Class XI Maths Limits and Derivatives 1
Short Description
Download Class XI Maths Limits and Derivatives 1...
Description
M AT H E M AT I C S S T U D Y M A T E R I A L LIMITS AND DERIVATIVES AIEEE NARAYANA INSTITUTE OF CORRESPONDENCE COURSES
FNS HOUSE, 63 KALU SARAI MARKET SARVAPRIYA VIHAR, NEW DELHI-110016 PH.: (011) 32001131/32/50 • FAX : (011) 41828320 Website : w w w . n a r a y a n a i c c . c o m E-mail : i n f o @ n a r a y a n a i c c . c o m
2004 NARAYANA GROUP This study material is a part of NARAYANA INSTITUTE OF CORRESPONDENCE COURSES for AIEEE, 2007-08. This is meant for the personal use of those students who are enrolled with NARAYANA INSTITUTE OF CORRESPONDENCE COURSES, FNS House, 63, Kalu Sarai Market, New Delhi-110016, Ph.: 32001131/32/50. All rights to the contents of the Package rest with NARAYANA INSTITUTE. No other Institute or individual is authorized to reproduce, translate or distribute this material in any form, without prior information and written permission of the institute.
PREFACE Dear Student, Heartiest congratulations on making up your mind and deciding to be an engineer to serve the society. As you are planning to take various Engineering Entrance Examinations, we are sure that this STUDY PACKAGE is going to be of immense help to you. At NARAYANA we have taken special care to design this package according to the Latest Pattern of AIEEE, which will not only help but also guide you to compete for AIEEE & other State Level Engineering Entrance Examinations.
The salient features of this package include : !
Power packed division of units and chapters in a scientific way, with a correlation being there.
!
Sufficient number of solved examples in Physics, Chemistry & Mathematics in all the chapters to motivate the students attempt all the questions.
!
All the chapters are followed by various types of exercises (Level-I, Level-II, Level-III and Questions asked in AIEEE and other Engineering Exams). These exercises are followed by answers in the last section of the chapter. This package will help you to know what to study, how to study, time management, your weaknesses and improve your performance. We, at NARAYANA, strongly believe that quality of our package is such that the students who are not fortunate enough to attend to our Regular Classroom Programs, can still get the best of our quality through these packages. We feel that there is always a scope for improvement. We would welcome your suggestions & feedback. Wish you success in your future endeavours.
THE NARAYANA TEAM
ACKNOWLEDGEMENT While preparing the study package, it has become a wonderful feeling for the NARAYANA TEAM to get the wholehearted support of our Staff Members including our Designers. They have made our job really easy through their untiring efforts and constant help at every stage. We are thankful to all of them.
THE NARAYANA TEAM
C O N T E N T S
CONTENTS
LIMITS AND DERIVATIVES Theory Solved Examples Exercises Level – I Level – II Level – III Questions asked in AIEEE and other Engineering Exams Answers
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
LIMITS AND DERIV ATIVES DERIVATIVES AIEEE Syllabus Limits, Differentiation of the sum, difference, product and quotient of two functions, differentiation of trigonometric, inverse trigonometric, logarithmic, exponential, composite and implicit functions, derivatives of order up to two.
CONTENTS ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦
Definition of a limit Trigonometric limits Exponential and logarithmic limits Approximations Some useful expansions Indeterminate forms Limit of greatest integer function Sandwich Theorem Derivative of a function Some differentiation formulae Algebra of differentiation Differentiation of implicit functions Derivative of parametric functions Derivative of a function w.r.t. another function Use of log in finding derivatives of the function of type (f(x))g(x) Differentiation using trigonometrical substitutions Higher order differentiation Derivative of infinite series Differentiation of a determinant function
INTRODUCTION This chapter is an introduction to calculus. Calculus is that branch of mathematics which mainly deals with the study of change in the value of a function as the points in the domain change. In this chapter we define limit and some algebra of limits. Also we study derivative and algebra of derivatives and derivatives of certain standard functions.
1 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
1.
DEFINITION If y = f(x) is any function which is defined in a neighbourhood of a then for some ‘ ∈ ’ greater than zero there exists a δ > 0 such that |f(x) – l| < ∈ ⇒ | x − a | < δ then l is said to be limit of the function when x-approches a. It is symbolically written as Lt f (x) = l x →a
2.
STANDARD FORMULA Lt
x →a
xn − an = na n −1 ; x ≠ a ; n is a rational number or integer. x−a
Remark :
3.
x m − a m m m−n = a xn − an n
Lt
x →a
TRIGONOMETRIC LIMITS
4.
(i)
lim
sin x =1 x
(ii)
lim cos x = 1
(iii)
lim
tan x =1 x
(iv)
lim
sin −1 x =1 x
(v)
lim
tan −1 x =1 x
(vi)
lim
sin x o π = x 180
x →0
x →0
x →0
x →0
x →0
x →0
EXPONENTIAL AND LOGARITHMIC LIMITS Lt
ex − 1 =1 x
(ii)
(iii)
lim
a x − bx a = log e , a, b > 0 x b
(v)
1 Lt (1 + x)1/ x = e = Lt 1 + x →0 x →∞ x
(vii)
a lim 1 + = ea x →∞ x
(i)
x →0
x →0
Lt
ax −1 = log e a (a > 0) x
(iv)
lim
(1 + x) n − 1 =n x
(vi)
lim (1 + ax)1/ x = ea
x →0
x →0
x x →0
x
1 (viii) lim 1 + f (x) x →∞ (ix)
lim (1 + f (x) )
(xi)
lim
f (x)
1/ f (x)
x →a
x →0
= e , where f (x) → ∞ as x → ∞
=e
(x)
lim
x →∞
log x = 0 (m > 0) xm
log a (1 + x) = log a e (a > 0, a ± 1) x
2 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
5.
APPROXIMATIONS sin ax ! ax
(ii) cos ax ! 1 −
(iii)
tan ax ! ax
(iv) eax ! 1 + ax
(v)
e−ax ! 1 − ax
(vi) log(1 + ax) ! ax
(vii) a ! 1 + (logea)x x
(ix)
(xi)
6.
a2x2 2
(i)
(viii)
(x) coshax ! 1 +
tanhax ! ax n
1± x !1±
sinhax ! ax
a2x2 2
x , |x| < 1 n
SOME USEFUL EXPANSIONS If x → 0 and there is at least one function in the given expansion which can be expanded, then we express numerator and denominator in the ascending powers of x and remove the common factor there, the following expansions of some standard functions should be remembered. (a)
ex = 1 +
x x2 + + ...... 1 2
(c)
ax =1+
(log a)x (log a)2 x 2 + + ...... 1 2
(e)
x 2 x3 log(1 − x) = − x + + + ..... 2 3
(g)
sin x = x −
(i)
tan x = x −
(k)
cos h x = 1 +
x2 x4 + + ....... 2 4
(m)
sin −1 x = x +
x 3 9x 5 + + ...... 3 5
(o)
(1 + x)n = 1 + nx +
(p)
1 x 11 2 1 + = e 1 − + x + ...... x 2 24
x x 2 x3 + − + ..... 1 2 3
(b)
e− x = 1 −
(d)
log(1 + x) = x −
(f)
cos x = 1 −
x3 x5 + − ....... 3 5
(h)
sin h x = x +
x3 x5 + + ....... 3 5
x 3 2x 5 + − ....... 3 15
(j)
tan h x = x +
x 3 2x 5 + + ....... 3 15
(l)
cos −1 x =
(n)
tan −1 x = x −
x 2 x3 + − ..... 2 3
x2 x4 + − ....... 2 4
π x 3 9x 5 −x + + + ...... 2 3 5 x3 x5 x7 + − + ...... 3 5 7
n(n − 1) 2 x + ....... where n ∈ z + 2
x
3 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
7.
