Conjuntos Infinitos - Numerables y Contables
March 31, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Conjuntos Infinitos - Numerables y Contables...
Description
Njlbultjs kllktjs, ludormi`os y njltmi`os Yonjreodjs quo ul njlbultj njlbultj M os ``mdmej kllktj sk lj os lktj, `j quo qukoro eonkr quo M lj os vmnäj y quo quo quo M B l pmrm tjej tjej l ∃ L. @m ekhorolnkm hulemdoltm` oltro `js njlbultjs lktjs y `js kllktjs os quo `js njlbultjs lktjs lj sjl oqukpjtoltos m lklgòl suinjlbultj prjpkj, dkoltrms quo ul njlbultj kllktj os oqukpjtolto m m`gòl suinjlbultj prjpkj. Uojrodm =. ^k M M os ul njlbultj kllktj, oltjlnos oxksto ulm hulnkþl klyontkvm h h 2 L ↙ M.
Eodjstrmnkþl. Eolkrodjs kleuntkvmdolto `m hulnkþl hulnkþl h 2 L ↙ M njdj M njdj skguo.
M . =. Njdj Njdj M M os os kllktj, M kllktj, M lj lj os vmnäj. Msä, pjeodjs osnjgor y bmr ul o`odoltj m o`odoltj m = ∃ M. Eolkdjs h Eolkdjs h (=) (=) 4 m 4 m= . 9. ^upjlkolej quo ym so eolkorjl h h (=) (=),, h h (9) (9),, . . . , h ( l), oltjlnos o` njlbultj {h (=) h (=),, h h (9) (9),, . . . , h ( l)} os ul suinjlbultj lktj eo M1 y njdj njdj M os kllktj, eoiol oxkstkr o`odoltjs ol ol M ekhoroltos eo eo h h (=) (=),, h h (9) (9),, . . . , h ( l). @uogj, pjeodjs osnjgor y bmr ml+= ∃ M quo M quo os ekstkltj eo h eo h (=) (=),, h h (9) (9),, . . . , h ( l). Eolkdjs Eolkdjs h (l + =) 4 m 4 m l+= . Vjr o` prklnkpkj eo kleunnkþl dmtodítknm, h h ((l) ostí eolkej pmrm tjej l ∃ L, y msä tolodjs ulm hulnkþl ikol eolkem eolkem h 2 L ↙ M. M . Xomdjs quo quo h h os os klyontkvm. ^oml ^oml l, d ∃ L njl njl l l 0 d. Oltjlnos, pjr `m dksdm hjrdm ol quo so eolknkþl `m hulnkþl h , h h ((d) os ekhorolto eo h (=) h (=),, h (9) h (9),, . . . , h ( d ∙ =), =), y njdj eo h ((l). Ostj tordklm h h ((l) ostí eoltrj eo ostjs o`odoltjs, rosu`tm quo h ( h (d) os ekhorolto eo h `m pruoim. Eolknkþl 9. ^om ^om M M ul njlbultj. Eonkdjs quo M quo M os ludormi`o sk M ∰ L.
[m vkdjs mltorkjrdolto quo L os kllktj. Vjr `j tmltj, num`qukor njlbultj ludormi`o os kllkt kllktj. j. Njrj`mrkj >. _l njlbultj M os kllktj sk y sj`j sk tkolo ul suinjlbultj ludormi`o.
Eodjstrmnkþl. (⇙) ^upjlgmdjs quo quo M os kllktj. Vjr o` Uojrodm = Uojrodm =,, oxksto ulm hulnkþl klyontkvm h klyontkvm h 2 L ↙ M. M . @m hulnkþl g hulnkþl g 2 L ↙ h h ((L) emem pjr g pjr g((l) 4 h ( h (l) pmrm tjej l tjej l ∃ L os ikyontkvm, msä quo h quo h ((L) os ludormi`o y h y h ((L) ⊈ M. M .
(⇖) Vjr njltrmrronäprjnj, sk M sk M huorm huorm lktj, oltjlnos tjej suinjlbultj eo M eo M soräm soräm lktj y msä M msä M lj toleräm lklgòl suinjlbultj ludormi`o. ^upjlgmdjs quo quo M os ul njlbultj ludormi`o. ^om ^om h h 2 L ↙ M ulm hulnkþl ikyontkvm. ^k pmrm nmem l nmem l ∃ L eolkdjs eolkdjs m m l 24 24 h h ((l), oltjlnos pjeodjs roprosoltmr m M m M ol ol `m hjrdm M 4 {m= , m9 , m> , . . . , ml , . . .},
(=)
4 md sk sk l 4 d. d . ejleo m l ejleo m O` Njrj` Njrj`mrkj mrkj > ljs ekno quo eo ul njlbultj kllktj, skodpro pjeodjs oxtrmor ul suinjlbult suinjlb ultjj lud ludormi` ormi`oo eo `m hjrdm {m= , m9 , m> , . . . , ml , . . .}, ejleo m ejleo m l 4 md sk l sk l 4 d. d . =
Uojrodm 5. ^k M M os ul njlbultj kllktj y m m ∃ M , oltjlnos M M y M M P {m} sjl oqukpjtoltos.
Eodjstrmnkþl. ^oml M ^oml M ul ul njlbultj kllktj y m y m ∃ M. M . Oltjlnos M Oltjlnos M P {m} tmdikël os kllktj,
puos eo `j njl njltrmrk trmrkj, j, ( (M 4 M soräm lktj. Vjr o` Njrj`mrkj > Njrj`mrkj >,, M P {m} tkolo ul M P {m}) ∢ {m} 4 M soräm suinjlbult suinjlb ultjj lud ludormi` ormi`oo eo `m hjrdm {m= , m9 , m> , . . . , ml , . . .}, ejleo m ejleo m l 4 md sk l sk l 4 d. d . Ekvkekdjs m M m M ol ol ejs pmrtos2 I pmrtos2 I 4 {m, m= , m9 , m> , . . . , ml , . . .} y N 4 M P{ m, m= , m 9 , m > , . . . , ml , . . .}. Eo hjrdm skdk`mr, ekvkekdjs m M m M P {m} ol ejs pmrtos2 E pmrtos2 E 4 4 { m= , m9 , m> , . . . , ml , . . .} y O O 4 (M P {m}) P {m= , m9 , m> , . . . , ml , . . .}. Oltjlnos tolodjs quo I ∫ N N 4 ∏, I ∢ N N 4 M, E ∫ O 4 ∏ y E ∢ O 4 M 4 M P {m}. @m hulnkþl h hulnkþl h 2 I ↙ E eolkem E eolkem pjr h h ((x) 4
m= , sk sk x x 4 4 m m11 ml+= , sk sk x x 4 4 m ml pmrm m`gòl l m`gòl l ∃ L,
os ikyontkvm. @js njlbultjs N njlbultjs N y O O sjl sjl kgum`os, msä quo `m hulnkþl keoltkeme K keoltkeme K N O os N 2 N ↙ O ikyontkvm. @uogj, `m hulnkþl pjr trmdjs c trmdjs c 2 2 M M ↙ (M ( M P {m}) emem pjr
c(x) 4
h h ((x), sk sk x x ∃ I1 I 1 K N (x), sk sk x x ∃ N , N ,
4
m, sk x sk x 4 4 m m = 1 ml+= , sk x sk x 4 4 m m l pmrm m`gòl l m`gòl l ∃ L1 x, sk x sk x ∃ N , N ,
os ikyontkvm. Ostj duostrm quo M quo M ∰ ( (M M P {m}). Njrj`mrkj ?. _l njlbultj M os kllktj sk y sj`j sk os oqukpjtolto m m`gulj eo sus suinjlbultjs prjpkjs. Eolknkþl 8. _l njlbultj M njlbultj M os ``mdmej njltmi`o sk M os lktj j ludormi`o. Uojrodm 7. Ujej suinjlbultj eo L os njltmi`o.
Eodjstrmnkþl. ^om ^om M ⊈ L y msudmdjs quo quo M lj os lktj. Eoiodjs djstrmr quo oxksto ulm ikyonnkþl ikyonnkþl h 2 L ↙ M. M . Ol ohontj, eolkdjs `m hulnkþl h hulnkþl h kleuntkvmdolto kleuntkvmdolto njdj skguo2
=. h h (= (=)) 24 dµĽĽl l M (ljto quo njdj M njdj M lj os lktj, M lktj, M os lj vmnäj). 9. Msudkolej quo ym so eolkorjl eolkorjl h (=), (=), h (9),, . . . , h ( l), eolkdjs h (9) h h ((l + =) = ) 24 dµĽĽl( l (M P {h (=) h (=),, h (9) h (9),, . . . , h ( l)}) (ljto quo njdj M njdj M lj os lktj, o` njlbultj M njlbultj M P {h (=) h (=),, h (9), (9), . . . , h ( l)} lj os vmnäj). Vjr o` prklnkpkj eo kleunnkþl dmtodítknm, h dmtodítknm, h ((l) ostí eolkej pmrm tjej l tjej l ∃ L. Mrdmdjs quo `m hulnkþl h hulnkþl h os os ikyontkvm. Klyontkvkeme. ^upjlgmdjs quo l quo l 0 d. Oltjlnos
h h ((d) 4 dµĽl(M P {h h (=) (=),, h (9), (9), . . . , h ( d ∙ =)}), 9
y jisorvodjs quo quo h h ((l) ∃ {h h (=) (=),, h h (9) (9),, . . . , h ( d ∙ =)} dkoltrms quo quo h ( h (d) ∃ / {h (=) h (=),, h (9) h (9),, . . . , h ( d ∙ =)}. Msä, h Msä, h ((l) 4 h h ((d). Ol pmrtknu`mr tolodjs quo L ∰ h h ((L). ^jiroyontkvkeme. ^upjlgmdjs quo h quo h lj lj os sjiro. Oltjlnos oxksto m oxksto m ∃ M tm` M tm` quo m quo m 4 h ( h (l) pmrm tjej tjej l ∃ L. Djstrmrodjs pjr kleunnkþl njdp`otm quo h ( h (l) 0 m pmrm tjej tjej l ∃ L,
`j quo djstrmräm quo h h ((L) os suinjlbultj eo L quo os mnjtmej suporkjrdolto, msä quo h h ((L) soräm lktj y pjr `j tmltj L soräm lktj, ym quo L ∰ h ( h (L), y ostj ljs emräm ulm njltrmeknnkþl. Mcjrm, eodjstrodjs quo h eolknkþl, h (= Ľl M, h ((l) 0 m pmrm tjej l ∃ L. Vjr eolknkþl, h (=)) 4 dµĽl y njdj m 4 h h (=) (=),, rosu`tm quo h h (=) (=) 4 dµĽl M 0 m. ^upjlgmdjs quo h ( h (a ) 0 m pmrm a 4 =, 9, . . . , l. l. Oltjlnos m ∃ M P {h h (=) (=),, h h (9) (9),, . . . , h ( l)}. @uogj, njdj m 4 h ( h (l + =) y h h ((l + =) = ) 4 dµĽl( Ľl (M P {h h (=) (=),, h h (9) (9),, . . . , h ( l)}), tolodjs quo quo h ( h (l + =) =) 0 m. Ostj tordklm `m eodjstrmnkþl. Njrj`mrkj 3. Ujej suinjlbultj eo ul njlbultj njltmi`o os njltmi`o.
Eodjstrmnkþl. ^om ^om M M ul ul njlbultj njltmi`o y S y S ⊈ M. M . ^k ^k M M os os lktj, oltjlnos S oltjlnos S os os lktj, y `kstj. Msudmdjs mcjrm quo quo M os ludormi`o. Oltjlnos oxksto ulm ikyonnkþl h h 2 M ↙ L .
@m hulnkþl hulnkþl g 2 S ↙ h h ((S ) emem pjr pjr g(x) 4 h h ((x) pmrm tjej tjej x ∃ S S os os ikyontkvm, msä quo quo S tmdikël tmdikël os njltmi`o. Uojrodm 7,, h h ((S ) os njltmi`o, msä quo S S ∰ h h ((S ), porj pjr o` Uojrodm 7 Uojrodm ;. ^om M ul njlbultj. @ms skgukoltos sjl oqukvm`oltos.
=. M os njltmi`o. 9. Oxksto ulm hulnkþl sjiroyo sjiroyontkvm ntkvm h 2 L ↙ M . >. Oxksto ulm hulnkþl hulnkþl klyontkvm klyontkvm g 2 M 2 M ↙ L. Eodjstrmnkþl. Os n`mrj quo quo = = kdp`knm kdp`knm 9 9.. Xomdjs quo 9 quo 9 kdp`knm kdp`knm > >.. ^upjlgmdjs quo oxksto ulm hulnkþl sjiroyontkvm h sjiroyontkvm h 2 L ↙ M. M . Eolmdjs g Eolmdjs g 2 M ↙ L eo `m skgukolto dmlorm2 emej m ∃ M, M , njdj h njdj h os os sjiroyontkvm, o` njlbultj h njlbultj h ∙= ({m}) ⊈ L os lj vmnäj. Vjr o` prklnkpkj eo`
iuol jreol, oxksto dµ oxksto dµĽl h ∙= ({m}). Eolkdjs Eolkdjs g (m) 4 dµĽl h ∙= ({m}). Msä, Msä, g(m) ostí eolkej pmrm tjej m tjej m ∃ M y M y g( g (m) ∃ L. Xomdjs quo g quo g os os klyontkvm. Ol ohontj, supjlgmdjs quo m quo m= , m9 ∃ M sjl M sjl tm`os quo g quo g((m= ) 4 ∙= ∙= g (m9 ). Oltjlnos, njdj g (m= ) 4 dµĽl h ({m= }), tolodjs quo g(m= ) ∃ h ({m= }), `j quo qukoro eonkr quo h quo h ((g (m= )) 4 m= . ^kdk`mrdolto, h ^kdk`mrdolto, h ((g(m9 )) 4 m 4 m9 . @uogj m= 4 4 h h ((g (m= )) 4 h h ((g(m9 )) 4 m9 . Ostj duostrm quo g quo g os klyontkvm. Hklm`dolto vomdjs quo > kdp`knm kdp`knm =. Ol ohontj, supjlgmdjs quo oxksto ulm hulnkþl klyontkvm g 2 M ↙ L. Oltjlnos M ∰ g (M), y g(M) ⊈ L. Vjr o` Uojrodm 7, g(M) os klyontkvm njltmi`o, msä quo M quo M tmdikël os njltmi`o. @odm =6. O` prjeuntj nmrtoskmlj L × L os ludormi`o.
>
Eodjstrmnkþl. Os n`mrj quo L × L os kllktj, puos njltkolo m` suinjlbultj L × {=} quo os oqukpjtolto m L. Njlskeorodjs `m hulnkþl h h 2 L × L ↙ L emem pjr h ( h (l, d) 4 l + 9l+d pmrm tjej (l, d) ∃ L × L. Vrjimrodjs quo quo h Uojrodm ; quo L × L h os klyontkvm. ^o sogukrí pjr o` Uojrodm
os njltmi`o, y pjr `j tmltj ludormi`o. ^upjlgmdjs ^upjlgmd js quo h (l, d) 4 h h ((a, `), ejleo (l, d), (a, `) ∃ L × L. ^kl përekem eo golorm`keme, pjeodjs msudkr quo l quo l ≯ a. a . Msä, 6 Msä, 6 ≥ l ∙a 0 l1 porj njdj l njdj l+9 +9l+d 4 a+9 a +9a+` , tolodjs l tolodjs l ∙ a 4 9a+` ∙ 9l+d , y pjr `j tmltj 6 ≥ 9a+` ∙ 9l+d 0 l, msä quo quo 9 9 l+d ≥ 9a+` 0 l + 9l+d . Vjr jtrj `mej, l `mej, l 0 9l 0 9l+d. Msä, tolodjs 9l+d ≥ 9a+` 0 l + 9l+d 0 9l+d + 9l+d 4 9l+d+= , eo ejleo so skguo quo l quo l + d ≥ a a + + ` 0 l + d + =. =. Lonosmrkmdolto l Lonosmrkmdolto l + d 4 a 4 a + + `, msä l ∙ a 4 9a+` ∙ 9l+d 4 9a+` ∙ 9a+` 4 6 ostj os, l os, l 4 4 a a y pjr tmltj tmdikël d tmdikël d 4 4 ` `.. Msä, ( Msä, (l, l, d) 4 (a, `). Uojrodm ==. ^k M y I sjl njltmi`os, oltjlnos M × I os njltmi`o.
Eodjstrmnkþl. ^oml M ^oml M y y I njlbultjs njltmi`os. Oltjlnos, pjr o` Uojrodm ; oxkstol hulnkjlos klyontkvms klyontkvms h h 2 M ↙ L y g 2 I ↙ L. @m hulnkþl hulnkþl c 2 M × I ↙ L × L emem pjr
c(x, y) 4 (h h ((x), g (y)) )) pmrm tjej tjej (x, y) ∃ M × I os klyontkvm (vorknmr`j). Mcjrm, pjr o` @odm =6 =6,, L × L os ludormi`o, msä quo oxksto ulm hulnkþl ikyontkvm a 2 L × L ↙ L. @m njdpjsknkþl a ◨ c 2 M × I ↙ L os klyontkvm, msä quo pjr o` Uojrodm ;, M × I os njltmi`o. Njrj`mrkj =9. O` prjeuntj lktj eo njlbultjs njltmi`os os njltmi`o. Os eonkr, sk M= , M9 , 4 M = × M9 × · · · × Ml , os njltmi`o. . . . , Ml sjl njlbultjs njltmi`os, oltjlnos kl4= Mk 4 M
Eodjstrmnkþl. @m eodjstrmnkþl so eobm njdj obornknkj. Njrj`mrkj =>. O` njlbultj ] os njltmi`o.
Njdj n`mrmdolto ] os kllktj, rom`dolto ] os ludormi`o. Eodjstrmnkþl. @m hulnkþl hulnkþl h h 2 R × L ↙ ] emem pjr pjr h ( h (d, l) 4 d/l pmrm tjej tjej (d, l) ∃ R × L os sjiroyontkvm. Njdj R y L sjl njltmi`os, pjr o` Uojrodm == Uojrodm ==,, R × L os njltmi`o, `uogj pjr o` Uojrodm Uojrodm ;, oxksto ulm hulnkþl sjiroyontkvm sjiroyontkvm c 2 L ↙ R × L. @m njdpjsknkþl h ◨ c 2 L ↙ ] os sjiroyontkvm, msä quo pjr o` Uojrodm ;, ; , ] os njltmi`o. Uojrodm =5. ^oml K K ul njlbultj njltmi`o eo äleknos y { Mk }k∃K ulm hmdk`km eo njlbultjs njltmi`os. Oltjlnos
Mk k∃K
os njltmi`o. Ol pm`mirms, ulm ulkþl njltmi`o eo njlbultjs njltmi`os, os njltmi`o.
5
Eodjstrmnkþl. _tk`kzmlej `ms ckpþtosks eo quo K os K os njltmi`o y quo Mk os njltmi`o pmrm tjej k ∃ K , djstrmrodjs quo oxksto ulm hulnkþl sjiroyontkvm h tjej h 2 L × L ↙ k∃K Mk . Njl
ostj imstmrí pmrm tolor `m pruoim. Njdj K Njdj Uojrodm ;, oxksto ulm hulnkþl sjiroyontkvm g 2 L ↙ K . K os njltmi`o, pjr o` Uojrodm Meodís, pmrm nmem k nmem k ∃ K K ,, M k os njltmi`o, msä quo oxksto ulm hulnkþl sjiroyontkvm h sjiroyontkvm h k 2 L ↙ Mk . Eolk Eolkdjs djs h h 2 L × L ↙ ∃ Mk eo `m skgukolto dmlorm2
k K
h (l, d) 4 h g(l) (d)
pmrm tjej ( tjej (l, l, d) ∃ L × L. Djstrodjs quo ostm hulnkþl h hulnkþl h os os sjiroyontkvm. ^om m ^om m ∃ k∃K Mk . Oltjlnos oxksto oxksto k6 ∃ K K tm` tm` quo quo m ∃ M k . Njdj Njdj g y h k sjl sjiroyontkvms, oxkstol l, oxkstol l, d ∃ L tm`os quo quo g(l) 4 k 6 y h k (d) 4 m. @uogj h m . @uogj h ((l, d) 4 h g(l) (d) 4 h k (d) 4 m. m . Ostj tordklm `m pruoim. 6
6
6
6
Obodp`j =. ^om ^om M M ul ul njlbultj njltmi`o. Oltjlnos pmrm tjej l tjej l ∃ L, Ml 4 M × M × · · · × M
os njltmi`o. Vjr o` Uojrodm Uojrodm =5 =5,, `m ulkþl
∜
l4=
Ml os ul njlbultj njltmi`o.
Obodp`j Obodp` j 9. Njlskeorodjs o` njlbultj H H eo tjems `ms hulnkjlos h h 2 L ↙ L ∢ {6} quo eo h )) tm` quo h quo h ((l) 4 6 pmrm tjej l tjej l ≯ l 6 . smtkshmnol quo oxksto m`gòl l m`gòl l6 ∃ L (quo eopoleo eo h mlu` u`m m eos eoseo eo l6 sk Vmrm hmnk`ktmr `m ljtmnkþl, ekrodjs quo ulm hulnkþl h ∃ H so ml
4 6. porj h (l6 ∙ =) nudp`o quo nudp`o quo h tjej l ≯ l 6 , porj h ((l) 4 6 pmrm tjej l njlbultj H os os njltmi`o. Vmrm nmem l nmem l ∃ L, Djstrmrodjs, usmlej o` Uojrodm =5 Uojrodm =5,, quo o` njlbultj H som H l o` njlbultj eo tjems `ms hulnkjlos quo so mlu`ml eoseo l. Msä, pjr obodp`j, H = som sj`j njltkolo m `m hulnkþl njlstmlto 6, porj H 9 njltkolo kllktms hulnkjlos1 nmem hulnkþl ol ol H 9 so mlu`m eoseo 9, porj o` vm`jr quo tjdm ol = puoeo sor num`qukor lòdorj lmturm`. Uolodjs quo ∜
H H 4
H l .
l4=
Mrdmdjs quo H l os njltmi`o pmrm tjej l ∃ L. Ol ohontj, sk l 4 =, oltjlnos H = njltkolo ul sj`j o`odoltj quo os `m hulnkþl njlstmlto 61 msä, H = os ul njlbultj ulktmrkj y pjr `j tmltj lktj. ^upjlgmdjs lquo l quo l < 9. 9 . Cm``mrodjs ulm hulnkþl ikyontkvm oltro oltro H l y o` prjeunt prjeuntjj nmrt nmrtoskmlj oskmlj ( ( L ∢ {6}) ∙9 × L. ^om ψ ^om ψ l 2 H 2 H l ↙ (L ∢ {6})l∙9 × L emem pjr ψl (h h )) 4 (h h (=) (=),, h h (9) (9),, . . . , h ( l ∙ =)) pmrm tjem tjem h ∃ H l . ^o eobm njdj obornknkj vorknmr quo ostm hulnkþl os ikyontkvm. Njdj (L ∢ {6})l∙9 × L os njltmi`o, so skguo quo quo H l os njltmi`o. Hklm`dolto, pjr o` Uojrodm Uojrodm =5 =5,, H H os os njltmi`o puos `j codjs roprosoltmej njdj ulm ulkþl njltmi`o eo njlbultjs njltmi`os. Njdj n`mrmdolto n`mrmdolto H os H os kllktj, ol rom`keme rom`keme H H os ludormi`o.
Obornknkjs =. _l njlbultj os kllktj sk y sj`j sk njltkolo ul suinjlbultj kllktj. ?
9. ^om M ^om M ul ul njlbultj ludormi`o y x y x ul ul o`odoltj. Eoduostro quo M quo M ∢{ x} os ludormi`o. >. ^om ^om M M ul ul njlbultj kllktj. Eoduostro quo M quo M os os oqukpjtolto m kllktjs suinjlbultjs prjpkjs eo sä dksdj. 5. ^om M ^om M ul ul njlbultj kllktj. Eoduostro quo oxksto ul suinjlbultj kllktj N ⊈ M tm` M tm` quo M ∰ (M quo M ( M P N ). ?. ^k M ^k M os kllktj y I y I os lktj, duostro quo quo (M ∢ I ) ∰ M. M. 8. ^om h ^om h 2 M ↙ I ulm hulnkþl. m ) Vruoio quo sk M sk M os kllktj y y h h os os klyontkvm, oltjlnos I oltjlnos I os kllktj. i ) Vruoio quo sk I sk I os kllktj y h y h os os sjiroyontkvm, oltjlnos M oltjlnos M os kllktj. n ) Vruoio quo sk M sk M os njltmi`o y h y h os os sjiroyontkvm, oltjlnos I oltjlnos I os njltmi`o. e ) Vruoio quo sk I sk I os njltmi`o y h y h os os klyontkvm, oltjlnos M oltjlnos M os njltmi`o.
7. ^om ^om M ul njlbultj lktj y y I ul njlbultj kllktj. Vruoio quo oxksto ulm hulnkþl klyontkvm h klyontkvm h 2 M ↙ I y ulm hulnkþl sjiroyontkvm g sjiroyontkvm g 2 I 2 I ↙ M. M . 3. Vruoio quo tjej njlbultj njltmi`o puoeo roprosoltmrso ol `m hjrdm
{m= , m9 , m> , . . . , ml , . . .} ejleo lj lonosmrkmdolto `js m `js m l ‛s sjl tjejs ekstkltjs. ;. Njl rohorolnkm m` Uojrodm =5 Uojrodm =5,, supjlgm meknkjlm`dolto quo m`gòl M m`gòl M k os ludormi`o. Eoduostro quo k∃K Mk os ludormi`o.
=6. Njl rohoro rohorolnkm lnkm m` Uojro ojrodm dm =5 =5,, supjlgm meknkjlm`dolto quo M quo M k 4 ∏ pmrm tjej k tjej k ∃ k. k . Eoduostro quo sk K sk K os os ludormi`o, oltjlnos k∃K Mk os ludormi`o. ==. ^oml ^oml K `m ululkþl njlbultj lj vmnäj y {Mkoltjlnos K }k∃K ulm K os hmdk`km eo njlbultjs lj vmnäjs. Eoduostro M os lktm, oltjlnos os lktj y M k os lktj y M pmrm tjej k tjej k ∃ K . K . quo sk K ul k∃K k
=9. Vruoio quo sk M sk M = , M9 , . . . , Ml sj njltmi`os, oltjlnos =>. Vruoio quo sk
l k4=
l k4=
Mk os njltmi`o.
Mk os lktj, oltjlnos m`gòl M m`gòl M k os vmnäj j tjejs `js M `js M k sjl lktjs.
=5. Vmrm Vmrm l l ∃ L ∢ {6}, som V som V l 4 {M ⊈ L 2 | M| 4 l 4 l }. Eoduostro quo V quo V 6 4 { ∏} y quo V quo V l os ludormi`o pmrm tjej l tjej l ∃ L. =?. Eoduostro quo o` njlbultj H H ((L) hjrdmej pjr tjejs `js suinjlbultjs lktjs eo L os ludormi`o. =8. ^om h h 2 M ↙ I ulm hulnkþl sjiroyontkvm tm` quo pmrm tjej i ∃ I , h ∙= ({i}) os njltmi`o. Vruoio quo M quo M os njltmi`o. 8
=7. ^om ^om h 2 L ↙ M ulm M ulm hulnkþl sjiroyontkvm y supjlgm quo quo M os lktj. Eoduostro quo ∙= oxksto m oxksto m ∃ M tm` M tm` quo quo h ({m}) os kllktj. =3. ^om ^om h Q6,, =T ↙ Y ulm hulnkþl. ^upjlgm quo oxksto D oxksto D < 6 tm` 6 tm` quo h 2 Q6
|h h ((x= ) + h h ((x9 ) + · · · + h ( h (xl )| ≥ D Q6, =T. =T. Eodjstrmr quo o` njlbultj O O 4 pmrm tjej l ∃ L y tjej x= , x9 , . . . , xl ∃ Q6, {x ∃ Q6 Q6,, =T 2 h h ((x) 4 6} os njltmi`o. Myuem. Vmrm nmem nmem l ∃ L som som O l 4 { x ∃ Q6, Q6 , =T 2 ∜ = |h nmem O l os lktj. quo O 4 4 l4= O l y quo nmem O h ((x)| < l }. Eoduostro quo O
=;. Eoduostro quo `m hulnkþl hulnkþl h 2 L × L ↙ L emem pjr h h ((l, d) 4
(l + d ∙ 9)( 9)(l l + d ∙ =) +l 9
pmrm tjej ( tjej (l, l, d) ∃ L × L os ikyontkvm. 96. Vruoio quo oxksto ulm hulnkþl sjiroyontkvm h 2 L ↙ L tm` quo quo h ∙= ({l}) os kllktj pmrm tjej l tjej l ∃ L. 9=. Osnrkim L 4 M = ∢ M9 ∢ M> ∢ · · · njdj ulkþl kllktm eo njlbultjs kllktjs eksyultjs ejs m ejs.
7
View more...
Comments