Complex Number

November 20, 2017 | Author: Vibhu Mittal | Category: Complex Number, Elementary Mathematics, Geometric Objects, Geometry, Algebra
Share Embed Donate


Short Description

Complex Number...

Description

COMPLEX NUMBER LEVEL-I 1.

If z1 , z2 are two complex numbers such that arg(z1+z2) = 0 and Im(z1z2) = 0, then (A) z1 = - z2 (B) z1 = z2 (C) z 1= z 2 (D) none of these

2.

Roots of the equation xn –1 = 0, n I, (A) form a regular polygon of unit circum-radius . (C) are non-collinear.

3.

4.

(B) lie on a circle. (D) A & B

Which of the following is correct (A) 6 + i > 8 – i (C) 6 + i > 4 + 2i

(B) 6 + i > 4 - i (D) None of these

If (1+i3)1999 = a+ib, then (A) a = 21998, b = 219983 (C) a=-21998, b = -219983

(B) a = 21999, b = 219993 (D) None of these

5.

If z = 1 + i 3 , then | arg ( z) | + | arg ( z ) | equals (A) /3 (B) 2/3 (C) 0 (D) /2

6.

The equation z z  i  i 3   z z  1  i 3 = 0 represents a circle with    1 3 1 3   and radius 1 (A) centre   , (B) centre  ,  and radius 1  2 2  2 2    





 1 3  and radius 2 (C) centre   ,  2 2   

1 3  (D) centre  ,  and radius 2 2 2  

7.

Number of solutions to the equation (1 –i)x = 2x is (A) 1 (B) 2 (C) 3 (D) no solution

8.

If arg( z )  0, then arg( z )  arg( z )  (A) 

9.

 4

(C) 

 2

The number of solutions of the equation z 2  z (A) one

10.

(B)

(B) two

(C) three

(D)  2

 2

 0, where z  C is (D) infinitely many

If  is an imaginary cube root of unity, then (1 +  –2)7 equals (A) 128  (B) –128  2 (C) 128  (D) –128 2

11.

If z1 and z2 be the nth roots of unity which subtend right angle at the origin. Then n must be of the form (A) 4k + 1 (B) 4k + 2 (C) 4k + 3 (D) 4k

12.

For any two complex numbers z1 and z2 | 7 z1 + 3z2|2 + |3z1 – 7 z2|2 is always equal to (A) 16(|z1|2 + |z2|2) (B) 4(|z1|2 + |z2|2) 2 2 (C) 8(|z1| + |z2| ) (D) none of these

13.

If  is an nth root of unity other than unity itself, then the value of 1 +  + 2 + ………+ n –1 is ………………………………

14.

Locus of ‘z’ in the Argand plane is z  2, then the locus of z + 1 is -

15.

16.

(A) a straight line

(B) a circle with centre (1, 0)

(C) a circle with centre (0, 0)

(D) a straight line passing through (0, 0)

Value of  1999   299  1 is (A) 1 (C) 0

(B) 2 (D) -1

Square root(s) of ‘–1’ is/ are -

1 1  i  2 1 (C)  1  i  2

1  i  1 3 1 (D)  1  i  2

(A)

17.

The real value of ‘’ for which (A)   n , (C)   n 

18.

3  2i sin  is real is 1  2i sin 

n I

 , nI 2

(B)   n  (D)  

5 6 5 (C)  6

(B)

 6

(D) None

Which one is not a root of the fourth root of unity (A) i (B) 1 (C)

i 2

(D) –i

 , nI 3

n , n I 2

Principal argument of z   3  i is (A)

19.

(B)

20.

If z 3  2 z 2  4 z  8  0 then (A) z  1

(B) z  2

(C) z  3

(D) None

LEVEL-II 1.

If a,b, c are three complex numbers such that c =(1– ) a + b, for some non-zero real number  , then points corresponding to a,b, c are (A) vertices of a triangle (B) collinear (C) lying on a circle (D) none of these

2.

If z be any complex number such that |3z –2| + |3z +2| = 4, then locus of z is (A) an ellipse (B) a circle (C) a line-segment (D) None of these

3.

If arg z1  = arg(z2), then (A) z2 = k z1-1 (k > 0) (C) |z2| = | z 1|

4.

(B) z2 = kz1 (k > 0) (D) None of these.

1  1   1  1  1  1    The value of the expression 2 1  1  2  +3  2   2  2  + 4  3   3  2  + .                1  1   . . + (n+1)  n   n  2  , where  is an imaginary cube root of unity, is      (A)



n n2  2 3



(B)



n n2  2 3



2

(C)

n 2 n  1  4n 4

(D) none of these

5.

For a complex number z , | z-1| + |z +1| =2. Then z lies on a (A) parabola (B) line segment (C) circle (D) none of these

6.

If z1 and z2 are two complex numbers such that |z1| = |z2| + |z1 – z2|, then z  z  (A) Im  1  = 0 (B) Re  1  = 0  z2   z2  z  z  (C) Re 1   Im 1   z2   z2 

7.

If

(D) none of these.

z1 =1 and arg (z1 z2) = 0, then z2

(A) z1 = z2 (C) z1z2 = 1

(B) |z2|2 = z1z2 (D) none of these.

8.

Number of non-zero integral solutions to (3+ 4i)n = 25n is (A) 1 (B) 2 (C) finitely many (D) none of these.

9.

If |z| < 4, then | iz +3 – 4i| is less than (A) 4 (C) 6

10.

(B) 5 (D) 9

If z is a complex number, then z2 + z 2 = 2 represents

11.

(A) a circle (C) a hyperbola

(B) a straight line (D) an ellipse

1  i = A + iB, then A2 +B2 equals to 1  i (A) 1 (B) -1

(B) 2 (D) - 2

If

12.

A,B and C are points represented by complex numbers z1, z2 and z3. If the circumcentre of the triangle ABC is at the origin and the altitude AD of the triangle meets the circumcircle again at P, then P represents the complex number zz z z (A) – 1 2 (B) – 2 3 z3 z1 z z zz (C) – 3 1 (D) 1 2 z2 z3

13.

If |z1| = |z2| and arg(z1) +arg(z2) = /2 , then (A) arg(z1-1) + arg(z2-1) = -/2 (B) z1z2 is purely imaginary (C) (z1+z2)2 is purely imaginary (D) All the above.

14.

If z1 and z2 are two complex numbers satisfying the equation (A) purely real (C) purely imaginary

z 1  iz 2 z 1  iz 2

 1, then

z1 is a z2

(B) of unit modulus (D) none of these

15.

If the complex numbers z1, z2, z3, z4, taken in that order, represent the vertices of a rhombus, then (A) z1 + z3 = z2 + z4 (B) |z1 – z2| = |z2 – z3| z  z3 (C) 1 is purely imaginary (D) none of these z2  z4

16.

If

17.

z1z  z 2  k, z1, z 2  0  then z1z  z2 (A) for k = 1 locus of z is a straight line (B) for k  {1, 0} z lies on a circle (C) for k = 0 z represents a point (D) for k = 1,z lies on the perpendicular bisector of the line segment z2 z and  2 z1 z1

joining

If the equation |z – z1|2 + | z – z2|2 = k represents the equation of a circle, where z1  2+ 3i, z2  4 + 3i are the extremities of a diameter, then the value of k is 1 (A) (B) 4 4 (C) 2 (D) None of these

18.

If z be a complex number and ai a1z  b1z a2 z  b2 z determinant b1z  a1z b2 z  a2 z b1z  a1 b2 z  a2

, bi , ( i= 1,2,3) are real numbers, then the value of the a3 z  b3 z b3 z  a3 z is equal to b3 z  a3

(A) (a1 a2 a3 + b1 b2 b3 ) |z|2 (C) 0

(B) |z|2 (D) None of these

19.

If z = x + iy satisfies the equation arg (z-2) = arg(2z+3i), then 3x-4y is equal to (A) 5 (B) -3 (C) 7 (D) 6

20.

If a complex number x satisfies log1 /

2

point represented by z is (A) |z| = 5 (C) |z|> 1 21.

 | z |2 2 | z | 6    1 (B) x – y < 0 (C) 4x – 2y > 3 (D) none of these

35.

Let Z1 and Z2 be the complex roots of ax2 + bx + c = 0, where a  b  c > 0. Then

(A) | Z1 + Z2 |  1 (C) |Z1 | = |Z2| = 1

(B) |Z1 + Z2 | > 2 (D) none of these

36.

If the roots of z3 + az2 + bz + c = 0, a, b, c C(set of complex numbers) acts as the vertices of a equilateral triangle in the argand plane, then (A) a2 + b = c (B) a2 = b 2 (C) a + b = 0 (D) none of these

37.

If |z1| = 4, |z2| = 4, then |z1 + z2 + 3 + 4i| is less than (A) 2 (B) 5 (C) 10 (D) 13

38.

If z = x + iy satisfies Re{z -|z –1| + 2i} = 0, then locus of z is 1  1 1 (A) parabola with focus   ,  and directrix x + y = 2  2 2 1  1 1 (B) parabola with focus   ,  and directrix x + y =  2  2 2 1 1  (C) parabola with focus  0,  and directrix y =  2 2  1 1  (D) parabola with focus  , 0  and directrix x =  2 2 

39.

If |z +1| = z + 1 , where z is a complex number, then the locus of z is (A) a straight line (B) a ray (C) a circle (D) an arc of a circle

40.

Length of the z 1  arg  , is z 1 4 (A) 2 2   (C) 2

41.

42.

the point

(B)

represented

2

(D) none of these

If 8iz 3  12 z 2  18 z  27i  0 then (A) z  3 2 (B) z  1 (C) z  2 3

(D) z  3 4

If z  i  2 and z1  5  3i then the maximum value of iz  z1 is (A) 2  31

43.

curved line traced by

(B)

31  2

(C)

31  2

(D) 7

1  sin 1  ( z  1), where z is not real, can be the angle of the triangle if i  (A) Re( z )  1, I m ( z )  2 (B) Re( z )  1,1  I m ( z )  1 (C) Re( z )  I m ( z )  0

(C) None of these

by z, when

44.

The value of ln(1) (A) does not exist (B) 2 ln i

(C) i

(D) 0

n

n

n

n

45.

If n1 , n 2 are positive integers then (1  i) 1  (1  i 3 ) 2  (1  i 5 ) 1  (1  i 7 ) 2 is a real Number if and only if (A) n1  n 2  1 (B) n1  1  n2 (C) n1  n 2 (D) n1 , n 2 be +ve integers

46.

Let z1 , z 2 be two nonreal complex cube roots of unity and z  z1

2

2

 z  z1   be the

equation of a circle with z1 , z 2 as ends of a diameter then the value of  is (A) 4 47.

(B) 3

The value of (A) i

(B) (1,4)

2k 2k   i cos  7 7  k 1 (B)  i (C) 1

(C) (2,5)

(D) (3,1)



  sin

(D) –1

The complex numbers z1, z2 and z3 satisfying triangle which is (A) of area zero (C) equilateral

50.

2

 3z  6  3i     is  2 z  8  6i  4

6

49.

(D)

The center of the arc arg (A) (4,1)

48.

(C) 2

If |z| = 3 then the number (A) purely real (C) a mixed number

z1  z3 1  i 3  are the vertices of a z 2  z3 2

(B) right angled isosceles (D) obtuse angled isosceles z3 is z3

(B) purely imaginary (D) none of these

51.

If iz3 + z2 –z + i = 0, then |z| is equal to ………………………………………

52.

If  and  are different complex numbers with || = 1, then

53.

If the complex numbers z1, z2, z3 are in A.P., then they lie on a (A) circle

(B) parabola

(C) line

(D) ellipse

 is equal to 1  

54.

z  If z1 and z2 are two nth roots of unity, then arg  1  is a multiple of ………………….  z2 

55.

The maximum value of |z| when z satisfies the condition z 

56.

All non-zero complex numbers z satisfying z = iz2 are…………………………………….

57.

Common roots of the equation z3 + 2z2 + 2z +1 = 0 and z1985 + z100 + 1 = 0 is …………

2 = 2 is ……………… z

LEVEL-III 1.

If points corresponding to the complex numbers z1, z2, z3 and z4 are the vertices of a rhombus, taken in order, then for a non-zero real number k (A) z1 – z3 = i k( z2 –z4) (B) z1 – z2 = i k( z3 –z4) (C) z1 + z3 = k( z2 +z4) (D) z1 + z2 = k( z3 +z4)

2.

If z1 and z2 are two complex numbers such that | z1 – z2| = | |z1| - |z2| |, then argz1 – argz2 is equal to (A) - /4 (B) - /2 (C) /2 (D) 0

3.

If f(x) and g(x) are two polynomials such that the polynomial h(x) = x f(x3) + x2 g(x6) is divisible by x2 +x +1 , then (A) f(1) = g(1) (B) f(1)  - g( 1) (C) f(1) = g(1)  0 (D) f(1) = -g(1)  0

4.

Consider a square OABC in the argand plane, where ’O’ is origin and A  A(z0). Then the equation of the circle that can be inscribed in this square is; ( vertices of square are given in anticlockwise order) z 1  i (A) | z – z0(1+ i)| =|z0| (B) 2 z  0  z0 2 (C) z 

z 0 1  i  z0 2

(D) none of these .

5.

For a complex number z, the minimum value of |z| + | z - cos - isin| is (A) 0 (B) 1 (C) 2 (D) none of these

6.

The roots of equation zn = (z +1)n (A) are vertices of regular polygon (C) are collinear

7.

The vertices of a triangle in the argand plane are 3 + 4i, 4+ 3i and 2 6 + i, then distance between orthocentre and circumcentre of the triangle is equal to,

137  28 6 1 (C) 137  28 6 2 (A)

8.

(B) lie on a circle (D) none of these

137  28 6 1 (D) 137  28 6 . 3 (B)

One vertex of the triangle of maximum area that can be inscribed in the curve |z – 2 i| =2,is 2 +2i , remaining vertices is / are (A) -1+ i( 2 + 3 )

(B) –1– i( 2 + 3 )

(C) 1+ i( 2 – 3 )

(D) –1– i( 2 – 3 )

9.

 3  z1  2  z 2    = k, then points A(z1) , B(z2), C(3, 0) and D(2, 0) (taken in clockwise If   2  z1  3  z 2  sense) will (A) lie on a circle only for k > 0 (B) lie on a circle only for k < 0 (C) lie on a circle  k  R (D) be vertices of a square  k( 0, 1)

10.

Let ‘z’ be a complex number z2 + az + a2 = 0, then (A) locus of z is a pair of straight lines 2 (B) arg(z) =  3 (C) |z| =|a| . (D) All

11.

If z1, z2, z3 . . .. zn-1 are the roots of the equation zn-1 + zn-2 + zn-3 + . . .+z +1= 0, where n  N, n > 2, then (A) n, 2n are also the roots of the same equation. (B) 1/n, 2/n are also the roots of the same equation. (C) z1, z2, . . . , zn-1 form a geometric series. (D) none of these. Where  is the complex cube root of unity.

12.

The value of i log(x – i) + i2 +i3 log(x +i) + i4( 2 tan-1x), x> 0 ( where i = (A) 0 (B) 1 (C) 2 (D) 3

13.

If z = -2 + 2 3i , then z2n + 22n zn + 24n may be equal to (A) 22n (B) 0 4n (C) 3. 2 (D) none of these

14.

The value of 169e  (A) 119 –120i (C) 119 + 120i

12 5   i   sin1  cos1  13 13 

and

‘a’

be

a

real

parameter

such

that

 1 ) is

is (B) -i(120 +119i) (D) none of these

15.

Let z1 and z2 be the complex roots of the equation 3z2 + 3z+ b = 0. If the origin, together with the points represented by z1 and z2 form an equilateral triangle then the value of b is (A) 1 (B) 2 (C) 3 (D) None of these

16.

If|z-2| = min {|z-1|,| z-3|}, where z is a complex number, then 3 5 (A) Re(z) = (B) Re(z) = 2 2

3 5  (C) Re (z)   ,  2 2 17.

(D)

None of these

If x = 1 + i, then the value of the expression x4 – 4x3 + 7x2 – 6x + 3 is (A) -1 (B) (C) 2 (D)

1 None of these

18.

If z lies on the circle centred at origin. If area of the triangle whose vertices are z, z and z + z, where  is the cube root of unity, is 4 3 sq. unit. Then radius of the circle is (A) 1 unit (B) 2 units (C) 3 units (D) 4 units

19.

If i  [0, /6], i = 1, 2, 3, 4, 5 and sin 1z4 + sin2 z3 + sin3 z2 + sin 4 z + sin5 = 2, then z satisfies. 3 1 (A) | z | (B) | z | 4 2 1 3 (C) | z | (D) None of these 2 4

20.

If  is the angle which each side of a regular polygon of n sides subtends at its centre, then 1 + cos + cos2 + cos3 … + cos(n-1) is equal to (A) n (B) 0 (C)1 (D) None of these

21.

Triangle ABC, A(z1), B(z2), C(z3) is inscribed in the circle |z| = 2. If internal bisector of the angle A meets its circumcircle again at D(zd) then (A) z 2d  z 2 z3 (B) z2d  z1z3 (C) z2d  z2 z1

(D) none of these

ANSWERS LEVEL −I 1. 5. 9. 13. 17.

C B D 0 A

2. 6. 10. 14. 18.

D B D B A

3. 7. 11. 15. 19.

D A D C C

4. 8. 12. 16. 20.

A A A A B

LEVEL −II 1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49.

B B D D B D 0 B B D A C C

2. 6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46. 50.

C A C A C A A A C D D B B

3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 43. 47. 51.

A B A A, B, C D 20 D D A B B A 1

4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48.

C D B A, B, C, D B  C A D D C A

52.

1

53.

C

54.

2 n

55.

1+

56.

 3 1 ,      2 2

57.

, 2

2. 6. 10. 14. 18.

D C D A, B D

3. 7. 11. 15. 19.

A B C A A

4. 8. 12. 16. 20.

B A A C B

LEVEL −III 1. 5. 9. 13. 17. 21.

A B C B, C B A

3

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF