Contenido: Tratamiento De Aguas Residuales

Share Embed Donate


Short Description

Download Contenido: Tratamiento De Aguas Residuales...

Description

TRATAMIENTO DE AGUAS RESIDUALES

Contenido

PRE-TRATAMIENTO Y TRATAMIENTO PRIMARIO DE AGUAS RESIDUALES  .................... 2 ............................................................................................................... 7 Trampa de grasas ................................................................................................................

Requisitos previos ................................................................................................................. 8 Diseño de trampa de grasa ............................................................ ............................................................................................. ................................. 8 Características de la trampa de grasa ......................................................................... ........................................................................ 9 ....................................................................................................... 14 Calculo de caudales ........................................................................................................ .............................................................................................................................. 14 Desbaste ...............................................................................................................................

Rejas de barras ............................................................................................................... .............................................................................................................. 14 ...................................................... 17 DISEÑO DE SEDIMENTADORES Y DESARENADORES  .......................................................

Tipos de sedimentación: .................................................................................................. ................................................................................................. 19 Velocidad de arrastre: ..................................................................................................... 20 ................................................................ 24 Parámetros de diseño de la decantación ................................................................. .......................................................................... 29 Eliminación de arenas: Desarenador  ...........................................................................

Ejemplo: Diseño de un tanque de sedimentación primario ................................. 30 Problemas propuestos

34

TRATAMIENTO DE AGUAS RESIDUALES

PRE-TRATAMIENTO Y TRATAMIENTO PRIMARIO DE AGUAS RESIDUALES Logro de sesiòn: Diseña componentes de pre-tratamiento y tratamiento primario de una Planta de tratamiento de aguas residuales. Las aguas residuales pueden provenir de actividades industrial industriales es o agrícolas y del uso doméstico. Los tratamientos de aguas industriales son muy variados, según el tipo de contaminación, y pueden incluir precipitación, neutralización, oxidación química y biológica, reducción, filtración, ósmosis, etc. En el caso de agua urbana, los tratamientos de aguas residuales suelen incluir la siguiente secuencia: secuencia: Pretratamiento. Tratamiento Tratamient o Primario. Tratamiento Tratamient o Secundario. Las depuradoras de aguas domésticas o urbanas se denominan EDAR (Estaciones Depuradoras de Aguas Residuales), y su núcleo es el

TRATAMIENTO DE AGUAS RESIDUALES

tipos destinadas a pulir o afinar el vertido final, mejorando alguna de sus características. Si se emplea intensivamente pueden lograr hacer el agua de nuevo apta para el abastecimiento de necesidades agrícolas, industriales, e incluso para potabilización (reciclaje de efluente efluentes). s). El tratamiento de aguas  y las plantas de tratamiento de agua son un conjunto de sistemas y operaciones unitarias de tipo físico, químico o biológico cuya finalidad es que a través de los equipamientos elimina o reduce la contaminación o las características no deseables de las aguas, bien sean naturales, de abastecimiento, de proceso o residuales. La finalidad de estas operaciones es obtener unas aguas con las características adecuadas al uso que se les vaya a dar, por lo que la combinación y naturaleza exacta de los procesos varía en función tanto de las propiedades de las aguas de partida como de su destino final. Debido a que las mayores exigencias en lo referente a la calidad del agua se centran en su aplicación para el consumo humano y animal estos se organizan con frecuencia en tratamientos de potabilización y tratamientos de depuración de aguas residuales, aunque ambos comparten muchas operaciones. 1 En la figura Nª1, podemos apreciar diagramas de flujo de un sistema de

TRATAMIENTO DE AGUAS RESIDUALES

TRATAMIENTO DE AGUAS RESIDUALES

FIGURA Nº1: ESQUEMA DE UNA PTAR DE AGUAS RESIDUALES DOMESTICAS

FIGURA Nº2: PTAR, LÍNEA DE AGUA Y LÍNEA DE FANGOS

ING. RONALD PORTALES

5

TRATAMIENTO DE AGUAS RESIDUALES

Según podemos apreciar en la figura Nª3, en el Perú los sistemas de tratamiento más empleados son las lagunas anaerobias+facultativas y las lagunas anaerobias+aireadas. En el presente capitulo nos centraremos en el estudio de los sistemas de pretratamiento (véase figura Nº4) y tratamiento primario de las AR.

