Conbelt PDF

September 10, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Conbelt PDF...

Description

 

RUBBER CONVEYOR BELTS

 

A/S ROU ROU LUNDS FABRI FABRIKE KER R a n d it s sub sid ia ry POLYMAX POL YMAX ROULUN ROULUNDS DS A/S a re m a nu f a cturers of q ua lity conveyor b elts. elts. The The product ra ng e consis consists of a ll type s of con veyor b e lt s iin n ru b b er, PVC/ PVC/PU a nd MAXOFL MAXOFLEX® sidewalls. Apart from the traditional conveyo r b elt s POLYMA POLYMAX X ROUL ROULUNDS UNDS of f ers a

w ide rang e o f speci pecia l conveyor conveyor belts an d profilee be lts. profil lts. As As a memb er of th e ROULUNDS G ro up , PO LYMAX ROULUNDS ROULUNDS is a n iint nt erna tiona l com pa ny w ho serves serves its cus usto to mers in in mo re tha n 50 coun tries w orldwide.

 

 

GUIDANCE FOR NAVIGATING AND READING THIS DOCUMENT  

Choose the zoom-factor which suites you best for reading the document by using the zoom tool Choose the zoom tool from the top menu and increase magnification by clicking your mouse on the page you are on. Decrease magnification by holding Ctrl and Shift buttons down whilst clicking with the mouse.  After a suitable magnification magnification has be been en found choose tthe he hand tool   to explore the document. With the hand tool active the bookmarks in the left pane can be accessed thus giving direct links to the subject you wish to read. Furthermore the hand tool enables you to move the page vertically by holding the mouse button down moving the mouse up and down. Unfold the bookmarks in the left pane to see all available links by clicking the + sign next to the bookmarks.

ROULUNDS FABRIKER A/S - Hestehaven 51, DK-5260 Odense S - Denmark www.roulunds.com - E-mail: [email protected]  All rights reserved - © 2001

 

 

SEE SYSTEM KEY  KEY 

 HOW TO CHOOSE CORRECT BELT TYPE: WEAR RESISTANT RUBBER CONVEYOR BELTS  PROGRAMME 1:

RO-PLY WEAR RESISTANT 2-PLY BELTS

 PROGRAMME 2:

WEAR RESISTANT MULTIPLY BELTS, TYPE B, BW

 PROGRAMME 3:

WEAR RESISTANT MULTIPLY BELTS, TYPE A, B, BW

 HEAT RESISTANT RUBBER CONVEYOR BELTS  PROGRAMME 4:

HEAT RESISTANT MULTIPLY BELTS, TYPE K, N

 PROGRAMME 5:

HEAT RESISTANT MULTIPLY BELTS, TYPE TCC

 PROGRAMME 6:

OIL & HEAT RESISTANT FLAMEPROOF 2-PLY BELTS, TYPE GWF

 OIL RESISTANT RUBBER CONVEYOR BELTS  PROGRAMME 6:

OIL & HEAT RESISTANT FLAMEPROOF 2-PLY BELTS, TYPE GWF

 PROGRAMME 6A:

MEDIUM OIL RESISTANT 2-PLY BELTS, TYPE GWM

 PROGRAMME 7:

OIL AND HEAT RESISTANT MULTIPLY BELTS, TYPE GW, GWF

 PROGRAMME 7A:

OIL RESISTANT MULTIPLY BELTS, TYPE GWM, GWS

 FOOD GRADE RUBBER CONVEYOR BELTS  PROGRAMME 8:

ANTISTATIC 2-PLY BELTS FOR CONVEYING FOOD - TYPE IWE

 RUBBER CONVEYOR BELTS WITH PATTERN  PROGRAMME 9:

RO-PLY GRIP 4

2-PLY BELTS WITH PATTERN

 PROGRAMME 10:

MULTIPLY BELTS WITH PATTERN

 RUBBER CONVEYOR BELTS FOR INCLINED TRANSPORT  PROGRAMME 11:

RIB BELTS (CHEVRON-BELTS)

 PROGRAMME 11A:

SPECIAL PROGRAMME FOR THE WOOD INDUSTRY

 CROSS-STABILISED RUBBER CONVEYOR BELTS FOR INCLINED TRANSPORT  PROGRAMME 12:

MAXOFLEX SIDEWALL BELTS

 

- SIDEWALLS

 

- CLEATS

 SPECIAL BELTING  PROGRAMME 13:

TERPENE RESISTANT MULTIPLY BELTS, TYPE GT

 PROGRAMME 14:

FLAME PROOF BELTS, TYPE SF, KF STEELWIREMESH REINFORCED BELTS

 PROGRAMME 15:

BUCKET ELEVATOR BELTS & BARE-BACKED (SLIDING) BELTS

 

 

 STANDARD PROGRAMME RO-PLY, 2 PLY RUBBER CONVEYOR BELTS  PROGRAMME 1

 BELT  TYPE

COVER

MAX. WORKING TENSION (N/mm)

THICKNESS (mm)

WEIGHT per m2 (Kg)

Belt width (mm) 400 500 650 800 1000 1200 1300 1450 1500

200/2

2+ 1

20

5.2

6.8

X

X

X

X

X

X

X

250/2

3+ 1

25

6.6

8.4

X

X

X

X

X

X

X

250/2

4+ 2

25

8.6

10.6

X

X

X

X

315/2

3+ 1

31.5

6.8

8.6

X

X

X

X

315/2

4+ 2

31.5

8.8

10.8

X

X

X

X

400/2

3+ 1

40

7.3

9.1

X

X

X

X

X

X

400/2

5+ 1.5

40

9.8

11.7

X

X

X

X

X

X

630/2

5+ 1.5

63

10.5

13.4

X

X

X

X

X

X

X X

X

X X

X

X

X

X

 APPLICATION RO-PLY has a wide field of application for the transport of moderately to very abrasive materials such as cement, coal, coke, earth, flint, grain, gravel, ore, phosphate, slag, stone materials and timber. CONSTRUCTION AND PROPERTIES RO-PLY is a 2-ply belt construction with cut edges and a carcass of synthetic EP fabric (polyester/polyamide). Between the fabric plies is an innerply of ROULUNDS patented STIFLEX - a rubber and textile fibre compound. The fibres are orientated lengthwise in the belt. This carcass combined with covers of standardized thicknesses and qualities adapted to the field of application provide the following good properties:



High wear resistance



Small elongation at highest working tension



High impact resistance

 

Excellent directional stability Good troughability



Good weather resistance



Not susceptible to humidity and microorganisms.

TECHNICAL DATA Max. material temperature 100°C.  Ambient temperature max. 50°C, min. -30°C. RO-PLY is antistatic according to ISO 284. Maximum recommended trough angle for threesectioned carrying idlers 45°. Pulley diameters, see table 16 in belt selection basis (pdf-file).

 C Co over Min. elongation (%)   Min. tensile strength (N/mm2)   Max. wear loss (mm3)

 AVAILABILITY Open or endless lengths - Max. length unit 400 m/roll or according to agreement.

400 20 120

Max. belt width 1500 mm. - Ribs according to programme 11. For other wear resistant types see programmes 2 and 3.

 

 

 STANDARD PROGRAMME WEAR RESISTANT MULTIPLY BELTS - Type B, BW  PROGRAMME 2

 BELT  TYPE

Max. Thick- Weight working Cover  ness per m2 tension (mm) (Kg) (N/mm)

Belt width (mm) 400 500 600 650 800 1000 1200 1300 1450 1500

EP200/2-B

2+ 1

20

4.8

6.2

X

X

X

X

X

X

X

X

X

X

EP250/2-B

3+ 1

25

6.0

7.5

X

X

X

X

X

X

X

X

X

X

EP315/3-B

3+ 1

31.5

6.7

8.6

X

X

X

X

X

X

X

EP315/3-B, BW

4+ 2

31.5

8.7

10.8

X

X

X

X

X

X

X

EP400/2-B

3+ 1

40

7.0

9.1

X

X

X

X

X

X

X

EP400/3-B, BW

4+ 2

40

9.0

11.3

X

X

X

X

X

X

X

EP500/3-B

3+ 1

50

7.6

9.4

X

X

X

X

X

X

X

EP500/3-B, BW

4+ 2

50

9.6

11.6

X

X

X

X

X

X

X

EP500/4-B, BW

5+1.5

50

10.1

12.2

X

X

X

EP630/4-B, BW

5+1.5

63

11.4

13.7

X

X

X

X

X

EP630/4-B, BW

6+ 2

63

12.8

15.2

X

X

X

X

X

X

EP800/4-B, BW

6+ 2

80

13.2

16.4

X

X

X

X

X

X

EP1000/4-B, BW

6+ 2

100

13.6

16.9

X

X

X

X

X

X

X

X

X

 APPLICATION This programme has a wide field of application for the transport of moderately to very abrasive materials such as crushed ice, cement, clay, coal, copper ore, crushed glass, eart, granite, gravel, iron ore, limestone, marl, mortar, potatoes, sacks, slags. The programme includes belt constructions, which according to experience cover a considerable part of the most common transport applications. CONSTRUCTION AND PROPERTIES Belt with covered edges based upon carcass of synthetic EP fabric (polyester/polyamide) providing 

Small elongation at highest working tension



High impact resistance



Not susceptible to humidity and microorganisms.

Cover thickness and cover qualities are adapted to strength of carcass thus providing belts with good operational economy for the most common applications.

COVER TYPE B Very wear resistant cover, suitable for transport of abrasive materials. Type B has a large field of application. Fulfils DIN 22102 type Y. COVER TYPE BW Extremely wear resistant cover, for transport of highly abrasive materials. Fulfils DIN 22102 type W. TECHNICAL DATA Max. material temperature   at lump size < 40 mm: 80°C   at lump size > 40 mm: 100°C  Ambient temperature max. 50°C, min. -30°C.  Antistatic according to ISO 284. Maximum recommended trough angle for threesectioned carrying idlers 45°. Pulley diameters, see table 16 in belt selection basis (pdf-file).

 C Co over

  Min. e elongation longation (% (%))   Min. tensile strength (N/mm2)   Max. wear loss (mm3)

B

BW

400 20 120

400 18 90

 AVAILABILITY Open or endless lengths - Max. length unit 400 m/roll or according to agreement, however allowance must be made for practical handling possibilities (weight and roll diameter). Regarding other belt widths, carcass strengths and cover combinations we refer to the programmes indicated below. Ribs according to programme 11. For other wear resistant belt types see programmes 1 and 3.

   

 SPECIAL PROGRAMME WEAR RESISTANT MULTIPLY BELTS - Type B, BW  PROGRAMME 3

 COVER  TYPE

COVER COMBINATION (mm)

MAX. WORKING TENSION (N/mm)

CARCASS CONSTRUCTION

20

2 plies E P 200/2

25

E P 250/2

3 plies

4 plies

5 plies

6 plies

B

2 + 1,

3+1

B, BW

2 + 1,

3 + 1,

B, BW

3 + 1,

4+2

31.5

EP 315/3

B, BW

3 + 1,

4+2

40

EP 400/3

EP 400/4

B, BW

3 + 1,

4 + 2,

5 + 1.5

50

EP 500/3

EP 500/4

 A, B, BW

4 + 2,

5 + 1.5,

6+2

63

EP 630/3

EP 630/4

E P 630/5

 A, B, BW

5 + 1.5,

6 + 2,

8+2

80

EP 800/4

E P 800/5

 A, B, BW

6 + 2,

8 + 2,

10 + 3

100

EP 1000/4

E P 1000/5

 A, B, BW

6 + 2,

8 + 2,

10 + 3

125

E P 1250/5 E P 1250/6

 A, B, BW

6 + 2,

8 + 2,

10 + 3

160

E P 1600/5 E P 1600/6

 A, B, BW

6 + 2,

8 + 2,

10 + 3

200

E P 2000/5 E P 2000/6

 A, B, BW

6 + 2,

8 + 2,

10 + 3

250

E P 2500/6

4+2

 APPLICATION For transportation of all kinds of abrasive materials. Choice between 3 cover qualities depending on transport and running conditions. There are thus good possibilities of solving individual transport problems. Programme includes thecover belt types that are not in the standard programmes 1 and 2 because of the requirements3 on strength, combinations andincluded belt widths.

This programme also covers belts without cover for transportation of for instance cardboard boxes, letters, mail bags, parcels. CONSTRUCTION AND PROPERTIES Belts with covered edges based upon carcass of synthetic EP fabric (polyester/polyamide). The EP carcass provides 

Small elongation at highest working tension



High impact resistance



Not susceptible to humidity and microorganisms.

COVER TYPE A Very wear resistant cover, suitable for transport of materials with sharp edges. Fulfils DIN 22102 type X. COVER TYPE B Wear resistant cover for transport of abrasive materials. Type B has a large general field of application. Fulfils DIN 22102 type Y. COVER TYPE BW Extremely wear resistant cover, for transport of highly abrasive materials. Fulfils DIN 22102 type W. TECHNICAL DATA Max. material temperature   at lump size < 40 mm: 80°C   at lump size > 40 mm: 100°C  Ambient temperature max. 50°C, min. -30°C. Belts with cover are antistatic according to ISO 284. For pulley diameters, belt weight and belt thickness as well as troughability we refer to the belt selection basis (pdf-file).

 C Co over

  Min. elongation (%)   Min. tensile strength (N/mm2)   Max. wear loss (mm3)

A

B

BW

450 25 110

400 20 120

400 18 90

 AVAILABILITY Cover combinations and cover qualities according to specification. Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however, allowance must be made for practical handling possibilities (weight and roll diameter). Max. carcass strength 3150 N/mm. Max. belt width 2200 mm. Ribs according to programme 11, pattern according to programme 10. For other wear resistant types see programmes 1 and 2.

   

 SPECIAL PROGRAMME HEAT RESISTANT MULTIPLY BELTS - TYPE K, N  PROGRAMME 4

  BELT TYPE

COVER

MAX. WORKING (N/mm) TENSION

CARCASS CONSTRUCTION

Vulcanized  joining

Mechanical  joining

K, N

20

16

E P 200/2*

K, N

25

20

E P 250/2

K, N

31.5

25

E P 315/3*

40

31.5

EP 400/3

E P 400/4*

50

40

EP 500/3

EP 500/4

E P 500/5*

K, N

63

50

EP 630/3

EP 630/4

EP 630/5

K, N

80

63

EP 800/3

EP 800/4

EP 800/5

K, N

100

80

EP 1000/4

EP 1000/5

K, N K, N

See table below

2 plies

3 plies

4 plies

5 plies

*) Are delivered in type K

 APPLICATION For transportation of hot abrasive materials such as blast furnace clinker, coke, foundry sand, ore, slag etc. with max. material temperature of 170°C. Materials with higher initial temperature can under certain conditions be transported if sprinkled with water at loading. CONSTRUCTION AND PROPERTIES Belts with covered edges based upon carcass of synthetic EP fabric (polyester/polyamide). The EP carcass provides 

Small elongation at highest working tension



High impact resistance



Not susceptible to humidity and microorganisms.

COVERS The belt types K and N are covering different temperature areas, see technical data. Both types have good wear resistant properties. TECHNICAL DATA The cover thickness is graduated according to lump size and temperature of material as follows:

TYPE

LUMP SIZE

COVER THICKNESS (mm) 3 +1

4 + 1.5

5 + 1.5

6 + 1.5

K

< 40 mm >40 mm

110°C 120°C

120°C 130°C

130°C 140°C

130°C 140°C

N

< 40 mm >40 mm

-

130°C 150°C

140°C 160°C

150°C 170°C

The above table is based on 50°C ambient temperature. Ambient temperature max. 50°C, min. -30°C.  Antistatic according to ISO 284. For pulley diameters, belt weight and belt thickness as well as troughability we refer to the belt selection basis (pdf-file). For powdered materials such as for instance cement, we recommend an upgrading of the cover type: K to N N to TCC (programme No. 5)  AVAILABILITY Cover combinations and cover qualities according to requirement and request. Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however, allowance must be made for practical handling possibilities (weight and roll diameter). Max. carcass strength 1600 N/mm. Max. belt width 2200 mm. Ribs according to programme 11. Type K can be delivered with pattern according to programme 10. For other heat resistant types see programmes 5, 6 and 7.

   

 SPECIAL PROGRAMME HEAT RESISTANT MULTIPLY BELTS - TYPE TCC  PROGRAMME 5

  BELT  COVER TYPE

MAX. WORKING TENSION (N/mm) Vulcanized  joining

Mechanical  joining

TCC

20.0

16.0

TCC

25.0

20.0

CARCASS CONSTRUCTION

2 plies

EP 250/2

3 plies

4 plies

5 plies

TCC

31.5

25.0

40.0

31.5

EP 400/3

50.0

40.0

EP 500/3

E P 500/4

TCC TCC

63.0 80.0

50.0 63.0

EP 630/3 E P 800/3

E P 630/4 E P 800/4

TCC

100.0

80.0

TCC

125.0

TCC

See table below

TCC

E P 630/5 E P 800/5

EP 1000/4 EP EP 1000/5 E P 1250/5

 APPLICATION Belt types TCC are used for transportation of hot, abrasive materials, which are chemically inactive, such as cement clinker, blast furnace clinker, coke, limestone, sinter, slags, foundry sand, etc. with max. material temperature of 210°C. The TCC cover resists momentarily temperatures considerably higher than 210°C, and for isolated pieces peak temperatures of up to 400°C. CONSTRUCTION AND PROPERTIES Belt programme with cut edges based upon synthetic EP fabrics (polyester/polyamide). The EP carcass provides 

Small elongation at highest working tension



High impact resistance



Not susceptible to humidity and microorganisms



High resistance against stress on the edges

COVER The type TCC is a wear and heat resistant cover, which resists a high constant material temperature. Further, it resists momentary peak temperatures of up to 400°C for isolated large pieces of material. TECHNICAL DATA The cover thickness is graduated according to lump size and temperature of material as follows:

TYPE

TCC

LUMP SIZE < 25 mm >25 mm

COVER THICKNESS (mm) 3 +1

4 + 1.5

5 + 1.5

6+2

150°C 160°C

170°C 180°C

180°C 200°C

190°C 210°C

 Ambient temperature max. 70°C, min. -30°C.  Antistatic according to ISO 284. For pulley diameters, belt weight and belt thickness we refer to the belt selection basis (pdf-file).  AVAILABILITY Cover combinations according to requirement and request. Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however, allowance must be made for practical handling possibilities (weight and roll diameter). Max. carcass strength 1600 N/mm. Max. belt width 2200 mm. Ribs according to programme 11. For other heat resistant types see programmes 4, 6 and 7.

 

 

 STANDARD PROGRAMME OIL AND HEAT RESISTANT FLAMEPROOF - TYPE GWF

 PROGRAMME 6

 BELT  TYPE

Cover 

Max. working tension (N/mm)

Thickness (mm)

Weight per m2 (Kg)

Belt width (mm) 400

450

500

600

650

800

1000

X

X

X

X

X

X

X

X

X

X

X

250/2

3+ 1

25

7.0

9.3

X

400/2

3+1

40

7.5

10.0

X

1200

X

 APPLICATION The belt type is used within industries manufacturing and handling grain, fertilizers, fodder mixtures, refuse, soyabean cakes, tinned goods, wood containing resin and cellulose and applications where oily and fatty materials are transported. RO-PLY GWF is very resistant to Lila-mins that are used in the fertilizer industry. RO-PLY GWF is oil and heat resistant and flameproof. RO-PLY GWF has good anti-sticking properties. CONSTRUCTION AND PROPERTIES 2-ply construction with cut edges and carcass of synthetic EP fabric (polyester/polyamide). Between the fabric plies is an innerply of ROULUNDS patented STIFLEX - a rubber and textile fibre compound. The fibres are orientated lengthwise in the belt. This special carcass construction provides the following good properties: 

Small elongation at highest working tension



High impact resistance



Excellent directional stability



Good troughability



Not susceptible to humidity and microorganisms.

The special GWF cover provides the following advantages: 

Prevents damage caused by oil and fat



Prevents the outbreak of fire caused by spark discharges from the belt (antistatic)



Prevents the spreading of fires (self extinguishing cover)



Good anti-sticking properties

TECHNICAL DATA Material temperature max. 125°C, min. -30°C.  Ambient temperature max. 50°C, min. -30°C. Flameproof according to ISO R 433, basic quality K, testing according to ISO R 340.  Antistatic according to ISO 284. Max. recommended trough angle for three-sectioned carrying idlers 45°. For pulley diameters, see the belt selection basis (pdf-file).  AVAILABILITY Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however, allowance must be made for practical handling possibilities (weight and roll diameter). Max. belt width to 1300 mm. Ribs according programme 11. For other oil resistant belt types see programmes 6A, 7 ,7A and 8.

 

 

 STANDARD PROGRAMME MEDIUM OIL RESISTANT 2-PLY BELTS - TYPE GWM  PROGRAMME 6A

 BELT  TYPE

Cover 

250/2

Max. working tension (N/mm)

Thickness (mm)

25

6.8

3+ 1

Weight per m2 (Kg)

Belt width (mm) 400

450

8.6

500 X

600

650

800

X

X

1000

1200

 APPLICATION Type GWM is a supplement to RO-PLY type GWF suitable for handling materials with moderate oil content, such as grain, fodder mixtures, refuse, and other materials containing moderate amounts of oil and fat. For other special requirements for heat resistant and flameproof conveyor belt types see programmes 6 and 7. CONSTRUCTION AND PROPERTIES RO-PLY GWM is a 2-ply construction with cut edges. The carcass is made of synthetic EP fabrics (polyester/polyamide). Between the fabric plies is an innerply of ROULUNDS patented STIFLEX - a rubber and textile fibre compound. The fibres are orientated lengthwise in the belt and provide the following good properties: 

Small elongation at highest working tension Excellent directional stability



Good troughability



Not susceptible to humidity and microorganisms.



The special cover GWM provides the following advantages:  

Oil and fat resistant to moderate oily materials  Antistatic

TECHNICAL DATA Material temperature max. +80°C, min. -30°C.  Ambient temperature max. +50°C, min. -30°C.  Antistatic according to ISO 284. Max. recommended trough angle for three-sectioned carrying idlers 45°. For pulley diameters we refer to the belt selection basis (pdf-file).  AVAILABILITY Open or endless lengths. Max. production unit 400 m/roll or according to agreement. However allowance must be made for practical handling (weight and roll diameter). Stock belting according to separate stock list. Max. belt width 1300 mm. Ribs according to programme 11. Other oil resistant belt types, see programme 6, 7 ,7A and 8.

 

 

 OIL AND HEAT RESISTANT MULTIPLY BELTS - TYPE GW, GWF  PROGRAMME 7

  BELT TYPE

COVER COMBINATION (mm)

GW, GWF   3 + 1,

MAX. WORKING TENSION (N/mm) Vulcanized  joining

Mechanical  joining

CARCASS CONSTRUCTION

2 plies

20.0

16.0

EP 200/2 EP 250/2

3 plies

GW, GWF   3 + 1,

4+2

25.0

20.0

GW, GWF   3 + 1,

4+2

31.5

25.0

E P 315/3

4 plies

5 plies

GW, GWF   3 + 1,

4+2

5 + 1.5

40.0

31.5

EP 400/3 EP E P 400/4

GW, GWF   3 + 1,

4+2

5 + 1.5

50.0

40.0

EP 500/3 EP E P 500/4

GW, GWF   4 + 2,

5 + 1.5

63.0

50.0

EP 630/4 EP 630/5

GW, GWF   4 + 2,

5 + 1.5

80.0

63.0

EP 800/4 EP 800/5

 APPLICATION The two belt types are used for transportation of oily and comparatively hot materials such as clinkers, copra, fertilizers with Lila-min, fodder mixtures, meat and bone meal, refuse, slag etc. Type GWF is particularly suitable for applications, which for safety reasons require a flameproof conveyor belt. This programme is a supplement to the standardized stockprogramme RO-PLY GWF. It includes the belt types that fulfil special requirements on strength, cover combinations and belt widths, which are not fulfilled by the RO-PLY GWF standard programme CONSTRUCTION AND PROPERTIES The types GW and GWF are with carcass of synthetic EP fabric (polyester/polyamide) providing 

Small elongation at highest working tension



High impact resistance



Not susceptible to humidity and microorganisms

The types GW and GWF have a good wear resistance, are oil and heat resistant and antistatic.  Apart from that type GWF is flameproof according to ISO R 433, basic quality K. TECHNICAL DATA Max. material temperature GW: 100°C. Max. material temperature GWF: 125°C. Type GWF is flameproof according to ISO R 433, basic quality K, testing according to ISO R 340.  Antistatic according to ISO 284. For pulley diameters, belt weight and belt thickness as wellas troughability we refer to the belt selection basis (pdf-file).

 AVAILABILITY Cover combinations according to requirement and request (however, for type GW min. 4 mm totally). Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however, allowance must be made for practical handling possibilities (weight and roll diameter). Max. carcass strength 1600 N/mm for GW. Max. carcass strength 1000 N/mm for GWF. Max. belt width 2200 mm. Ribs according to programme 11. For other oil resistant types see programmes 6, 6A, 7A and 8.

 

 

 OIL RESISTANT MULTIPLY BELTS, STANDARD PROGRAMME - TYPE GWM, GWS  PROGRAMME 7A

 COVER COMBINATION (mm)

3 + 1,

MAX. WORKING TENSION (N/mm) Vulcanized  joining

Mechanical  joining

CARCASS CONSTRUCTION

2 plies

20.0

16.0

E P 200/2 E P 250/2

3 plies

4 plies

5 plies

3 + 1,

4+2

25.0

20.0

3 + 1,

4+2

31.5

25.0

E P 315/3

3 + 1,

4+2

5 + 1.5

40.0

31.5

E P 400/3 E P 400/4

3 + 1,

4+2

5 + 1.5

50.0

40.0

E P 500/3 E P 500/4

4 + 2,

5 + 1.5

63.0

50.0

EP 630/4 EP EP 630/5

4 + 2,

5 + 1.5

80.0

63.0

EP 800/4 EP EP 800/5

 APPLICATION The two belt types are supplement to type GW and GWF and suitable for handling materials with moderate fat and oil contents, such as grain, fodder mixtures, refuse, wooden chips, fertilizer, etc. Type GWM is used for the transportation of material containing moderate amounts of oil, whereas type GWS is resistant to oil amines and terpenes as well. For other special requirements for maximum oil resistant properties incl. heat and/or flameproof types see programmes 6 and 7. CONSTRUCTION AND PROPERTIES Type GWM and GWS are multiply constructgions with cut edges. The carcass is made of synthetic EP fabrics (polyester/polyamide) providing  

Small elongation at highest working tension Not susceptible to humidity and microorganisms

Type GWM is medium and type GWS medium to maximum oil resistant. Both types are antistatic.

TECHNICAL DATA Material temperature max. +80°C  Ambient temperature max. +50°C, min. -30°C.  Antistatic according to ISO 284. For drum diameters, belt weight, belt thickness and troughability, see belt selection basis (pdf-file).  AVAILABILITY Cover combinations according to requirement. Open or endless lengths. Max. production unit 400 m/roll or according to agreement, however, allowance must be made for practical handling possibilities (weight and roll diameter). Max. strength 1000 N/mm. Max. carcass belt width 2200 mm. Ribs according to programme 11. Conveyor belts for inclined transport, see programme no. 11A. Other oil resistant belt types, see programmes 6, 6A, and 7.

 

 

 ANTISTATIC 2-PLY BELTS FOR CONVEYING FOOD - TYPE IWE  PROGRAMME 8

 BELT

COVER

 TYPE 250/2

2+ 1

MAX. WORKING

THICKNESS

TENSION (N/mm)

(mm)

25

4.6

WEIGHT per m2 (Kg)

BELT WIDTH (mm) 300 400 450 500 650 800

5.9

X

X

X

1000

X

X

 APPLICATION Type IWE is used for transportation of all sorts of foods, such as sugar, meat, fish, bread, poultry, etc. and has also a wide field of application within light material handling. The belt is non-staining and therefore also suitable for transport of for instance packaging, parcels, etc. The antistatic properties of type IWE prevent the outbreak of fires and explosions, and it is therefore suitable for  transport of materials such as sugar, grain, flour, etc. Type IWE is particularly suitable for applications, which for safety reasons require a flameproof conveyor belt. CONSTRUCTION AND PROPERTIES Type IWE is a 2-ply construction with cut edges. The carcass is made of synthetic EP fabrics. The cover rubber quality is tasteless and odourless and resistant to animal and vegetable oil. Type IWE is easy to wash, does not absorb moisture from humidity and is not influenced by microorganisms. Type IWE fulfils the German BGA as well as the American FDA recommendations.

TECHNICAL DATA Max. material temperature   at lump size < 40 mm: 100°C   at lump temperature size > 40 mm: 120°C  Ambient max. 50°C, min. -20°C.  Antistatic according to ISO 284. Maximum recommended trough angle for three-roll carrying idlers 45°. Pulley diameters, min. 200 mm. Type IWE is non-inflammable according to ISO R 433, quality K, tested according to ISO R 340.  AVAILABILITY Open or endless lengths. Cut edges only. Max. length unit 250 m/roll. Stock belting according to separate stock list.

 

 

 RO-PLY GRIP 4 - 2-PLY BELTS WITH PATTERN  PROGRAMME 9

 BELT  TYPE

200/2

COVER

2.5+ 0

MAX. WORKING TENSION (N/mm)

THICKNESS (mm)

20

5.5

WEIGHT per m2 (Kg)

BELT WIDTH (mm) 300 350 400 450 500 600 650 800 1000 1200

4.5

X

X

X

X

X

X

X

X

X

 APPLICATION The RO-PLY Grip 4 pattern belt is used for inclined transport of packaged goods such as boxes, luggage, parcels, sacks, etc. The belt is non-staining and therefore also suitable for transport within for instance the wood and cardboard industries.

X

CONSTRUCTION AND PROPERTIES RO-PLY Grip 4 is a 2-ply construction with cut edges and a carcass of synthetic EP fabric (polyester/polyamide). Between the fabric plies is an innerply of ROULUNDS patented STIFLEX - a rubber and textile fibre compound. The fibres are orientated lengthwise in the belt, which gives the belt a good stability. The carrying side has a tan coloured cover with a deep pattern providing maximum grip of the material. The running side consists of impregnated EP fabric of high wear resistance and low friction. Therefore the belt is also suitable for conveyors with sliding plate When choosing angles of inclination allowance must be made for the shape of the conveyor such as support with carrying idlers, plain support, belt speed as well as character of material and loading method. It is recommended to place a short horizontal loading belt (booster) in front of steeply inclined conveyors. TECHNICAL DATA Max. material temperature 80°C.  Ambient temperature max. 50°C, min. -30°C.  Angles of inclination: Jute sacks Paper sacks Cart Carton ons sa and nd wo wood oden en boxe boxes s Goods packed in paper Good Goods sp pac acke ked d iin nc cel ello loph phan ane e Boxe Boxes s of of syn synth thet etic ic ma mate teri rial al Goods packed in plastics

38° 30° 30° 30° 32° 30° 30° 25° 25° 22°

The above angles of inclination are valid for indoor applications. For outdoor applications due consideration should be given the climatical influence on the surface friction. Pulley diameters, see table 16 in belt selection basis (pdf-file).  AVAILABILITY Open or endless lengths. Max. length unit 250 m/roll or according to agreement. Max. belt width 1300 mm. For other pattern belts see programme 10.

 

 

 MULTIPLY BELTS WITH PATTERN - SPECIAL PROGRAMME  PROGRAMME 10  

PATTERN TYPE

Pattern 4

Fabric pattern

 

PROGRAMME

3

3, 4, 7

 

BELT TYPE

A, B

A, B, K, GW, GWF, GWS

 

MAX. WIDTH (mm)

1300

1300

 APPLICATION Pattern belts for inclined transport of packaged goods such as boxes, parcels, sacks etc. To be used where the angle of inclination is so high that belts without pattern cannot manage the transportation because of too low friction between materials and belt. CONSTRUCTION AND PROPERTIES PATTERN 4 The deep pattern is the most frequently used pattern type. The highest angle of inclination for pattern belts can normally be reached by using this type

FABRIC PATTERN This pattern gives a light patterned surface structure and a slight increase of  the friction between material and belt. Suitable in connection with scrapers for  transportation of for instance powdered materials.

TECHNICAL DATA Material and ambient temperature as for the belt type in question.  Angles of inclination: Patt Patter ern n 4 .. .... .... .... .... .... .... .... 35 35°° Other types ...... ........... ......... .... 15-25 15-25°° The angles of inclination depend on shape of material, belt speed, distance between carrying idlers etc. Therefore, the values are only recommendations. For pulley diameters and belt weight we refer to the belt selection basis for the belt type in question (pdf-file).  AVAILABILITY Open or endless lengths. Max. length unit 250 m/roll or according to agreement. Belt type and belt width as outlined above. Belts with pattern 3 and 4 are with cut edges. For other pattern belts see programmes 8 and 9.

 

 

 CONVEYOR BELTS FOR INCLINED TRANSPORT - RIB BELTS  PROGRAMME 11 RIB DIMENSIONS (mm)

RIB PATTERN DIMENSIONS Teoretical capacity m3/h

BELT WIDTH (mm)

 RIB   TYPE Bm

a

h

b

501

250

150

13

13

502

310

200

10

13

503

380

250

13

13

504

550

300

15

13

511

420

275

20

15

512

550

300

25

20

513

750

333

25

20

521

450

300

35

30

** 525

1080

250

50

30

*Pulley diameter  min. (mm)

Tooth Dimension

B

C

300 400 400 450 500

25 75 45 70 95

250

4 50 500 600 600 650 800 450 500 600 650 600 650 800 800 1000 1200 500 600 650

35 60 110 25 50 125 15 40 90 115 25 50 125 25 125 225 25 75 100

250

1200

60

630

250

250

315

400

400

315

v = 1 m/s trough angle 30º inclination 30º ß =10º

ß = 15º

12-16 24 - 28 24 - 28 32 - 36 40 - 44

15-20 30 - 35 30 - 35 40 - 45 50 - 55

32 -- 44 36 40 56 - 60 56 - 60 64 - 68 104 - 112 36 - 40 48 - 52 64 - 68 72 - 76 64 - 68 72 - 76 120 - 128 120 - 128 190 - 200 240 - 264 60 - 68 76 - 80 80 - 84

40 50 -- 45 55 70 - 75 70 - 75 80 - 85 130 - 140 45 - 50 60 - 65 80 - 85 90 - 95 80 - 85 90 - 95 150 - 160 150 - 160 230 - 250 300 - 330 75 - 80 95 - 100 100 - 105

272 - 288

340 - 360

  *) concerns only the rib type.   **) on return part we recommend to place the rreturn eturn idlers in pairs 150 mm apart   For weight of ribs, see the belt selection basis.   Rib type 12 and 115, only for programme 1 1,, 2 and 3.

 APPLICATION Rubber conveyor belts without ribs are used for inclined transportation of bulk goods up to approx. 22º dependent on the friction angle between material and belt. If rib belts or belts with pattern are used the angle of inclination can be increased considerably, as in that case the max. angle of inclination depends on the internal friction of the material both in static and dynamic conditions. Guidance is given in table 17. Rib belts are ued for bulk goods with unit size of 0-150 mm and for transportation of  sacks. Belt and rib qualities are chosen on the basis of the individual belt programmes 1-8 + 12, whereas rib dimensions are shown in the table above. TECHNICAL DATA V-ribs are hot-vulcanized and have been developed to secure a steady running on flat return idlers. Width of rib Bm depends on shape of the hopper and placing of the skirting. Height and width of ribs (h x b) depend on lump size, capacity, and desired robustness. Recommended capacities can be seen from the above data. In order to secure the best capacity at a given angle of inclination it is important that the material is at rest on the belt. This is achieved by feeding uniformly in the travelling direction at a speed equal to that of the belt. Further we recommend to reduce the carrying idler distance compared to normal conveyors. The belt speed should not exceed 2 m/s and should be kept as low as possible. HIGH TRANSVERSE RIBS For inclined transportation of packaged goods, beets, coal, coke, potatoes etc. Type

Thickness

Height

Width Bm (mm)

Distance

Pulley diameter 

 Are delivered for programme

b (mm)

h (mm)

325

25

25

340

40

40

20

60

60

380

80

80

400

100

100

a (mm)

standard

400

 As requested

800

min. (mm)

1, 2 3, 6, 6A, 7, 7A, 12

250

X

250

X

400

X

400

X

400

X

  * concerns on only ly the rib type.

SIDEWALLS For transportation of powdered materials the use of flexible sidewalls can in some cases substitube rubber  skirting on the conveyor.

The sidewalls can also be mounted on belts with straight transverse ribs and on belts with high transverse ribs.  

Type

Height mm

Pulley diameter min. mm*

10G4712

25

375

*) concerns only the sidewalls. The sidewalls are available for all belt programmes with the exception of the programmes 8, 9 and 10.   Max. belt width 1000 mm   Min. belt width 200 mm   Width interval 50 mm Max. Angles of Inclination:  Angles of inclination are recommendations as they depend on kind of material and construction of conveyor: conveyor: S and Sand, wet Fertilizer Coal < 100 mm Potatoes B eets Sacks, jute Sacks, paper Grain, dry Cement Salt < 100 mm

30 - 35º 40 - 45º 35º 30º 30º 30º 35 - 40º 30 - 35º 25º 35º 35º

The ribs in this programme are primarily to be used for transportation of light materials. However, the rib base of  type 20 is so strong that it can transport heavier materials.

These ribs cannot be used for conveyors with normal return idlers, but require return idlers with supporting rings or free hanging return part. High transverse ribs are cold-vulcanized on the belt. They can be placed at distances which can be adapted to

individual requirements. Construction 1 is suitable where rubber skirting at the belt edge es required. Construction 2 is normally used in connection with high transverse ribs.

  Construction 1

Construction 2

  For fast delivery and high flexibility we offer conveyor belts with rib types in existing mould equipment. Rib dimensions (mm)  Min. Belt Width Distance Height (mm) a h

Rib type

Pulley diameter   Min. (mm)

Execution of rib

 SA 230/15

250

15

300

250

SA 420/15

330

15

450

250  

SB 250/15

150

15

300

250

SB 310/15

200

15

350

250

SB 370/15

250

15

400

250

SB 470/15

250

15

500

250

SC 600/15

333

15

650

SD 780/15

170

15

800

MD 420/20

200

20

450

MD 550/20

250

20

600

MD 610/25

250

25

650

LE 450/35

250

35

500

LE 570/35

300

35

600

SA 230/15   SA 420/15  

SC 600/15

250

M D 420/20

250

315 SB 250/15   SB 310/15   SB 370/15   SB470/15  

SD 780/15

M D 550/20 MD 610/25

315 400

400 LE 450/35 LE 570/35

 

400

Theoretical capacity m3/h of rib belts at differnt belt widths, v = 1 m/s, trough angle 30º, inclination 30º.

