Column Base Plate (Fixed Type)

September 4, 2017 | Author: Ernest Navarro | Category: Column, Stress (Mechanics), Bending, Screw, Structural Steel
Share Embed Donate


Short Description

Download Column Base Plate (Fixed Type)...

Description

Jurong Aromatics Complex Project CALCULATION COLUMN BASE PLATE

CALCULATION REPORT FOR COLUMN BASE PLATE

Job No.

:

Project Title : : Location Client

:

JAC0701 Jurong Aromatics Complex Project Jurong Island, in Singapore Jurong Aromatics Corporation Pte Ltd

A

03.Jun.2011

Issued For Approval

J.H.Baek

W.S.Ham

I.Heo

REV

DATE

DESCRIPTION

PRP'D

CHK'D

APP'D

OWNER

Jurong Aromatics Complex Project CALCULATION COLUMN BASE PLATE TABLE OF CONTENTS

1. SKETCH OF COLUMN BASE PLATE

2. CALCULATION OF BOLT TENSION AND CONCRETE COMPRESSION 2-1. Moment plus maximum axial force 2-2. Moment plus minimum axial force

3. BASE PLATE THICKNESS 3-1. Compression side bending 3-2. Tension side bending

4. HOLDING DOWN BOLTS AND ANCHORAGE 4-1. Holding down bolts 4-2. Anchorage to concrete

5. SHEAR TRANSFER TO CONCRETE

6. WELDING CHECK 6-1. Tension flange weld 6-2. Compression flange weld 6-3. Web weld

CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:

Doc No

:

Job No

:

Rev

:

Page

:

07261D

Base Plate for H - Shape Steel Column (Fixed Type A)

REFERENCE

1. SKETCH OF COLUMN BASE PLATE Design loads Axial force (Fc) Mininum, Fc,min

=

219.2 kN

Maximum, Fc,max

=

882.7 kN

Shear force (Fv)

=

65.7 kN

Moment (M)

=

67.9 kNm

60% of shear capa.

Design data Column size

H200X100X5.5X8

Depth

Dc

200.0 mm

Width

Bc

100.0 mm

Flange thickness

Tc

8.0 mm

Web thickness

tc

5.5 mm

Depth

Dp

400.0 mm

Width

Bp

300.0 mm

Thickness

Tp

35.0 mm

Flange weld

sw

8.0 mm

Web weld

s'

8.0 mm

Base plate

Anchor bolt Bolt size

20 mm

No. of bolt Bolt to bolt distance

4 ea Gh

Bolt to edge distance

300.0 mm 50.0 mm

Length

450.0 mm

Materials Base plate

SM490A Fu

490.0 MPa

Min. yielding strength

Fy

325.0 MPa

t < 16

Fy

315.0 MPa

16 < t < 40

Grade 4.6

Anchor bolt ◆ DESIGN RESULT SUMMARY

Shear strength

ps

Tensile capacity 1. Plate thickness

∴ O.K!

2. Anchor bolt

∴ O.K!

3. Shear transfer

∴ O.K!

4. Welds

∴ O.K!

refer to GIS G3106

Min. tensile strength

Bedding Concrete

78.4 kN fcu

3 / 11

40.0 N/mm2 refer to JES-43A1 Grade E43

Welding Welding capacity

refer to BS 4190

160.0 N/mm2

Pw

215.0 N/mm2

CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:

Doc No

:

Job No

:

Rev

:

Page

:

Base Plate for H - Shape Steel Column (Fixed Type A)

REFERENCE

2. CALCULATION OF BOLT TENSION AND CONCRETE COMPRESSION

STEP 1

An interface compression force is coupled with a tensile force in the bolts to balance the applied axial compression and bending moment. The moment may act in either direction and symmetrical details are chosen. The distribution of forces gives the equations which must be satisfied simultaneously for a simple base with one row of bolts on each side.

2-1. Moment plus maximum axial force To determine the eccentricity leads to an indication of the necessary base size if no bolt tension was available. Check whether there is tension in the bolts; eccentricity b

=

M/N

=

67925 kNmm / 882.7 kN

=

77.0

mm

distance to edge of compressive stress block X/2

=

Dp / 2 - b

Compression

=

400 / 2 - 77

=

123

mm

X=

246.0

=

(area of compressive stress block) x (cuve strength of concrete) ≥ (axial force)

=

(2 x 123 x 300) x (0.6 x 40 N/mm² / 10³)

=

1771



kN

mm

☞ No tension in the bolts!

882.7 kN

Projecting portion of base as a cantilever (see Figure 1): required design stress =

(Axial force) / (area of compressive stress block)

=

882.7 x 10³ / (300 x 123 x 2)

=

11.96 N/mm2

e =

L1 - 0.8·sw

=

100 - (0.8 x 8)

=

93.6

mm Figure 1: Uniform pressure on cantilever

Moment per mm width applied to plate from stress block, mc =

e2

(required design stress) x

11.96 x 93.6²

=

2

2

=

52393.6

Nmm

(per mm width)

2-2. Moment plus minimum axial force Substituting defined values into the equilibrium equation M = Ta + Cb becomes: M = 0.6·fcu·bp·X·(h -

X 2

hp

) - N (h -

2

)

Substituting values results in the quadratic equation: (-3600) X² + (2520000) X + (-100798120) = 0 Solving for X gives: X =

42.6 ∴X=

or

657.4 42.6

mm

07261D

Figure 2: Uniform pressure on part of cantilever

4 / 11

CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:

Doc No

:

Job No

:

Rev

:

Page

:

Base Plate for H - Shape Steel Column (Fixed Type A)

07261D

REFERENCE

Substituting into the equations for C and T gives: C =

0.6·fcu·Bp·X

=

0.6 x 40 x 300 x 42.6 / 10³

=

306.7

kN

T =

C-N

=

306.7 - 219.2

=

87.6

kN

Moment per mm width applied to plate from stress block, mc = =

0.6·fcu·X (e - X/2) 0.6 x 40 x 42.6 x (93.6 - 42.6/2)

=

73919.5

Nmm

(per mm width)

3. BASE PLATE THICKNESS

STEP 2

Plate bending on either the tension side or the compression side may govern. Both sides must be investigated and the required plate thickness is the larger value resulting from these checks.

3-1. Compression side bending Projecting portion of base as a cantilever (see Figure 1): moment per mm width applied to plate from stress block, mc = maximum value of 2-1. and 2-2. above =

required base plate thickness:

4·mc

tp =

Fy

73919.5

=

Nmm

4 x 73919.5 315

=

30.6

mm

3-2. Tension side bending Plate thickness to resist bolt tension is based on a calculation for a pure cantilever, with no prying assumed. Plate bending across the corners may only be avoided by ensuring bolts are positioned within lines 45˚ from the corner of the column flange. (see Figure 3)

mr = T x m

= =

m = L1 - k - 0.8 sw = =

87.6 x 43.6 x 10³ 3817871.8

100 - 50 - 0.8 x 8 43.6

required base plate thickness: tp =

Larger plate thickness tp =

Figure 3: Plate bending on tension side

Nmm

30.6 mm

mm 4·mr Fy·bp ≤

=

35

4 x 3817871.8 315 x 300 mm

=

12.7

mm

∴ O.K! ☞ Plate thickness is sufficient!

5 / 11

CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:

Doc No

:

Job No

:

Rev

:

Page

:

Base Plate for H - Shape Steel Column (Fixed Type A)

07261D

REFERENCE

4. HOLDING DOWN BOLTS AND ANCHORAGE

STEP 3

4-1. Holding down bolts Force T is assumed to be shared equally between all the bolts in the tension row:

force per bolt = =

T (number of bolts in tension) ≤

43.8 kN

=

87.6 2

∴ O.K!

78.4 kN

4-2. Anchorage to concrete Assume an effective depth of the holding down bolts, L = =

450 - 50 (cover to reinforcement) 400

mm

Using anchor plate and check the concrete base for punching shear in accordance with BS 8110. Anchor plate size (for Grade 4.6 bolts) = 5d x 5d x 0.6d thk.

=

100 x 100 x 12 mm

Perimeter for punching shear P= =

(12 x L) + (total perimeter of anchor plate) (12 x 400) + (50 x 2 + 300 x 1) x 2 + (100 x 2) fv

Basic requirement,



=

5800.0

mm

=

0.038

N/mm2

vc

Average shear stress fv =

T PxL

=

87.6 x 10³ 5800 x 400

Obtaining design concrete shear stress, v c in accordance with table 3.8 of BS 8110, an area of tension reinforcement is assumed to its minimum value of 0.15% at the effective depth of 400 mm. vc =

0.34 N/mm2

>

∴ O.K!

0.038 N/mm2

☞ Anchor bolts are sufficient!

5. SHEAR TRANSFER TO CONCRETE

STEP 4

Most moment connections are able to rely on friction. However, if high shear is combined with low moment and low axial compression, or if there is axial tension, it is the safest to provide a direct shear connection, either by setting the base plate in a shallow pocket which is filled with concrete or by providing a shear key welded to the underside of the plate. Check if the horizontal shear is transferred by friction, assuming available resistance to 0.3 of axial compression where axial tension is not applied. available shear resistance = 0.3 x Fc,min =

65.7 kN



Fv =

65.7 kN

∴ O.K!

☞ The horizontal shear is transferred by friction!

6 / 11

CALCULATION FOR COLUMN BASE PLATE (H-SHAPE) TITLE:

Doc No

:

Job No

:

Rev

:

Page

:

Base Plate for H - Shape Steel Column (Fixed Type A)

REFERENCE

6. WELDING CHECK

STEP 5

6-1. Tension flange weld For most small and medium sized columns, the tension flange welds will be symmetrical, full strength fillet welds. Once the leg length of the required fillet weld exceeds 12mm then a partial penetration butt welds with superimposed fillet welds, or full penetration butt welds will probably be a more economical solution. tension capacity of the flange

=

Bc x Tc x Fy

=

100 x 8 x 325 / 10³

= force in the tension flange

= = =

260 kN M D c - Tc

-Nx

67.9 x 10³ 200 - 8

Af Ac - 219.2 x

800 2716

289.2 kN

where, Af : area of the column flange = Bc x Tc ,mm2 Ac : column cross-sectional area, mm2 Therefore, weld force per mm

=

289.2 / (2 x 100 - 5.5)

weld throat required at 215 N/mm² flange weld thickness =

8.0 mm

= ≥

1.487

1.487 x 10³ / 215

6.9

kN/mm mm

∴ O.K!

6.9 mm

☞ 8mm full strength fillet weld is required!

6-2. Compression flange weld Assuming bearing contact, nominal welds only are required. However, since the moment is reversible, the tension weld must be made to both flanges.

6-3. Web weld The capacity of the column web welds for horizontal shear forces should be taken as: Psw

=

2 x 0.7 x s' x Pw x Lws

=

2 x 0.7 x 8 x 215 x (200 - 8 x 2) / 10³

=

443.1 kN

07261D



∴ O.K!

65.7 kN

where, Lws : length of web welds between fillets, mm

☞ 8mm fillet weld is required!

7 / 11

AVAILABLE SECTION LIST & PROPERTY for JAC NO

Name

H

Bf

Tw

Tf

r

(mm)

(mm)

(mm)

(mm)

(mm)

A (cm2)

Ix (cm4)

Iy (cm4)

1 H194X150X6X9

194

150

6

9

13

39.01

2630

507

2 H200X100X5.5X8

200

100

5.5

8

11

27.16

1810

134

3 H244X175X7X11

244

175

7

11

16

56.24

6040

984

4 H250X125X6X9

250

125

6

9

12

37.66

3960

294

5 H294X200X8X12

294

200

8

12

18

72.38

11100

1600

6 H300X150X6.5X9

300

150

6.5

9

13

46.78

7210

508

7 H340X250X9X14

340

250

9

14

20

101.5

21200

3650

8 H350X175X7X11

350

175

7

11

14

63.14

13500

984

9 H390X300X10X16

390

300

10

16

22

135

37900

7200

10 H400X200X8X13

400

200

8

13

16

84.12

23500

1740

11 H440X300X11X18

440

300

11

18

24

157.4

54700

8110

12 H450X200X9X14

450

200

9

14

18

96.76

32900

1870

13 H488X300X11X18

488

300

11

18

26

163.5

68900

8110

14 H500X200X10X16

500

200

10

16

20

114.2

46800

2140

15 H588X300X12X20

588

300

12

20

28

192.5

114000

9010

16 H600X200X11X17

600

200

11

17

22

134.4

75600

2270

17 H700X300X13X24

700

300

13

24

28

235.5

197000

10800

18 H800X300X14X26

800

300

14

26

28

267.4

286000

11700

19 H100X100X6X8

100

100

6

8

10

21.9

378

134

20 H125X125X6.5X9

125

125

6.5

9

10

30.31

839

293

21 H150X150X7X10

150

150

7

10

11

40.14

1620

563

22 H200X200X8X12

200

200

8

12

13

63.53

4720

1600

23 H250X250X9X14

250

250

9

14

16

92.18

10700

3650

24 H300X300X10X15

300

300

10

15

18

119.8

20200

6750

25 H350X350X12X19

350

350

12

19

20

173.9

39800

13600

26 H400X400X13X21

400

400

13

21

22

218.7

66600

22400

Where, Zx, Zy Modulus of Section Sx, Sy Plastic Modulus of Section Sv Plastic Modulus of Web, means Plastic Modulus of Shear Area Av For Calculation of Section Capacity, Refer BS5950-1:2000, Section 4

SM490A py

t < 16 t < 40 t > 40 325 315 295 Mpa

Zx (cm3)

Zy (cm3)

Sx (cm3)

Sy (cm3)

Sv (cm3)

BCI CLASS

Shear Capacity (KN)

Moment Capacity (KN.m) Low Shear

=0.6*Av*py 271

67.6

309

104

46.5

2

227.0

100.4

181

26.7

209

41.9

46.6

1

214.5

67.9

495

112

558

173

86.2

1

333.1

181.4

317

47

366

73.1

80.7

1

292.5

119.0

756

160

859

247

145.8

2

458.6

279.2

481

67.7

542

105

129.2

3

380.3

156.3

1250

292

1410

447

219.0

2

596.7

458.3

771

112

868

174

188.3

3

477.8

250.6

1940

480

2190

733

320.4

3

760.5

630.5

1170

174

1330

268

279.8

3

624.0

380.3

2490

540

2820

828

448.8

1

943.8

916.5

1460

187

1680

291

400.7

3

789.8

474.5

2820

540

3230

830

561.8

1

1046.8

1049.8

1870

214

2180

335

547.6

3

975.0

607.8

3890

601

4490

928

900.9

3

1375.9

1264.3

2520

227

2980

361

881.0

3

1287.0

819.0

5640

721

6460

1120

1381.6

3

1774.5

1833.0

7160

781

8240

1220

1958.3

3

2184.0

2327.0

75.6

26.7

87.6

41.2

10.6

1

117.0

28.5

134

46.9

154

71.9

18.6

1

158.4

50.1

216

75.1

246

115

29.6

1

204.8

80.0

472

160

525

244

62.0

2

312.0

170.6

860

292

960

444

110.9

2

438.8

312.0

1350

450

1500

684

182.3

3

585.0

438.8

2280

776

2550

1180

292.0

2

819.0

828.8

3330

1120

3670

1700

416.5

3

1014.0

1082.3

※refer BS5950-1:2000, Section 4

Moment Capacity (KN.m) High Shear

85.3 52.8 153.3 92.7 231.8 128.3 387.1 209.8 543.8 319.6 746.9 387.7 840.5 474.1 1036.2 608.8 1486.5 1844.2 25.0 44.0 70.3 150.5 276.0 399.3 711.3 961.5 ※assume Fv/Pv=1, ρ=[2(Fv/Pv)-1]2 = 1, which is about 20% consevative than Fv/Pv=0.6

BASE PLATE SCHEDULE (H-PLATE) No.

Colume Size 1 H194X150X6X9 2 H200X100X5.5X8 3 H244X175X7X11 4 H250X125X6X9 5 H294X200X8X12 6 H300X150X6.5X9 7 H340X250X9X14 8 H350X175X7X11 9 H390X300X10X16 10 H400X200X8X13 11 H440X300X11X18 12 H450X200X9X14 13 H488X300X11X18 14 H500X200X10X16 15 H588X300X12X20 16 H600X200X11X17 17 H700X300X13X24 18 H800X300X14X26 19 H100X100X6X8 20 H125X125X6.5X9 21 H150X150X7X10 22 H200X200X8X12 23 H250X250X9X14 24 H300X300X10X15 25 H350X350X12X19 26 H400X400X13X21

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF