Copy of BEAM Design
May 12, 2017 | Author: Joseph Cloyd L. Lamberte | Category: N/A
Short Description
Copy of BEAM Design...
Description
DESIGN OF Project Location Owner
2ND FLOOR BEAMS : 2 STOREY RESIDENTIAL BUILDING : POBLACION INITAO, MIS. OR. : ARNEL S. PACANA
MARK
DESIGN DATA
: RB1
b
D
LOADS AT MIDSPAN Mu =
38.58 KN-m
SECTION AT MIDSPAN AT SUPPORT
b 42.65 kN-m 78.65 kN
f'c = w = Fy =
20.70 MPa 23.60 kN/m3 275.00 MPa
b = D = d' =
250 mm 300 mm 40 mm
D
Mu = Vu =
MATERIAL DATA Concrete Steel
SECTION AT SUPPORT
BEAM DATA Width Depth Min Cover STEEL REINFORCEMENT DESIGN FOR TENSION Steel Ratio pmin = Main Bars
Effective depth Span, C/C Col Dimension
0.005090909
pmax = AT SUPPORT TOP BOTTOM Steel Ratio 0.01580 0.00665 Steel Area 956.20 mm2 402.12 Main Bar Diameter 16 mm 16 Required 5 pcs 2 No. of Layer 2 1 No. of bar at 1st Layer 4 2 No. of bar at 2nd Layer 1 0 Moment Capacity 43.46 kN-m OK!
Stirrups Diameter, d Spacing, s
10 mm 1 @ 50, 5 @ 100, rest at 200 mm oc
de = L = c =
242 mm 4,000 mm 250 mm
0.02796919
mm2 mm pcs
AT MIDSPAN TOP 0.00665 402.12 mm2 16.00 mm 2 pcs 1 2 0
BOTTOM 0.01408 851.80 16 5 1 4 1 43.46
mm2 mm pcs
kN-m OK!
DETAILED COMPUTATION DESIGN LOAD AT MIDSPAN Mu = .90(0.85) f'c bd² ω( 1-0.59ω ) 231.85 ω ( 1-0.59ω ) ω1 = 1.50787143 ω2 = 0.18704383 Use
p1 = 0.11350159 p2 = 0.0140793 p = 0.0140793
As =
851.80
Mu = .90 (0.85)f'c bd² ω( 1-0.59ω ) 231.85 ω( 1-0.59ω ) ω1 = 1.48494705 ω2 = 0.2099682
p1 = 0.11177601 p2 = 0.01580488
As =
956.20
AT SUPPORT ( TOP )
clear cover = d= n1= n2 = effective depth =
58 16 4 1 237.00
width check = min bar spacing = allowed bar at top = no of layer = no bars at first layer = no bars at 2nd layer =
134 41 4 2 4 1
DESIGN FOR TENSION Actual Capacity at Support
134 41 4 1 2 0
1 2 0
1 4 1
Mu = .90*.85* f'c bd² ω( 1-0.59ω ) p= 0.01696725 ω = 0.22541035 Mu = 43.46
at midspan
Mu = .90 f'c bd² w( 1-0.59w ) p= 0.01696725 ω = 0.22541035 Mu = 43.46
CHECK FOR SHEAR Vu = V s actual =
68.50 1.13 MPa
<
STIRRUPS Spacing S1 = d/2 = say DESIGN FOR COMPRESSION AT SUPPORT
121 mm 120 mm
Vs allow =
0.76 MPa
OK
rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast =
=
105.79 79.20 (36.55) (802.55) 889.59
mm kN-m kN-m mm2 mm2
use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
16 5 1005.31 2 402.12
mm pcs mm2 pcs mm2
As= As'= f'c = fy= d'= b=
1005.31 402.12 20.70 275.00 58 250 1 -9.41 -3742.75 132.13
mm2 mm2 MPa MPa mm mm c2 c
66.06 73.24 73.24 37.71 33.31 18.31 51.63
mm MPa MPa mm kN-m kN-m kN-m
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
0.02796919 1,692.14 mm2
DESIGN FOR TENSION 402.12386 (802.55)
Compression Steel does not Yield
AT MIDSPAN rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast = use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
=
105.79 79.20 1,692.14 16 9 1809.56 2 402.12
mm kN-m kN-m kN-m mm2
0.02796919 1,692.14 mm2
DESIGN FOR TENSION 402.12386 -
As= As' = f'c = fy= d' = b=
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
1809.56 402.12 20.70 275.00 58 250 1 -68.56 -3742.75 208.82
mm2 mm2 MPa MPa mm mm c2 c
104.41 266.70 266.70 87.99 68.97 18.31 87.29
mm MPa MPa mm kN-m kN-m kN-m
Compression Steel does not Yield
Loads DL
LL
w Flooring Floor Fin Partition Ceiling Beams CHB Wall
= = = = = =
Occu
=
t 1.00
0.10
0.25
0.40 2.60
uw 23.60 0.25 0.24 23.60 2.15
W
TW
= = = = = =
2.36 0.25 0.24 2.36 5.59
2.50 2.50 2.50 2.50 1.00 1.00
2.00 =
2.00
2.50 =
wu Column Width Span Clear span + Mu - Mu Shear
= = = = = =
= = = = = = =
5.90 0.63 0.60 2.36 5.59
15.08
5.00
5.00
29.61 0.25 4.00 3.75 26.02 41.63 55.51
DESIGN OF ROOF BEAMS BEAMS Project : PROPOSED RESIDENTIAL BUILDING Location : PATPAT, LUMBIA, CDOC Owner : MONICA PIMENTEL
MARK
DESIGN DATA
RB
b
D
LOADS AT MIDSPAN Mu =
10.95 KN-m
SECTION AT MIDSPAN AT SUPPORT
b 16.80 kN-m 31.85 kN
f'c = w = Fy =
20.70 MPa 23.60 kN/m3 275.00 MPa
b = D = d' =
200 mm 400 mm 40 mm
D
Mu = Vu =
MATERIAL DATA Concrete Steel
SECTION AT SUPPORT
BEAM DATA Width Depth Min Cover STEEL REINFORCEMENT DESIGN FOR TENSION Steel Ratio pmin = Main Bars
0.005090909 TOP
Steel Ratio Steel Area Main Bar Diameter Required No. of Layer No. of bar at 1st Layer No. of bar at 2nd Layer Moment Capacity
Effective depth Span, C/C Col Dimension
pmax = AT SUPPORT BOTTOM 0.00347 0.00329 238.63 mm2 226.19 12 mm 12 3 pcs 2 1 1 3 2 0 0 23.61 kN-m OK!
Stirrups Diameter, d Spacing, s
10 mm 1 @ 50, 5 @ 100, rest at 200 mm oc
de = L = c =
344 mm 4,000 mm 250 mm
0.02796919
mm2 mm pcs
AT MIDSPAN TOP 0.00329 226.19 mm2 12.00 mm 2 pcs 1 2 0
BOTTOM 0.00224 154.01 12 2 1 2 0 15.95
DETAILED COMPUTATION DESIGN LOAD AT MIDSPAN Mu = .90(0.85) f'c bd² w( 1-0.59w ) 374.78 w ( 1-0.59w ) w1 = 1.66517647 w2 = 0.02973878 Use
p1 = 0.12534237 p2 = 0.00223852 p = 0.00223852
As =
154.01
Mu = .90 (0.85)f'c bd² w( 1-0.59w ) 374.78 w ( 1-0.59w ) w1 = 1.64883647 w2 = 0.04607879
p1 = 0.12411242 p2 = 0.00346848
As =
238.63
AT SUPPORT ( TOP )
clear cover = d= n1= n2 = effective depth =
56 12 3 0 344.00
width check = min bar spacing = allowed bar at top = no of layer = no bars at first layer = no bars at 2nd layer =
88 37 3 1 3 0
DESIGN FOR TENSION Actual Capacity at Support
88 37 3 1 2 0
1 2 0
1 2 0
Mu = .90*.85* f'c bd² w( 1-0.59w ) p = 0.00493157 w = 0.06551602 Mu = 23.61
at midspan
Mu = .90 f'c bd² w( 1-0.59w ) p = 0.00328771 w = 0.04367735 Mu = 15.95
CHECK FOR SHEAR Vu = V s actual =
26.01 0.38 MPa
<
STIRRUPS Spacing S1 = d/2 = say DESIGN FOR COMPRESSION AT SUPPORT
172 mm 170 mm
Vs allow =
0.76 MPa
OK
rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast =
=
150.38 128.02 (111.22) (1,560.38) 363.90
mm kN-m kN-m mm2 mm2
use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
12 4 452.39 2 226.19
mm pcs mm2 pcs mm2
As= As' = f'c = fy= d' = b=
452.39 226.19 20.70 275.00 56 200 1 3.78 -2540.88 97.10
mm2 mm2 MPa MPa mm mm c2 c
48.55 -92.04 -92.04 17.68 18.76 16.12 34.89
mm MPa MPa mm kN-m kN-m kN-m
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
0.02796919 1,924.28 mm2
DESIGN FOR TENSION 226.194671 (1,560.38)
Compression Steel does not Yield
AT MIDSPAN rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast = use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
=
150.38 128.02 1,924.28 12 18 2035.75 2 226.19
mm kN-m kN-m kN-m mm2
0.02796919 1,924.28 mm2
DESIGN FOR TENSION 226.194671 -
As= As' = f'c = fy= d' = b=
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
2035.75 226.19 20.70 275.00 56 200 1 -141.79 -2540.88 315.77
mm2 mm2 MPa MPa mm mm c2 c
157.88 387.18 275.00 141.41 122.40 16.12 138.52
mm MPa MPa mm kN-m kN-m kN-m
Compression Steel Yields
Loads DL
LL
w Flooring Floor Fin Partition Ceiling Beams CHB Wall
= = = = = =
Occu
=
t 1.00
0.10
0.25
0.40 2.60
uw 23.60 0.25 0.24 23.60 2.15
W
TW
= = = = = =
2.36 0.25 0.24 2.36 5.59
2.50 2.50 2.50 2.50 1.00 1.00
2.00 =
2.00
2.50
wu Column Width Span Clear span + Mu - Mu Shear
mm2 mm pcs
kN-m OK!
= = = = = =
5.90 0.63 0.60 2.36 5.59
15.08
=
5.00
5.00
= = = = = = =
29.61 0.25 4.00 3.75 26.02 41.63 55.51
DESIGN OF ROOF BEAMS BEAMS Project : 2 STOREY RESIDENTIAL BUILDING Location : PUEBLO DE ORO ,CDOC Owner : MARGARITA GALLANA ALLEN
MARK
DESIGN DATA
:RB2
b
D
LOADS AT MIDSPAN Mu =
11.85 KN-m
SECTION AT MIDSPAN AT SUPPORT
b 18.75 kN-m 32.65 kN
f'c = w = Fy =
20.70 MPa 23.60 kN/m3 275.00 MPa
b = D = d' =
200 mm 300 mm 40 mm
D
Mu = Vu =
MATERIAL DATA Concrete Steel
SECTION AT SUPPORT
BEAM DATA Width Depth Min Cover STEEL REINFORCEMENT DESIGN FOR TENSION Steel Ratio pmin = Main Bars
0.005090909 TOP
Steel Ratio Steel Area Main Bar Diameter Required No. of Layer No. of bar at 1st Layer No. of bar at 2nd Layer Moment Capacity
Effective depth Span, C/C Col Dimension
pmax = AT SUPPORT BOTTOM 0.00813 0.00831 393.35 mm2 402.12 16 mm 16 2 pcs 2 1 1 2 2 0 0 19.14 kN-m OK!
Stirrups Diameter, d Spacing, s
10 mm 1 @ 50, 5 @ 100, rest at 200 mm oc
de = L = c =
242 mm 4,000 mm 250 mm
0.02796919
mm2 mm pcs
AT MIDSPAN TOP 0.00831 402.12 mm2 16.00 mm 2 pcs 1 2 0
BOTTOM 0.00501 242.27 16 2 1 2 0 19.14
DETAILED COMPUTATION DESIGN LOAD AT MIDSPAN Mu = .90(0.85) f'c bd² w( 1-0.59w ) 185.48 w ( 1-0.59w ) w1 = 1.62841733 w2 = 0.06649793 Use
p1 = 0.12257541 p2 = 0.00500548 p = 0.00500548
As =
242.27
Mu = .90 (0.85)f'c bd² w( 1-0.59w ) 185.48 w ( 1-0.59w ) w1 = 1.58694747 w2 = 0.10796779
p1 = 0.11945386 p2 = 0.00812703
As =
393.35
AT SUPPORT ( TOP )
clear cover = d= n1= n2 = effective depth =
58 16 2 0 242.00
width check = min bar spacing = allowed bar at top = no of layer = no bars at first layer = no bars at 2nd layer =
84 41 3 1 2 0
DESIGN FOR TENSION Actual Capacity at Support
84 41 3 1 2 0
1 2 0
1 2 0
Mu = .90*.85* f'c bd² w( 1-0.59w ) p = 0.00830834 w = 0.11037655 Mu = 19.14
at midspan
Mu = .90 f'c bd² w( 1-0.59w ) p = 0.00830834 w = 0.11037655 Mu = 19.14
CHECK FOR SHEAR Vu = V s actual =
28.44 0.59 MPa
<
STIRRUPS Spacing S1 = d/2 = say DESIGN FOR COMPRESSION AT SUPPORT
121 mm 120 mm
Vs allow =
0.76 MPa
OK
rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast =
=
105.79 63.36 (44.61) (979.55) 374.16
mm kN-m kN-m mm2 mm2
use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
16 2 402.12 2 402.12
mm pcs mm2 pcs mm2
As= As' = f'c = fy= d' = b=
402.12 402.12 20.70 275.00 58 200 1 43.69 -4678.44 99.91
mm2 mm2 MPa MPa mm mm c2 c
49.96 -96.60 -96.60 18.31 18.31
mm MPa MPa mm kN-m kN-m kN-m
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
0.02796919 1,353.71 mm2
DESIGN FOR TENSION 402.12386 (979.55)
Compression Steel does not Yield
AT MIDSPAN rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast = use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
=
105.79 63.36 1,353.71 16 7 1407.43 2 402.12
mm kN-m kN-m kN-m mm2
0.02796919 1,353.71 mm2
DESIGN FOR TENSION 402.12386 -
As= As' = f'c = fy= d' = b=
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
1407.43 402.12 20.70 275.00 58 200 1 -48.73 -4678.44 193.95
mm2 mm2 MPa MPa mm mm c2 c
96.98 241.15 241.15 78.56 50.44 18.31 68.75
mm MPa MPa mm kN-m kN-m kN-m
Compression Steel does not Yield
Loads DL
LL
w Flooring Floor Fin Partition Ceiling Beams CHB Wall
= = = = = =
Occu
=
t 1.00
0.10
0.25
0.40 2.60
uw 23.60 0.25 0.24 23.60 2.15
W
TW
= = = = = =
2.36 0.25 0.24 2.36 5.59
2.50 2.50 2.50 2.50 1.00 1.00
2.00 =
2.00
2.50
wu Column Width Span Clear span + Mu - Mu Shear
mm2 mm pcs
kN-m OK!
= = = = = =
5.90 0.63 0.60 2.36 5.59
15.08
=
5.00
5.00
= = = = = = =
29.61 0.25 4.00 3.75 26.02 41.63 55.51
DESIGN OF Project Location Owner
2ND FLOOR BEAMS : 2 STOREY RESIDENTIAL BUILDING : POBLACION, MARAMAG, BUKIDNON : FR. DOMINGO DON
MARK
DESIGN DATA
: RB1
b
D
LOADS AT MIDSPAN Mu =
48.78 KN-m
SECTION AT MIDSPAN AT SUPPORT
b 54.80 kN-m 98.45 kN
f'c = w = Fy =
20.70 MPa 23.60 kN/m3 275.00 MPa
b = D = d' =
250 mm 400 mm 40 mm
D
Mu = Vu =
MATERIAL DATA Concrete Steel
SECTION AT SUPPORT
BEAM DATA Width Depth Min Cover STEEL REINFORCEMENT DESIGN FOR TENSION Steel Ratio pmin = Main Bars
Effective depth Span, C/C Col Dimension
0.005090909
pmax = AT SUPPORT TOP BOTTOM Steel Ratio 0.00964 0.00470 Steel Area 823.89 mm2 402.12 Main Bar Diameter 16 mm 16 Required 5 pcs 2 No. of Layer 2 1 No. of bar at 1st Layer 4 2 No. of bar at 2nd Layer 1 0 Moment Capacity 64.61 kN-m OK!
Stirrups Diameter, d Spacing, s
10 mm 1 @ 50, 5 @ 100, rest at 200 mm oc
de = L = c =
342 mm 6,000 mm 250 mm
0.02796919
mm2 mm pcs
AT MIDSPAN TOP 0.00470 402.12 mm2 16.00 mm 2 pcs 1 2 0
BOTTOM 0.00850 726.35 16 4 1 4 0 52.75
mm2 mm pcs
kN-m OK!
DETAILED COMPUTATION DESIGN LOAD AT MIDSPAN Mu = .90(0.85) f'c bd² w( 1-0.59w ) 463.05 w ( 1-0.59w ) w1 = 1.58205411 w2 = 0.11286114 Use
p1 = 0.11908553 p2 = 0.00849537 p = 0.00849537
As =
726.35
Mu = .90 (0.85)f'c bd² w( 1-0.59w ) 463.05 w ( 1-0.59w ) w1 = 1.56689951 w2 = 0.12801575
p1 = 0.1179448 p2 = 0.00963609
As =
823.89
AT SUPPORT ( TOP )
clear cover = d= n1= n2 = effective depth =
58 16 4 1 337.00
width check = min bar spacing = allowed bar at top = no of layer = no bars at first layer = no bars at 2nd layer =
134 41 4 2 4 1
DESIGN FOR TENSION Actual Capacity at Support
134 41 4 1 2 0
1 2 0
1 4 0
Mu = .90*.85* f'c bd² w( 1-0.59w ) p = 0.01193246 w= 0.158523 Mu = 64.61
at midspan
Mu = .90 f'c bd² w( 1-0.59w ) p = 0.00954597 w = 0.1268184 Mu = 52.75
CHECK FOR SHEAR Vu = V s actual =
86.74 1.01 MPa
<
STIRRUPS Spacing S1 = d/2 = say DESIGN FOR COMPRESSION AT SUPPORT
171 mm 170 mm
Vs allow =
0.76 MPa
OK
rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast =
=
149.50 158.17 (103.37) (1,470.69) 920.68
mm kN-m kN-m mm2 mm2
use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
16 5 1005.31 2 402.12
mm pcs mm2 pcs mm2
As= As' = f'c = fy= d' = b=
1005.31 402.12 20.70 275.00 58 250 1 -9.41 -3742.75 132.13
mm2 mm2 MPa MPa mm mm c2 c
66.06 73.24 73.24 37.71 48.24 28.27 76.51
mm MPa MPa mm kN-m kN-m kN-m
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
0.02796919 2,391.37 mm2
DESIGN FOR TENSION 402.12386 (1,470.69)
Compression Steel does not Yield
AT MIDSPAN rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast = use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
=
149.50 158.17 2,391.37 16 12 2412.74 2 402.12
mm kN-m kN-m kN-m mm2
0.02796919 2,391.37 mm2
DESIGN FOR TENSION 402.12386 -
As= As' = f'c = fy= d' = b=
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
2412.74 402.12 20.70 275.00 58 250 1 -112.93 -3742.75 279.43
mm2 mm2 MPa MPa mm mm c2 c
139.72 350.92 275.00 125.70 138.91 28.27 167.18
mm MPa MPa mm kN-m kN-m kN-m
Compression Steel Yields
Loads DL
LL
w Flooring Floor Fin Partition Ceiling Beams CHB Wall
= = = = = =
Occu
=
t 1.00
0.10
0.25
0.40 2.60
uw 23.60 0.25 0.24 23.60 2.15
W
TW
= = = = = =
2.36 0.25 0.24 2.36 5.59
2.50 2.50 2.50 2.50 1.00 1.00
2.00 =
2.00
2.50 =
wu Column Width Span Clear span + Mu - Mu Shear
= = = = = =
= = = = = = =
5.90 0.63 0.60 2.36 5.59
15.08
5.00
5.00
29.61 0.25 6.00 5.75 61.18 97.88 85.11
DESIGN OF SECOND FLOOR BEAMS Project : 2 STOREY RESIDENTIAL BUILDING Location : XAVIER ESTATES, CDOC Owner : CHEERYL M. DELA PEÑA
MARK
DESIGN DATA
: B1
b
D
LOADS AT MIDSPAN Mu =
78.65 KN-m
SECTION AT MIDSPAN AT SUPPORT
b 52.65 kN-m
f'c = w = Fy =
20.70 MPa 23.60 kN/m3 275.00 MPa
b = D = d' =
250 mm 450 mm 40 mm
D
Mu =
MATERIAL DATA Concrete Steel
SECTION AT SUPPORT
BEAM DATA Width Depth Min Cover STEEL REINFORCEMENT DESIGN FOR TENSION Steel Ratio pmin = Main Bars
Effective depth Span, C/C Col Dimension
0.005090909
pmax = AT SUPPORT TOP BOTTOM Steel Ratio 0.00689 0.00410 Steel Area 674.86 mm2 402.12 Main Bar Diameter 16 mm 16 Required 4 pcs 2 No. of Layer 1 1 No. of bar at 1st Layer 4 2 No. of bar at 2nd Layer 0 0 Moment Capacity 62.06 kN-m OK!
Stirrups Diameter, d Spacing, s
10 mm 1 @ 50, 5 @ 100, rest at 200 mm oc
de = L = c =
392 mm 4,000 mm 250 mm
0.02796919
mm2 mm pcs
AT MIDSPAN TOP 0.00410 402.12 mm2 16.00 mm 2 pcs 1 2 0
BOTTOM 0.01061 1,040.27 16 6 1 4 2 89.89
mm2 mm pcs
kN-m OK!
DETAILED COMPUTATION DESIGN LOAD AT MIDSPAN Mu = .90(0.85) f'c bd² w( 1-0.59w ) 608.34 w ( 1-0.59w ) w1 = 1.55389513 w2 = 0.14102012 Use
p1 = 0.11696592 p2 = 0.01061497 p = 0.01061497
As =
1040.27
Mu = .90 (0.85)f'c bd² w( 1-0.59w ) 608.34 w ( 1-0.59w ) w1 = 1.6034297 w2 = 0.09148555
p1 = 0.12069453 p2 = 0.00688637
As =
674.86
AT SUPPORT ( TOP )
clear cover = d= n1= n2 = effective depth =
58 16 4 0 392.00
width check = min bar spacing = allowed bar at top = no of layer = no bars at first layer = no bars at 2nd layer =
134 41 4 1 4 0
DESIGN FOR TENSION Actual Capacity at Support
134 41 4 1 2 0
1 2 0
1 4 2
Mu = .90*.85* f'c bd² w( 1-0.59w ) p = 0.00820661 w= 0.109025 Mu = 62.06
at midspan
Mu = .90 f'c bd² w( 1-0.59w ) p = 0.01230991 w = 0.16353751 Mu = 89.89
CHECK FOR SHEAR Vu = V s actual =
-
MPa
<
STIRRUPS Spacing S1 = d/2 = say DESIGN FOR COMPRESSION AT SUPPORT
196 mm 190 mm
Vs allow =
0.76 MPa
OK
rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast =
=
171.36 207.81 (155.16) (1,876.92) 864.06
mm kN-m kN-m mm2 mm2
use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
16 5 1005.31 2 402.12
mm pcs mm2 pcs mm2
As= As' = f'c = fy= d' = b=
1005.31 402.12 20.70 275.00 58 250 1 -9.41 -3742.75 132.13
mm2 mm2 MPa MPa mm mm c2 c
66.06 73.24 73.24 37.71 55.71 33.24 88.95
mm MPa MPa mm kN-m kN-m kN-m
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
0.02796919 2,740.98 mm2
DESIGN FOR TENSION 402.12386 (1,876.92)
Compression Steel does not Yield
AT MIDSPAN rmax = 0.75rbal
=
As1= 0.75rbalbd Depth of Stress Block a= Mu1 = Mu2 = As' = Ast = use = Rqd Bars at Top = As = Rqd Bars at Bottom = As =
=
171.36 207.81 2,740.98 16 14 2814.87 2 402.12
mm kN-m kN-m kN-m mm2
0.02796919 2,740.98 mm2
DESIGN FOR TENSION 402.12386 -
As= As' = f'c = fy= d' = b=
Check if Compression Steel Yields c= fs' = fs' = a= M1= M2 = M=
2814.87 402.12 20.70 275.00 58 250 1 -142.50 -3742.75 330.33
mm2 mm2 MPa MPa mm mm c2 c
165.16 389.30 275.00 150.84 189.05 33.24 222.29
mm MPa MPa mm kN-m kN-m kN-m
Compression Steel Yields
Loads DL
LL
w Flooring Floor Fin Partition Ceiling Beams CHB Wall
= = = = = =
Occu
=
t 1.00
0.10
0.25
0.40 2.60
uw 23.60 0.25 0.24 23.60 2.15
W
TW
= = = = = =
2.36 0.25 0.24 2.36 5.59
2.50 2.50 2.50 2.50 1.00 1.00
2.00 =
2.00
2.50 =
wu Column Width Span Clear span + Mu - Mu Shear
= = = = = =
= = = = = = =
5.90 0.63 0.60 2.36 5.59
15.08
5.00
5.00
29.61 0.25 4.00 3.75 26.02 41.63 55.51
View more...
Comments