Rib type

Materials angle ß of  inclination

Belt width in mm 300

400

450

500

600

650

700

800

1000

1200

SA-SB

10º

12-15 24-28 24-35 40-45

55-60

65-70

95-100

105-110 150-160 190-210

SC-SD

15º

15-20 30-35 30-44 50-55

70-75

80-85

115-125 130-140 170-180 230-260

 

MD

LE

10º

45- 50

60-65

70-75

90-95

120-125 170-180 220-250

15º

60- 65

80-85

90-95

115-125 150-160 190-200 270-300

10º

55- 60

70-75

85-90

105-115 140-150 185-195 250-270

15º

70-75 95-100 105-110 135-145 180-190 200-220 300-340

 

 

 APPLICATION

 Above is shown a few examples of our unique programme of rib belts. We can fulfil our customers requirements and deliver almost all lengths, widths, qualities and types up to 2000 mm width.

   

 CONVEYOR BELTS FOR INCLINED TRANSPORT - WOOD INDUSTRY  PROGRAMME 11A   Pa P attern type

RO-KNOP

RIBS

  Programme

3 - 7 - 12

3 - 7 - 12

  Belt width (mm)

800

1000

1200

1400

600

650

800

1000

1200

650

800

1000

1200

500

500

650

800

1000

Pattern width Bm (mm)   Distance a (mm)

See sketch

600 or on request

 APPLICATION Inclined transport of wooden chips requires a patterned surface, where icing up occurs. The RO-KNOP pattern is used for angles of inclination of up to 18°, whereas ribs are used for angles up to 12°. CONSTRUCTION AND PROPERTIES The RO-KNOP pattern consists of 3 mm high knobs. See pattern dimensions above. For efficient cleaning of the belt we recommend the use of rotating brushes. The ribs are pressed into the cover in a thickness of 3 mm. Pattern dimensions as outlined on the sketch below. RO-KNOP

RIBS

TECHNICAL DATA Material temperature and ambient temperature as for the belt type in question.  Angles of inclination: RO-KNOP................................ 12 - 18° RIBS RIBS

.. .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .. 8 - 14 14°°

The angles of inclination are dependant on material, loading conditions, distance between carrying idlers, belt speed etc. Therefore the values are only recommendations. Pulley diameters, see table 16 in belt selection basis (pdf-file).  AVAILABILITY Open or endless lengths Max. production unit 400 m/roll or according to agreement. However allowance must be made for practical handling (weight and roll diameter). Belt width and type according to the above table. The belt types are with cut edges. Min. cover thickness on material side = 3 mm. Other pattern and rib belt types, see programmes 10 and 11.

 

 

 MAXOFLEX ®  SIDEWALL BELTS - TYPE XE  PROGRAMME 12 MAX. WORKING TENSION (N/mm)

COVER

 Thick-  Weight ness per m2 (Kg) (mm)

CARCASS CONSTRUCTION

Vulcanized  joining

Mechanical  joining

2+2

25

20

8.5

9.6

3 + 1.5

31.5

25

9.7

10.9

3.5 + 1.5

40

31.5

10.8

12.3

XE 400/3-2*

4+2

50

40

12.9

14.6

XE 500/3-2

4+2

63

50

13.8

15.6

XE 630/4-2

4+2

80

63

14.3

16.2

XE 800/4-2

1 ply

2 plies

3 plies

4 plies

XE 250/1-2 XE 315/2-2

  *) IWE only deliverable as EE 400/3 2.5 + 1.5 (3 x cross stabile ply)

 APPLICATION These types of belts are used as base belts for specified purposes in the connection with MAXOFLEX ® sidewalls and cleats. The MAXOFLEX® is used for inclined conveying of loose material in all industries such as mining, agriculture and food industry. The programme is also applicable for other purposes where cross stable belts are necessary, for example cover 

belts. THE MAXOFLEX CONCEPT MAXOFLEX® high-incline conveyor belts provide an efficient, safe way to transport all types of materials where accurate movement (filling and discharging) of the product is necessary. The belts can be customized to specification e.g. three (3) sidewalls on one belt to form a double system with the same base belt. This provides the opportunity to convey two different products with the same belt. The concept of using inclined and horizontal ('S' conveyor) transport with the same belt, eliminates the problems resulting from difficult transfer points. The MAXOFLEX®-concept consists of a stabilized basebelt, with sidewalls and cleats attached to form a highincline or 'pocket' belt. When an analysis is calculated based on the cost per meter lift, it is likely that the MAXOFLEX® belt will be more efficient costwise than using a custom made conventional incline belt. Each MAXOFLEX® belt is designed and constructed for each individual application. Therefore, the combinations of differnt basebelts, sidewalls, and cleats provide for nuerous possibilities in problem solving.

More detailed information on the technical aspects of the MAXOFLEX® belt, can be found in our 'Maxoflex Handbook', which is available upon request.

®

 Advantages for MAXOFLEX  conveyor belts:   Increases the transport capacity up to 4 times than that of  a normal belt of the same width   Saves space due to the possibility of inclining transport, up to 90 degrees.   Protects the material from damage by providing better  material handling control.    Ability to change transportation direction with the same belt (the 'S' conveyor).   CONSTRUCTION AND PROPERTIES XE is a multiply construction with cut edges based upon carcass of EP fabric (polyester/polyamide) and one monofilament ply on each side of the EP carcass integrated into the upper and lower cover providing:  Saves on structural parts (conveyor) 

Saves place



Excellent rigidity in the transverse direction

Cross section of a standard EP belt with sidewall  

Cross section of a XE belt with sidewall

COVERS Delivery according to specification in the qualities (B, GWF and IWE).  All covers are fulfiling DIN 22102.

TECHNICAL DATA Max. material temperatures and ambient room temperature according to the satandard programs of the type B, GWF and IWE.  Antistatic according to ISO 284. Pulley diameters, see belt selection basis.  AVAILABILITY Cover combinations and cover qualities according to stpecifications. Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however, MAXOFLEX ® belts to be transported and storaged in special pallets. Max. carcass strength 1600 N/mm 2 Max. belt width 2000 mm.

Cover 

XE 250/1-2 2+2

XE 315/2-2 3.5 + 1.5

XE 400/3-2 3.5 + 1.5

XE 500/3-2 4+2

XE 630/4-2 4+2

XE 800/4-2 4+2

60 - 100

Ø 315

Ø 315

Ø 400

Ø 500

Ø 630

Ø 800

30 - 60

Ø 250

Ø 250

Ø 315

Ø 400

Ø 500

Ø 630

Useful load / %

   

 MAXOFLEX ®  SIDEWALLS  PROGRAMME 12

MAXOFLEX® sidewalls are normally produced in black wear-resistant quality. However, upon request we can also offer product made from oil and fat resistant (OX), flame resistant (FL), and heat resistant (H100 & H130). MAXOFLEX® sidewalls are produced in three categories: Light duty, non-fabric reinforced (M), Heavy duty, fabric reinforced (MWS) and Extra Heavy duty, fabric reinforced (MWSF). The fabric reinforcement in the MWS and the MWSF types, provide for greater strength and stability.

MAXOFLEX® sidewalls are characterized by being extremely stable in the transverse direction (from the side), but yet flexible in the running direction which allows for  smaller pulleys. This also means that the sidewall is partially selfcleaning and therefore helps eliminate product 'carry-back': MAXOFLEX® sidewall material can be delivered loose on a spool or attached to a basebelt.

Type

H mm

W* mm

W mm

P mm

D1 mi  min mm

D2 min mm

  M 40

40

35

30

35

Ø 120   Ø 200  

M60

60

50

45

40

Ø 150   Ø 240  

M80 M80S

80 80

50 50

45 45

50 40

Ø 200   Ø 320   Ø 200   Ø 320  

M100

100

5 50 0

45

50

Ø 250   Ø 400  

M100S

100

50

45

40

Ø 250   Ø 400  

M120

120

5 50 0

45

50

Ø 300   Ø 480  

M140

140

5 50 0

45

50

Ø 350   Ø 560  

MWS120

120

75

70

60

Ø 300   Ø 480  

MWS140

140

75

70

60

Ø 560  

MWS160 MWS180 MWS200 MWS250 MWS300

160 180 200 250 300

75 75 75 75 75

70 70 70 70 70

60 60 60 60 60

Ø 350   Ø 400   Ø 450   Ø 500   Ø 625   Ø 750  

Ø Ø Ø Ø Ø

640   720   800   1000   1200  

MWSF250 MWSF300 MWSF350 MWSF400

250 300 350 400

110 110 110 110

100 100 100 100

80 80 80 80

Ø Ø Ø Ø

Ø Ø Ø Ø

1000   1200   1400   1600  

750 900 1050 1200

       

In order to achieve maximum belt life, the minimum diameters for D1 and D2 must be observed. D1 min. = M MWS MWSF

2.5 x height of sidewall 2.5 x height of sidewall 3.0 x height of sidewall

Stan Standa dard rd Ru Rubb bber er Qual Qualit itie ies: s:

On re requ que est we can can supply following rubber  qualities:

Please note that the above figures are for  normal quality. For other qualities we recommend D1 + 100.

N

= Normal quality

D2 min. = 4.0 x height of sidewall

OX

= Fa F at- and oil resistant, heat resistant up to max. 100°C.

FL = Flame resistant quality H = Heat Heat resi resist stan antt up to 130°C

MWS(F) = Extra thick reinforced walls

Max. room temperature: -30°C to + 50°C

Types in bold writing are standard types.

   

 MAXOFLEX ®  CLEATS  PROGRAMME 12

MAXOFLEX® cleats are produced in T, TC and TCW styles which can be combined with the sidewalls to provide numerous combinations. The cleats are moulded in black wear resistant rubber, which guarantees optimal strenth and rigidity. Cleats can also be procuced as oil and fat resistant (OX), flame resistant (FL) and heat resistant (H100 & H130). The TCW style is produced with fabric reinforcement, and is available in heights of  140 mm and higher. This provides greater  stability and prevents 'back bending' of the cleats. Cleats can also be used on belts without sidewalls. Stocked production length of cleat material is 2.8 m for cleat heights up to 230 mm. Over 230 mm, the production length is 2.4 meters.

Diameters smaller than indicated in the table, will always result in a considerable decrease of  belt life.

Cleats that are 230 mm or higher are produced as a 'two part' cleat, which is made of a base (foot) in rubber that is attached to the belt, then a 'blade' made of rubber or polyurethane that is inserted and bolted into the foot.

D1 m  miin mm

D2 min mm

Type

H mm

W mm

T mm

T 35

35

55

6

Ø 160   Ø 200

T 55

55

80

7

Ø 160   Ø 250

T 75

75

80

6

Ø 200   Ø 300

T 90

90

105

11

Ø 275   Ø 400

T 110

107

1 10 05

8

Ø 275   Ø 400

T 140

140

160

18

Ø 400   Ø 450

T 160

160

160

16

Ø 400   Ø 450

T 180

180

160

14

Ø 400   Ø 450

C35

35

55

4

Ø 160   Ø 200

C55

55

80

5

Ø 160   Ø 250

C75

75

80

6

Ø 200   Ø 300

C90

90

110

10

Ø 275   Ø 400

C110

110

1 11 10

8

Ø 275   Ø 400

TC75

75

80

7

Ø 200   Ø 300

TC90

90

110

12

Ø 275   Ø 400

TC110

105

110

11

Ø 275   Ø 400

TC140

140

160

20

Ø 400   Ø 500

TC160 TC180

160 180

160 160

20 19

Ø 400   Ø 500 Ø 400   Ø 500

TC230

230

180

30

Ø 500   Ø 600

TCW280

280

230

30

Ø 700   Ø 900

TCW330

330

320

30

Ø 700   Ø 900

TCW360

360

230

30

Ø 700   Ø 900

Standard Rubber Qualities: N = Nor Norma mall q qua uali lity ty W = Qua Qualiti lities es w with ith rei reinfo nforce rced d fabri fabric c (example TCW 140). OX= Fat- and o oilil resistant, resistant, heat rresista esistant nt up to max. 100°C.

Types in bold writing are standard types.

On request we can supply following rubber   qualities:

Max. room temperature: -30°C to +50°C

FL= Flame resistant quality H = Heat resistant up to 130°C

   

 TERPENE RESISTANT MULTIPLY BELT - TYPE GT  PROGRAMME 13

 BELT  TYPE

COVER

MAX. WORKING TENSION (N/mm)

THICKNESS (mm)

WEIGHT per m2 (Kg)

BELT WIDTH (mm) 400 450 500 600 650 800 1000

250/2

3+1

25

6.0

7.8

315/3

3+1

31.5

6.4

9.2

400/3

3+1

40

7.0

9.4

500/4

3+1

50

8.0

10.8

X

1200 1400

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

630/4

3+1

63

8.8

11.6

X

X

X

X

800/5

3+1

80

10.0

13.0

X

X

X

X

 APPLICATION The belt type is used in sawmills and cellulose industries for the transportation of wooden chips, bark, and cellulose. The belt type was developed in close cooperation with the Swedish timber and cellulose industry. It is resistant to terpene, antistatic, and resistant to temperatures down to - 30°C.

CONSTRUCTION AND PROPERTIES The carcass of this belt type is made of synthetic EP fabrics (polyester/polyamide) providing: 

Small elongation at highest working tension



High tensile strength



Not susceptible to humidity and microorganisms

The special GT cover provides the following advantages:  

Prevents damages caused by terpene  A flexible cover that will keep flexibility and surface friction at low temperatures

TECHNICAL DATA Max. material temperature of chips and cellulose pulp +80°C.  Ambient temperature max. +50°C, min. -30°C.  Antistatic according to ISO 284. Terpene resistant according to SSG 1471 and tested according to SIS 162208. For drum diameters, belt weight, belt thickness and troughability, see the belt selection basis (pdf-file).  AVAILABILITY Cover combinations according to requirement. Generally the belt is supplied with cut and thermofixed edges. Open or endless lengths. Max. production unit 400 m/roll or according to agreement. However allowance must be made for practical handling (weight and roll diameter). Max. carcass strength 800 N/mm. Max belt width 2200 mm. Ribs according to programme 11.

 

 

 FLAME PROOF BELTS, TYPE SF AND KF - STEELWIREMESH REINFORCED BELTS  PROGRAMME 14

 APPLICATION The belts, type SF and KF, are used at places where a fire must not spread using the belt as a media. Typical in mines, tunnels and various process industry. CONSTRUCTION AND PROPERTIES The types SF and KF are with carcasses of synthetic EP fabric (polyester/polyamide) providing: 

Small elongation



High impact resistant



Not susceptible to humidity and micro organisms

The types SF and KF have a good wear resistance and are antistatic according to ISO 284 as well as type SF is flameproof according to ISO R433 grade S and KF is flameproof according to ISO R433 grade K. REINFORCED STEELWIREMESH  

The steel wire reinforced belts are normally based on an EP carcass with the wiremesh situated in the top rubber  cover just above the carcass. The wiremesh then will protect the carcass from rips caused by sharp objects. TECHNICAL DATA,TYPES SF AND KF Max. material temperature 80°C.  Ambient temperature max 50°C min. -20°C. Type SF is flameproof according to ISO R433 basic quality S, testing according to ISO R340. Type KF is flameproof according to ISO R433 basic quality K, testing according to ISO R340.  Antistatic according to ISO 284 For pulley diameters, belt weight and belt thickness as well as troughability we refer to the belt selection basis (pdf-file). TECHNICAL DATA AVAILABILITY STEELWIREMESH REINFORCEMENT On request most of our black rubber based belts with min. 5 mm top cover can be steelwiremesh reinforced. The reinforcement claims that the drum diameters are one step higher than for the EP carcass only as well as the permissible through angle must be one step lower.  AVAILABILITY Cover combinations according to requirement and request. Open or endless lengths. Max. length unit 400 m/roll or according to agreement, however allowance must be made for practical handling possibilities (weight and roll diameter). Max. carcass strength 2500 N/mm for SF. Max. carcass strength 1600 N/mm for KF. Max. belt width 2200 mm. For type KF the thickness of the cover rubber shall be min. 2 times the thickness of the carcass.

 

 

 BUCKET ELEVATOR BELTS & BARE BACKED (SLIDING) BELTS  PROGRAMME 15

BUCKET ELEVATOR BELTS BELT TYPE

WEAR RESISTANT COVER mm

OIL RESISTANT COVER mm

EP 500/4

0.2 + 0.2

1+1

EP 630/4

2+2

2+2

EP 630/5

0.2 + 0.2

1+1

EP 800/5

0.2 + 0.2

1+1

EP 1000/6

0.2 + 0.2

1+1  

BARE-BACKED (SLIDING) BELTS

BELT TYPE

WEAR RESISTANT COVER mm

OIL RESISTANT COVER mm

EP 250/2

2+0

EP 400/3

0+0

EP 400/3

2+0

BUCKET ELEVATOR BELTS

BARE-BACKED (SLIDING) BELTS

 APPLICATION

APPLICATION

Basis vertical transportation of grain, flour, stone and gravel.

Used where the belts run on steel, wood or some other low-friction surface (sliding bed), and for 

CONSTRUCTION

belts friction back and cover.sacks These belts with allowlow easy scraping-off of top parcels, and other items.

Complete delivery programme of all types of  elevator buckets, both in welded and weldless design. Buckets available in steel, stainless steel and plastic. Stocked Bucket Elevator Belts

Stocked Sliding Belts

Maximum 1500 mm wide material made of  prestretched EP fabrics are normally kept in stock indicated in the table above.

Sliding belts are stocked in maximum 1300 mm widths based on prestretched EP fabrics indicated in the table above.

CUSTOM-MADE BELTS Custom-made Elevator Cup Belts and Sliding Belts in our wear- and oil resistant qualities are produced on request.

 

 

 

 CHOICE OF BELT TYPE - SYSTEM KEY

FIELD OF APPLICATION

 Abrasive material

MATERIAL EXAMPLES

STANDARD PROGRAMMES

SPECIAL PROGRAMMES

 

Beets, cement, coal, coke, earth, flint, grain, granite, gravel, limestone, ore, potatoes, slag, stone materials, timber.

-30/100

Hot, abrasive materials

Blast furnace, cement clinker, slag

-30/170 -30/210

Hot materials containing oil

Fertilizer, fodder  mixtures, refuse

GW -10/100 GWF -30/125

RO-PLY GWF, 2-ply belts

6

Materials containing moderate oil

Grain, fodder  mixtures, refuse

- 30/80

RO-PLY GWM, 2-ply belts

6A

Multiply belts type GWM and GWS

Food

Bread, chocolate, fish, meat

-30/110

Type IWE

8

 

Packaged goods, inclined transport

Luggage, parcels, sacks

- 30/80

RO-PLY Grip 4, 2-ply belts

9

Packaged goods, goods in bulk, inclined transport

Beets, coal, coke, gravel, limestone, parcels, potatoes, sacks, stone Woodchips

Goods in bulk, wood industry Goods in bulk

-30/80

RO-PLY, 2 ply belts

  1

Multiply belts type B and BW

  2

 

Multiply belts type A, B and BW

3

Multiply belts type K and N Type TCC

4 5

Multiply belts typeGW and GWF

7

7A

Multiply pattern belts

10

 

Rib programme

11

 

Multiply pattern belts

11A

Maxoflex® sidewall belts

-30/130

Material containing terpene

Woodchips

- 30/80

Goods in bulk, tunnel & mine industry

Coal & stone

- 20/80

 

 

 

Multiply belts type XE

12

Multiply belts type GT

13

Multiply belts type SF, KF

14

Vertical transport, low fric. surfaces

Grain, flour  stone, parcels

 

Bucket elevator  belts, sliding belts

15

, sacks

When choosing the belt type there will be several alternative possibilities of solving the transport application in question. By means of ROULUNDS SYSTEM KEY including several belt programmes it will be rather simple to determine the belt type that gives the best operating economy. ROULUNDS SYSTEM KEY contains: STANDARD PROGRAMMES 2-ply and multiply belt types with cover combinations adapted to the individual transport applications.These programmes can be considered 'ready-made', and they are to a certain degree held in stock or can be delivered at a relatively short time of delivery. The standard programmes are composed on the basis of many years' experience in the conveyor belt field and cover a considerable part of this sector. SPECIAL PROGRAMMES Include multiply belt types that are 'tailored' to special, specific conditions in connection with a given transport. Thus these programmes make individual combinations of carcass strength, cover thickness, and cover quality possible. ROULUNDS SYSTEM KEY starts with the material to be transported and continues to STANDARD PROGRAMMES or SPECIAL PROGRAMMES. The application of the belt types, the technical data, and delivery possibilities are described in the programmes, and the right belt construction can thus be determined.

   

CONVEYOR BELT BELT CONSTRUCTIONS A conveyor belt is construc constructed ted of tw o compo nent s – carcass and covers.

CARCASS The f unction of the carcass carcass is to tra nsmi nsmitt a nd a bsorb the fo rces rces acting o n th e be lt. It It is pri prima ma rily rily a q uestion of ten sile sile fo rces rces from the driving driving pu lley lley.. Second Second ly the carcass carc ass ab sorbs the impact tha t pa rtly rtly appea rs w hen the m at eri erial al is loa ded ont o t he convey conveyor or,, and partly w hen t he b elt w ith mat erial erial passes passes over the carryi carrying ng idlers. The ca rcass consists consists of on e o r mo re plies plies of te xtil xtilee fa bric bric with rubber on ea ch side side t o g ive adhesi adhesion on a nd flexibili flexi bility. ty. The lon g itud inal d irection irection is called w a rp an d t he cross cross directi direction on is call called ed w eft , see see fig . 1 and 2. The conveyor be lt fa brics brics can can ha ve the sam e or d ifferent mat eri erial al in in w arp and w eft. One lett lett er is is desi designa gna ting ea ch, fo r insta insta nce EP EP, in w hich E is Polyester in w arp and P iiss Polyamide Polyamide in wef t. In t he f ollow ollow ing the most common carcass carcass materials materials are d esc escri ribed bed .

Cotton (B) A nat ural fibre us used ed in both w arp and w eft. Cotton is still us still used ed in ccon on veyor b elt f a brics, brics, but it is be ing d is is-placed b y synthet synthet ic ma terials. terials.

Polyester (E) Synth et ic fib res such as Terylen e, Trevira , Diolen a nd Teto ron. Po lyester lyester fa brics brics are n ot influenced influenced by mo is istu tu re o r micro-org micro-org a nisms. nisms. They a re very f lexi lexible, ble, ha ve ssta ta bil bility ity in in lengt h, and are a ci cid d resistant resistant .

Polyamide (P) Sy Synt nt het ic fibres know n a s Nylon a nd Pe rlon. This fa bric ha s more o r less less the sam e cha racteristics racteristics as

Polyamide-Polyester (XE) The XE fa bric bricss have Po lyester lyester as th e w a rp an d Polyamid a s the w eft . The Po lyester lyester iis, s, in gen eral, ma de up of hea vy mon of ile ile threa ds. These fab ri rics cs ha ve the same a dva nta ge s a s EP fa bric bricss chemica chemica lly lly w is ise. e. Mecha nic nicaa lly lly, 2 pli plies, es, iin n comb inat ion w ith a n EP carcass, makes a traditional EP belt cross-stabilized. This type of carcass is used in th e ma nufa cturi cturing ng of si sidew dew a ll belting, cover belting et c.

Steel net Stee l net, consis consisting ting of steel w ir ires, es, iiss us used ed a s an extra ply ply in in t he carc carcass ass of the belt in order to protect the EP fa bric bricss from longitud inal cuts cuts w hile hile th e a bil bility ity for troug h fo rmation is kept. Under speciel speciel cir circums cumsta ta nces stee stee l net can b e used a s carca ss inste inste a d o f EP. EP.

COVERS The covers pr prot ot ect t he ca rc rcaa ss and g ive ive t he n eces ecesssa ry fricti friction on b etw een belt a nd d ri rivi ving ng pul pullley and betw e e n be lltt a n d m a te rial rial . As the covers must resist influences from the transported ma teria teria l an d the w eat her her,, ccover over types tha t a re w ea r an d live live resis resista ta nt, o il a nd/or hea t resi resissta nt, a ntista ntista tic or tha t combine tw o or more of these properties a re required.

BELT BEL T CONSTRUCTIONS CONSTR UCTIONS Belt construction means the combination of carcass a nd covers. covers. The combina tion de termines w het her the belt construction is harmonious and works w ithout problems problems.. In th e ha rmonious belt construc construction tion t he t ran smissi mission on of the n eces ecessary sary pow er er,, mat eria eria l type, llump ump si size, ze, height of fa ll, w eight eight etc. are taken into cons consider ideraation. Furthermo Furthermo re the carcass must give the b elt ssta ta bil bility ity,, sso o t ha t it is ea sy to g uide on t he conveyor conveyor.. Incr ncrea ea sed ca rc rcaa ss sstreng treng th is normally foll follow ow ed b y increased inc reased t hicknes hicknesss a nd q ua lity lity o f t he covers to

ensure ensu re a ba lan ced li life fe b etw een carcas carcasss and covers covers..

Polyester, Polyes ter, but not the leng th sta bility bility..

Fig. 1

Polyester-Polyamide (EP) The EP EP fa brics brics ha ve Pol Polyes yester ter a s the w arp a nd Polyamide a s the w eft . This combina tion g ives ives the be st possibl poss iblee f ab ric ric cha cha racteris racteristics tics w ith th e f ollow ollow ing a dva nta g e s: – high strengt strengt h in proportion proportion to w ei eight ght

Bottom cover Stiflex Fa br ic (E (EP) P) To p cove r

– high high res resis ista ta nce to impact – negligible elongation

 o  n   t  i o  c   r e   dd  i  p weft direction   r  a   w

– great flexibility, excellent troughability – not susceptible usceptible t o humidity a nd mic microro-org org an is isms ms These technical technical a dva nta ge s as w ell as ma ny years’ experience experi ence in the conveyor belt f ield ield is the reason w hy ROULUN ROULUNDS DS prefer EP as carcass ma te rial in conveyor b elts elts..

2-ply belts Such Suc h ca rcass constructio ns consist consist of 2 fa bric pl plies ies and a n innerply of rubb er er.. IIn n t he 2-ply 2-ply belt prog ramm e RO-PL ROPLY Y, ROULUN ROULUNDS DS u se a n inn erp ly – STIFLEX – consi sisti sting ng of rubbe r a nd textil textilee f ibres ibres.. T The he construction, construction, w hic hich h is pa ten ted , gives gives the b elt exc excell ellent ent t roug ha bil bility ity a nd direc directiona tiona l ssta ta bil bility ity..

 

Fig. 2 Bottom cover (running side) Rubber (ski (skim m coa t) Friction riction ed fa bric To p cove r (ma terial side)

 o n  i o  e c t  r   r  i  dd  r p    w a

weft direction

Multiply belts ha ve thre e or mo re fa bric plies plies iin n th e carca ss. ss. The necessary streng necessary streng th a nd sta bility bility is sec secured ured b y using using suffici suffi cient ent numb er of fa bric plies plies in the carcass carcass.. To rea ch a ha rmoni rmonious ous combinat combinat ion of belt w idth , number of plies in carcass, and cover thickness, the following general lines can be used:

Belt Width (mm) - 80 0 800-1400 1400-2200

Ten ensi sile le Str Strengt ength h of Car Carcass cass New ton per mm b e lt w id id t h (N/m m ) - 20 0 25 0- 4 00 40 0- 6 30 630-1000 100 0-

Num er of Plies inbCarcass 3-4 4-5 5-6

Cove Coverr T Thi hick ckne ness ss (mm) re co m m e n d e d m miin im u m 2+ 1 3+ 1 5 + 1, 5 6+ 2 8+ 3

It should b e stres stresssed tha t t hese lines lines are o nly general, a nd variations can ea sily be found depending o n material, belt speed, loading conditions etc.

 

CONVEYOR BELTS, ASSORTMENT With t he RORO-PL PLY Y pro g ra mm e ’s combination of cover thichness a nd carcass strengt h w e ha ve created thichness created an assortment ass ortment w ith a very very w ide f iel eld d o f a ppl ppliications cations..

The t a ble ind ica ica te s the RORO-PL PLY Y prog ra mme . In the sys ystem tem key a nd in ea ch ssingle ingle progra mme more d eta iled informa tion is given. given.

ROO-PL PLY Y is also sup plied w ith ribs. RO-PL O-PLY Y Grip 4 iiss w ith pa tt erned surfa ce. APPLICATION

   s    l    a    i    r    e    t    a    m    e   v    i    s    a    r    b    A    s    l    g    n    i    i    t    a    n   l    o   r    e   i    a   i    o    H   t    a   t    n    m   o    c

RO-PLY P ROGRAMM E

Examples of ma terial

Max. temp.

Slight light ly abrasi abrasive, ve, small small hei height ght of fall at loading. Grain, cement, loose ea rth, cr crushed ushed coal.

100 100°° C

M o d e r a t e ly t o ve r y a b r a sive , n o r m a l h e ig h t o f f a ll . a t lo a d in g G r a v e l, s t o n e , c o a l, c o k e , c r u s h e d o r e , w o o d .

10 0° C

Ve r y a n d e xt r a a b r a sive , g r e a t h e ig h t o f f a ll a t lo a d in g . Flin t , st o on n e m a te t e r ia ls ls, co ke ke , o re re , sla g , w o od o d een n lo gs g s.

Cover mm

Max. standard belt w idth*) mm

200/2

2+ 1

8 00

250/2 315/2 400/2

3+ 1 3+ 1 3+ 1

10 00 12 00 12 00

400/2 630/2

5 + 1, 5 5 + 1, 5

12 00 12 00

125 125°° C

250/2 G WF 400/2 G WF

3+ 1 3+ 1

10 00 12 00

8 0° C

250/2 G WM

3+ 1

8 00

10 0° C

Refuse, fo dde r mixtures, mixtures, w oo d cont a ining ining resi resin, n, cl clinkers inkers,, copra, meat- and bo ne mea l, slag slag , ssoya oya cakes, wo oden chips. chips. Fertilizer w ith L Lilamine ilamine .

Ty p e

Requirement fo r fl flame ame proof belt.

   l    t    e    a    i    a    r    r   l   y    e    e   i    t Re f u se , g r a in    d   o   a    o    M    m    t Lu g g a g e , b o xe s, sa cks, p a r ce ls,    d   r    e   o ce llo p h a n e w r a p p e d g o o d s.    p    n    i    s    l    c   n    n    r    I    a    t

8 0° C

200/2 G r ip 4 Ot he r RO-PLY types with ribs ribs

12 00

*) Othe r belt w idths can be de li livered vered on req uest, how ever ever,, max. 1 1500 500 mm.

ROULUN OULUNDS DS multipl multiplyy conveyo r be lts are supplied supplied w ith covers cov ers and carc carcaa ss sstrengt trengt h a da pted to the indivi individua l requirements. ROULUN OULUNDS DS ccon on veyor b elts a re a lso lso supplied w ith ribs or pa tterned surface fo r inc incllined transport.

The ta ble indicat es R ROUL OULUN UNDS DS multiply conveyo r belt programme. In the sys ystem tem key a nd in ea ch ssingle ingle progra mme more d eta iled informa tion is given. given.

APPLICATION Examples of ma terial

   s    l    a    i

Very abrasive, sharp edges. Granite, iron, broken stone,

BELTPROGRAMME Max. temp.

Ty p e

Carcass strength ma x. N/mm

Bel Beltt w idth max. mm

   r    e    t    a    m    e   v    i    s    a    r    b    A    l    e   s   v   a  ,    i    i    t    r    s    o   a    e    t    H   r    b   a    a   m    s    i    l    l    o    a    i    r   g    e    t    n    i    a    n    m   i    a    t    t    o   n    H   o    c    e    t    l    a    i    a    r    r   l   y    e   i    e    d   o   t    o    a    M    m

slag, gravel, limestone, coke, ore, coal. Moderat ely to very abra sive. sive. Ash e s, ce m e n t , lim e st o on n e , e a rrtt h h,, co al a l, co ke ke , lig n niit ee,, potatoes, clay, marl, mortar, concrete. Highly abrasive material. G r a n it e , ir o n , b r o ke n st o n e , sla g .

Ab r a sive , h o t /w e t . Ash e s, co ke , m a lt , sla g , b la st f u r n a ce clin k e r, ce m e n t clin ke r, f o u n d r y sa n d .

80 C

A

3 150

2 200

8 0° C

B

3 150

2 200

8 0° C

BW

3 150

2 200

14 0° C 17 0° C 21 0° C

K N TCC

1 600 1 600 1 600

2 200 2 200 2 200

1 00°° C 125 125° C

G GW WF

1 16 00 00 0

2 22 20 00 0

1 600

2 200

Refuse, fodd er mix mixtures, tures, wo od conta ining ining resin, resin, clinkers, soya cakes, copra, meat- and bone meal, w o o d e n ch ip s , sla g . Fertilizer w ith L Lilamine ilamine . Re q u ir e m e n t f o r f la m e p r o o f b e lt .

G WF

G r a in , f o d d e r m ixt u r e , r e f u se , w od den chips chips,fertili ,fertilizer. zer.

G WM G WS

80 80°° C

   d    o    o    F

Cont aining a nimal and /or veget ab le oil and fat. Bread, chocolate, d rops, fish, fish, ccheese, heese, meat , ma rga ri rine, ne, butter.

   d    o    o    W

Wo o d , ch ip s, co n t a in in g r e sin

110 110°° C

IWE

250

1 400

8 0° C

GT

1 400

22 00

 

CONVEYOR BELT INSTALLATION Fig. 3

3.

4.

9.

5.

2.

1.

6.

Diagram 1. belt t ake-up devic devicee

4. carrying idlers

7. snub pulleys

2. tail pulley

5. driving pulley

8. scraper

3. hopper

6. return idlers

9. cconveyo onveyo r belt

CARRYING PART

Fig. 7

can be supported supported b y

7. 8.

Sl Sliding iding plat e

troughed idlers dlers flat idl idlers ers sli liding ding plate

Troughed idler set w ith 22-5 5 idlers idlers is used for t ransporta tion o f g oo ds iin n bu lk lk.. Troug hed idlers ensure high capa city, city, sma ll risk risk of spill pillag ag e of ma terial terial a nd eff ecti ective ve belt guidi guiding. ng. Fig. 4 λ

10

The three-sectioned idlers a re the most commo nly used used t ype. The o ptimum capacity is obt ained a t 45 capacity 45°° tro ug h an g le (λ), and the idlers dlers being o f the sam e length. Dis Dista nce betw een idl idlers ers is stan da rdized a t ma x. 10 mm.

Sliding plate can be used used for transporta transporta tion of packag packag ed go ods a nd g oo ds in in bulk. The sl slidi iding ng plate ca n be m a de o f steel, plastic plasticss or ha rd w oo d. Normally ormally belts w ith low fri fricti ction on on the bot tom side a re used used b ecaus ecausee of the fri fricti ction on f orces orces betw een b elt elt a nd sli sliding plat e.

RETURN PART PART is norma lly lly ssupport upport ed by f lat idlers idlers.. How ever, ever, on long conveyors it can be a n a dvanta ge to us conveyors usee tw oo-ssectioned ectioned idlers,, w hich ma kes th e be lt gu iding ea sier idlers sier.. Troug h a ng le 1010-15 15°° (λ). Fig. 8

Fig. 5 λ λ

When tra nsporting sticky sticky mat eria eria ls return idlers w ith supporti upporting ng ri rings ngs or rubber lag ging a re us used ed t o reduce build-up build-up of ma terial on the idl idlers ers..

The two-sectioned idlers a re norma ll llyy only used used f or belt w idths under 65 650 0 mm. A trough an gle (λ) large r tha n 25 25°° is inexpedient b ecause of th e influences influences on t he belt. Distan Distan ce betw een idl idlers ers is ssta ta nda rdized rdized a t m ax. 10 10 mm.

Fig. 9

Fig. 6 Because of the guidi Because guiding ng o f the b elts bot h carr carryi ying ng a nd return idlers must be a djusta djusta ble in the tra vel velli ling ng dir directi ection on o f t he belt.

Flat idler set is mainly mainly used used fo r transportation o f pa ck ckag ag ed g ood s, an d in suc such h cases w hen the mat eri erial al is loaded a nd unloa unl oa ded from the side, a nd f or belts w ith si sidew dew all allss.

 

LOADING OF GOODS IN BULK Feed ing should ta ke pla pla ce iin n th e tra velli velling ng direc direction tion o f th e b e lltt a t a spe e d e qua l to t h e be lltt spe spe e d. Mate ria ria l sshould hould be dis distributed tributed symmet symmet ri ricall callyy a cross cross the middle of t he belt, a s unsymmetrica unsymmetrica l ma terial strea strea m is often t he cause of o bli bliqq ue tra vel. vel. Af te r a f e w m e tre s’ s’  runni  running ng the ma teri terial al stream w ill flatt en out and assume assume the loa d stream cross cross ssecti ection on tha t is na tural for the ma terial. terial. To a voi void d w aste of ma teri teriaa l a hopper should should t herefore as a maximum maximum cover 0,75 × belt w idth, see fig. 10. 10. Fig . 10 Hopper 3–4 × B

   B B

      ×

   5    7  ,    0

0,9 × B

Fig . 12

2

1

In conne ction w ith very sstic ticky ky ma terials the scraper scraper can be pla pla ced w ith the pull pulley ey a s a counter-ba counter-ba lan ce (2). 2). IIn n t his w a y th e sc scraper raper b ecomes more effe ctiv ctive, e, but a t t he ssam am e time it it must be a ble to rock to reduce the risk risk of da ma ging t he belt in ccase ase of ma teri terial al bet w een belt a nd pull pulley ey.. The pulley sside ide of the belt is kept cl clea ea n b y mea ns of diag ona l or plough -sha ped sc scrape rape rs rs.. An An a djus djustme tme nt device devi ce sshould hould be ma de t o prevent the rubber ho lder from g etting into conta ct w ith t he belt. S Scr craps aps of belt should not be u sed a s sscr craa pers. pers. Fig . 13

Ioft n conne cti ction onedw tith e dhospil pper pper, , rubber skirting rting is en mount o ath void voi spi lla ge of matski eri erial. al. The skir sk irting ting must be o f rubbe r or some ot her ma terial, the ha rdnes rdnesss of w hic hich h iiss low er than t ha t of t he belt cover. A ha rdness of a pprox. 4 45 5° Shore A w il illl norma ll llyy be suitable. Scra cra ps of be lt should should no t b e used a s rubb rubb er ski skirting. rting. The dista dista nce betw een th e rubber sski kirting rting being g radua ll llyy increased increased f rom 0,75 0,75 to 0, 0,9 9 x belt w idth, see fig. 10, a selfclea elfclea ning ef fect w il illl occ occur ur,, as th e b elt w il illl pulll out the m at eria pul eria l betw een ski skirting rting and belt. The rubb er ski skirting rting must b e placed a t right a ng les to the b elt elt t o a void void th e ma terial terial press pressing it on t o the belt w ith consequent w ear o f t he cover cover,, see see fig. 11. 11. Fig . 11

Build-up Buildup o f ma terials on pull pulleys eys mus mustt b e a voided. A po ss ssibil ibility ity is sc scrap rap ers on th e pulleys pulleys.. Covering overing of t he return part und er the load ing point can give an effective effective protection protection of the b elt elt a nd can be recommended fo r transporta transporta tion of g ood s in bulk. bulk.

The height of fa ll of the mat erial erial should should b e th e smallest lest po ssi sible ble in order to reduce the impact ef fect o n the b elt. The conseq uences of t he impa ct ca ca n be reduced reduc ed b y supporti supporting ng the b el eltt in an appropriat appropriat e w a y by mea ns of fo r iins nsta ta nce cl closely osely placed placed rubbe rized rized carryi carrying ng idl idlers ers,, sshock hock ab sorbing rubbe r mat , or ot her d evices evices..

MAINTENANCE OF BELT AND CONVEYOR BuildBui ld-up up of t he ma terial on t he be lt, pulleys pulleys a nd idl idlers ers causes increased increased w ea r of covers a nd spil pillag lag e o f ma terial at t he return idlers idlers a s w ell a s guiding d iffi iffi-culties. The b elt can b e kept clean by me a ns of scra scra pers, pers, brushes brus hes or vi vibrat ory equipment, w a ter jjetting, etting, o r combina tions of t hese. IItt w il illl often be ne cessary cessary to experiment experi ment to f ind the mo st eff ectiv ectivee solution. solution. Rubb er scr scraa pers a s show n in fi figg . 1 12 2 ca ca n be m a de a s sing si ng le or do uble sc scrapers, rapers, w hich hich a re kept in po si sition tion by coun terba lance or a djus djusta ta ble sc screw rew spring pring s. The surfa sur fa ce press pressure ure bet w een be lt and scra cra per should should be ad apte d to th e t ran spo spo rte d m ate ri rial al to a vo id id un necessary neces sary w ea r of t he cover. cover.

 

BELT TENSIONING SYSTEM

SELECTION OF CONVEYOR BELTS

The purpose is to g iv ivee t he belt the pre-ten pre-ten si sion on ensuring

Selec election tion o f conveyor b elts impli implies es know know ledge of •  exi  exissting conveyor dat a an d running conditi conditions ons

– tha t t he d ri rivi ving ng pull pulley ey driv drives es the b elt unde r all running cond iti itions. ons.

or of proj projecti ecting ng da ta consis onsisting o f city o f con veyor in t/h o r m 3/h •  capa city •  transport dista dista nce and b elt travel •  type of ma teri terial, al, weight per m 3, lump size, chemicaa l activity, chemic activity, tempera ture a nd consi consissten cy •  loading conditions. In the fo llow llow ing t he us usee of t he calculation formulas a nd t he procedure procedure w ith b oth projecti projecting ng a nd selecselection is described.

lt sag be tw e e n carry carryiin g a n d re turn turn – th a t th e be lt idl idlers ers is li limited. mited. In this w a y w a ste of ma terial an d ben ding resi resissta nce at belt pa ssa ssa g e over the idlers is reduced. Correct pre-ten pre-ten si sion on is thu s iimpo mpo rta nt to ensure troublefree operat ion of the conveyor. onveyor. D e pe pe n din din g o n th e m o d e o f o pe rrat at io n th e be lltt t e n sioning sioning system system s a re divided divided into t w o ma in groups.

Fixed belt tensioning system Scr crew ew ta ke-up ke-up is is of ten used fo r sshort hort , mode rat ely loaded conveyors. Fig. 14

Belt width B (mm) Minimum Mini mum be lt w idth is det ermined ta king king into consi consi-dera tion kind of ma terial a nd lump ssize. ize. Ta ble 1 indiindicat es guiding values for B min. ((mm). mm).

Belt speed v (m/s) Ma x. belt speed is det ermined ta king king into consi considera dera tion de nsity nsity of m a terial, lump lump si size, ze, height o f fa ll a nd belt w idth. Ta ble 2 iindicat ndicat es guiding va lues fo r ma x. b elt speed v ma x. ((m/ m/s) s)..

Capacity Qt (m3/h)

The screw screw ta keke-up up canno t a bsorb a ll mom ent a ry el elong ong at ions tha t ma y occ occur ur due to sudden vari variat at ions of loa d a nd in the acceleration acceleration pha se. Conveyors Conveyors w ith centre dista dista nce of more t han approx. 50 50 m should therefo re have selfa selfa djusting djusting t a ke-up. ke-up.

The the oretical capa city city Q t (m 3/h) of th e con veyor belt is calc calculate ulate d a cc ccording ording to cr cross oss section section o f loa d strea m a nd be lt speed v (m/ (m/s) s).. The b a sic sic an g le β is part of the cr cross oss section ection of load stream, a nd experience ri ence show show s that for mo st m at eria eria ls a sui suita ta ble saf saf ety ma rgin iiss obt ained by β = 15° 15° . For For d ry ry,, pow dered material β = 10° 10° is recomm recomm end ed. Fig . 17

β

Self-adjusting belt tensioning system keeps the pre-ten pre-ten si sion on consta nt a nd en sures a t t he same t ime tha t t he permissi permissible ble belt t ensi ension on is not exceed exc eed ed. The The m ost comm on sys system is gra vi vity ty t a keup, and t he best effect iiss normally normally obta ined w hen the g ravity ta ke-up ke-up is placed close close to the driv driving ing pulley. Fig . 15

Fig . 16

λ I   3 

I3

The t a bles 4 4,, 5 and 6 indicate indicate the oretical capa city city Q’ Q ’t 3 (m /h) at a be lt speed o f 1 m/s, ho rizont a l tran sport a nd continuous operat ion w ith regular uniform feeding. Intermitta Intermitta nt operat ion and diss dissimilar milar feeding must be ta ken iinto nto consi considerat derat ion w hen

In connection w ith la la rge hea vi vily ly load ed conveyors the g ravity ta ke-up ke-up w il illl not b e suffic sufficient ient ((it it acts to o slow slow ly) ly),, an d instea d electrical, electrical, pneuma tic or electroelectrohydra uli ulicc ssys ystem tem s ca ca n b e used. The po ss ssibil ibility ity of a djusting t he b elt t ension should in ge nera l be 0,8 0,8--1,2% 1,2% of the centre d is ista ta nce unde r norma l running conditions.

stipulating the required capacity. Ta ble 3 iind nd ica ica te s correction f a cto r for inclined inclined o r fa lling transport. Rega rdi rding ng ca pacity pacity fo r rib rib belts w e refer to t he programm e for ribs ribs on pag e 49 49.. With min. belt w idth B ((mm) mm) and Q ’ t (m 3/h ) a t 1 m /s a s iinput nput values for t ab le 4, 5, 5, and 6 the t heoretic heoretical al capacity Q t (m 3/h) is det erm ined . Q2 Q1 Q’t = = (m 3/h ) v×γ×k v×k Q ’ t = th eo ret ica ica l cap a city city a t 1 m/s (m 3/h ) Q 1 = requir required ed capacity capacity (m 3/h ) Q2 γ  v k

= = = =

A real calc calculat ulat ion of t he necess necessaa ry ad justment o f be lt ten sion sion ma y be req uir uired, ed, a nd ROUL OULUN UNDS DS sha ll be a t you r disposa disposa l iin n t his respect.

req uired capa city city (t/h) den sity of ma terial, ta ble 17 (t/m 3) m ax . re co co m m e n de d be lt lt spe e d, ta bl e 2 (m /s) co rre rre ccti tio o n f a cto r f o r i n cl clin e d/f al li lin g tra nsport, ta ble 3 (-) Generallyy the trough a ngle (λ) should b e chosen in Generall the upper a rea, the w aste problems being t hus miniminimized. The b elt type b eing f inall inallyy det ermined control that the empt y belt ccan an run in in the chosen trough a ng le, ssee ee t a ble 15 15,, sselec election tion o f conveyor be lts lts.. (m 3/h ) Theo retical cap a city city Q t = Q ’ t  × v × k

Power requirement Nn (kW)

Pre-tension gravity take-up Gk (kg)

The t heo retic reticaa l pow er Nn (kW) kW) necessa necessa ry f or th e tra nsport is composed by

The prepre-ten ten si sion on mu st b e so tha t t he be lt ccaa n ope rat e on t he conveyor under a ll running conditions.

N1 = pow er rreq eq ui uired red to d ri rive ve empty cconveyor onveyor

In connecti connection on w ith centre dis dista ta nce abo ve 50 50 m a utoma tic taketake-up up is recommend ed.

 

N2 = pow er rreq eq ui uired red to convey material on the level level N3 = po w e r rree qui rree d t o e l e vat vat e o r l o we r m a te ri rial al N4 = a dditional pow er req req uired uired from rubber sk skiirti rting, ng, sc scrap rap ers, tripper tripper et c. Nn = N1 + N2 ± N3 + N4

(kW)

Formulas f or po w er er,, see calcul calculaa tions.

Motor capacity Nn Nm = η

The si size ze o f t he p rere-ten ten si sion on depe nds on the posi position tion of the t a keke-up up sys system tem o n the con veyor veyor.. The be st function is a chi chieved eved if the a uto ma tic ta keup system system is placed right a ft er th e d ri rivi ving ng pull pulley. ey. The fo llow llow ing fo rmula can g enera lly lly be used fo r ca ca lculation of gravity take-up. Fig . 18  L 1

(kW)

 L

The t ransmiss ransmission eff ic icienc iencyy can, if n ot know n, be put a t η = 0,850,85-0,95. 0,95.

H

ϕ

Working tension p (N/mm) When t he the oretical nec necess essaa ry pow er Nn (kW) is know n, th e eff ective ective t ension ension P (N (N), ma x. belt t ension ension T1 (N) a nd w orking t ension p (N/ (N/mm) of t he b elt a re calculated. The w orking te nsion p (N/ (N/mm) is used f or d et ermina tion of belt type, and t he foll follow ow ing po ints are taken into consideration: Is the starting torque li limited mited t o max. 1,4 × normal torque th e n o rm al po we r Nn (kW) kW) can be used f or calcul calculat at ing the w orking orking t ension. ension. On larger conveyors conveyors,, w hen large ma sses are to be starte d allowance must be made for acceleration a nd t he a ccel cceleration eration fo rces rces belong belong ing to it. If further information a bout the calcul calculat at ion o f a ccelera lera tion f orces a s we ll a s ssta ta rting system system s iiss rreq eq uir uired, ed, plea se cont a ct ROULUN ROULUNDS. DS. Under norma l running conditions th e w o rk rkiin g te n si sion on p (N (N/mm) ha s th e hig hest inf luence on th e b elt. The belt programmes indic indicaa te ma x. permi permisssi sible ble w orki king ng te nsi nsion on p (N (N/ /mm), an d b elt t ype is cho cho sen a ccorccording to th e ca lculat lculat ed p (N/ (N/mm).

H1

Gk

2Nn (m -1) 102 G RU + 2 (L1 (G b + ) f -H1 × G b ) (kg (kg ) v S2 Expla xpla na tion o f symbo ls ls:: Gk =

If G k becomes nega tive tive the max. belt tensi tension on T1 ca n be calcula calcula ted a cc ccording ording t o th e real pre-ten pre-ten si sion: on: T1 = P + H1 × G b  × g – L1 (G b +

G RU ) f × g (N) S2

MAX. PERMISSIBLE BELT SAG The b elt sag bet w een ca rry rrying ing idlers a nd ret urn idl idlers ers is dependa nt on dis dista ta nce betw een carryi carrying ng idler dlerss, belt tension tension a s w ell as w eight eight of b elt elt a nd ma terial. terial. In pra ctice a sag (q /s)perm = 0,0 0,005 05 to 0,02 0,02 is is accepte d. Fig . 19

T



S

T

If th e belt is exposed to extra ordina ry tension tension und er load ing o r in in tra nsport th ese influences influences ma y res result ult in locaa l belt t ensions loc ensions exceeding exceeding t he calc calculat ulat ed w orki orking ng ten sion. sion. In such cases a h ea vi vier er b elt construction construction should be chosen.

The b elt t ension Tmin (N), w hich is necess necessaa ry in o rder to keep the limit limit fo r the belt sag (q /s)perm , ccaa n be ca lculat cul at ed a ccording cording to t he follow follow ing f ormul ormulaa : Carrying Carryi ng p a rt Tmin = ≥

Choice of belt type

s1 (G b + G m ) g (N) 8 (q /s)perm

The belt type can now be d etermi etermined ned b y means of: •  the system system key, referri referring ng t o be lt progra mmes •  the calcul calculaa te d w orking t ension p (N (N/mm) •  rec  recomm omm end ed cover dimensi dimensions, ons, ta bles 12 12 and

Return pa rt Tmin = ≥

s2 × G b  × g 8 (q /s)perm

(N)

13 in selection of conveyor belts.

Control of »G« (kg/m) – weight of moving parts of conveyor Belt type a nd conveyor Belt conveyor da ta having been det ermined ermined the rea l G value of the mo vi ving ng pa rts of t he conv conveyor eyor can be calcul calculat at ed a nd compared w ith the G value from t ab le 7 us used ed f or the calcul calculat at ion. If t he compa ri risson gives so grea t a differenc differencee t hat it w ill ill iinf nf luence t he w orking te nsion nsion p (N (N/ /mm) considerably the calcul calculat at ion should should be repeat ed w ith t he real G value.

Expla xpla na tion o f symbo ls ls:: Va lues fo r belt tension tension low er tha n Tmin (N) should not be used in any point of the conveyor. conveyor. Are llow ow er values values rrea ea ched, the dis dista ta nce betw een t he carrying carryi ng idl idlers ers should should be reduced, o r the prepre-ten ten si sion on should be increa increa sed. In b ot h ca ses th e w orking te nsion p (N (N/ /mm) ssho ho uld be checked checked to see tha t it do es not exceed exceed p perm (N/m m ).

 

CALCULATION CALCULA TION FORMULAS DETERMINATION OF

FO RM U LAS

REFERENCE

Min. belt width B (mm)

Mi Min. n. belt width, ta ble 1

Ma x. belt speed v ma x. ((m/ m/s)

Max. speed, speed, ta ble 2 Q2 Q1 = γ 

Is determined in consideration of intermittant operation

Required capacity Q 2 (t /h )

Q 2 = Q 1 × γ 

γ accordi according ng t o t ab le 17. 17.

Theo retical ca pa ci city ty a t 1 m/ m/ss Q Q’’ t (m 3/h )

Q ’1 =

Correctio n fa cto r k fo r inclined/ inclined/fa lling lling transport, ta ble 3 3..

Theo retical capa ci city ty Q t (m 3/h)

Qt

Q2 Q1 = v×γ×k v×k = Q ’ t  × v × k

Theo retical capa ci city ty Q t (t /h )

Q

= Q t  × γ 

Final belt width B ((mm) mm) and troug h a ngle (λ) to b e determined a cc ccording ording to capacity tables 4, 5, and 6. Ta ble va lue Q ’ t (m 3/h) to b e used w hen calculating Q t (m 3/h ).

Pow er requir required ed to drive drive empty conveyor N1 (kW)

N1 =

Pow er rrequired equired to convey material on the level N2 (kW)

N2 =

Pow er rrequired equired to elev elevat at e or llow ow er mat erial erial N3 (kW)

N3 =

Required capacity Q 1

(m 3/h)

G ( L + I) f × v 102 Q (L + I) f

G – t ab l e 7 L – centre distan ce ((m) m) I – t ab l e 8 f – t a b l e 9

367 Q×H 367

H = L sin ϕ (m) iiss the vertic vertical al he ight to elevat e or lower ma terial. elevat H is positive for inclined and negative for falling falli ng transport.

Additional power requirement requir ement N4 (kW)

N4 – ta ble 1 10 0

Theo retical necessary necessary mot or capacity Nn (kW)

Nn = N1 + N2 ± N3 + N4

Moto r capa capa ci city ty Nm (kW)

Nm =

Effective tension P (N)

P

Max. belt tension T1 (N)

T1

Nn × 1000 v = P×m

Drive factor m (-)

m

= 1+

Pre-ten Preten si sion on T2 (N) Working te nsion p (N/mm)

Nm η

N3 is positive for inclined and negative for falling falli ng transport. If not know n, the deg ree of effici efficiency ency of drive drive can be calcul calculat at ed a t η = 0,850,85-0,95. 0,95.

=

m – ta ble 1 11 1 or acc according ording to formula for drive facto r.

1

e µα – 1 T2 = T1 – P T1 p = B

Acc ccording ording to directions ssee ee selection of conveyor belts.

Choice of belt type

SYSTEM KEY. Cover dimensions table 12-13.

G

Cont rol of G-value (kg/m)

= 2G b +

G RO G RU + s1 s2

If th e rea l GG-value value deviat es ccon on si sidera dera bly from th e value used iin n ta ble 7, N1, Nn a n d p should be corrected. G b see ta ble 14 14..

2Nn (m – 1) 102 v G RU ) f-H1 × G b ) + 2 ((L L1(G b + s2 T1 = P + H1 × G b  × g G RU ) f × g – L1 (G b + s2

Pre-ten Preten si sion on G k (kg)

See draw ing on previ previous ous page.

Gk =

Max. belt tension T1 (N)

Belt sag Max. pe rmis rmissi sible ble be lt sag

(q /s)perm = 0,005-0,02 0,005-0,02

Mi Min n belt t ensi ension on on: carryi carr ying ng part Tmin (N)

Tmin  ≥

s1 (G b + G m ) g 8(q /s)perm

return part Tmin (N)

Tmin  ≥

s2 × G b  × g 8(q /s)perm

Pulley diameters

G RU, s2 a n d G b see ta bles 7 an d 14. If G k becomes negat iv ivee T1 is calculated according to the rea l pretensi according pretension on in the belt.

Values for belt tensi tension on low er tha n Tmin should not be used iin should n any point of the conveyor. If low low er values are rea ched, the distance between carrying idlers should be reduced or the pretension increased. T1 an d p ar e a d ju ju sstt e d a n d c om p ar e d wi t h p perm for chosen belt type. See table 16.

 

Table 1 RECOMMENDED MIN. BELT WIDTH B (mm) Mi Min. n. belt w idth (mm) M a t e r ia l So r t e d , le n g t h o f la r g e st e d g e (m m ) U n so r t e d , le n g t h o f la r g e st e d g e (m m )

40 0

5 00

65 0

8 00

100 0

12 00

140 0

16 00

180 0

20 00

220 0

50

75

12 5

1 75

25 0

3 50

40 0

4 50

55 0

6 00

60 0

10 0

1 50

20 0

3 00

40 0

5 00

60 0

6 50

70 0

7 50

750

Min. Min. belt w idth is determined a ccording ccording to ki kind nd a nd lump size size of ma terial. C Coa oa rseg rseg rained ma terial w il illl reduce th e cap a city, city, especi especiaa ll llyy in connection w ith na rrow rrow belt w idth. The w idths indic indicat at ed should be

a dhered t o a s far a s pos posssible. A few big lumps – till 10 10% % of t he tot al qua ntity – can, how ever ever,, be al l o we d.

Table 2 RECOMMENDED MAX. BELT SPEED v max. (m/s) Bel Beltt w idth B (mm) M a t e r ia l

40 0

5 00

65 0

8 00

100 0

12 00

140 0

16 00

180 0

20 00

220 0

Lig h t , f in e -g r a in e d M o d e r a t e , a b r a sive

2, 5 1, 6

3 , 15 2, 0

3, 15 2, 5

3 , 55 2, 5

4, 0 3, 15

4, 0 3 , 15

4, 0 3, 15

4, 0 3 , 55

4, 5 3, 55

4, 5 3 , 55

4, 5 3, 55

He a vy, ve r y a b r a sive

1, 2 5

1, 6

1, 8

1, 8

2, 24

2 , 24

2, 24

2, 5

2, 5

2, 5

2, 5

Wea r an d cutt ings of t he cover w il illl pr primaril imarilyy ta ke place place w hil hilee t he ma terial terial a cceler ccelerat at es to belt speed. Thus a mo dera te b elt speed should be chosen in

connection w ith coa rs connection rsegra egra ined ma terials terials and big lump sizes.

Table 3 CAPACITY FACTOR k (-)  L ϕ

ϕ (° )

H

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

H L

0, 03

0 , 07

0, 10

0 , 14

0, 17

0 , 21

0, 24

0 , 28

0, 31

0 , 34

0, 37

0 , 41

0, 44

0 , 47

0, 50

k

1

0 , 99

0, 98

0 , 97

0, 95

0 , 93

0, 91

0 , 89

0, 85

0 , 81

0, 76

0 , 71

0, 66

0 , 61

0, 56

In connection w ith incl inclined ined or fa ll lling ing tra nsport the effective effecti ve loa loa d area is rreduced educed by fa ctor k.

Are ri rib b belts used, please see the capa city city t a bles iin n programm e 11. 11.

Table 4 THEORETICAL CAPACITY Q’t (m3/h) at v = 1 m/s β λ I   3 

I3

THREE-SECT HREE-SECTIO IONED NED CARRYIN CARRYING G ID LERS B (mm)

λ°

l3 (mm)

20

β°

25

30

35

40

45

10

15

10

15

10

15

10

15

10

15

10

15

4 00 5 00 6 50

1 60 2 00 2 50

36 60 1 10

43 73 13 2

67 1 23

79 14 5

1 34

15 5

1 45

16 4

1 53

17 1

1 60

17 6

8 00 10 00 12 00

3 15 3 80 4 65

1 72 2 81 4 12

20 7 33 7 49 3

1 93 3 15 4 61

22 6 36 9 54 0

2 11 3 45 5 05

24 3 39 6 58 1

2 27 3 71 5 43

25 7 41 9 61 4

2 40 3 91 5 73

26 8 43 7 64 0

2 50 4 07 5 97

27 6 44 9 65 8

14 00 16 00 18 00

5 30 6 00 6 70

5 73 7 58 9 70

68 5 90 7 116 0

6 42 8 51 10 88

75 0 99 3 127 0

7 03 9 32 11 96

80 7 106 8 136 5

7 55 10 00 12 79

80 3 112 8 144 3

7 97 10 56 13 50

88 8 107 5 1502

8 29 10 97 14 02

91 3 120 8 1544

20 00 22 00

7 50 8 00

12 04 14 76

143 5 174 0

13 51 16 56

157 7 193 0

14 79 18 13

169 5 207 4

15 88 19 46

1791 2191

16 76 20 52

1865 2281

17 42 21 31

1917 2 342

 

Table 5 THEORETICAL CAPACITY Q’t (m3/h) at v = 1 m/s β λ I 2

TWO-SECTIONED CARRYING IDLERS

λ°

15 15°°

20 20°°

25 25°°

B (mm)

l2 (mm)

30 0 40 0 50 0

20 0 25 0 30 0

18 30 60

21 43 72

21 41 69

24 48 80

23 46 76

26 52 87

65 0 80 0 100 0

37 5 46 5 60 0

107 168 270

129 202 325

123 193 310

144 225 363

136 213 344

155 244 3 92

β°

10 10°°

15 15°°

10 10°°

15 15°°

10 10°°

15 15°°

Table 6 THEORETICAL CAPACITY Q’t (m3/h) at v = 1 m/s β

I1

FLATCARRYING IDLERS B (mm)

l1 (mm)

30 0 40 0 50 0

400 500 600

8 15 25

65 0 80 0 100 0

750 950 1 150

45 71 1 15

 

β = 10 10°°

 

B (mm)

l1 (mm)

12 23 39

1 200 1 400 1 600

140 0 160 0 180 0

168 232 307

2 56 3 53 4 66

69 10 8 17 4

1 800 2 000 2 200

200 0 220 0 240 0

391 406 591

5 94 7 39 89 8

β = 15 15°°

 

β = 10 10°°

 

Table 7 WEIGHT OF MOVING PARTS OF CONVEYOR G (kg/m) Gb

s1

G RO

β = 15 15°°

G

= 2G b +

G RO G RU (kg /m ) + s1 s2 s2

s1 (m)

s2 (m)

Typ e o f Conveyor

1, 0

2, 0

1, 2 5

1, 5

G RU

Bel Beltt w idth (mm) 300

4 00

500

6 50

800

10 00

1 200

14 00

1 600

180 0

2 000

220 0

lig h t   γ < 1, 5 h e avy   γ > 1, 5

9 12

11 15

13 20

17 28

28 43

37 57

52 77

69 1 00

82 12 0

1 08 1 43

12 8 16 4

1 45 1 86

2, 5

lig h t   γ < 1, 5 h e avy   γ > 1, 5

8 11

10 14

12 18

15 25

25 39

33 52

48 71

62 90

75 10 9

96 1 31

11 5 14 8

1 31 1 69

3, 0

lig h t   γ < 1, 5 h e avy   γ > 1, 5

8 10

10 13

11 17

14 23

23 36

31 48

45 67

58 84

70 10 2

89 1 22

10 7 13 8

1 21 15 6

Troug h Sha pe

Recommended diameters and w e ig ig h t of c ar ar-ryi rying ng idlers an d return idlers

light conveyor

∅ (mm) G RO = G RU (kg)

51 2, 5

51 3

51 3, 5

63 5, 5

89 11

89 13

89 15

1 08 22

108 25

1 33 39

133 43

1 33 47

h e avy conveyor

∅ (mm) G RO = G RU (kg)

63 3, 5

63 4

63 5, 5

89 10

108 14

1 08 18

108 20

1 33 31

133 35

1 59 47

159 52

1 59 56

In the va lues fo r G the recommend ed va lues fo r G RO a n d G RU are used. Can Can o ne or more of t hes hesee fa ctors included inc luded in G be det ermined in the d imensioning imensioning pha se the y sshould hould be used w hen calcul calculaa ting t he GG-value. value.

 

Table 8 ADDITION l (m) FOR CENTRE DISTANCE L (m) L (m )

< 30

< 80

< 100

> 1 00

I (m )

50

70

80

10 0

The cen tre d ista ista nce L is incr increa ea sed b y I to includ includ e t he resis res ista ta nces caused by th e ben ding o f be lt over pul pul-leyss, fricti ley friction on a nd inertia inertia to rque a t load ing and the scrapers.

Table 9 COEFFICIENT OF FRICTION OF ROLLING PARTS f (-) Good conveyors with easily running idlers and small internal friction in material

0,017

Sta nda rd value for conveyors in normal qua lity lity

0,020

For unf avourab le running running conditi conditions, ons, dusty operat ion, periodic periodic overl overloa oa d

0,023-0,030

Descending Descendi ng transport req uir uiring ing bra king king by m e an s of b r ak e m ot or (40 40% % of f fo r driven belt)

0,012

The sta nda rd value f = 0,02 0,020 0 is is iincreased ncreased a t t he following conditions: friction tion in ma terial •  high interna l fric •  troug h a ng les > 30° 30° •  carrying idlers < 108 mm •  b elt spee d > 5 m/s •  tempe rat ure < 20° 20° C •  low er belt tension tension •  flexible belts and high cover thicknesses

Table 10 ADDITIONAL POWER REQUIREMENT N4 (kW) Ad d it io n p e r

B e lt w id t h B (m m )

a t v = 1 m /s

N4 (kW)

Dis Discharg charg e by t ripper or sc scrape rape r   ≤ 500 ≤ 100 0 > 100 0

0, 8 k W 1, 5 k W 2, 2 k W

0, 8 × v 1, 5 × v 2, 2 × v

Ru b b e r skir t in g le n g t h in contact with belt

0, 0 8 k W

0, 08 × v × length of skirting

The valueswith a re recomm rec omm end a tions and conditions. ma y be increased extraordinary running

Table 11 DRIVE FACTOR m (-) Driving pulley arrangement m

= 1+

1 – 1

e µα

α

α

α α

 

α

 

α

Arc of contact α (° )

µ

120

150

1 80

2 10

2 20

2 30

2 40

3 60

38 0

40 0

42 0

44 0

45 0

d ry

0, 40

1 , 76

1 , 54

1 , 40

1 , 30

1, 27

1, 25

1, 23

1, 09

1, 08

1, 07

1, 06

1, 05

1, 04

h u m id

0, 35

1 , 92

1 , 67

1 , 50

1 , 39

1, 35

1, 33

1, 30

1, 12

1, 11

1, 10

1, 08

1, 07

1, 07

d ry

0, 35

1 , 92

1 , 67

1 , 50

1 , 39

1, 35

1, 33

1, 30

1, 12

1, 11

1, 10

1, 08

1, 07

1, 07

h u m id

0, 20

2 , 92

2 , 45

2 , 14

1 , 93

1, 87

1, 81

1, 76

1, 40

1, 36

1, 33

1, 30

1, 27

1, 20

Driving pulley

Lagged

Bare

The values m in in the ta ble are va li lid d fo r aut oma tic take-up (e.g. gravity take-up). For scr screw ew ta ke-up ke-up f rom α = 12 120 0° t o α = 22 220 0° t h e values a re multiplied by 1,20.

For b elts w ith no n-rubbe n-rubbe ri rized zed running side, see calculat calc ulat ion of b elts fo r cconveyors onveyors w ith sli sliding ding pla te.

 

Table 12 RECOMMENDED VALUES FOR COVER THICKNESS, CARRYING SIDE, WE WEAR AR RESISTANT BELTS BELTS 30 × v

Slight Slight ly a bra si sive ve

L

gramaterials in, cement, cement, loose earth, cr crushed ushed coa l etc.

Moderatcoal, ely abra sive sive materials: limestone sand, superphosphat superphosphat e, crushed crus hed coke etc.

Very abrasive materials: flint, gravel coke, crushed crushed o re, etc.

E xtra a bra sive si ve materials: ore ag g r e g at e , slag slag etc.

gra in si size ze (mm)

gra in ssize ize (mm)

gra in ssize ize (mm)

gra in si size ze (mm)

v = m/s

Cover type

L= centredistance m

to 10

10 to 50

to 10

10 to 50

50 to 2 00

2 00 a nd o ve r

to 10

10 to 50

50 to 20 0

20 0 a nd o ve r

to 10

10 to 50

50 to 20 0

20 0 a nd o ve r

0,25

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

4, 0 4, 0

5, 0 5, 0

1, 5 1, 5

3, 0 3, 0

4, 0 5, 0

5, 0 5, 5

1, 5 1, 5

3, 0 3, 0

5, 0 5, 0

6, 5 6, 5

0,33

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

4, 0 4, 0

5, 0 5, 0

1, 5 1, 5

3, 0 3, 0

4, 0 5, 0

5, 0 5, 5

1, 5 1, 5

3, 0 3, 0

5, 0 5, 0

6, 5 6, 5

0,50

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

4, 0 4, 0

5, 0 5, 0

1, 5 1, 5

3, 0 3, 0

4, 0 5, 0

5, 0 5, 5

1, 5 1, 5

3, 0 3, 5

5, 0 5, 0

6, 5 8, 0

0,67

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

4, 0 4, 0

5, 0 5, 0

1, 5 1, 5

3, 0 3, 0

5, 0 5, 0

5, 5 6, 5

1, 5 1, 5

3, 0 3, 5

5, 0 6, 5

7, 0 8, 0

1,00

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

4, 0 4, 0

5, 0 5, 0

1, 5 1, 5

3, 0 3, 0

5, 0 6, 5

6, 5 8, 0

1, 5 2, 5

3, 0 5, 0

6, 5 8, 0

8, 0

1,25

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

4, 0 5, 0

5, 0 7, 0

1, 5 1, 5

3, 0 4, 0

5, 5 8, 0

8, 0

2, 5 3, 0

4, 0 5, 5

7, 0 8, 0

8, 0

1,67

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 1, 5

3, 0 3, 0

5, 0 6, 5

6, 5

2, 5 3, 0

4, 0 5, 5

6, 5 8, 0

8, 0

3, 0 5, 0

5, 5 8, 0

8, 0

8, 0

2,50

A, B BW

1, 5 1, 5

2, 5 2, 5

1, 5 2, 5

3, 0 5, 0

6, 5 8, 0

8, 0

3, 0 5, 0

6, 5 8, 0

8, 0

8, 0

4, 0 5, 5

8, 0

8, 0

8, 0

5,00

A, B BW

1, 5 2, 5

3, 0 5, 0

3, 0 5, 0

6, 5

8, 0

8, 0

5, 5 8, 0

7, 0

8, 0

8, 0

8, 0 8, 0

8, 0

8, 0

8, 0

Type of ma terial, llump ump size, size, height of fa ll a nd va ri riaa tion of speed betw een belt and ma teria teria l are infl influenuenci cing ng the w ea r of the cover decisi decisivel velyy. The ta ble gives a g uide for det erminat ion of cover thickness on carryi thickness carrying ng si side de fo r w ea r res resis ista ta nt belts. Althoug h t he cover t hicknes hicknessses are some times iiden den -

tic tical, al, the same w ear resis resista nce ca ca nnot be e xpec pected ted fo r the types A A,, B an d BW. BW. Cover th ickness icknesses es fo r sspecial pecial be lts ssuch uch a s for insta ins ta nce hea t res resiista nt belts are de termi termined ned accoraccording t o t he indic indicaa tions iin n ea ch ssingle ingle belt prog ram m e .

Table 13 RECOMMENDED VALUES FOR COVER THICKNESS, RUNNING SIDE Cove r T Thickne hickne ss, Running Si Side de (mm)

Material Properties

1

Slightly abrasive materials Moderat ely to very abra sive sive mat erials erials

1-1,5

Very ab rasive rasive a nd coarsegrained ma terials

1,5-2

The cover t hicknesses hicknesses on th e runn ing side mu st be in ha rmony w ith the chosen th ic icknes knesss on t he carrying carrying side. The be lt progra mmes indicat indicat e recommend ed cover combinations.

 

Table 14 BELT BEL T WEIGHT AND THICKNESS Cover

Carcass

M U LTIPL IP LY BEL BE LTS EP 100

EP 125

EP 160

EP 200

EP 250

EP 315

EP 400

EP 500

EP 630

Appro x. w eig ht /ply kg /m 2)

1, 35

1, 50

1, 60

1, 70

1, 90

2, 00

2, 50

2, 80

3, 50

Appro x. th ickness/ply (mm)

0, 9

1, 0

1, 2

1, 3

1, 4

1, 6

1, 8

2, 2

2, 6

Fab ric types

A

B

BW

K

N

TCC

GW

G WF

G WM

G WS

GT

IWE

1 , 11

1 , 14

1 , 14

1, 14

1, 14

1, 11

1, 11

1, 23

1, 16

1, 18

1, 18

1, 38

Approx. w eight kg/m 2 pr. 1 mm

Example: EP 500/4, 6 + 2, t ype A EP 500/4 = 4 EP125 Weight of carcass Weight of cover

= =

4 × 1,50 8 × 1,11

= =

Thickness o f ca rca ss Th ickn e ss o f co ve r

= =

Belt th ickness ickness

=

4 × 1.0

=

4,0 mm 8, 0 m m

a ppro x. 12,0 12,0 mm

2

6,00 kg /m 8,88 kg /m 2 2

B e lt w ei e ig h t

=

a p p r o x. 14, 88 kg /m

2-P 2-PL LY BELTS w it h STIFLE STIFLEX X

Cover

Carcass RO -P LY 315/2 400/2 3+ 1 3+ 1

200/2 2+ 1

250/2 3+ 1

Approx. belt w eigh t (kg (kg /m 2)

6, 8

8, 4

8, 6

Ap p r o x. b e lt t h ick n e ss (m m )

5, 2

6, 6

6, 8

Example: RO-PLY RO-PL Y 250 250/ /2, 3 + 1 – 650 mm Ribs type 504 Belt w ei Belt eight ght Ri Rib b s t yp e 504

=

To t a l w ei e ig h t

=

0, 0,65 65 × 8,4

= =

5,46 kg /m 0,75 kg /m

ap pp p r o x. 6, 21 kg /m

RO -P LY G WF 250/2 400/2 3+ 1 3+ 1

400/2 5 + 1, 5

630/2 5 + 1, 5

9, 1

11 , 7

1 3, 4

9, 3

7, 3

9, 8

1 0, 5

7, 0

G WM 250/2 3+ 1

RO -P LY G r ip 4

1 0, 0

8, 6

4, 5

7, 5

6, 8

5, 5

V-RIBS 501-504

511-513

521

525

Ty p e

50 1

5 02

503

5 04

511

51 2

5 13

52 1

5 25

Approx. w eight (kg/m) b elt

0, 50

0 , 40

0, 5 0

0, 75

1, 60

2, 30

2 , 70

4, 2 0

7, 00

Ty p e

SA230

SA420

SB 250

SB 310

SB 370

SB 470

SC600

SD 780

M D 420

M D 55 0

M D 6 10

LE450

LE570

0 , 76

0, 9 0

1 , 14 5

0, 65

0, 52 5

0 , 88

1, 1 0

1, 60

1, 20

1, 60

2 , 40

3, 1 5

3, 40

Ty p e

3 25

340

20

380

40 0

Ap p r o x. w e ig h t k g /p c. p e r 800 m m r ib le n g t h

0 , 22

0, 4 3

1, 64

1, 65

1, 92

Approx. w eight (kg/m) b elt

HIGH TRANSVERSE RIBS

SIDEWALLS

Ap p r o x. w e ig h t (kg /m ) b e lt

0, 75

 

Table 15 MAX. PERMISSIBLE TROUGH ANGLE λ (°)

λ

M U LTIPL IP LY BEL BE LTS Belt Widt Widt h (mm) Be lt Type 3 00

400

50 0

6 50

800

10 00

1 200

45

45 45 45

45 45 45

45 45 45

45 45 45

45 45

45

EP 400/3 EP 400/4 EP 500/3

45 45 30

45 45 45

45 45 45

45 45 45

45 45 45

45 45 45

45

EP 500/4 EP 630/3 EP 630/4

30

45 30 30

45 45 45

45 45 45

45 45 45

45 45 45

45 45 45

45

EP 630/5 EP 800/3 EP 800/4

30 30 30

45 45 45

45 45 45

45 45 45

45 45 45

45 45 45

45 45 45

EP 800/5 EP 1000/4 EP 1000/5

30

45 30 30

45 45 45

45 45 45

45 45 45

45 45 45

45 45 45

EP 1250/5 EP 1250/6 EP 1600/5

30 30 30

45 45 30

45 45 45

45 45 45

45 45 45

EP 1600/6 EP 2000/5 EP 2000/6

30

30 30 30

45 30 30

45 45 45

45 45 45

EP 200/2 EP 250/2 EP 315/3

The t a ble is ba sed on t roug ha bil bility ity according t o IS ISO O 703 703 and includes includes values fo r the mo st comm comm on w idthstrengt h relat relat ions. Rega Rega rding rding trough ang les for

Table 16

140 0

16 00

w idthstrength relat relat ions not indicated indicated w e recomrecommen d yo u to cont a ct ROUL ROULUN UNDS DS.. Troug ha bility bility f or 22-ply ply belts accordi according ng to the belt prog ramm es.