FIGURA Nª3: SISTEMAS DE TRATAMIENTO DE AR OPERATIVOS EN PERÙ

TRATAMIENTO DE AGUAS RESIDUALES

El objetivo de los tratamientos preliminares es retener sólidos gruesos y solidos finos con densidad mayor al agua y arenas, con el fin de facilitar el tratamiento posterior. Son usuales el empleo de:     

Rejas gruesas y finas Desarenadores Tamices Trituradores Desengrasadores

Estas unidades en ocasiones obviadas en el diseño de plantas de tratamiento, son necesarias para evitar problemas por el paso de arena, basura, plásticos, etc., hacia los procesos de tratamiento propiamente dicho. En la mayoría de PTAR el tratamiento preliminar se compone de cámara de rejas y del canal desarenador. En algunos establecimientos comerciales como hoteles, restaurantes, incluso en residencias suele ser necesario instalar trampa de grasas, con el objetivo de eliminar aceites y grasas que son muy difíciles de eliminar,

TRATAMIENTO DE AGUAS RESIDUALES

El empleo de trampa de grasa es de carácter obligatorio para el acondicionamiento de las descargas de los lavaderos, lavaplatos u otros aparatos sanitarios instalados en restaurantes, cocinas de hoteles, hospitales y similares, donde exista el peligro de introducir cantidad suficiente de grasa que afecte el buen funcionamiento del sistema de evacuación de las aguas residuales, así como de las descargas de lavanderías de ropa. Requisitos previos a) Los desechos de los desmenuzadores de desperdicios no se deben descargar a la trampa de grasa. b) Las trampas de grasa deberán ubicarse próximas a los aparatos sanitarios que descarguen desechos grasosos, y por ningún motivo deberán ingresar aguas residuales provenientes de los servicios higiénicos. c) Las trampas de grasa deberán proyectarse de modo que sean fácilmente accesibles para su limpieza y eliminación o extracción de las grasas acumuladas. d) Las trampas de grasa deberán ubicarse en lugares cercanos en donde se preparan alimentos. e) La capacidad mínima de la trampa de grasa debe ser de 300 litros. f) En el caso de grandes instalaciones como hospitales o restaurantes

TRATAMIENTO DE AGUAS RESIDUALES

b) El caudal máximo se calculará mediante la siguiente formula:   (1) Q= Caudal máximo en lt/seg =Suma de todas las unidades de gasto a ser atendido por la trampa de grasa

 = 0.3√ ∑  ∑

c) El volumen de la trampa de grasa se calculará para un periodo de retención entre 2.5 a 3.0 minutos. Características de la trampa de grasa a) La relación largo:ancho del área superficial de la trampa de grasa deberá estar comprendido entre 2:1 a 3:2. b) La profundidad no deberá ser menor a 0,80 m. c) El ingreso a la trampa de grasa se hará por medio de codo de 90º y un diámetro mínimo de 75 mm. La salida será por medio de una tee con un diámetro mínimo de 75 mm. d) La parte inferior del codo de entrada deberá prolongarse hasta 0,15 m por debajo del nivel de líquido. e) La diferencia de nivel entre la tubería de ingreso y de salida deberá de ser no menor a 0,05 m. f) La parte superior del dispositivo de salida deberá dejar una luz libre para ventilación de no más de 0,05 m por debajo del nivel de la

TRATAMIENTO DE AGUAS RESIDUALES

FIGURA Nº6: TRAMPA DE GRASA SIMPLE

TRATAMIENTO DE AGUAS RESIDUALES

FIGURA Nº8: TRAMPA DE GRASA

TRATAMIENTO DE AGUAS RESIDUALES

DIMENSIONAMIENTO DE LAS TRAMPAS DE GRASAS4 El dimensionamiento depende: Principalmente del tipo de grasas y aceites (vegetales y animales que son poco solubles en el agua y son saponificables) a remover. De la cantidad y volumen de grasas evacuados. De caudal promedio e instantáneo descargado. Del periodo de mantenimiento Base para el Diseño de Trampa de sólidos y grasas

A.- Para Restaurantes Volumen convencional: 600 a 700 Litros. El Largo (L) debe ser mucho mayor que el ancho (a), de preferencia L = 1.8ª. La altura útil húmeda debe ser tal que haga fácil la limpieza d los sólidos y grasas retenidas. El ingreso y salida pude ser a través de una trampa "tee", bafle, campana o cualquier otro sistema que permita el flujo

TRATAMIENTO DE AGUAS RESIDUALES

IMPORTANTE: 











Las instalación de trampa de grasa que usen tanques sépticos sólo es obligatoria cuando se trate de establecimiento que preparen y expendan alimentos (como restaurantes, hoteles, campamentos y similares). La capacidad mínima de la trampa de grasa deber ser de 120 L. La trampa de grasa tendrá una cobertura hermética. La grasa almacenada deberá ser eliminada cuando el volumen alcance un espesor equivalente al 50% de la altura del líquido en ella. La trampa de grasa estará ubicada en lugar de fácil acceso y el proximidad de los artefactos que descarguen desechos grasos. El tubo de ventilación tendrá un diámetro mínimo de 50 mm(2") Los interceptores se ubicarán en sitios donde puedan ser inspeccionados y limpiados con facilidad. No se permitirá colocar encima o inmediato a ellos maquinarias o equipos que pudiera impedir su adecuado mantenimiento. La boca de inspección será de dimensiones adecuadas.

TRATAMIENTO DE AGUAS RESIDUALES

Calculo de caudales de entrada a una PTAR Caudal medio (Qm)

∗  = 24000

P: población, habitantes D: Dotación, l/(habitantes*día) Qm: Caudal medio, m3/h

Caudal punta (Qp): m 3/h

 =  ∗ 1.5 √ 2.5 Caudal punta lluvioso(Q H)

TRATAMIENTO DE AGUAS RESIDUALES

Q: caudal punta (m3/s). S: pendiente del canal (m). n: coeficiente de rugosidad. El canal se puede proyectar con una pendiente de 0,00075 m. y un material con un coeficiente de rugosidad de 0,015. Verificar si la velocidad cumple con la especificación.

Cálculo de la pérdida de carga: Para la reja, la pérdida de carga se produce al circular el agua a través de ella. Depende de la velocidad de aproximación del agua y de la velocidad de circulación a través de la reja. El valor máximo admisible es de 150 mm. La pérdida de carga se puede estimar con la siguiente ecuación:

TRATAMIENTO DE AGUAS RESIDUALES

n: coeficiente de rugosidad del canal. S: pendiente del canal. (m)

Cálculo de las dimensiones de canal: Para un canal rectangular se utiliza la siguiente fórmula donde la anchura es X y el calado es X/2:

Sabiendo el radio hidráulico se obtiene:

TRATAMIENTO DE AGUAS RESIDUALES

Para estimar la carga contaminante de las aguas residuales domesticas se puede tener en consideración la siguiente tabla:

TRATAMIENTO DE AGUAS RESIDUALES

DISEÑO DE SEDIMENTADORES Y DESARENADORES Los llamados sedimentadores primarios o decantadores primarios se eliminan los sólidos sedimentables y la depuración se da por medios físicos haciendo uso de la fuerza de gravedad. La mayor parte de las sustancias en suspensión en las aguas residuales no pueden retenerse, por razón de su finura o densidad, en las rejillas, desarenadores y cámaras de grasa, ni

TRATAMIENTO DE AGUAS RESIDUALES









   

Proveer una discriminación uniforme  del afluente para minimizar la velocidad de entrada y el cortocircuito. Proveer adecuada y rápida recolección del lodo sedimentado, asì como de la espuma. Minimizar las corrientes de salida, limitando las cargas de rebose sobre el vertedero. El afluente debe salir sin alterar el contenido del tanque. Proveer profundidad suficiente para almacenar lodos y permitir su espesamiento adecuado. Proveer un borde libre mayor de 30 cm. Reducir efectos del viento mediante pantallas y vertederos. Evaluar opciones de diseño. Repartir uniformemente el caudal entre las unidades de sedimentación.

Existen 3 tipos de tanques de sedimentación:   

Tanque de flujo horizontal. Tanque de flujo radial. Tanque de flujo ascensional.

La sedimentación se utiliza en los tratamientos de aguas residuales para separar sólidos en suspensión de las mismas (Ramalho, 1996).

TRATAMIENTO DE AGUAS RESIDUALES

interfase distinta con la fase líquida. Ejemplo de este proceso incluyen la sedimentación en lodos activos en los clarificadores secundarios y la de floculos de alúmina en los procesos de tratamiento de agua o lodos coagulados químicamente. Para el dimensionamiento de los tanques sedimentadores usaremos el método de cálculo planteado en el Manual de Depuración Uralita

(Hernández Muñoz, Hernández Lehmann & Galán Martínez, 2004). Para el diseño de desarenadores, se puede usar el método planteado por el CEPIS5 Para el dimensionamiento, de acuerdo a criterios “de experiencia”, basta en principio seleccionar una carga hidráulica y tiempo de retención adecuados para obtener el rendimiento que se desee (Hernández Muñoz,

Hernández Lehmann & Galán Martínez, 2004). Carga hidráulica:

 =  

(2)

Tiempo de retención:

 =  

(3)

TRATAMIENTO DE AGUAS RESIDUALES

VH=Velocidad horizontal mínima a la cual se inicia el arrastre de partículas. k=Constante que depende del tipo de material arrastrado. K=0.04 para arena unigranular , k=0.06 para materia más agregada. s=Peso que depende del tipo de material arrastrado. g=Aceleración de la gravedad d=diámetro de las partículas f=Factor de fricción de Darcy-Weisbach, depende del N Re y de la superficie sobre la que tiene lugar el flujo; f: 0.02-0.03. A continuación se muestran Principales características de un sedimentador circular de flujo horizontal.

FIGURA Nº9: SEDIMENTADOR CIRCULAR DE FLUJO HORIZONTAL

TRATAMIENTO DE AGUAS RESIDUALES

FIGURA Nº10: SEDIMENTADOR CIRCULAR DE FLUJO HORIZONTAL

TRATAMIENTO DE AGUAS RESIDUALES

TABLA Nº2: CARACTERISTICAS GEOMETRICAS SEDIMENTADOR CIRCULAR DE FLUJO HORIZONTAL ESPECIFICACIÒN Dimensiones del Sedimentador

REF. Diámetro C Profundidad B Lámina de agua en vertedero A Altura protección F Pendiente fondo p% Sección de fango D Lámina de agua en zona de reparto H Radio R Dimensiones Barredera Ancho puente L Velocidad giro Barredera V Potencias -

DIMENSIONES DIMENSIONES Y CARACTERISTICAS CONSTRUCTIVAS m 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 35 40 m 2.0-3.5 m 1.5-3.0 m 0.5 8% m 2.5 3 3.6 m A+0.04*(C-D) m 4.1 4.6 5.1 5.6 6.1 6.6 7.1 7.6 8.15 8.65 9.15 10.15 11.15 12.15 13.15 14.15 15.15 17.65 20.15 m 0.75 m/min 0.5-1.5 (velocidad recomendada 1.2 m/min) C.V 0.25 0.33 0.5 0.75/1.0

TABLA Nº3: CARACTERISTICAS GEOMETRICAS SEDIMENTADOR RECTANGULAR DE FLUJO HORIZONTAL ESPECIFICACIONES Largo Ancho Tolva DIMENSIONES DEPOSITO Profundidad Lámina de agua Altura protección Pendiente fondo Potencia

Ref. C J D B A F P% -

Dim. Dim. Y características constructivas m 10-35 m 3 3.5 4 4.5 5 5.5 6 m Según proyecto m 2.5-4.8 m 2-4 m 0.5-0.8 2 C.V 0.33-1

ING. RONALD PORTALES

2 3

TRATAMIENTO DE AGUAS RESIDUALES

Parámetros de diseño de la decantación En el dimensionamiento de sedimentadores hay que atender especialmente a los siguientes puntos:        

Área de sedimentador Volumen de sedimentador Relaciones adimensionales Dimensiones de la zona de entrada Vertedero de salida Barrederas de fango Caudales de fangos producidos Pocetas de fangos

1. Área de sedimentador   (5)  Siendo: A= Área de sedimentador (m 2) Q=Caudal de entrada (m 3/h) V=Velocidad ascensional (m/h)

  =

TABLA Nº4: VELOCIDADES ASCENCIONALES A CAUDAL MEDIO

TRATAMIENTO DE AGUAS RESIDUALES

Siendo: V=Volumen de sedimentador (m3) Q=Caudal a tratar (m 3/h) Tr=Tiempo en retención (h) Los valores del tiempo de retención se pueden ver en la tabla Nº6

TABLA Nº6: TIEMPOS DE RETENCIÒN

3. Relaciones dimensionales En sedimentadores circulares de flujo vertical: h=Altura del sedimentador D=Diámetro del sedimentador

TRATAMIENTO DE AGUAS RESIDUALES

 = 8.15 .

4. Dimensiones de la zona de entrada Sedimentadores circulares de flujo vertical, siendo para el cilindro central de entrada: D1=Diámetro del cilindro h1=Altura del cilindro desde el borde superior del decantador D=Diámetro del sedimentador h=altura del sedimentador TABLA Nº 8: DIMENSIONES EN DECANTADORES CIRCULARES

5. Vertedero de salida Relación de parámetros:

TRATAMIENTO DE AGUAS RESIDUALES

Las inclinaciones de los fondos para dichas rasquetas suelen ser: En decantadores circularesDel 2 al 8% En decantadores rectangulares Del 0.5 al 2% Dependiendo del sistema de rasquetas empleado.  

TABLA Nº10: VELOCIDAD DE BARREDERAS DE FONDO

7. Caudales de fangos producidos EL caudal medio de fangos producido puede calcularse con la siguiente fórmula:  (8)  ∗  

  =  ∗ ∗



Siendo: Qf=Caudal medio de fangos producidos (m3/h) Q=Caudal medio de agua a tratar (m3/h) K=Coeficiente de reducción de sólidos en suspensión en la decantación

TRATAMIENTO DE AGUAS RESIDUALES

Tr=Tiempo de retención de fangos en pocetas (h)

TABLA Nº12: TIEMPO DE RETENCIÒN EN POCETAS DE SEDIMENTADORES

Notas: Los sedimentadores circulares con rasquetas de espesado se pueden alcanzar concentraciones del fango de hasta 8%.

FIGURA Nº11: SEDIMENTADOR PRIMARIO CIRCULAR

TRATAMIENTO DE AGUAS RESIDUALES

Eliminación de arenas: Desarenador Los datos que se supondrán para proyectar el proceso de eliminación de arenas están extraídos del libro Metcalf & Eddy, Ingeniería de aguas residuales, Editorial McGraw-Hill.

TRATAMIENTO DE AGUAS RESIDUALES

Cálculo del volumen de arena a tratar Se estima una cantidad media de arena a extraer y tratar de aproximadamente 50 cm3/m3.

Ejemplo: Diseño de un tanque de sedimentación primario En este proyecto se diseñará un tanque de sedimentación primario de forma rectangular. 6 El Caudal de diseño es 19.083 m 3/día (promedio). Constante de cohesión de las partículas, k=0.05

TRATAMIENTO DE AGUAS RESIDUALES

La carga superficial según la tabla Nª13: Cs=50 m3/m2*día La velocidad ascensional o carga superficial según la tabla Nª5: Cs=1.8 m/h (valor máximo) =43.2 m3/m2*día Para este diseño tomaremos el valor de 50 m 3/m2*día según el Manual de Metcalf &Eddy. De la tabla Nª7, obtenemos la relación L/b=4.5

Cálculo del área:

Si el área es igual: A=L*b

     19083   =   = 50 ì = 381.66  ì

TRATAMIENTO DE AGUAS RESIDUALES

   = (8∗( 1)∗ ∗ )  − 10

 = 8∗0.05∗ (1.251) ∗9.806∗100∗ 0.025 = 0.0626  Esta velocidad de arrastre se compara con la velocidad horizontal, que se obtiene dividiendo el caudal entre la sección de flujo (Área del sedimentador).

 ì ℎ   ì  ∗ ∗ V =Q/A = = 0. 0 00553554 . ∗  ℎ   H

s

 >   →   ò

La velocidad Horizontal es considerablemente menor que la velocidad de arrastre. Por lo tanto el material sedimentado no será resuspendido.

TRATAMIENTO DE AGUAS RESIDUALES

Fuente: Metcalf & Eddy (1996) Con la ecuación (9) y los valores de las constantes empíricas de la Tabla Nº14, se pueden calcular las tasas de remoción de DBO y SST. Variable A b DBO 0.018 0.02 SST 0.0075 0.014

TRATAMIENTO DE AGUAS RESIDUALES

Problemas propuestos 1. Diseñar un sedimentador primario: Para un caudal medio de 7500 m 3/día. Constante de cohesión de las partículas, k=0.051 Gravedad específica, s=1.23 Aceleración de la gravedad, g=9.806 m/s 2 Diámetro de partículas, d=110 micrómetros. Factor de fricción de Darcy-Weisbach, f=0.026 2. Un sedimentador rectangular con relación longitud/ancho de 3/1 recibe un caudal de 1000 m3/dìa. La profundidad del agua es de 4 m y el tiempo de retención de 2.4 horas. El caudal es distribuido uniformemente en toda la sección transversal del tanque. Calcule la carga superficial y la velocidad horizontal de flujo. 3. Calcular la profundidad y el diámetro del tanque de sedimentación circular para un caudal de 4000 m3/día, para un tiempo de retención de dos horas y una carga superficial de 30 m/día. 4. Determine las dimensiones y el tiempo de retención de un tanque

TRATAMIENTO DE AGUAS RESIDUALES

REFERENCIAS BIBLIOGRAFICAS 











Hernández Muñoz, A., Hernández Lehmann, A., & Galán Martínez, P. (2004). Manual de depuración uralita. Madrid: Thomson. Romero Rojas, J. (2004). Tratamiento de aguas residuales. Colombia: Escuela Colombiana de Ingeniería Julio Garavito. Recuperado de: http://www.uap.edu.pe/intranet/fac/material/24/20102BT240224E 10240108011/20102BT240224E1024010801118695.pdf Recuperado de: http://catarina.udlap.mx/u_dl_a/tales/documentos/lic/hammeke n_a_am/capitulo5.pdf Recuperado de: http://www.bvsde.opsoms.org/tecapro/documentos/agua/158esp-diseno-desare.pdf Recuperado de: http://www.bdigital.unal.edu.co/70/5/45_-_4_Capi_3.pdf

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF