Compendio de Fisica Moderna Vol 5
July 18, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Compendio de Fisica Moderna Vol 5...
Description
H@SÄQ]NL
;8
[MX]DMJ
Mjmreä` pltmjho`n mnïhtroh`9 N` fumrz` mnïhtroh` h`us`a` plr hu`nquomr hljiujtl am h`re`s ms uj` fumrz` hljsmrv`tov`. Mn tr`k`il U U rm`noz`al rm`noz`al plr n` fumrz` mnïhtroh` slkrm uj` p`rtähun` hlj h`re` qum sm dumvm mj uj h`dpl mnïhtrohl sm rmprmsmjt` plr mn h`dkol mj uj` fujhoøj am mjmreä` pltmjho`n ] pltmjho`n ] . N` mjmreä` pltmjho`n mnïhtroh` p`r` als h`re`s pujtu`nms q y q3 ampmjam am su smp`r`hoøj r . N` mjmreä` pltmjho`n mnïhtroh` p`r` uj` h`re` q3 mj prmsmjho` am uj hljiujtl am h`re`s q0, q;, q8 ampmjam am n` aost`jho` am q3 ` h`a` uj` am n`s amdàs h`re`s. (Vï`jsm nls mimdpnls ;8.0 y ;8.;.)
Sltmjho`n mnïhtrohl9 Mn pltmjho`n, amjlt`al plr V , ms mjmreä` pltmjho`n plr ujoa`a am h`re`. N` aofmrmjho` am pltmjho`n mjtrm als pujtls ms oeu`n ` n` h`jtoa`a am tr`k`il qum sm rmqumrorä` p`r` tr`sn`a`r uj` ujoa`a am h`re` am prumk` plsotov` mjtrm msls pujtls. Mn pltmjho`n V amkoal ` uj` h`jtoa`a am h`re` sm h`nhun` dmao`jtm uj` sud` (so n` h`re` ms uj hljiujtl am h`re`s pujtu`nms) l dmao`jtm ojtmer`hoøj (so n` h`re` ms uj` aostrokuhoøj). (Vï`jsm nls mimdpnls ;8.8, ;8.1, ;8.=, ;8.5, ;8.00 y ;8.0;.) N` aofmrmjho` am pltmjho`n mjtrm als pujtls ` y k, t`dkoïj nn`d`a` pltmjho`n am ` hlj rmspmhtl ` k, mstà a`al X plr n` ojtmer`n am näjm` am M. Mn pltmjho`n am uj pujtl X a`al sm mjhumjtr` lktmjomjal prodmrl M y amspuïs rmslnvomjal n` ojtmer`n. (Vï`jsm nls mimdpnls ;8.6, ;8.7, ;8.? y ;8.03.)
(;8.;)
U ` X k = ] ` ; ] k ] =
1 pS3 r (als h`re`s pujtu`nms)
q3
1 pS3
0
q0
q;
r 0
r ;
0
0
;
q8 r 8
q;
(;8.?) r 0
] ] =
q3 q0 0 q; 0 q8 0 h 1 pS3 r 0 r ; r 8 q3 qo
0
;
r ;
(;8.03)
] 0 q = q3 1 pS3 r (amkoal ` uj` h`re` pujtu`n) = V = V
= V = V
]
0
(;8.01)
0 1 pS3
V =
0 1 pS3
0
q0
q;
r 0
r ;
0
0
q8 r 8
;
r 0 r ;
q8
r 8
8 aqr
q0
qo
(;8.0=) q3 (amkoal ` uj hljiujtl am h`re`s pujtu`nms) = V = V
q3
q;
1 pS3 ` o r o
=
q8
r 8
1 pS3 ` o r o (q3 mj prmsmjho` am ltr`s h`re`s pujtu`nms) =
(;8.06)
S
(amkoal ` uj` aostrokuhoøj am h`re`) V ` ; V k =
8
k
X
M
# a n = X
`
k
8 M hls f an
`
(;8.05)
x = ; M
'V 'V M = ; M = ; ' x ' y ' z
'V
y
z
(;8.0?) X
0
M = ; a Z Z
'V ' x
0 m Z
(flrd` vmhtlro`n)
731
] =
qq3
0
Xupmrffhoms mquopltmjho`nms9 ]j` supmrffhom mquopltmjho`n ms `qumnn` mj n` qum mn pltmjho`n tomjm mn dosdl v`nlr mj h`a` pujtl. Mj mn pujtl mj qum uj` näjm` am h`dpl hruz` uj` supmrffhom mquopltmjho`n, `dk`s slj pmrpmjaohun`rms. Hu`jal tla`s n`s h`re`s mstàj mj rmplsl, n` supmrffhom am uj hljauhtlr somdprm ms uj` supmrffhom mquopltmjho`n y tlals nls pujtls mj mn ojtmrolr amn hljauhtlr mstàj `n dosdl pltmjho`n. Hu`jal uj` h`voa`a amjtrl am uj hljauhtlr jl hljtomjm h`re`, tla` n` h`voa`a ms uj` rmeoøj mquopltmjho`n y jl g`y h`re` supmrffho`n mj jojeuj` p`rtm am n` supmrffhom am n` h`voa`a.
Hànhunl amn h`dpl mnïhtrohl ` p`rtor amn pltmjho`n mnïhtrohl9 Xo sm hljlhm mn pltmjho`n V hldl fujhoøj am n`s hllramj`a`s x , y y z, n`s hldpljmjtms amn h`dpl X mnïhtrohl M mj hu`nquomr pujtl mstàj a`a`s plr n`s amrov`a`s amrov`a`s p`rho`nms am V . (Vï`jsm nls mimdpnls ;8.08 y ;8.01.)
q0
'V
0 b
' y
;
'V
Z
' z
(;8.;3)
Näjm` am h`dpl mnïhtrohl
‘
Hlrtm tr`jsvmrs`n am uj` supmrfohom mquopltmjho`n
+
Srmeujt`s p`r` `jànosos
73=
Qïrdojls hn`vm mjmreä` pltmjho`n (mnïhtroh`), 570 pltmjho`n (mnïhtrohl), 575 vlnt, 577
vlnt`im, 577 mnmhtrøj vlnt, 5?3
supmrffhom mquopltmjho`n, 5?? er`aomjtm, 73;
[mspumst` ` n` prmeujt` am ojohol am h`pätunl
X
<
]j` aofmrmjho` am pltmjho`n er`jam y hljst`jtm V `k `k sm d`jtomjm mjtrm n` gmrr`domjt` am slna`aur` ( `) y nls mnmdmjtls dmtànohls plr slna`r (k). Amn mimdpnl ;8.? (smhhoøj ;8.8), mn h`dpl mnïhtrohl mjtrm als hljauhtlrms smp`r`als plr uj` aost`jho` a tomjm d`ejotua M = V `k `k:a . Mjtljhms, a amkm smr pmqumð` p`r` qum n` d`ejotua amn h`dpl M sm` suffhomjtmdmjtm er`jam hldl p`r` qum oljohm mn e`s mjtrm nls hljauhtlrms ` y k (vï`sm n` smhhoøj ;8.8) y prlauzh` uj `rhl ` tr`vïs am mstm e`s.
[mspumst`s ` n`s prmeujt`s am Mv`nùm su hldprmjsoøj ;8.0 [mspumst`s9 `) o), k) oo)
N`s trms h`re`s q0, q; y q8 slj plsotov`s. Am `gä qum n` mjmreä` pltmjho`n mnïhtroh` tlt`n ] sm` plsotov`. Mstl soejoffh` qum sm rmqumrorä` tr`k`il plsotovl p`r` nnmv`r n`s trms h`re`s amn ojffjotl ` n`s plsoholjms qum sm ojaoh`j mj n` ffeur` ;0.01, y tr`k`il jme`tovl p`r` nnmv`rn`s am rmermsl am ms`s plsoholjms `n ojffjotl.
Xo M = 3 mj homrtl pujtl, V jl tomjm qum smr oeu`n ` hmrl mj msm pujtl. ]j mimdpnl ms mn pujtl L mj mn hmjtrl amn `jonnl hlj h`re` mj n`s ffeur`s ;0.;1 y ;8.;0. Amn mimdpnl ;0.03 (smhhoøj ;0.=), mn h`dpl mnïhtrohl ms oeu`n ` hmrl mj L y` qum n`s hljtrokuholjms am n`s aofmrmjtms p`rtms amn `jonnl sm `jun`j plr hldpnmtl. Xoj mdk`rel, amn mimdpnl ;8.00, mn pltmjho`n mj L jl ms oeu`n ` hmrl9 mstm pujtl hlrrmspljam ` x = 3, plr nl qum V V = = 0 0 / 1 pS3 ; 0 P / ` ; . Mstm v`nlr am V hlrrmspljam `n tr`k`il qum sm tmjarä` qum mfmhtu`r p`r` amspn`z`r uj` ujoa`a am h`re` am prumk` plsotov` ` nl n`rel am uj` tr`ymhtlro` amn ojffjotl `n pujtl L2 jl ms oeu`n ` hmrl plrqum mn `jonnl hlj h`re` rmpmnm n` h`re` am prumk`, am d`jmr` qum amkm g`hmrsm tr`k`il plsotovl p`r` nnmv`r n` h`re` am prumk` mj aormhhoøj amn `jonnl. ;8.1 [mspumst`9 jl Xo n`s h`re`s plsotov`s mj n` ffeur` ;8.;1 sm sustotuymr`j plr h`re`s jme`tov`s, y vohmvmrs`, n`s supmrffhoms mquopltmjho`nms smrä`j oeu`nms, pmrl mn soejl amn pltmjho`n sm ojvmrtorä`. Slr mimdpnl, n`s supmrffhoms mj n` ffeur` ;8.;1k hlj pltmjho`n V = 083 V y V = ;=3 V tmjarä`j pltmjho`nms V = ;83 V y V = 0=3 V, V, rmspmhtov`dmjtm. rmspmhtov`dmjtm .
;8.8 [mspumst`9 jl
X
;8.; [mspumst`9 jl Xo V = 3 mj homrtl pujtl, M jl tomjm qum smr oeu`n ` hmrl mj msm pujtl. ]j mimdpnl am mstl ms mn pujtl h mj n`s ffeur`s ;0.;8 y ;8.01, p`r` mn qum g`y uj h`dpl mnïhtrohl mj aormhhoøj 0 x (vï`sm mn mimdpnl ;0.? mj n` smhhoøj ;0.=) `uj hu`jal V = 3 (vï`sm mn X mimdpnl ;8.1). Mstm rmsunt`al jl ms slrprmjamjtm, y` qum V y M slj h`jtoa`ams duy aofmrmjtms9 V ms n` h`jtoa`a am tr`k`il qum sm rmquomrm p`r` nnmv`r uj` h`re` ujot`ro` amn ojffjotl `n pujtl mj humstoøj, domjtr`s X qum M ms n` fumrz` mnïhtroh` mnïhtroh` qum `htù` slkrm slkrm uj` ujoa`a am am h`re` hu`jal nnme` ` msm pujtl.
S[LKNMD@X
;8.= [mspumst`9 ooo) Am n`s mhu`holjms (;8.0?), n`s hldpljmjtms amn h`dpl
mnïhtrohl
slj M x = ;'V / ' x = K 0 Ay, M y = ;'V / ' y = x =
8Hy 0 Ax y M z = ;'V / ' z = 3. Mn v`nlr am @ jl tomjm mfmhtl, nl qum ;
soejoffh` qum sm pumam sud`r uj` hljst`jtm `n pltmjho`n mnïhtrohl mj tlals X
nls pujtls soj qum h`dkomj M l n` aofmrmjho` am pltmjho`n mjtrm als pujtls. X
Mn pltmjho`n jl ampmjam am z, plr nl qum n` hldpljmjtm z am M ms oeu`n ` hmrl. Lksmrvm qum mj mn lroemj mn h`dpl mnïhtrohl jl ms oeu`n ` hmrl plrqum tomjm uj` hldpljmjtm x aostojt` am hmrl9 M x = K, M y = 3, M z = 3.
S`r` n`s t`rm`s `soej`a`s plr mn prlfmslr, vosotm www.d`stmrojepgysohs.hld vosotm www.d`stmrojepgysohs.hld
Srmeujt`s p`r` `jànosos X
S;8.0. ]j mstuao`jtm prmeujtø9 „Hldl mn pltmjho`n mnïhtrohl somdprm
S;8.6. Xo M ms oeu`n ` hmrl ` tr`vïs am homrt` rmeoøj amn msp`hol, ¼mn pl-
ms prlplrholj`n ` n` mjmreä` pltmjho`n, ¼plr quï dlnmst`rsm hlj mn hljhmptl am pltmjho`n
View more...
Comments