RECOMMENDED MIN. PULLEY DIAMETERS (mm) 2-PLY BELTS RO-PLY, PROG RAMMES 1, 6, 6A an d 9

Dependence of minimum pulley diameter on the de gree of utili utilizat zat ion of pe rmis rmissi sible ble w orking ten si sion on

TYPE IWE, PROGRAMME 8

200/ 20 0/2 2+ 1

250/ 25 0/2 3+ 1

315/ 31 5/2 3+ 1

400/ 40 0/2 3+ 1

400/ 40 0/2 5 + 1,5

630/ 63 0/2 5 + 1,5

G r ip 4

EP 250/2 2 + 1

D1 m m D2 m m D3 m m

200 160 –

25 0 20 0 16 0

3 15 2 50 2 00

40 0 31 5 25 0

4 00 3 15 2 50

500 400 315

20 0 16 0 –

2 00 1 60 160

50-70%

D1 D2 D3

160 160 –

20 0 16 0 16 0

2 50 2 00 1 60

31 5 25 0 20 0

3 15 2 50 2 00

400 315 250

16 0 16 0 –

2 00 1 60 160

< 50%

D1 D 2 D3

16 60 0 1 –

16 60 0 1 16 0

26 00 0 1 1 60

20 50 0 2 16 0

20 50 0 2 1 60

35 10 5 2 200

16 60 0 1 –

16 60 0 1 160

70-100%

d rriivin g p u lle y t a il p u l le y sn u b p u lle y

= = =

Exam ple :Be lt t ype ROO-PL PLY Y 250/ 250/2,3 + 1, w orking te nsion nsion 60% 60% of ma x. permissi permissible. ble. Driving, Driv ing, p ulley ulley D 1 = 200 200 mm, ta il pulley D 2 = 160 160 mm, snub pulley D 3 = 160 160 mm. MUL MU LTIPL IPLY Y BELT BELTS, se e ne xt pa g e .

 

RECOMMENDED MIN. PULLEY DIAMETERS (mm) MULTIPLY BELTS Utilization Numof m ax. permissible ber of belt plies tension

Fab ric ric type s EP 100

EP 125

EP 160

EP 200

D1

D2

D3

D1

D2

D3

D1

D2

D3

65-100%

2 3 4 5 6

160 200 315 400

160 200 250 315

12 5 16 0 20 0 25 0

200 315 400 500 630

160 250 315 400 500

160 200 250 315 400

2 50 4 00 5 00 6 30 8 00

200 315 400 500 630

30-65%

2 3 4 5 6

160 200 250 315

125 160 200 250

12 5 16 0 16 0 20 0

200 250 315 400 500

160 200 250 315 400

160 160 200 250 315

2 00 3 15 4 00 5 00 6 30

under 30%

2 3 4 5 6

125 160 200 250

125 160 160 200

12 5 16 0 16 0 20 0

160 200 250 315 400

160 160 200 250 315

160 160 200 250 315

1 60 2 50 3 15 4 00 5 00

D1

EP 250 EP 315 D 1 D2 D3

EP 400 EP 500 D 1 D 2 D3

EP 630

D2

D3

160 3 15 250 5 00 315 6 30 400 8 00 500 10 00

250 400 500 630 800

200 315 6 30 400 8 00 500 10 00 630 12 50

5 00 6 30 8 00 10 00

400 80 0 6 30 500 100 0 8 00 630 125 0 1 10 0 00 800 160 0 12 50

5 00 630 1250 10 1000 800 8 00 160 0 1 12 250 1000 1000 2000 1600 1250

160 250 315 400 500

160 200 250 315 400

2 50 4 00 5 00 6 30 8 00

200 315 400 500 630

160 250 5 00 315 6 30 400 8 00 500 10 00

4 00 5 00 6 30 8 00

315 63 0 5 00 400 80 0 6 30 500 100 0 8 00 630 1250 10 1 0 00

4 00 500 1000 800 630 630 1250 10 1000 800 800 1600 12 1 250 1000

160 200 250 315 400

160 160 200 250 315

2 00 3 15 4 00 5 00 6 30

200 250 315 400 500

160 200 250 315 400

3 15 4 00 5 00 6 30

250 50 0 315 63 0 400 80 0 500 100 0

3 15 400 800 630 500 500 1000 800 630 630 1250 10 1000 800

4 00 5 00 6 30 8 00

4 00 5 00 6 30 8 00

D1

D2

D3

D 1 = drivi driving ng pulley. pulley. D 2 = ta il pulley pulley – hea vi vily ly loa loa ded snub pulley pulley.. D 3 = snub pull pulley ey – m o d e rate llyy llo o a de d.

Exa Exa mp le: b elt t ype EP 50 500/ 0/4 = 4 E EP P 125. Working te nsi nsion on : 50% of ma x. permissi permissible ble w ork orkiing tensi tension. on. D 1 = 31 315 5 mm, D 2 = 25 250 0 mm, D 3 = 20 200 0 mm

MATERIAL DATA

Table 17

The list list co vers bulk de nsity, nsity, sta sta tic an g le of slide slide a s w ell a s ma x. a ng le of incl inclinat inat ion ϕ (° ), unde r w hich hich the ma teri terial al ccan an be tra nsported nsported o n conv conveyor eyor belts belts w itho ut ribs ribs.. The a ng le of inclinat inclinat ion is det ermined b y the friction friction betw een ma teri terial al a nd b el elt, t, but deci decissive iiss the static an d d ynamic ang le of slide of ma terial, terial, w hi hich ch depe nds on its inte inte rnal friction. friction. The ma x. a ng le of incli inclina na tion is low er tha n the dyna mic ang le o f sl sliide of ma terial, terial, w hi hich ch is is rat rat her difficult to det ermine exactly. difficult exactly. For most ma terials terials it can b e sai said d t ha t t he dyna mic angle of slide is 10-15° 10-15 ° lo w e r th an th e stati c an g le , w hich hich is formed horizonta horizonta lly by t he ma terial terial w hen it

Material

bulk density

γ  (t /m 3)

max. static an g le of an g le of inclinaslide tion ϕ (° ) (° )

Ag r icu lt u r a l lim e

1, 1-1, 2

20

30

Alu m lu m p s po w d er

0, 8-0, 96 0, 72-0, 8

17 23

27 30-45

Alu m in iu m o xid e h y d ra t e

0, 8-1, 0 0, 3

25

su lp h a t e Am m o n ia su s u lp h a te te g ra n nu u la te te d

0, 8 6 0, 7-0, 9

17 10

Am m o n iu m su lp h a t e d r y m o is t

0, 72-1, 28 1, 3

20 33

32 45

fa lls dow n shaping a free pil pile. Fig . 20 static ang le of slide slide 10-15°° 10-15 dynam ic ang le of sli slide de

ϕ

max. inclination inclination of convey conveyor or

Ribs ca ca n incr increa ea se t he a ng le of inclinat inclinat ion in ca ca se t he fri fricti ction on bet w een belt and ma teria teria l is low er than t he internal dynamic friction of the material, which determines the max. angle of inclination. The b ulk den si sity, ty, the a ng le of slide slide a nd m a x. a ng le of inclinat inclinat ion being high ly depe nde nt o n lump lump si size, ze, conten t of humidity etc., the va lues indic indicaa ted in the ta ble must must be consi considered rec recommend ommend at ions.

Am m o n iu m ch lo r id e

0, 72-0, 83

12

Am m o n iu m n it r a t e

0, 7 2

15

Asb e st o s lo o se p r e sse d

0, 3-0, 4 0, 6-0, 8

30

45

Ash e s d r y f r o m co a l m o ist f r o m co a l

0, 5-0, 7 0, 7-0, 9

25 30

35-40 50

Asp h a lt f o r r o a d m e t a l so lid

1, 3-1, 4 1, 6

30

B a k e li t e p o w d e r

0, 45-0, 65

33

45

B a r le y d r y

0, 6-0, 7

15

25-40

B a r y t a cco o a r se -g r a in e d f in e -g r a in e d

2, 4-2, 9 1, 9-2, 3

18

30

B a u x it e f r o m q u a r r y f in e -g r a in e d , d r y

1, 3-1, 44 1, 04-1, 12

17 18

31 35

B e e t u n w a sh e d w a sh e d m a ss, w e t slice s

0, 65-0, 77 0, 5-0, 6 0, 4-0, 7

12-15 10-12 18-20 20

35-40 30-45 31 35

Bo n e m e a l

0, 9-0, 96

20

B r i q u e t t e l ig n it e a n t h r a ci t e

0, 7-0, 85 0, 8-1, 0

18 10

B r o ke n st o n e , f lin t o r g r a n it e

1, 3-1, 6

18

40

C e m e n t p o r t la n d a e re a t e d c li n k e r slu r r y

1, 2-1, 36 0, 8-1, 2 1, 2-1, 5 1, 4-1, 7

20 6 18 12

39 33

 

Material

bulk density

γ  (t /m 3)

max. static an g le of an g l e of inclinaslide tion ϕ (° ) (° )

Ch ile sa lt p e t r e

1, 0-1, 3

25

C la y d r y d r y in l u m p s , 7 5 m m m o ist , 50 m m

1, 6-1, 9 1, 0-1, 2 1, 52-1, 6

20-22 18-20 18

35 35 15-24

C o a l a n t h r a c it e , c o a r s e b it u m in o u s, co a r se li g n i t e f i n e c r u sh e d

0, 8-0, 96 0, 7-0, 9 0, 72-0, 88 0, 7-0, 8

16 18 22 22

27 38 38

Co c o a b e a n s

0, 53-0, 6

15

28

Material

bulk density

γ  (t /m 3)

max. static an g le of an g le of inclinaslide tion ϕ (° ) (° )

P e a n u t s w it h sh e lls w it h o u t sh e lls

0, 25-0, 3 0, 55-0, 7

8 8

20-30

P e a s, d r ie d

0, 7-0, 8

8

30

P h o sp h a t e f r a ct io n a l p u lv e r iz e d

1, 2-1, 4 0, 96

12-15 13

25-30 26

P o t a ssiu m f r o m q u a r r y

1, 2-1, 35

12-15

Po t a t o es

0, 7-0, 8

12-15

Quartz coarse-grained, 30-75 mm

1, 35-1, 52 1, 3-1, 45

18 20

35 35

p u lve r iz e d , 1-2 m m

Co f f e e b e a n s , d r i e d b e a n s, f r e sh

0, 35-0, 42 0, 51

20 10-15

35 25

Rice g r a in

0, 7-0, 8

8

20

C o k e a n d f u r n a c e co k e

0, 4-0, 55

20

45

Ry e , d r y

0, 67-0, 73

8

23

Co n cr cr et et e l iigg h t -w -w e i g h t c o n cr cr et et e w et d ry

0, 3 3--1, 5 1, 6-2, 4 2, 1-2, 4

25

20-30

Sa lt r e f in e d , f in e r e f in e d , co a r se

1, 1-1, 3 0, 65-0, 9

11 18

25 30

Sa lt p e t r e

1, 1

C o p r a lu m p s

0, 32-0, 35

9

20

Sa n d f in e , d r y

1, 45-1, 75

16-18

30-40

Co r n D o lo m it e st o n e

0, 75 1, 2-1, 6

10 22

30 40

f in e , m o ist Sa n d st o n e , cr u sh e d

1, 75-2, 1 1, 36-1, 44

20-22 18

45 40

Ea r t h f illin g , m o ist w it h cla y f il li n g , d r y

1, 5-1, 8 1, 15-1, 20

22 20

45 35

Sa w , d u st

0, 15-0, 21

22

36

Fe ld sp a r

1, 2-1, 7

23

40

Fish

0, 8-1, 0

Sla g co aarr se , b la st st f u r n a ccee cr u sh e d , d r y cr u sh e d , w e t

1, 28-1, 44 0, 96-1, 04 1, 44-1, 6

16 16 20-22

30 30 45

Fish m e a l

0, 55-0, 65

20

Sla t e , cr u sh e d

1, 3-1, 5

Flo u r f r o m g r a in

0, 55-0, 65

21

Flo u r-sp a r co a r se f in e -g r a in e d

1, 7-1, 9 1, 4-1, 7

30 25

So y a b e a n w h o le b ro ke n ca k e s , 1 0 m m

0, 7-0, 8 0, 48-0, 64 0, 65-0, 7

12-16 15-18 17

21-28 35 32

Fo u n d r y sa n d p r e p a r e d kn o cke d o u t co r e sa n d

1, 3-1, 45 1, 45-1, 6 1, 04

24 22 26

32 39 41

St o n e sh in g le p e b b le g r a v e l cr u sh e d , 100/250 m m p e b b le

1, 4-1, 5 1, 5 1, 4-1, 6 1, 8

20 20-25 20 15

35 35 38

Fu lle r s e a r t h , d r y o il y

0, 5-0, 6 0, 96-1, 04

15 20

23

Su g a r r e f in e d u n r e f in e d

0, 8-0, 96 0, 88-1, 04

10-15 23

30

G la ss cr u sh e d b r o ke n

1, 3-1, 6 1, 1

20 15

35 20-30

Su lp h u r lu m p s po w d er

1, 2-1, 4 0, 8-1, 0

18 21

G r a n it e b r o ke n st o n e s p e b b l e , 10 m m

1, 4-1, 8 1, 28-1, 44

20 20

35 40

Su p e r p h o sp h a t e , g r a n u la t e d po w der

0, 8-0, 9

15-17 18-20

33 30

G r a p h i t e cr u s h e d f la ke s

1, 4 0, 65

Wh e a t , d r y

0, 5-0, 7

12

40

5

Wo o d -ch ip s

0, 2-0, 5

22-24

30

45

30-45

18

G ra ve l d r y m o is t

1, 44-1, 76 1, 84-2, 1

16 20

35 32

G y p su m p o w d e r cr u sh e d . 3-10 m m

0, 95-1, 4 1, 12-1, 28

20 21

40 40

Ice cr u sh e d

0, 6-0, 7

5

30

Ka o lin lu m p s po w d er

1, 0 0, 7-0, 9

20 23

35 45

Le a d o r e , f in e su l p h a t e o x id e

3, 2-4, 3 1, 6 1, 0-2, 4

15 33 20

30 45

Lim e lu m p s b u rn t , 2 m m b u r n t , 2-20 m m

1, 2-1, 28 1, 0 0, 96

18 22 15

40-45

Lim e st o n e f r o m q u a r r y

1, 35-1, 45

18

30-45

M a r b le cr u sh e d

1, 3-1, 6

10-15

20-30

M a rl

1, 3-1, 5

20

35

M il le t , d r y

0, 6-0, 7

15

25

M o le r cr u sh e d , d r y

0, 6-0, 7

M o r t a r, w e t

2, 4

O a t s, d r y

0, 4-0, 6

12

35-40

O r e le a d ir o n co p p e r m a n g a n e se m o ly b d e n u m z in c, cr u sh e d

3, 2-4, 3 1, 6-3, 2 1, 6-2, 5 2-2, 3

15 18-20 20 20 25 22

30 35

2, 4-2, 6

5

20-22

39 38

 

Power Requirement Power required to drive empty conveyor N 1 (kW) G (L + I) f × v 25 (2 (250 + 100) 0, 0,020 × 2,5 N1 = G s1 s2 I f

= = = = =

=

102 2 25 5 kg /m 1 , 25 m 1, 2 , 50 m 2, 1 00 m 0 , 020

102

table t a bl b le t a bl b le t a b le t a b le

= 4,29 4,29 kW

7 7 7 8 9

Power required to convey material on the level N 2 (kW) N2 =

Q (L + I) f 367

=

833 (2 (250 + 100) 0, 020 = 1 5, 88 k W 367

Power required to elevate material N 3 (kW) Q ×H 833 × 26,1 N3 =

367

=

367

= 59 , 24 k W

H = L × sin ϕ = 250 250 × sin 6° 6° = 26, 26,1 1m

Additional Power Requirement N4 (kW), table 10 N4 = 0,0 0,08 8 × v × length of skirt kirt boa rds = 0,08 × 2,5 × 12 = 2,40 k kW W Leng th of skirt kirt bo a rd 6 m ea ch side side

EXAMPLE OF BELT SELECTION The fo llow ing proj projecti ecting ng M a t e r ia l Bulk de nsity nsity   Ca p a cit y

da ta are know n: Lim e st o n e γ = 1,40 t /m 3 Q 2 = 800 t/h, continuous conti nuous o peration Lu m p siz e 50-250 m m Ce n t re d ist a n ce L = 250 m Ang le of inc incli lina na tion   ϕ = 6° He iigg h t o f f a l l a t l o a d in in g 0 , 7 75 5m M a te t e ri ria l t e m mp p eerr a t u re re Am b ie ie n ntt t em em p pee ra ra t u re re –30 30/ /30 30°° C

Theoretical Necessary Motor Capacity Nn (kW) Nn = N1 + N2 ± N3 + N4 = 4,29 4,29 + 15 15,8 ,88 8 + 59,2 59,24 4+ 2,40 2,4 0 ~ 82,0 82,0 k kW W

Motor Capacity Nm (kW) Nm =

Nn 82 = = 96 , 47 ~ 10 0 k W η 0,85

Effective Tension P (N) 82 × 1000 Nn × 1000

P=

v

=

2, 5

= 32800 N

Belt Width and Belt Speed B m in = 8 0 0 m m

t a b le 1 (unsorted material) t a b le 2 (mod erate, ab rasive) rasive)

v m a x = 2, 5 m /s

Max. Belt Tension T1 (N) T1 = P × m = 32800 32800 × 1,35 = 442 44280 80 N m is ta ken from ta ble 11 11 acc according ording to the f oll ollow ow ing: 50 0 m gra vity vity t a keke-up up is •  at a centre distan ce over 5 chosen •  arc of conta ct α is fixed a t 220 220°°

Capacity Qt (m3/h)

•  dri  drivi ving ng pul pullley to be lag ged w ith rubber

Req uir uired ed ca pa city city Q 2 = 800 t/h, cont inuou s op era tion Theo ret ica ica l cap a city city Q2 800 Q’t = = = 233 m 3/h v×γ×k 2, 5 × 1,40 × 0,98 233 3 m 3/h, B = 800 800 mm a nd ba sic a ng le With Q ’ t = 23 β = 15° 15° a s iinput nput values the job job – ref. ta ble 4 – can be sol solved ved by 3-sec 3-sectioned tioned idl idlers ers a nd t roug h a ng le λ = 30° 30° . Q t = Q ’ t  × v × k = 243 243 × 2,5 × 0,98 = 595 m3/h 595 × 1,40 = 833 t/h > Q 2 Q = Q t  × γ  = 595 Is a low er belt speed speed t ha n v ma x. requir required, ed, the trough a ngle or the belt w idth can b e incr increased. eased.

•  runni  running ng cond itions es estimated timated to be humid humid m = 1,35 1,35 accor according ding t o t ab le 11. 11.

Working Tension p (N/mm) p=

T1 44280 = = 55 N/m m B 800

 

CHOICE OF BEL B ELT T TYPE

PRE-TENSION Gk (kg)

The proced ure fo r the choice choice o f b elt type is indica indica ted in selec selection tion o f conveyo r belts.

In th e examp le G k is calc calcul ulat at ed w ith t he g ravi ravity ty ta keup placed a t d ri rivi ving ng pull pulley ey a nd ta il pull pulley. ey.

The initia l torq ue is li limite mite d a t m a x. 1,4 × n o rm al torq ue of mo tor w hen choosi choosing squirr squirrel el--ca ge mo tor and hydrodynamic clutch.

Fig . 21

 L 1

Recommen ded cover dimensions dimensions according to t a bles 12 and 13 in selec selection tion of conveyor be lts lts..

 L

H1 H

ϕ

Material: Limestone Ca rrying rrying pa rt 30 × v L

Cover types

Moderat ely abrasiv abrasive, e, gra in size 5050-250 250 mm

30 × 2,5 = 0, 0,3 3 250

B, BW

5 mm

Fig . 22 L   L  L 1  == H1 = H

Retu rn part M o d e r a t e ly t o ve r y a b r a sive

1-1, 5 m m

System key page 23 Limes meston ton e tha t b el elong ong s to the g roup ab rasive rasive mat eri eri-als gives three programme possibilities.

Gk at driving pulley, fig. 21 2 × Nn (m -1) 102 2 × 82 (1,35-1) 102

The stan da rd prog ram mes 1 a nd 2 have p ma x. permissi mis sible ble w orking te nsion nsion = 63 N N/ /mm, vulca vulca nized joint.

Gk =

Pro g ra mm es 1 = RO-PL RO-PLY Y 630 630/ /2, 5 + 1,5

Gk at tail pulley, fig. 22 2 × Nn (m -1) 102

Prog ram me 2 = EP 630 630/ /4, 5 + 1,5, 1,5, typ e B, BW Both b elt types sat sat isfy the dema nd o n cover di dimenmensions, and they a re suffic sufficiiently robust robust t o ma nag e the load ing cond iti itions. ons. As As to te chnical chnical use use th ey a re eq ua ll llyy ssuita uita ble, and t he fina l choice choice w il illl thus depend on w ishes rrega ega rding rding sta nda rdiza rdiza tion, deli delivery possibilities etc. If t he d ema nds on cover dimensions, dimensions, ccover over type, o r w ork orking ing tension tension a re outsi outside the stan da rd programmes 1 a nd 2, we ref er to special special prog prog ramm e 3.

WE CHOOSE RO-PLY 630/2, 5 + 1,5 FROM

Gk =

Gk =

v

v

+

2, 5

+ 2 (LI (G b +

= 23 42 k g

G RU ) f – H 1 × G b ) s2

2 × 82 (1,35-1) 102 11 + 2 (250 (10,7 + ) 0, 02-26,1 × 10,7) 2, 5 2, 5

G k = 2342 + 2(762(76-279 279)) = 193 1936 6 kg

Max. permissible belt sag (q/s)perm Ma x. belt sa g q /s is is fix fixed ed a t 0,010

Req uiremen uiremen t of min. belt te nsion nsion Tmin (N) is ca lcula lcula t ed : Carrying Carryi ng pa rt

PROGRAMME 1 CONTROL OF G-VALUE G-VALUE If G = 2G b +

Gm

G RO G RU + d ev e via t eess co n nssid eerr a b llyy f ro ro m s1 s2

the G-value G-value used in ta ble 7, N1, N n and p sshould hould be corrected. Belt w eight Belt eight G b = 13,4 kg /m 2 ~ 10,7 k kgg /m f or 800 mm belt, ta ble 14. 14. Ca rrying rrying a nd return idlers idlers,, G RO a n d G RU Dia Dia met er is is chosen at ∅ 89 mm: G RO = G RU = 11 kg, ta ble ble 7 11 11 G = 2 × 10 , 7 + + 1 , 25 2, 5

s1 (G b + G m ) g 1, 25 (10, 7 + 93) 10 = = 16203 N 8 × (q /s)p e rm 8 × 0,01 Q 833 = = = 93 kg /m v × 3, 6 2, 5 × 3,6

Tmin =

=

21,4 21,4 + 8, 8,8 8 + 4,4 = 34 34,6 ,6 kg/ kg/m

Belt te nsion nsion a t ta il pull pulley, ey, ccaa lc lculat ulat ed G k × g 1936 × 10 T= = = 9680 N < Tmin 2 2 To keep t he be lt sa g (q /s) s)perm perm = 0,0 0,01 1 th e pre -te nsion nsion must be increa increa sed b y Tmin -T= 16203-9680 16203-9680 = 6523 N 6523 = 324 3241 1 kg G k ta il pull pulley ey = 19 1936 36 + 2 × 10 G k driv driving ing pulley = 2342 2342 + 2 ×

6523 = 364 3646 6 kg 10

T1 = 45165 45165 + 6523 6523 = 5168 51688 8N 51688 ~ 64 N/m ~ p perm f o r RO-PL RO-PLY Y 630/2, 5 + 1,5 P= 800

34,6 (250 (250 + 100) 0,020 × 2,5 N1 = = 5, 9 k W 102 Original N1 = 4,2 4,29 9 kW. kW. The increa sed po w er req uirement of e mpt y cconveyor onveyor is in this example w ithout appreciable importance.

The motor capacity Nn is increa increa sed f rom 82 kW kW to 84 kW, but w il kW, illl not influence influence t he cho sen b elt construction.

Pulley diameters, table 16 Driving Driv ing pulley D 1 = 50 500 0 mm Ta il pu pulley lley D 2 = 40 400 0 mm Pulleys Pull eys at g ravity ta ke-up ke-up min. a s D2

 

CALCULATION OF BELTS FOR CONVEYORS WITH SLIDING SL IDING PLATE PLATE Sli liding ding belt conveyo rs a re ma inl inlyy used fo r light light interna l transport of pa ckag ckag ed g ood s and go ods iin n bulk. bulk. The a dva nta g es of slidi sliding ng b elts a re quiet running w itho ut vi vibrat brat ions and belt sag sag .

Fig . 23

On slidi sliding ng belt conveyo rs the ma in forces a re prima prima rly produ ced by the f ri rictiona ctiona l res resis ista ta nce betw een b elt a nd sliding sliding plate . Other fo rces rces are tra velli velling ng fric friction tion on return pa rt, llifti ifting ng loa d a nd va ri rious ous secondary secondary frictional resistances.

 P N s t o p  L  P R O

 P s t

 P N H

ϕ

 P R U 

 s 2

sliding plate

CALCULATION CALCULA TION FORMULAS DETERMINATION OF

FO RM U LAS

REFERENCE

Bel Beltt w idth B (mm)

Goo ds in in bulk ssee ee ta ble 1 1.. Pack Packag ag ed g ood s ma x. specif ic pressure 3 kN/m 2

Belt spee d v (m/s)

Norm a lly 0,2-0,8 m/s Q v × 3,6

Capacity Q go ods in bulk ta ble 4, 5 and 6 Capacity For pa ck ckag ag ed g oo ds con con vert to kg /m

Weight o f ma terial G m (kg /m )

Gm =

FRICTION AL RESI FRICTIONAL RESIST STANCES ANCES:: Carryi Carr ying ng part P RO (N)

PRO PRO = g × µ × L (Gb + G m )

µ ac ccor or d in in g t o t ab l e 19 G b accordi according ng t o ta ble 1 14 4

Return pa rt, idlers PRU (N)

P RU = g × f × L (Gb + G RU ) s2

G RU accordi according ng t o ta ble 7 f according according to ta ble 9

Return part, sliding plate P RU (N)

P RU = g × µ × L × G b

The mo st norma l is is retu retu rn part w ith idlers

Lifti ifting ng or low ering ering loa d P st (N)

P st = g × H × G m

Breaking Breaki ng P Nstop (N)

P Nstop = g (µ (µ × G m  × cos ϕ – G m  × sin µ)

Braking Braki ng of mat erial erial is often used in conn e ct ct i on wi t h t r an sp or ortt of p ac kag kag e d g o od s

Effective tension P (N)

P = C ((P P RO + P RU) ± P st + P Nstop

C according according to ta ble 18

Theo retical necess necessary ary m ot or ca pa city city Nn (kW)

× Nn = P v 1000

Moto r capaci capacity ty Nm (kW)

Nm =

Max. belt tension T1 (N)

T1 = P × m

Working te nsion p (N/mm)

p=

Nn η

If not know n, the deg ree of effici efficiency ency of drive can be calcula calcula ted a t 0,85 0,85--00-95 95 m a cc ccording ording to ta ble 20 20,, or accordi according ng to formula fo r drive drive factor m

T1 B SYSTEM KEY and partic particularl ularlyy programme 3 a nd 9

Choice Choi ce of b elt type Pre-ten Preten sion sion G k (kg)

G k ~ 2 (T1 – P)

1

g

Table 18 FACTOR C (-) Centre distance L (m)

Mean specific pressure belt and material (kN/ (k N/m 2)

2, 5

5

10

25

50

> 100

≤ 0, 1

1, 8

1, 4

1, 2

1, 09

1, 05

1

< 3, 0

1, 04

1, 02

1, 01

1, 0

1, 0

1, 0

1 kg k g /m 2 ~ 10 N N/ /m 2

Table 19 COEFFICIENT COEFFIC IENT OF FRICTION FRICTION µ (-) Support – sur  surface face tempera ture Botto m si side de of b elt

Bright Bright steel pl plat at e -20 -20°° C

0° C

+ 18 ° C

+ 40 ° C

Plastics + 18 18°° C

Ha r d w o o d + 18 18°° C

EP n o n -r u b b e r iz e d

0 , 30

0 , 30

0 , 30

0 , 25

0 , 28

0 , 28

B 60 n o n -r u b b e r iz e d

0 , 75

0 , 70

0 , 45

0 , 35

0 , 40

0 , 35

0 , 60

0 , 60

B 60 r u b b e r i z e d

0 , 70

Ru b b e r co ve r

0 , 90

Fricti riction on b etw een b elt a nd sl slide ide bed a t spec specifi ificc pressu pr essu re p < 3 kN/m 2, b elt spee d v = 0,20,2-0,8 0,8 m/s

 

Table 20 DRIVE FACTOR m (-)

m= 1 +

1 e µα-1

α

Driving pulley ar r an g e m e n t

α

Arc of conta ct α (° ) B o t t o m sid e o f b e lt

D r i v in g p u l le y

µ 1 50

18 0

210

220

2 30

24 0

d ry

0 , 30

1, 84

1, 64

1, 5 0

1 , 46

1, 43

1, 40

h u m id

0 , 25

2, 09

1, 83

1, 6 7

1 , 62

1, 58

1, 54

d ry

0 , 22

2, 08

2, 00

1, 8 1

1 , 75

1, 71

1, 66

h u m id

0 , 20

2, 46

2, 14

1, 9 3

1 , 87

1, 81

1, 76

d ry

0 , 25

2, 09

1, 83

1, 6 7

1 , 62

1, 58

1, 54

h u m id

0 , 22

2, 08

2, 00

1, 8 1

1 , 75

1, 71

1, 66

d ry

0 , 15

3, 08

2, 66

2, 3 6

2 , 30

2, 22

2, 13

h u m id

0 , 10

4, 34

3, 71

3, 2 6

3 , 14

3, 02

2, 92

l ag g e d Rubberized b ar e

l ag g e d Non-rubberized EP or cott on b ar e

Ta ble va lues a re fo r screw screw ta keke-up. up.

SYMBOLS B C

= b e lt w id t h = f a cctt or o r f or o r slid iin n g b eellt s, s, t a bl b le 1 8

Nn

(m ) (m m) m) (m m ) (m m) m)

D D1 D2 D3

= = = =

d e f

= d ia m e t e r o f b e lt r o lle r d r u m (m ) = 2, 7183, t he h e b a se se o f n at a t ur ura l lo g ar a r it h hm ms = co ef e f fi f icie n ntt of o f f ri rict iio o n o f r o ll llin g p a rrtt s, s, t a b le le 9 (-)

G Gb Gk

r o ll d ia m e t e r o f b e lt d ri rivin g p u lle y d ia ia m eett eerr, t a b llee 16 t a ilil p u lle y d ia me me t e r, t a bl b le 1 6 d iiaa m et e t eerr o f sn u ub b pu pu lle yy,, t a b llee 16

(m m ) (-)

= w e iigg ht h t of o f mo m o vviin g pa p a rrtt s o f co n nvve y o rr,, t a b l e 7 (kg /m ) = w e ig h t o f b e lt , t a b l e 1 4 (kg /m ) = g ra vit y t a ke -u p (kg )

Nm

= th e o re ti ticcal n e ccee ss ssary po w e r r e q u ir e m e n t = m o t o r c a p a c it y

(kW) (kW)

p

= w o r kin g t e n sio n

(N/m m )

P P RO

= e f f e ct ive t e n sio n = f ric ricti o n al re si sista n ccee ss,, ca rrrr y in g p a rrtt o n slid in g b e lt s = f ric ricti o n al re si sista n ccee ss,, re t u r n p a r t o n slid in g b bee lt s = lif ti n g o r llo o w e rin rin g l o ad, ssllidin din g be l ts = b rraa ki kin g o f m a ttee rriia l, l, slid in in g b el e lt s = re q u ir e d ca p a cit y = r e q u ir e d c a p a c it y = t he h e o rree t ic ica l ca pa p a cciit y a t v = 1 m /s

(N)

P RU P st P Nstop Q1 Q2 Q’t

(N) (N) (N) (N) (m 3/h ) (t /h ) (m 3/h )

Gm G RO G RU

= w e iigg h t o f ma m a t er e r ia ll,, k kgg p er e r m b eellt = w e iigg ht h t o f ca rr rr y in g id id le le rrss, t a b blle 7 = w e ig h htt o f re t ur ur n id le r s, t aab b le 7

(kg /m ) (kg ) (kg )

g H H1

= a cce le ra t io n d u e t o g r a vit y = li f t in g o r f a llin g h e ig h t = h e iigg h t f ro m drivi drivin n g pull pulle y to g ravity ravity t a ke -u p = co r r e ct io n f a ct o r, in clin e d t ra n sp o r t , t a b le 3 = ce ce n t r e d ist a n ce = di ssta ta n ccee f ro m drivi drivin n g pul llee y to g ra vit y t a ke -u p = le n g t h o f id le r, f la t id le r s = le n g t h o f i d le le r, r, t w o -se cctt iio o n e d id id llee rs rs = lengt h of idler idler,, three-s three-sectioned ectioned id le r s = d ri rive f a ct ct o orr, t aab b le le 11 – fo r ssli liding ding belts, ta ble 20

(m /s2) (m )

k L L1 I1 I2 I3 m N1 N2 N3 N4

= p o w e r rree q u ir ir ed ed t o d r iv ive e m pt pt y co n v e y o r = p o w e r rree q u ir ir ed ed t o c o n ve ve y ma m a t e r iiaa l o n t h e le v e l = p o w e r rree q u ir ir ed ed t o e le le vvaa t e o r lo w e r m a t e r ia l = a dd d d it io n a l p o w eerr re q ui u ir e m e n t

(m ) (-) (m ) (m ) (m m ) (m m ) (m m )

(kW) (kW) (kW) (kW)

Q

= t h e o r e t ic a l c a p a c it y

(t /h )

q s1 s2

= b e lt sa g b e t w e e n id le rs = d iisst a nc n ce b eett w ee e e n ca rrrr y in g id id llee rs = d ist a n ncce b e t w ee e e n r e t u r n i d le r s

(m ) (m ) (m )

T T1

(N)

Tmin

= b e lt t e n sio n = max x.. b e lltt t e n ssiio n w h e n a p p ro ro a c h iin ng d r iv in g p u lle y = be lltt te n si sio n w h e n le le avi avin n g drivi drivin ng p u l le y = lo w eesst pe pe rm issib le le b el e lt te t e n sio n

(N) (N)

td tb

= t h ickn e ss o f co ve r = t h ickn e ss o f b e lt

(m m ) (m m )

v vma x α ß

= = = =

(m /s) (m /s) (° )

γ  η

= =

µ

=

T2

λ

=

ϕ

=

b e lt sp e e d m a x. b e lt sp e e d , t a b le 2 a rrcc o f cco o n t a cctt o on n d rivin g pu p u l le y basi basicc an g le o f llo o a d stre stre am ccro ro ss ss se ct io n b u lk d e n sit y, t a b le 17 d e g r eeee o f e f f iiccie n ccyy o f t h e transmission co e f f ic icie n t o f f ric rictio tio n , ta bl e 11 11 – f o r slid iin ng b bee lt lt ss,, t a b llee 1 19 9 and 2 20 0 tro ug h an g le , ccarry arryiin g i dle dle rs rs,, t a b le 4 a n d 5 a ng n g le le o f in clin a ti t io n o f co nv nv e y o r

 

SPECIFICATION OF CONVEYOR BELT BELT TYPE The below mentioned examples indi indicca te t he da ta for una mbigu ous sspeci pecific ficaa tion o f conveyor belts. BELTCHOICE BEL TCHOICE FR FROM OM PROG RAMME 1 Con veyo r Be lt Type RO-PL RO-PLY Y Open 300 m × 800 mm × 400/2, 5 + 1,5 Belt Length (open or end les less) s) Belt Widt Widt h Belt Streng th (N/ (N/mm) Numbe r of Pli Plies es Top Cove r (mm) Botto m Cover ((mm) mm) Be lt Typ Typ e

BELTCHOICE BEL TCHOICE FR FROM OM PROG RAMME 2 RIBS FROM PROGRAMME 11

Conveyo r Belt Type Type B Ribs Typ e 512 Endless 80,00 m × 650 mm × EP 400/3, 3 + 1

Belt Length (open or end les less) s) Belt Widt Widt h Fab ric Typ e Belt Streng th (N/ (N/mm) Numbe r of Pli Plies es Top Cove r (mm) Botto m Cover ((mm) mm) Ri Rib bT Type ype (pro gra mme 11)

(N)

(° ) (t /m 3) (-) (-) (° ) (° )

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF