Column Base Plate (Fixed Type)
Short Description
Download Column Base Plate (Fixed Type)...
Description
Jurong Aromatics Complex Project CALCULATION COLUMN BASE PLATE
CALCULATION REPORT FOR COLUMN BASE PLATE
Job No.
:
Project Title : : Location Client
:
JAC0701 Jurong Aromatics Complex Project Jurong Island, in Singapore Jurong Aromatics Corporation Pte Ltd
A
03.Jun.2011
Issued For Approval
J.H.Baek
W.S.Ham
I.Heo
REV
DATE
DESCRIPTION
PRP'D
CHK'D
APP'D
OWNER
Jurong Aromatics Complex Project CALCULATION COLUMN BASE PLATE TABLE OF CONTENTS
1. SKETCH OF COLUMN BASE PLATE
2. CALCULATION OF BOLT TENSION AND CONCRETE COMPRESSION 2-1. Moment plus maximum axial force 2-2. Moment plus minimum axial force
3. BASE PLATE THICKNESS 3-1. Compression side bending 3-2. Tension side bending
4. HOLDING DOWN BOLTS AND ANCHORAGE 4-1. Holding down bolts 4-2. Anchorage to concrete
5. SHEAR TRANSFER TO CONCRETE
6. WELDING CHECK 6-1. Tension flange weld 6-2. Compression flange weld 6-3. Web weld
CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:
Doc No
:
Job No
:
Rev
:
Page
:
07261D
Base Plate for H - Shape Steel Column (Fixed Type A)
REFERENCE
1. SKETCH OF COLUMN BASE PLATE Design loads Axial force (Fc) Mininum, Fc,min
=
219.2 kN
Maximum, Fc,max
=
882.7 kN
Shear force (Fv)
=
65.7 kN
Moment (M)
=
67.9 kNm
60% of shear capa.
Design data Column size
H200X100X5.5X8
Depth
Dc
200.0 mm
Width
Bc
100.0 mm
Flange thickness
Tc
8.0 mm
Web thickness
tc
5.5 mm
Depth
Dp
400.0 mm
Width
Bp
300.0 mm
Thickness
Tp
35.0 mm
Flange weld
sw
8.0 mm
Web weld
s'
8.0 mm
Base plate
Anchor bolt Bolt size
20 mm
No. of bolt Bolt to bolt distance
4 ea Gh
Bolt to edge distance
300.0 mm 50.0 mm
Length
450.0 mm
Materials Base plate
SM490A Fu
490.0 MPa
Min. yielding strength
Fy
325.0 MPa
t < 16
Fy
315.0 MPa
16 < t < 40
Grade 4.6
Anchor bolt ◆ DESIGN RESULT SUMMARY
Shear strength
ps
Tensile capacity 1. Plate thickness
∴ O.K!
2. Anchor bolt
∴ O.K!
3. Shear transfer
∴ O.K!
4. Welds
∴ O.K!
refer to GIS G3106
Min. tensile strength
Bedding Concrete
78.4 kN fcu
3 / 11
40.0 N/mm2 refer to JES-43A1 Grade E43
Welding Welding capacity
refer to BS 4190
160.0 N/mm2
Pw
215.0 N/mm2
CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:
Doc No
:
Job No
:
Rev
:
Page
:
Base Plate for H - Shape Steel Column (Fixed Type A)
REFERENCE
2. CALCULATION OF BOLT TENSION AND CONCRETE COMPRESSION
STEP 1
An interface compression force is coupled with a tensile force in the bolts to balance the applied axial compression and bending moment. The moment may act in either direction and symmetrical details are chosen. The distribution of forces gives the equations which must be satisfied simultaneously for a simple base with one row of bolts on each side.
2-1. Moment plus maximum axial force To determine the eccentricity leads to an indication of the necessary base size if no bolt tension was available. Check whether there is tension in the bolts; eccentricity b
=
M/N
=
67925 kNmm / 882.7 kN
=
77.0
mm
distance to edge of compressive stress block X/2
=
Dp / 2 - b
Compression
=
400 / 2 - 77
=
123
mm
X=
246.0
=
(area of compressive stress block) x (cuve strength of concrete) ≥ (axial force)
=
(2 x 123 x 300) x (0.6 x 40 N/mm² / 10³)
=
1771
≥
kN
mm
☞ No tension in the bolts!
882.7 kN
Projecting portion of base as a cantilever (see Figure 1): required design stress =
(Axial force) / (area of compressive stress block)
=
882.7 x 10³ / (300 x 123 x 2)
=
11.96 N/mm2
e =
L1 - 0.8·sw
=
100 - (0.8 x 8)
=
93.6
mm Figure 1: Uniform pressure on cantilever
Moment per mm width applied to plate from stress block, mc =
e2
(required design stress) x
11.96 x 93.6²
=
2
2
=
52393.6
Nmm
(per mm width)
2-2. Moment plus minimum axial force Substituting defined values into the equilibrium equation M = Ta + Cb becomes: M = 0.6·fcu·bp·X·(h -
X 2
hp
) - N (h -
2
)
Substituting values results in the quadratic equation: (-3600) X² + (2520000) X + (-100798120) = 0 Solving for X gives: X =
42.6 ∴X=
or
657.4 42.6
mm
07261D
Figure 2: Uniform pressure on part of cantilever
4 / 11
CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:
Doc No
:
Job No
:
Rev
:
Page
:
Base Plate for H - Shape Steel Column (Fixed Type A)
07261D
REFERENCE
Substituting into the equations for C and T gives: C =
0.6·fcu·Bp·X
=
0.6 x 40 x 300 x 42.6 / 10³
=
306.7
kN
T =
C-N
=
306.7 - 219.2
=
87.6
kN
Moment per mm width applied to plate from stress block, mc = =
0.6·fcu·X (e - X/2) 0.6 x 40 x 42.6 x (93.6 - 42.6/2)
=
73919.5
Nmm
(per mm width)
3. BASE PLATE THICKNESS
STEP 2
Plate bending on either the tension side or the compression side may govern. Both sides must be investigated and the required plate thickness is the larger value resulting from these checks.
3-1. Compression side bending Projecting portion of base as a cantilever (see Figure 1): moment per mm width applied to plate from stress block, mc = maximum value of 2-1. and 2-2. above =
required base plate thickness:
4·mc
tp =
Fy
73919.5
=
Nmm
4 x 73919.5 315
=
30.6
mm
3-2. Tension side bending Plate thickness to resist bolt tension is based on a calculation for a pure cantilever, with no prying assumed. Plate bending across the corners may only be avoided by ensuring bolts are positioned within lines 45˚ from the corner of the column flange. (see Figure 3)
mr = T x m
= =
m = L1 - k - 0.8 sw = =
87.6 x 43.6 x 10³ 3817871.8
100 - 50 - 0.8 x 8 43.6
required base plate thickness: tp =
Larger plate thickness tp =
Figure 3: Plate bending on tension side
Nmm
30.6 mm
mm 4·mr Fy·bp ≤
=
35
4 x 3817871.8 315 x 300 mm
=
12.7
mm
∴ O.K! ☞ Plate thickness is sufficient!
5 / 11
CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:
Doc No
:
Job No
:
Rev
:
Page
:
Base Plate for H - Shape Steel Column (Fixed Type A)
07261D
REFERENCE
4. HOLDING DOWN BOLTS AND ANCHORAGE
STEP 3
4-1. Holding down bolts Force T is assumed to be shared equally between all the bolts in the tension row:
force per bolt = =
T (number of bolts in tension) ≤
43.8 kN
=
87.6 2
∴ O.K!
78.4 kN
4-2. Anchorage to concrete Assume an effective depth of the holding down bolts, L = =
450 - 50 (cover to reinforcement) 400
mm
Using anchor plate and check the concrete base for punching shear in accordance with BS 8110. Anchor plate size (for Grade 4.6 bolts) = 5d x 5d x 0.6d thk.
=
100 x 100 x 12 mm
Perimeter for punching shear P= =
(12 x L) + (total perimeter of anchor plate) (12 x 400) + (50 x 2 + 300 x 1) x 2 + (100 x 2) fv
Basic requirement,
≤
=
5800.0
mm
=
0.038
N/mm2
vc
Average shear stress fv =
T PxL
=
87.6 x 10³ 5800 x 400
Obtaining design concrete shear stress, v c in accordance with table 3.8 of BS 8110, an area of tension reinforcement is assumed to its minimum value of 0.15% at the effective depth of 400 mm. vc =
0.34 N/mm2
>
∴ O.K!
0.038 N/mm2
☞ Anchor bolts are sufficient!
5. SHEAR TRANSFER TO CONCRETE
STEP 4
Most moment connections are able to rely on friction. However, if high shear is combined with low moment and low axial compression, or if there is axial tension, it is the safest to provide a direct shear connection, either by setting the base plate in a shallow pocket which is filled with concrete or by providing a shear key welded to the underside of the plate. Check if the horizontal shear is transferred by friction, assuming available resistance to 0.3 of axial compression where axial tension is not applied. available shear resistance = 0.3 x Fc,min =
65.7 kN
≥
Fv =
65.7 kN
∴ O.K!
☞ The horizontal shear is transferred by friction!
6 / 11
CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:
Doc No
:
Job No
:
Rev
:
Page
:
Base Plate for H - Shape Steel Column (Fixed Type A)
REFERENCE
6. WELDING CHECK
STEP 5
6-1. Tension flange weld For most small and medium sized columns, the tension flange welds will be symmetrical, full strength fillet welds. Once the leg length of the required fillet weld exceeds 12mm then a partial penetration butt welds with superimposed fillet welds, or full penetration butt welds will probably be a more economical solution. tension capacity of the flange
=
Bc x Tc x Fy
=
100 x 8 x 325 / 10³
= force in the tension flange
= = =
260 kN M D c - Tc
-Nx
67.9 x 10³ 200 - 8
Af Ac - 219.2 x
800 2716
289.2 kN
where, Af : area of the column flange = Bc x Tc ,mm2 Ac : column cross-sectional area, mm2 Therefore, weld force per mm
=
289.2 / (2 x 100 - 5.5)
weld throat required at 215 N/mm² flange weld thickness =
8.0 mm
= ≥
1.487
1.487 x 10³ / 215
6.9
kN/mm mm
∴ O.K!
6.9 mm
☞ 8mm full strength fillet weld is required!
6-2. Compression flange weld Assuming bearing contact, nominal welds only are required. However, since the moment is reversible, the tension weld must be made to both flanges.
6-3. Web weld The capacity of the column web welds for horizontal shear forces should be taken as: Psw
=
2 x 0.7 x s' x Pw x Lws
=
2 x 0.7 x 8 x 215 x (200 - 8 x 2) / 10³
=
443.1 kN
07261D
≥
∴ O.K!
65.7 kN
where, Lws : length of web welds between fillets, mm
☞ 8mm fillet weld is required!
7 / 11
AVAILABLE SECTION LIST & PROPERTY for JAC NO
Name
H
Bf
Tw
Tf
r
(mm)
(mm)
(mm)
(mm)
(mm)
A (cm2)
Ix (cm4)
Iy (cm4)
1 H194X150X6X9
194
150
6
9
13
39.01
2630
507
2 H200X100X5.5X8
200
100
5.5
8
11
27.16
1810
134
3 H244X175X7X11
244
175
7
11
16
56.24
6040
984
4 H250X125X6X9
250
125
6
9
12
37.66
3960
294
5 H294X200X8X12
294
200
8
12
18
72.38
11100
1600
6 H300X150X6.5X9
300
150
6.5
9
13
46.78
7210
508
7 H340X250X9X14
340
250
9
14
20
101.5
21200
3650
8 H350X175X7X11
350
175
7
11
14
63.14
13500
984
9 H390X300X10X16
390
300
10
16
22
135
37900
7200
10 H400X200X8X13
400
200
8
13
16
84.12
23500
1740
11 H440X300X11X18
440
300
11
18
24
157.4
54700
8110
12 H450X200X9X14
450
200
9
14
18
96.76
32900
1870
13 H488X300X11X18
488
300
11
18
26
163.5
68900
8110
14 H500X200X10X16
500
200
10
16
20
114.2
46800
2140
15 H588X300X12X20
588
300
12
20
28
192.5
114000
9010
16 H600X200X11X17
600
200
11
17
22
134.4
75600
2270
17 H700X300X13X24
700
300
13
24
28
235.5
197000
10800
18 H800X300X14X26
800
300
14
26
28
267.4
286000
11700
19 H100X100X6X8
100
100
6
8
10
21.9
378
134
20 H125X125X6.5X9
125
125
6.5
9
10
30.31
839
293
21 H150X150X7X10
150
150
7
10
11
40.14
1620
563
22 H200X200X8X12
200
200
8
12
13
63.53
4720
1600
23 H250X250X9X14
250
250
9
14
16
92.18
10700
3650
24 H300X300X10X15
300
300
10
15
18
119.8
20200
6750
25 H350X350X12X19
350
350
12
19
20
173.9
39800
13600
26 H400X400X13X21
400
400
13
21
22
218.7
66600
22400
Where, Zx, Zy Modulus of Section Sx, Sy Plastic Modulus of Section Sv Plastic Modulus of Web, means Plastic Modulus of Shear Area Av For Calculation of Section Capacity, Refer BS5950-1:2000, Section 4
SM490A py
t < 16 t < 40 t > 40 325 315 295 Mpa
Zx (cm3)
Zy (cm3)
Sx (cm3)
Sy (cm3)
Sv (cm3)
BCI CLASS
Shear Capacity (KN)
Moment Capacity (KN.m) Low Shear
=0.6*Av*py 271
67.6
309
104
46.5
2
227.0
100.4
181
26.7
209
41.9
46.6
1
214.5
67.9
495
112
558
173
86.2
1
333.1
181.4
317
47
366
73.1
80.7
1
292.5
119.0
756
160
859
247
145.8
2
458.6
279.2
481
67.7
542
105
129.2
3
380.3
156.3
1250
292
1410
447
219.0
2
596.7
458.3
771
112
868
174
188.3
3
477.8
250.6
1940
480
2190
733
320.4
3
760.5
630.5
1170
174
1330
268
279.8
3
624.0
380.3
2490
540
2820
828
448.8
1
943.8
916.5
1460
187
1680
291
400.7
3
789.8
474.5
2820
540
3230
830
561.8
1
1046.8
1049.8
1870
214
2180
335
547.6
3
975.0
607.8
3890
601
4490
928
900.9
3
1375.9
1264.3
2520
227
2980
361
881.0
3
1287.0
819.0
5640
721
6460
1120
1381.6
3
1774.5
1833.0
7160
781
8240
1220
1958.3
3
2184.0
2327.0
75.6
26.7
87.6
41.2
10.6
1
117.0
28.5
134
46.9
154
71.9
18.6
1
158.4
50.1
216
75.1
246
115
29.6
1
204.8
80.0
472
160
525
244
62.0
2
312.0
170.6
860
292
960
444
110.9
2
438.8
312.0
1350
450
1500
684
182.3
3
585.0
438.8
2280
776
2550
1180
292.0
2
819.0
828.8
3330
1120
3670
1700
416.5
3
1014.0
1082.3
※refer BS5950-1:2000, Section 4
Moment Capacity (KN.m) High Shear
85.3 52.8 153.3 92.7 231.8 128.3 387.1 209.8 543.8 319.6 746.9 387.7 840.5 474.1 1036.2 608.8 1486.5 1844.2 25.0 44.0 70.3 150.5 276.0 399.3 711.3 961.5 ※assume Fv/Pv=1, ρ=[2(Fv/Pv)-1]2 = 1, which is about 20% consevative than Fv/Pv=0.6
BASE PLATE SCHEDULE (H-PLATE) No.
Colume Size 1 H194X150X6X9 2 H200X100X5.5X8 3 H244X175X7X11 4 H250X125X6X9 5 H294X200X8X12 6 H300X150X6.5X9 7 H340X250X9X14 8 H350X175X7X11 9 H390X300X10X16 10 H400X200X8X13 11 H440X300X11X18 12 H450X200X9X14 13 H488X300X11X18 14 H500X200X10X16 15 H588X300X12X20 16 H600X200X11X17 17 H700X300X13X24 18 H800X300X14X26 19 H100X100X6X8 20 H125X125X6.5X9 21 H150X150X7X10 22 H200X200X8X12 23 H250X250X9X14 24 H300X300X10X15 25 H350X350X12X19 26 H400X400X13X21
View more...
Comments