LU
U) >-
CL
CL
I-
oz
U)
LL
LU
0
ww z
w
w
w
Lu
LU
(9
(1) 0
LU 3F
Lu LU U)
U.
C3
>-
LL
w
LU 1.-
LU
:3
F4
LU
o
ol LE (r
ui LULU
C/i C6
cc
(j
0
(I
LLI
,
U)
U) ul z
F-
W-
oo
CL IL
CL
a
w
'I ZD
to to
UJ
IL (n w w 0
M
!4
CL
>-
CL IL
LL LU
4) ui
LU
U)
w a uj
CD C4
C4
0)
LLI uoj
La
31 U,
0
a
C3
-.=!
uj
ZI
Iz
m 0 0 w
LU a:
4)
cm cc
CL
CL
C6
I-
Z M
C4
L)
LU
0-
C4)
CW)
CL LU
LU
T-
LL
LLI 0-
0:
ui ui
C/)
LLI
Lu -ow
uj
0:
LU
0
CO LU2
(D
uj
0 z
U)
UJ (L U)
US 2
W
X
U. U) ui _5
0)
6
T
W,
:3
I--
LU
1co
LU
W>
0
w
0
0
LLI tz
0: U)
Y
§i
M Z
(43
(!) K U)
M
D 'D 0 X
0 0
,,
a.
0
uj ul
w
ll
cr LLUU
UI)
D
(L
ffi
tu
C&
:3
LLI
z m
LL
3.. z
IL
>-
W F-
(3
LLJ
ui ul
0
0 w 0
-1
a w 0
w
:3
C)
(WI)
2R >
a.
a:
w
.c
0 a W W
x
LU LL. Ul
LLI Z4
LU
LLI
'C'i ED CE
U) (3
Ix
F-:
"or
s
m
? R
(
;M
w 0 x ,
w 0
m
Lli
>-
0.
uw)
w
w
w
w
X
LU
0
cc
C.)
0
L)
L) U) (f)
0
F-
cn
9)
I-. (3 Luuj LU tu
a.
U3 n
.c
CD
1, LU
.aIL
>
10 C4
(A
C4
le
C4 03 LU
LL LU
CO)
IL
Lij
uj
ui (L
LL
M
2
LU m t;m :; 0
<
a
W
w
LL Ir
D
2
EL
LLI LU
(.)
F-
t2
L'u,
LJ
o
L) LU 0.
M I I W
0
0.
LLI
>
in L)
U) U)
M :) LU Co
M
ui 9:
iL
U)
U)
<
0
LLI CL
U)
0 >-
a
LU LU U)
LU I..
LE
.2 16. CL s-
LU
LL t: LU ui
F- UJ
LU
L,
o
lu
z
:c
U3
(L
4)
x
Z
F-
LU Z:
LU LLJ
CO) CO)
L-u
ui
IL
1.-
oz
LLJ t=
I-.
uj
oz-
in
0
a:
Lu
0
C,M Mz
0)
co
I--
Z
y
L) Lu u) -E
U) U)
iL >-
<
View more...
Comments