INDETERMINATE FORMS The forms which cannot be defined exactly are called indeterminate forms, they are
0 ∞ , , 0 × ∞ , ∞ − ∞ , 00, ∞0 and 1∞ 0 ∞
L’ HOSPITAL’S RULE f ′(x) f ′(x) 0 ∞ f (x) takes the form of or then the limit of the function is xLt , if xLt → a → a g′(x) itself x → a g(x) g′(x) ∞ 0
If Lt
takes the form again
till
1.
f ′′(x) 0 ∞ , then the limit of the function is xLt →a g ′′(x) and the process is continued 0 ∞
0 ∞ , is eliminated then limit is obtained. 0 ∞ If 0 × ∞ form is given, convert it in the form of
0 ∞ , by taking one term to the denominater 0 ∞
then apply L’Hospital’s Rule. 2.
If (∞ − ∞) form is given, take L.C.M convert it in the form of
0 ∞ or form, then take the 0 ∞
help of L’Hospital’s Rule. 3.
00 and ∞ 0 form is given take the help of logarithms convert the problem again in the form of
0 ∞ or form and then use L’Hospital’s Rule. 0 ∞ 4.
8.
If Lt [f (x)]
g(x)
x →a
takes the form of 1∞ then write it as Lt ( f (x) ) x →a
g( x )
Lt g( x )[f ( x ) −1]
= e x →a
LIMIT OF GREATEST INTEGER FUNCTION Greatest integer function is denoted by [.] Let a ∈ R then two cases arise. Case (1) if a ∈ integer then we have 1. 2. 3.
Lt [x] = a
x →a +
Lt [x] = a − 1
x →a−
Lt [x] does not exist
x →a
Case (2) If a ∉ integer then
Lt [x] = c
x →c
4 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
sin[x] , [x] ≠ 0 [x]
If f (x) =
Example :
=0
[x] = 0
where [x] denotes the greatest integer less than or equal to x, then find Lt f (x) x →0
Lt f (0 − h) = Lt f (0 + h)
Solution :
h →0
⇒
9.
h →0
Lt
h →0
sin[ − h] sin[h] = Lt h → 0 [− h] [h]
⇒ sin1 ≠ 1
SANDWICH THEOREM Suppose that g(x) ≤ f(x) ≤ h(x) for all x in some open interval containing c, except possibly at ‘c’ itself. Suppose also that
y h(x) f(x) g(x)
!
Lt g(x) = Lt h(x) = ! then Lt f (x) = ! x →c x →c
x →c
This is called sandwich theorem.
10.
O
c
SPECIAL TYPES OF LIMITS 1.
Use of Leibnitz’s formula for evaluating the limit Consider the integral ψ(x)
g(x) =
∫
φ( x )
f (t) dt then
g ′(x) = f [ψ (x)] ψ ′(x) − f (φ(x)) φ′(x) 2.
Summation of series using definite integral as the limit of a sum. It is used in the expression of the form
1 n ∑ n →∞ n r =1 Lt
r f = ∫ f (x) dx n a b
To Evaluate such limits we note the following (a)
∑
(b)
r → x (r = x , n = 1) n
(c)
1 → dx n
(d)
Lower limit is always zero.
(e)
Upper limit is Coefficient of n in the upper limit of Σ
is replaced by sign of integration
5 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
DERIVATIVES 11. DERIVATIVE OF A FUNCTION Let y = f(x) be a function defined on an interval [a, b]. Let for a small increment δx in x, the corresponding increment in the value of y be δy. Then y = f(x) and y + δy = f(x + δx) On subtraction, we get δy = f(x + δx) – f(x) or
δy f (x + δx) − f (x) = δx δx
Taking limit on both sides when δx → 0 we have,
lim
δx → 0
δy f (x + δx) − f (x) = lim δ → x 0 δx δx
if this limit exists, is called the derivative or differential coefficient of y with respect to x and is written as
∴
dy or f ′(x) . Thus dx
δy dy f (x + δx) − f (x) = lim = lim . This is called Differentiation from first principle. δ → δ → x 0 x 0 δx δx dx
Derivative at a point: The value of f ′(x) obtained by putting x = a, is called the derivative of f(x) at x = a and it is denoted
dy dx x = a
by f ′(a) or
Note :
dy d d ( y ) in which is is simply a symbol of operation and not 'd' divided by dx. dx dx dx
12. SOME DIFFERENTIATION FORMULAE (i)
d (constant) = 0 dx
(ii)
d n n–1 (x ) = nx dx
(iii)
d x x (e ) = e dx
(iv)
d x x (a ) = a loge a dx
(v)
d 1 (logex) = dx x
(vi)
1 d (loga x) = x log a dx e
(vii)
d (sin x) = cos x dx
(viii)
d (cos x) = – sinx dx
6 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
(ix)
d 2 (tan x) = sec x dx
(x)
d 2 (cot x) = – cosec x dx
(xi)
d (sec x) = sec x tan x dx
(xii)
d (cosec x) = – cosecx cotx dx
(xiii)
d –1 (sin x) = dx
(xiv)
d –1 (cos x) = – dx
(xv)
1 d –1 (tan x) = dx 1+ x2
(xvi)
d 1 –1 (cot x) = – dx 1+ x2
(xviii)
d −1 –1 (cosec x) = dx | x | x2 −1
(xvii)
1 1− x
2
1 d –1 (sec x) = dx | x | x2 −1
1 1− x 2
(xix)
d ax ax (e sin bx) = e (a sin bx + b cos bx) = dx
a 2 + b 2 e sin (bx + tan
(xx)
d ax ax (e cos bx) = e (a cos bx – b sin bx) = dx
a 2 + b 2 e cos (bx + tan
(xxi)
x d |x| |x| = | x | or : x≠0 dx x
(xxii)
ax
–1
ax
–1
b ) a b ) a
d 1 log |x| = dx x
13. ALGEBRA OF DIFFERENTIATION (i)
Sum and difference rule d d d [f1(x) ± f2 (x)] = [f1(x)] ± [f2 (x)] dx dx dx
(ii)
Scalar multiple rule d d [k f(x)] = k [f(x)] , where k is any constant dx dx
(iii) Product rule d d d [f1(x).f2 (x)] = [f1(x)] [f2 (x)] + [f2 (x)] [f1 (x)] dx dx dx
(iv) Quotient rule
d f1(x) = d x f2 (x) (v)
f2 (x)
d d [f1(x)] − f1(x) [f2 (x)] dx dx [f2 (x)]2
Chain rule d y d y du dv if y = f1(u), u = f2(v) and v = f3(x) then d x = d u . d v . d x 7
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
14. DERIVATIVE OF PARAMETRIC FUNCTIONS Let x and y are two functions of variable 't' (parameter) such that x = f(t) and y = g(t). then
dy dy dt g′(t) = = dx dx f ′(t) dt Example - 1
If x = a(cosθ + θsinθ), y = a(sinθ – θcosθ) then find
Solution :
dx = a[ − sin θ + sin θ + θ cos θ] = aθ cos θ ; dθ ∴
dy . dx
dy = a(cos θ − cos θ + θ sin θ) = aθ sin θ dθ
dy = tan θ dx
15. DIFFERENTIATION OF IMPLICIT FUNCTIONS If in an equation, x and y both occur together. i.e. f(x, y) = 0 or f(x, y) = c and this function can not be solved either for 'y' or 'x' then f(x, y) is called the implicit function of x (or y). ∂f − dy x −(yx y −1 + y x log y) ∂ y x b = = If x + y = a , then ∂f dx (x y log x + xy x −1 ) ∂y
15.1. WORKING RULE FOR FINDING THE DERIVATIVE Method – 1 (i) Differentiate every term of f(x, y) = 0 with respect to 'x'. (ii)
Collect the coefficients of
dy dy and obtain the value of . dx dx
Method – 2 ∂f − ∂f ∂f f dy ∂x = = − x where If f(x, y) = constant, then and ∂x ∂ y are partial differential coefficients of ∂f dx fy ∂y f(x, y) with respect to x and y respectively.
Note :
An implicit function can be differentiated either with respect to 'x' or with respect to 'y'
16. DERIVATIVE OF A FUNCTION WITH RESPECT TO ANOTHER FUNCTION Let y = f(x) and z = g(x) be two functions of 'x' then the derivative of f(x) w.r.t g(x) or derivative of y is denoted by
i.e.
dy dz
dy dy dx f ′(x) = = dz dz g′(x) dx
8 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Example - 2
1− x2 2x Find the derivative of sin−1 with respect to cos −1 2 2 1+ x 1+ x
Solution :
−1 2x = 2 tan−1 x ∴ Let f(x) = sin 2 1+ x
f ′(x) =
2 1+ x2
2 2 −1 1 − x = 2 tan−1 x ∴ g′(x) = Let g(x) = cos 2 + 1 x 1 + x2 Hence the derivative of f(x) with respect to g(x) is
f ′(x) 2 /1 + x 2 = =1 g′(x) 2 /1 + x 2
17. USE OF LOG IN FINDING DERIVATIVES OF THE FUNCTION OF TYPE (f(x) )g(x) Let y = [f(x)]
g( x )
Taking log on both sides we get log y = g(x) . log f(x) Differentiating we get dy f ′(x) g( x ) = [f(x)] ⋅ g′(x) log f(x) + g(x) dx f(x)
d tan x tan x = x tan x sec 2 x log x + x dx x
{
Example - 3
}
18. DIFFERENTIATION USING TRIGONOMETRICAL SUBSTITUTIONS –1
(i)
sin
(ii)
cos
(iii) tan
(v)
–1
–1
y = sin
–1
x ± cos
–1
x ± tan
2 cos
(vii) 2 tan
(ix)
x ± sin
–1
–1
–1
y = cos
y = tan
x = cos
x = sin
–1
–1
–1
[x 1− y 2 ± y 1− x 2 ] –1
–1
[xy ∓
x±y 1 ∓ x y
(1 − x 2 )(1 − y 2 )] –1
(iv)
2 sin
(2x – 1)
(vi)
2 tan
2x 1 + x2
(viii)
2 tan
(x)
3 sin
2
π –1 –1 – tan x = tan 4
1− x 1+ x
–1
–1
–1
x = sin
–1
( 2x 1 − x 2 ) 2x 1− x2
–1
x = tan
x = cos
x = sin
–1
–1
1− x2 1 + x2 3
(3x – 4x )
9 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
(xi) 3 cos
–1
x = cos
–1
–1
3
–1
(4x – 3x)
(xii)
3 tan
π 2
(xiv)
tan x + cot x =
–1
(xiii) sin x + cos x = –1
–1
x = tan
–1
–1
3x − x 3 1 − 3x 2
π 2
π 2
–1
(xv) sec x + cosec x =
19. SUITABLE SUBSTITUTION (i)
If the function involve the term
a 2 − x 2 , then put x = a sin θ, or x = a cos θ
(ii)
If the function involve the term
x 2 + a 2 , then put x = a tan θ
(iii) If the function involve the term
x 2 − a 2 , then put x = a sec θ
(iv) th
20. n
a−x If the function involve the term a + x
, then put x = a cos θ
DIFFERENTIATION OF SUITABLE FUNCTION n
m
n
(1)
D (ax + b) = m(m – 1) (m – 2) ........... (m – n + 1) a (ax + b)
(2)
If m ∈ N and m > n, then
m–n
m! n m n m–n D (ax + b) = (m − n) ! a (ax + b) Dn ( x m ) =
(3)
n
m! x m −n (m − n) ! n
n
D (ax + b) = n ! a n
n
D (x ) = n ! (4)
n n 1 ( −1) n ! a = Dn n +1 ax + b (ax + b) n 1 ( −1) n ! Dn = x n +1 x
(5)
n
D {log (ax +b)} =
( −1)n −1(n − 1) ! xn
n
D (log x) = n
ax
( −1)n −1(n − 1) ! n a (ax + b)n
n
ax
(6)
D (e ) = a e
(7)
D (a ) = (log a) a
n
mx
n
mx
.m
n
10 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
(8)
n
n
D (sin x) = sin (x + n (9)
π ) 2
n
D {sin (ax + b)} = a sin (ax + b + n
n
π ) 2 π ) 2
n
D {cos (ax + b)} = a cos (ax + b + n π ) 2
n
D (cos x) = cos (x + n n
ax
n
ax
(10) D {e (11) D {e
n
(12) D (tan
2
2
n
2 n/2
cos (bx + c)} = (a + b )
–1
–1
e
ax
e
ax
sin (bx + c + n tan
–1
cos (bx + c + n tan
–1
b ) a b ) a
x ( −1)n−1(n − 1) ! sinn θ sin n θ ) = a an
Where θ = tan (13) D (tan
2 n/2
sin (bx + c)} = (a + b )
–1
(
a ) x
n–1
x) = (–1)
Where θ = tan
–1
(
n
(n–1) ! sin θ sin nθ
1 ) x
Example - 4
dy 3 3 If x = a cos θ, y = a sin θ, then find d x .
Solution :
Since x = a cos θ
3
∴
dx d (cos3 θ) d (cos θ) =a . dθ (cos θ) dθ 2
(Using chain rule) 2
= 3a cos θ (–sin θ) = –3a cos θ sin θ 3 and y = a sin θ ∴
dy d (sin3 θ) d (sin θ) 2 =a . = 3a sin θ . cos θ dθ d (sin θ) dθ
Now,
dy d y d θ 3a sin2 θ cos θ = = = − tan θ d x d x −3a cos2 θ sin θ dθ
21. HIGHER ORDER DIFFERENTIATION th
If y = f(x) be a differentiable function of x, such that whose second, third............, n derivatives exist. th
The first, second, third ........., n derivatives of y = f(x) are denoted respectively by
d y d2 y dn y , 2 , ......., d x dx dx n 11
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Also denoted by y', y"........y
(n)
y1, y2, y3..............,yn n
f', f".............f 2
3
n
dy, d y, d y,.........d y
Example - 5
d2 y ln x If y = then find d x2 x
Solution :
We have y =
ln x x
xy = ln x
.....(1)
Differentiating both sides w.r.t. x, we get dy 1 x d x + y .1= x
⇒
x
2
dy d x + xy = 1
⇒
x
dy d x + ln x = 1
2
[From (1)]
.....(2)
Again differentiating both sides w.r.t. x, we get
x
d2 y
2
dx
⇒
x3
⇒
x
Hence
x3
2
d2 y dx
2
d2 y
3
dx 2 d2 y dx
2
+
dy 1 . 2x + = 0 dx x
+ 2x 2
dy +1= 0 dx
+ 2 (1 – ln x) + 1 = 0
= (2 ln x − 3)
or
[from (2)]
d2 y dx
2
=
2 ln x − 3 x3
22. DERIVATIVE OF INFINITE SERIES If taking out one or more than one terms form an infinite series.
f ( x ) + f ( x ) + f ( x ) + .........∞
(A) If y = ⇒
then y =
f ( x) + y
2
(y – y) = f(x)
dy Differentiating both sides w.r.t. x, we get (2y – 1) d x = f '(x) {f ( x )}....... ∞
(B) If y = {f(x)}{f ( x )} ⇒
y = e
then y = {f(x)}
y
y !n f(x)
12 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Differentiating both sides w.r.t. x, we get dy y dx = e
ln f(x)
1 dy ⋅ f '(x) + ln f(x) ⋅ y ⋅ dx f(x)
⇒
dy dy y y ⋅ f '(x) + ln f(x) ⋅ d x = {f(x)} f(x) dx
⇒
dy y y–1 {1 – {f(x)} ln f(x)} d x = y {f(x)} . f '(x)
(C) y = f(x)
f(x)
then
dy = f(x)f ( x ) ⋅ f ′(x)[1 + log f(x)] dx
d x (x ) = x x (1 + log x) dx d(sin x sin x ) = (sin x)sin x .cos x[1 + log sin x]
(D) y = f(x)
g(x)
then
dy f ′(x) = f(x)g( x ) g′(x)logf(x) + g(x) ⋅ dx f(x)
d 1 (sin x)log x = (sin x)log x log(sin x) + log x.cot x dx x
{
}
dy y 2 f ′(x) 1 = 2 then dx y +1 1 f(x) + .....∞ f(x) +
(E)
y = f(x) +
(F)
dy 2f ′(x) 1 + f(x) y = log then dx = 1 − f 2 (x) 1 − f(x)
1 + tan x dy 2sec 2 x y = log = then dx 1 − tan2 x 1 − tan x Example - 6
dy If y = x + y + x + y + .......∞ then find d x
Solution :
We have y =
x + y + x + y + ......∞
⇒
y =
⇒
y – x =
⇒
(y –x) = 2y
x+ y+y
2
2
2y
2
13 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Differentiating both sides w.r.t. x, we get dy dy 2 2 (y – x) 2 y d x − 1 = 2 d x
⇒
dy 2 2 (2y (y – x) –1) d x = (y – x)
Hence
dy ( y 2 − x) = d x (2y 3 − 2xy − 1)
23. DIFFERENTIATION OF A DETERMINANT FUNCTION
If F(x) =
f g h ! m n u v w
Where f, g, h, !, m, n, u, v, w are functions of x and differentiable then
F'(x) =
or
F'(x) =
f ' g' h' ! m n u v w
f' g h !' m n u' v w
+
f g h !' m' n' u v w
+
f g' h ! m' n u v' w
+
+
f g h ! m n u' v' w '
f g h' ! m n' u v w'
14 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
SOLVED EXAMPLES Example - 1
Solution :
Lt
a x − bx = tan x
(1)
log(a/b)
(2)
log(b/a)
(3)
logab
(4)
a/b
x →0
Ans. (1)
Lt
(a x − 1) − (b x − 1) x tan x x
Lt
a x − 1 bx − 1 − x x
x →0
x →0
(∵ Lt
x →0
tan x = 1) x
= loga – logb = log(a/b) Example - 2
Solution :
Lt (cos x + a sin bx)1/ x =
x →0
(1)
eab
(2)
ea/b
(3)
log(a/b)
(4)
logab
Ans. (1) ∞
Given limit is in the form 1 Lt
e x→0
=e Example - 3
Solution :
2 ∵ cos x " 1 − x 2
1 [cos x + a sin bx −1] x
x2 1− + abx −1 2 Lt x →0 x
= e ab
( sin bx " bx )
1 1 1 + + .... + Lt = (2n + 1)(2n + 3) 3.5 5.7
n →∞
(1)
1 2
(2)
1 3
(3)
1 6
(4)
1 4
Ans. (3)
Lt
n →∞
1 1 1 1 1 1 1 − − + − + .... + 2 3 5 5 7 2n + 1 2n + 3
1 1 1 = × = 2 3 6 15 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Example - 4
Solution :
(x + 1)10 + (x + 4)10 + (x + 9)10 + ... + (x + 100)10 = x →∞ x10 + 10010 Lt
(1)
100
(2)
1000
(3)
10
(4)
1
Ans. (3) 10 10 1 10 4 100 x10 1 + + 1 + + .... + 1 + x x x Lt x →∞ 10010 x10 1 + 10 x
= 1 + 1 + ..... + 10 times = 10 Note : If the degree of numerater and denomenater are equal, then the ratio of constant terms is the limit when x → 0 and the ratio of coefficients of highest degree terms is the limit when x → ∞ . x2
Example - 5
Solution :
Lt
∫ sin
t dt
0
x3
x →0
=
(1)
3 2
(2)
1 3
(3)
1 2
(4)
2 3
Ans. (4) x d ∫ sin t dt dx 0 2
Lt
d 3 (x ) dx
x →0
sin x (2x) x →0 3x 2
= Lt
= Lt
x →0
Example - 6
Solution :
(Use Leibnitz’s rule and sinx " x)
2x ⋅ x 2 = 3x 2 3
[x] + [2x] + .... + [nx] is, where [.] denotes the greatest integer function x →∞ n2 Lt
(1)
x 3
(2)
x 6
(3)
does not exist
(4)
x 2
Ans. (4) Using the fact nx − 1 < [nx] ≤ nx
16 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
∴
∑ (nx − 1) < ∑ [nx] ≤ nx
⇒
x
∴
n x.n(n + 1) x n(n + 1) n Lt ⋅ Lt [rx] ≤ Lt − < ∑ 2 2 n →∞ n →∞ n n n →∞ r =1 2n 2 2
⇒
x ≤ Lt 2 n →∞
∴
Lt
n n(n + 1) n(n + 1) − n < ∑ [rn] ≤ x ⋅ 2 2 r =1
n
Example - 7
Solution :
n
x
∑[rx] ≤ 2 r =1
x
∑ [rx] = 2
n →∞
r =1
(Using sandwich theorem)
1 1 Lt 2 − = 2 sin x sinh x
x →0
(1)
2 3
(2)
0
(3)
1 3
(4)
−
2 3
Ans. (1)
Lt
x →0
sinh 2 x − sin 2 x sinh 2 x − sin 2 x = Lt x →0 sinh 2 x sin 2 x x4
= Lt
x →0
2sinh x cosh x − 2sin x cos x (L.H.R) 4x 3
sinh 2x − sin 2x = Lt = Lt x →0 x →0 4x 3
e 2x − e −2x − sin 2x 2 4x 3
23 ⋅ e2 x − (−2)3 e −2x 3π − 23 sin + 2x 2 2 = Lt x →0 4.3! ( ∵ the degree of denominator is 3, we take the 3rd order derivative)
8+8 +8 16 2 = 2 == = 4.3.2 8.3 3 Example - 8
1 − cos(ax 2 + bx + c) is equal to x →α (x − α) 2
Let a, b be the distinct roots of ax2 + bx + c = 0, then Lt
(1)
(α − β)2 2
(2)
−
(3)
0
(4)
a2 (α − β) 2 2
a2 (α − β) 2 2
17 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Solution :
Ans. (4)
1 − cos a(x − α)(x − β) x →α (x − α) 2 Lt
(∵ ax 2 + bx + c ≡ a(x − α)(x − β) )
a2x2 a 2 (x − α ) 2 (x − β) 2 a 2 (α − β)2 cos ax 1 − " Lt = = 2 x →α 2(x − α) 2 2 Example - 9
Lt x→
π 2
(1) (3) Solution :
(1 − tan x / 2)(1 − sin x) = (1 + tan x / 2) (π − 2x)3
1 8 1 32
(2)
0
(4)
∞
Ans. (3)
lim
π x→ 2
(1 − tan x / 2)(1 − sin x) (1 + tan x / 2)(π − 2x)3
If x →
π π then h → 0 put x = − h 2 2
π h 1 − tan − 4 2 ⋅ 1 − cosh = lim tan π + π + h ⋅ 1 − cosh = lim 3 h →0 h →0 π h (2h)3 4 4 2 8h 1 + tan − 4 2
2 cosh " 1 − h 2
h h2 h h2 ⋅ tan ⋅ 2 2 = lim 2 2 = 1 = lim h →0 h → 0 8h 3 8h 3 32 Example - 10
Solution :
Lt
x →0
tan[e 2 ]x 4 − tan[ −e2 ]x 4 = sin 4 x
(1) 0 (3) 8 Ans. (2) e2 = (2.718)2 = 7.3875
(2) (4)
( ∵ tanax " ax , sin x " x )
[e2] = 7, [–e2] = –8
tan 7x + tan 8x 15x = 4 = 15 sin 4 x x 4
∴ Example - 11
Lt
x →0
d 2 −1 1 + x sin cot d x 1− x
(1)
−
(3)
1 2
1 2
15 7
4
4
=
(2)
0
(4)
–1
18 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Solution :
Example - 12
Solution :
Ans. (1)
Let
−1 1 + x 2 y = sin cot 1− x
∴
−1 2 y = sin cot
∴
y = sin θ =
∴
dy 1 =− . dx 2
2
. Put x = cos 2θ.
1 + cos 2θ = sin2 cot–1 (cot θ) 1 − cos 2θ
1 − cos 2θ 1− x 1 x = = − 2 2 2 2
If y = (a − x )( x − b ) - (a – b) tan
–1
dy a−x then find dx. x −b
(1)
x−a x −b
(2)
a−x x+b
(3)
a−x x −b
(4)
x+a x+b
Ans. (3) 2
2
Let
x = a cos θ + b sin θ
∴
a – x = a – a cos θ – b sin θ = (a – b) sin θ
2
2
2
2
2
.....(1)
2
and x – b = a cos θ + b sin θ – b = (a – b) cos θ ∴
.....(2)
–1
y = (a – b) sin θ cos θ – (a – b) tan tanθ =
(a − b ) sin2θ – (a – b) θ 2
d y d y d θ (a − b) cos 2θ − (a − b) 1 − cos 2θ = = = = tan θ Then (b − a) sin 2θ sin 2θ d x d x dθ
=
Example - 13
a−x x −b –1
Derivative of sec
1 2 w.r.t 2x − 1
[From (1) and (2)] −1 1+ 3 x at x = 3 is-
(1)
0
(2)
1 2
(3)
1 3
(4)
1 6 19
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Solution :
Example - 14
Solution :
Ans. (1)
1 2 − and 2x 1
y = sec
∴
dy dy dx = = dx dz dx
∴
d y d x x
=
1 θ
If x = θ –
−1 3
z=
1 + 3x
−4x 2 −4x × 1 + 3x (2x 2 − 1)2 3 ⋅ = 2 2 3 1 1 − 1 2 2 −1 2 1 + 3x 2x − 1 2x − 1 (2x 2 − 1) ⋅ 1
=0.
and y = θ +
dy 1 , then d x = θ
(1)
x y
(2)
y x
(3)
−x y
(4)
−x y
Ans. (1) x=θ–
1 θ
dx 1 ⇒ dθ =1+ 2 , θ
y=θ+
1 θ
⇒
dy dx
dy dθ dx dθ
∴
Example - 15
–1
Let
If y =
=
1 dy =1– 2 dθ θ 1−
1
θ 1 1+ 2 θ
=
2
1 θ = x = 1 y θ+ θ θ−
a − b . tan −1 a + b (a 2 − b 2 ) 2
d2 y x tan then find . d x2 2
b cos x
(1)
b sin x
(a + b cos x )
2
(2)
2
(4)
b sin x
(3) Solution :
(b + a cos x )
(a + b cos x )2 −
b cos x
(a + b cos x )
2
Ans. (2) We have y =
2
–1
(a − b ) 2
2
. tan
a − b x tan 2 a + b
20 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Let
a−b x u= tan a+b 2
∴
y=
∴
dy = du
2 (a − b ) 2
2
. tan −1 u
2
.
1
(a − b ) 1 + u 2
.............(1)
2
2
2
=
.
1
2 (a − b ) 1 + u 2
2
1 . (a 2 − b 2 ) 1 + a − b tan 2 x 2 a+b 2
=
2
=
1
.
(a − b ) 1 + a − b a+b 2
2
[From (1)]
1 − cos x 1 + cos x
=
(a + b) (1 + cos x) (a 2 − b 2 ) {(a + b) (1 + cos x) + (a − b) (1 − cos x)}
=
(a + b) (1 + cos x ) (a − b ) (2a + 2b cos x )
2
.
2
2
2
.
.....(2)
and
du 1 1 a−b x a −b sec 2 = = . . dx 2 a + b (1 + cos x ) 2 a+b
∴
dy dy du = . dx du dx (1 + cos x ) a−b a+b . . (a + b cos x ) a + b a−b
=
........(3)
[from (2) and (3)]
1 a + b cos x
=
d2 y b sin x = dx 2 (a + b cos x)2
Example - 16
Solution :
If x = e
tan−1
y − x2 dy 2 , then d x equals x 2
2
(1)
x [1 + tan (log x) + sec x]
(2)
2x [1 + tan (log x)] + sec x
(3)
2x [1 + tan (log x)] + sec x
(4)
none of these
Ans. (4) 21
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Taking log on both sides, we get –1
log x = tan
y − x2 x2 2
2
⇒
tan (log x) = (y – x ) / x
⇒
y = x + x tan (log x)
∴
dy 2 d x = 2x + 2x tan (log x) + x sec (log x)
2
2
2
= 2x [1 + tan (log x)] + x sec (log x) Example - 17
Solution :
dy 2 y x If x e + 2xye + 13 = 0, then d x equals
(1)
−
(3)
−
2xe y − x + 2y ( x + 1)
(2)
x( xe y − x + 2) 2 xe x − y + 2y ( x + 1)
(4)
x ( xe y − x + 2)
2xe x − y + 2y ( x + 1) x( xe y − x + 2)
none of these
Ans. (1) Using partial derivatives, we have
2xe y + 2ye x + 2xye x dy = − dx x 2 e y + 2xe x 2xe y − x + 2y + 2xy x 2 e y − x + 2x
=–
2xe y − x + 2y (x + 1) − = y−x x (xe + 2) Example - 18
Solution :
dy If y = sin x + sin x + ........ , then d x equals-
(1)
sin x 2y + 1
(2)
cos x 2y − 1
(3)
cos x 2y + 1
(4)
none of these
Ans. (2) y = sin x + y 2
2
⇒
y = sin x + y
⇒ y – y – sin x = 0
∴
− cos x cos x dy =− = dx 2y − 1 2y − 1
22 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Example - 19
2
dy 1 1 4 4 2 , x + y = t + 2 , then d x equalst t
2
If x + y = t – 1
(1)
(2)
x y3
1 x3y
(4)
−
x y
(3) Solution :
1
2
1 x y3
Ans. (3) Squaring the first equation, we have 4
4
2 2
2
x + y + 2x y = t +
Example - 20
Solution :
2
1
2 2
⇒
t +
⇒
x y = –1
∴
dy 2 2y d x = 3 x
t
2
2
+ 2x y = t +
2 2
2 ⇒ y = −
1 t2 1 t2
–2
–2
(from second equation)
1 x2
1 dy ⇒ dx = 3 x y
2
If y = p(x) is a polynomial of degree 3, then 2
d 3 d2 y y is equal tod x dx 2
(1)
p′′′ (x) p′(x)
(2)
p′′(x) p′′′(x)
(3)
p(x) p′′′(x)
(4)
none of these
Ans. (3) 2
Giveny = p(x)
...(i)
p′(x) = 2yy′ p′′(x) = 2yy′′ + 2y′
2
p′′′(x) = 2yy′′′ + 6y′y′′ Also 2
...(ii)
d 3 d 3 d2 y = 2 ( y y' ' ) y dx d x d x 2 3
2
= 2 [y y’’’ + 3y y’y’’] 2
= y [2yy’’’ + 6y’y’’] = p(x) p’’’(x) Example - 21
from (i) and (ii)
x + y f(x) + f(y) If f ∀ x,y ∈ R and f ′(0) = −1 , f(0) = 1, then f(2) = = 2 2 (1)
1 2
(2)
1
(3)
–1
(4)
−
1 2 23
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Solution :
Ans. (3)
2x + 0 f(2x) + f(0) f(x) = f = 2 2
∴
2x + 2h f − f(x) 2 f(x + h) − f(x) = Lt f ′(x) = Lt h→ 0 h→ 0 h h f(2x) + f(2h) f(2x) + f(0) = Lt − /h h→ 0 2 2 = Lt
2h→ 0
Example - 22
f(2h) − f(0) = f ′(0) 2h
∴
f ′(x) = f ′(0) = −1 ⇒ f(x) = − x + c
⇒
f(0) = c
∴
f(2) = –2 + 1 = –1
⇒ c=1
If f(x + y) = f(x) f(y) and f(x) = 1 + xg(x) H(x) where Lt g(x) = 2 and Lt H(x) = 3 then x →0
x →0
f ′(x) =
Solution :
(1)
f(x)
(2)
2f(x)
(3)
3f(x)
(4)
6f(x)
Ans. (4) f(x + h) − f(x) f(x)f(h) − f(x) f(h) − 1 = Lt = f(x) Lt h → 0 h → 0 h h h
f ′(x) = Lt
h→ 0
= f(x) Lt
h →0
1 + hg(h)H(h) − 1 = f(x) Lt g(h)H(h) h→0 h
= f(x) (2 × 3) = 6f(x) Example - 23
Solution :
If f(a) = 2, f ′(a) = 1 , g(a) = – 1, g′(a) = 2 then the value of Lt g(x)f(a) − g(a)f(x) is x →a x−a (1)
–5
(2)
1 5
(3)
5
(4)
4
Ans. (3) Use L.H.R Lt
x →a
g′(x)f(a) − g(a)f ′(x) = g′(a)f(a) − g(a)f ′(a) 1
= 2(2) – (–1) (1) = 4 + 1 = 5 x
Example - 24
If g(x) =
1 {3t − 2g′(t)} dt then g′(2) = x ∫2
(1)
–2/3
(2)
–3/2
(3)
2/3
(4)
3/2
24 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Solution :
Ans. (4) x
Given g(x) =
1 {3t − 2g′(t)} dt x ∫2 x
⇒
x g(x) = ∫ {3t − 2g′(t)} dt 2
⇒
g(x) + x g′(x) = {3x − 2g′(x)} (1) − 0
⇒
g(2) + 2 g′(2) = 6 − 2g′(2) 4g′(2) = 6 − g(2) = 6 − 0 = 6
∴
g′(2) =
3 2 1/ x
Example - 25
Solution :
f(1 + x) Let f : R → R be such that f(1) = 3 and f ′(1) = 6 then xLt →0 f(1)
(1)
1
(3)
e
2
(2)
e
(4)
e
=
1/2
3
Ans. (3) 1/ x
f (1 + x) Let y = f (1)
1 {log f (1 + x) − log f (1)} x
⇒
log y =
⇒
log Lt (y) = Lt
∴
x →0
(
x →0
)
x →0
f ′(1 + x) f ′(1) 6 = = =2 f (1 + x) f (1) 3
Lt (y) = e 2
25 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
EXERCISES LEVEL - I sin x
1.
sin x x − sin x = Lt x →0 x (1)
1 e2
(2)
(3) e2
1 e
(4) e
1 1 1 + 2 + .... + n 2 2 2 = Lt n →∞ 1 1 1 1 + + 2 + ..... + n 3 3 3 1+
2.
3.
(1)
4 3
(2)
2 3
(3)
1 3
(4)
1 2
Lt
h →0
(a + h)2 sin(a + h) − a2 sina = h
(1) a2 cosa + 2a sina
(2) a (cosa + 2 sina)
2
(3) a (cosa + 2 sina)
(4) 0 1
4.
If α, β be the roots of ax2 + bx + c = 0, then Lt (1 + ax 2 + bx + c) x −α is x →α
(1) a(α – β) a(α – β)
(4) ea(α + β)
(3) e 5.
6.
Lt
x →0
(2) log | a(α – β)|
(1 + a3 ) + 8e1/ x = 2 Then 1 + (1 − b3 )e1/ x
(1) a = 1, b = 2
(2) a = 1, b = –31/3
(3) a = 1, b = –1/2
(4) a = 2, b ∈ R
Lt
sinnθ
n→∞
n
=
(1) 0
(2) ∞
(3) 1
(4)
n
26 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
x x x x Lt cos ⋅ cos ⋅ cos ⋅ ⋅ ⋅ ⋅ cos n 2 4 8 2
7.
n →∞
=
(1) 1
(3)
(2)
x sin x
sin x x
(4) –1
2 n 1 + + ..... + Lt = 2 2 1 − n2 1− n 1− n
8.
n →∞
(3)
1 2
10.
(2) – 2, –1
(3) 2, 1
(4) 2, –1
Lt
x →0
cos x − 3 cos x = sin2 x 1 6
(3) −
(2)
1 12
1 3
(4) −
1 14
1− x = x →1 (cos −1 x)2 Lt
(1)
1 4
(3) −
1 4
(2)
1 2
(4)
1 3
{[1 x] + [2 2
12.
1 3
(1) –2, 1
(1)
11.
(4)
sin2x + a sin x be finite, then the value of ‘a’ and the limit are given by x3
If xLt →0
9.
1 2
(2) −
(1) 0
If [x] denotes the greatest integer ≤ x , then Lt n →∞
2
}
x] + ....[n2 x]
n3
(1)
x 2
(2)
x 3
(3)
x 6
(4) 0
27 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
x − x −1 = cos −1 −1 d x x+x d
13.
14.
15.
16.
1
(1)
1+ x2
(3)
1+ x2
2
If y = e x + e
x + ex +.....∞
−1
(2)
1+ x2
(4)
1+ x2
−2
dy , then d x =
y (1) 1 − y
1 (2) 1 − y
y (3) 1 + y
y (4) y − 1 dy x2 x3 + + ....... ∞, then d x = 2! 3!
If y = 1 + x + (1) y
(2) y – 1
(3) y + 1
(4) none of these
Differential coefficient of sec
1
–1
2x 2 − 1
w.r.t.
1 1− x 2 at x = 2 is-
(1) 2
(2) 4
(3) 6
(4) 1 x
17.
dy 1 If y = 1 + , then d x = x 1 (1) 1 + x
x
1 (3) x + x
18.
x
x
1 1 log 1 + − + x 1 x
1 (2) 1 + x
x log (x − 1) − x + 1
1 (4) x + x
x
1 log 1 + x 1 1 log 1 + + x 1+ x
dy 2x + 3 If f ′(x) = sin (log x) and y = f = , then dx 3 − 2x 9 cos (log x )
(1)
x (3 − 2 x ) 2
2x + 3 9 sin log 3 − 2x 2 (3) (3 − 2x ) 2
2x + 3 9 cos log 3 − 2x (2) x (3 − 2 x )2
(4)
12 2x + 3 sin log 2 (3 − 2x) 3 − 2x
28 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
19.
dy π –1 1/2 If y = cot (cos 2x) , then the value of d x at x = will be6 2 (1) 3
1/ 2
1 (2) 3
1/2
1/2
(3) (3) 20.
(3)
22.
(4) (6)
dy If y = logcos x sin x, then d x is equal to-
(1)
21.
cot x log cos x + tan x log sin x (log cos x )
(log sin x )
If y = sinn x cosnx , then
(4)
tan x log cos x + cot x log sin x (log cos x )2 cot x (logsin x)2
dy equals dx
(2) nsinn −1 x sin (n + 1) x
(3) nsinn −1 x cos (n − 1) x
(4) nsinn −1 x cosnx
π If f ( x ) = cos x cos 2x cos 4x cos8x cos16x then f ' is 4 (2)
2
1 2
(4) None of these
The value of the derivative of |x – 2| + |x – 3| at x = 3 is (1) 2
(2) –2
(3) 0
(4) 1
x3 Let f(x) = 6 p
sin x cos x d3 (f(x)) at x = 0 is −1 0 where p is constant, then dx 3 2 3 p p 2
(1) p
(2) p + p 3
(3) p + p 25.
2
(2)
(1) nsinn −1 x cos (n + 1) x
(3) 1
24.
2
cot x log cos x + tan x log sin x
(1)
23.
1/ 2
(4) Independent of p 2
2
If f ′(x) = g(x) and g′(x) = −f(x) for all x and f(2) = 4 = f ′(2) then f (19) + g (19) is (1) 16
(2) 32
(3) 64
(4) 8
29 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
LEVEL - II x
1.
2.
3.
4.
Lt
x →a
x f (x) dx = x − a ∫a
(1) 2 f(a)
(2) f(a)
(3) a f(a)
(4) 0
1 4 9 n2 Lt 3 + 3 + 3 + .... + 3 = n →∞ n + 1 n +1 n +1 n +1 (1) 1
(2) 2/3
(3) 1/3
(4) 0
Lt
x →0
log(1 + {x}) = (where {x} denotes the fractional part of x) {x}
(1) 1
(2) 0
(3) 2
(4) does not exist
a
x
− a1/
x
a (1) 4
x
+ a1/
x
Lt
x →0
, a > 1 is (2) 2
(3) –1 5.
6.
Lt
n →∞
(4) 0
a n + bn , where a > b > 1, is equal to a n − bn
(1) –1
(2) 1
(3) 0
(4) none of these
{
1/ sin 2 x
Lt 1
x →0
+2
1/ sin 2 x
+ .... + n
1/ sin 2 x
}
sin 2 x
is
(1) ∞ (3) 7.
(2) 0
n(n + 1) 2
(4) n
If G(x) = − 25 − x 2 , then Lt
x →1
(1)
1 24
(3) − 24
G(x) − G(1) is x −1 (2)
(4)
1 5 1 24
30 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
If f(9) = 9, f ′(9) = 4 , then Lt
8.
x →9
(1) 3 (3) 6
Lt
9.
x →0
10.
12.
13.
x tan 2x − 2x tan x is (1 − cos 2x)2 (2) –2
(3) 1/2
(4) –1/2
Lt
π 2
sin x − (sin x)sin x = 1 − sin x + log(sin x)
(1) 1
(2) 2
(3) 3
(4) 4
2 Given f ′(2) = 6 , and f ′(1) = 4 , Lt f (2h + 2 + h ) − f (2) is h → 0 f (h − h 2 + 1) − f (1)
(1) 3/2
(2) 3
(3) 5/2
(4) –3
Let g(x) = sin2[π3]x2 – sin2[–π3]x2 , [.] represents greatest integer function then xLt →0 (1) –63
(2) 63
(3) 1
(4) –1
If y = x |x| then
If 2x + 2y = 2x + y then
|x| x (4) 2 |x|
(2)
dy = dx
(1) 2x – y (3) –2x – y If x3y2 = (x + y)5 then (1)
x y
(3)
−
(2) 2y – x (4) –2y – x dy = dx
(2) x y
g(x) = sin 4 x
dy = dx
(3) x|x|
15.
=
(2) 4 (4) 8
(1) |x|
14.
x −3
(1) 2
x→
11.
f (x) − 3
y x
(4) logx
31 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
16.
{
}
d (x + a)(x 2 + a2 )(x 4 + a4 )(x 8 + a8 ) = dx
(1)
15x16 − 16x15 a + a16 (x − a)2
(2)
(3)
x16 − a16 x−a
(4) 16x15 – a16
x
17.
If
x2
x3
f(x) = 1 2x 3x 2 then f ′(x) = 0 2 6x
(1) 0 (3) x2 18.
19.
20.
21.
x16 − x15 a + a16 (x − a)2
(2) 1 (4) 6x2
π π If f(x) = cos2x + cos3 + x − sin x sin x + and γ (5/4) = 3 then (gof)(x) = 3 3 (1) 0
(2) 1
π (3) cosx + cos + x 3
(4) 3
Let f(x) be a polynomial function of second degree if f(1) = f(–1) and a, b, c are in A.P then f ′(a), f ′(b), f ′(c) are in (1) A.P (2) G.P (3) H.P (4) A.G.P
x x If cos ⋅ cos 2 2 2
x ⋅ cos 3 2
sin x .........to ∞ = x then
(1)
1 x 1 x tan + 2 tan 2 2 2 2 2
1 x + 3 tan 3 2 2
1 + ......∞ = − cot x + x
(2)
1 1 x 1 x 1 x tan + 2 tan 2 + 3 tan 3 + ......∞ = cot x − 2 2 x 2 2 2 2
(3)
1 x 1 x sec 2 + 4 sec 2 2 2 2 2 2 2
(4)
1 1 1 x 1 x sec 2 + 4 sec 2 2 + ......∞ = cosec 2 x + 2 + 3 2 22 2 2 x x
1 2 + ...... + ∞ = cos ec x − 2 x
A triangle has two of its vertices at P(a, 0), Q(0, b) and the third vertex R(x, y) is moving along the st.line y = x, if A be the area of the ∆, then
dA = dx
(1)
a−b 2
(2)
a−b 4
(3)
a+b 2
(4)
a+b 4
32 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
22.
If f ′(x) = φ(x) and φ′(x) = f(x) ∀x , also f(3) = 5 and f ′(3) = 4 , then the value of [f(10)]2 – [φ(10)]2 = (1) 0 (3) 41
23.
(2) 9 (4) 25
π 5 If f(x) = sin [x] − x , 1 < x < 2 and [x] denotes the greatest integer less than or equal to x, then 2 π f ′ 5 = 2 (1)
π 5 2
4/5
(3) 0
(2)
π −5 2
(4)
π 3 2
4/5
4/5
dy −1 a sin x + bcos x = If y = tan then dx acos x − b sin x
24
25.
(1) 1
(2) –1
(3) 0
(4)
a a cos x − b sin x
If y =
x a+
then
x b+
dy = dx
x a+
x b + ........
(1)
b a(b + 2y)
(2)
b b + 2y
(3)
a b(b + 2y)
(4)
ab a + b2y
33 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
LEVEL - III 1.
π π Lt x cos sin = 4x 4x
x →∞
1 π
(1)
(2)
(4) π
(3) 1 2.
3.
Lt
x →∞
π 4
[x] = x
(1) 1
(2) 3
(3) –1
(4) does not exist
π − x 2 = Lt π sec x − tan x x→ 2
4.
5.
6.
7.
(1) 1
(2) –1
(3) 2
(4) 3
xe3x − x
Lt
1 + x2 −1
x →0
=
(1) 3
(2) 6
(3) 4
(4) 1
Lt
x →0
e|x| − 1 = x
(1) 1
(2) –1
(3) does not exist
(4) 0
11/ x + 21/ x + .... + n1/ x Lt x →∞ n
nx
is
(1) n
(2) n
(3) n − 1
(4) 0
Lt x + x + x − x =
x →∞
(1)
1 2
(3) 0
(2) 1 (4) does not exist
34 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
Lt
8.
x →2
2 x + 23 − x − 6 = 2− x / 2 − 21− x
(1) 8 (3) 2
(2) 4 (4) 6
4 + 3a n an = If a n +1 = 3 + 2a then nLt →∞
9.
n
(1) 0
(2) –2
(3) 10.
(4) − 2
2
1 1 1 + + .... + + .....nterms x > 0, then Lt f (x) = If f (x) = x (1 + 2x)(1 + 3x) n →∞ 1 + x (1 + x)(1 + 2x)
1 1− x (3) 1
1 1+ x (4) 0
(1)
11.
(2)
x 4 sin(1/ x) + x 2 lim is The value of x →−∞ 1+ | x |3 (1) 1 (3) 0
(2) –1 (4) ∞
11/ cos x + 21/ cos x + .... + n1/ cos x The value of xlim π → 2
12.
2
2
cos2 x
is
2
13.
14.
(1) 0
(2) n
(3) ∞
(4)
If siny = xcos(a + y) then
n(n + 1) 2
dy = dx
(1)
sin2 (a + y) sina
(2)
cos2 (a + y) cosa
(3)
cos2 (a − y) cosa
(4)
cos2 (a + y) sina
If sin2mx + cos2ny = a2 then
dy = dx
(1)
m sin 2mx n sin 2ny
(2)
n sin 2ny m sin 2mx
(3)
n sin 2mx m sin2ny
(4)
−
m sin 2mx n sin2ny 35
FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
15.
16.
17.
18.
19.
20.
21.
xx − x−x If f(x) = cot −1 then f ′(1) = 2
(1) –1
(2) 1
(3) log2
(4) –log2
4x dy −1 = If y = logcot x tan x ⋅ logtan x cot x + tan 2 then − 4 x dx (1)
1 4 + x2
(2)
4 4 + x2
(3)
1 4 − x2
(4)
4 4 − x2
If 3f(cosx) + 2f(sinx) = 5x then f ′(cos x) = (1)
−
5 cos x
(2)
5 cos x
(3)
−
5 sin x
(4)
5 sin x
If f(x) = (cosx + sinx) (cos3x + isin3x) .... (cos[(2n – 1)x] + isin(2n – 1)x] then f ′′(x) = (1) n2f(x)
(2) –n4f(x)
(3) –n2f(x)
(4) n3f(x)
Let φ(x) be the inverse of the function f(x) and f ′(x) =
d 1 [φ(x)] = 5 then dx 1+ x 1
(1)
1 1 + (φ(x))5
(2)
1 + ( f(x) )
(3)
1 + (φ(x) )
(4)
1 + ( f(x) )
If
5
x 2 + y 2 = ae tan
−1
(y / x)
5
5
,a > 0 then y ′′(0) is
(1)
a −π / 2 e 2
(2)
aeπ / 2
(3)
2 − e −π / 2 a
(4)
2 π/2 e a
2 If y = a cos(logx) + b sin(logx) then x
d2 y dy +x = dx dx 2
(1) 0
(2) y
(3) –y
(4) 1
36 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
22.
23.
24.
25.
If siny = x sin(a + y) and
dy A = then the value of A is dx 1 + x 2 − 2x cos a
(1) 2
(2) cosa
(3) sina
(4) –2
If y =
ax + b , where a, b, c are constants then (2xy′ + y)y′′′ is equal to x2 + c
(1) 3(xy′′ + y′)y′′
(2) 3(xy′ + y′′)y′′
(3) 3(xy′′ + y′)y′
(4) none of these
dy is equal to dx
If
1 − x 6 + 1 − y 6 = a 3 (x 3 − y3 ) , then
(1)
x 2 1 − y6 y2 1 − x 6
(2)
(3)
x2 1 − x6 y 2 1 − y6
(4) none of these
y 2 1 − y6 x2 1 − x6
u(x) Let f(x) = log , u′(2) = 4, ν ′(2) = 2 , u(2) = 2, v(2) = 1, then f ′(2) is ν(x)
(1) 0
(2) 1
(3) -1
(4) 2
37 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
QUESTIONS ASKED IN AIEEE & OTHER ENGINEERING EXAMS 1.
If xm ⋅ yn = (x + y)m+n , then y x
(2)
x+y xy
(3) xy
(4)
x y
(2)
1 cos ec1 2
(4)
1 tan1 2
(1)
2.
dy is dx
1 2 4 1 1 lim 2 sec 2 2 + 2 sec 2 2 + .... + sec 2 1 is n n n n n
n→∞
(1)
1 sec1 2
(3) tan1
3.
4.
5.
[AIEEE - 2006]
Let α and β be the distinct roots of ax + bx + c = 0 then xlim →α 2
(1)
a2 (α − β)2 2
(2) 0
(3)
−a2 (α − β)2 2
(4)
a b If lim 1 + + 2 x→∞ x x
1 − cos(ax 2 + bx + c) is equal to (x − a)2
1 ( α − β )2 2
= e2 , then the values of a and b, are (2) a = 1, b ∈ R
(3) a ∈ R, b ∈ R
(4) a = 1 and b = 2.
lim
[AIEEE - 2005]
2x
(1) a ∈ R, b = 2
x →π / 2
[AIEEE - 2005]
[AIEEE - 2004]
x 1 − tan 2 [1 − sin x] is x 3 + π − 1 tan [ 2x] 2
(1)
1 8
(2) 0
(3)
1 32
(4) ∞
[AIEEE - 2003]
38 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
log(3 + x) − log(3 − x) = k , the value of k is x
If lim
6.
x →0
(1) 0
(2) −
1 3
2 3
(4) −
2 3
(3)
[AIEEE - 2003]
Let f(a) = g(a) = k and their nth derivatives fn(a), gn(a) exist and are not equal for some n. Further if
7.
lim
x →a
f(a)g(x) − f(a) − g(a)f(x) + g(a) = 4 , then the value of k is g(x) − f(x)
(1) 4
(2) 2
(3) 1
(4) 0
If f(x) = xn , then the value of f(1) −
8.
(1) 2n (3) 0
10.
11.
f ′(1) f ′′(1) f ′′′(1) ( −1)n f n (1) + − + .... + is 1! 2! 3! n! (2) 2n–1 (4) 1
If x = e y + e
9.
y +....to ∞
, x > 0 then
1− x x
(2)
1 x
(3)
x 1+ x
(4)
1+ x x
1 − cos 2x
x→ 0
2x
[AIEEE - 2003]
dy is dx
(1)
lim
[AIEEE - 2003]
[AIEEE - 2003]
is
(1) λ
(2) –1
(3) zero
(4) does not exist
x 2 + 5x + 3 lim 2 x →∞ x + x + 2
[AIEEE - 2002]
x
is
(1) e4
(2) e2
(3) e3
(4) e
[AIEEE - 2002]
x
12.
x − 3 For x ∈ R , lim is x→∞ x + 2 (1) e
(2) e–1
(3) e–5
(4) e5
[AIEEE - 2002]
39 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
13.
14.
15.
Let f(2) = 4 and f ′(2) = 4 . Then lim
x→2
xf(2) − 2f(x) is given by x−2
(1) 2
(2) –2
(3) –4
(4) 3
2 If y = (x + 1 + x 2 )n , then (1 + x )
d2 y dy +x is 2 dx dx
(1) n2 y
(2) –n2y
(3) –y
(4) 2x2y
If sin y = x sin(a + y) , then
[AIEEE - 2002]
dy is dx
sina sin (a + y)
(2)
sin2 (a + y) sina
(3) sina sin2 (a + y)
(4)
sin2 (a − y) sina
(2)
1 − log x 1 + log x
sina
(1)
16.
[AIEEE - 2002]
2
[AIEEE - 2002]
dy is If x y = ex − y , then dx
1+ x 1 + log x
(1)
log x
(3) not defined
17.
(4)
19.
[AIEEE - 2002]
e x − esin x lim is equal to x →0 x − sin x (1) – 1 (3) 1
18.
(1 + log x)2
lim x →0
(2) 0 (4) none of these
[UPSEAT - 2004]
cos 2x 3 − 1 is equal to sin 6 2x
(1)
1 16
(2) −
1 16
(3)
1 32
(4) −
1 32
4 lim 1 − x →∞ x −1
[CEET (Haryana) - 2004]
3x −1
is equal to:
(1) e12
(2) e−12
(3) e 4
(4) e3
[CET (Karnataka) - 2004]
40 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
n
20.
21.
a lim 1 + sin equals to: n →∞ n (1) ea (2) e 2a (4) 0 (3) e The differential coefficient of f(sinx) with respect to x where f(x) = logx is (1) tanx (2) cotx (3) f(cosx)
22.
(4)
If x = A cos 4t + B sin4t, then
(2) 16x (4) –x
x If ∆1 = a a
b b x x b and ∆ 2 = a a x
24.
(1)
x log e x then
d ∆1 = 3∆ 2 dx
(4) ∆1 = 3(∆ 2 )3/ 2
[UPSEAT - 2000]
dy at x = e is dx 1
1 e
(3)
25.
(2)
d ∆1 = 3(∆ 2 ) 2 dx
If y =
[CET (Karnataka) - 2004]
b are given, then x
(1) ∆1 = 3(∆ 2 ) 2
(3)
[CET (Karnataka) - 2004]
d2x is equal to dt 2
(1) –16x (3) x
23.
1 x
[CEE (Delhi) - 2004]
(2)
e
(4) none of these
e −1
[BIT (Mesra) - 2000]
log(e / x 2 ) d2 y −1 3 + 2log x + tan , = then 2 dx 2 1 − 6log x log(ex )
If y = tan (1) 2 (3) 0
(2) 1 (4) –1
[CEE (Delhi) - 2004]
41 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
NARAYANA
Mathematics : Limits and Derivatives
INSTITUTE OF CORRESPONDENCE COURSES
ANSWERS EXERCISES LEVEL - I 1. (2)
2. (1)
3. (1)
4. (3)
5. (2)
6. (1)
7. (2)
8. (2)
9. (2)
10. (3)
11. (1)
12. (2)
13. (4)
14. (1)
15. (1)
16. (1)
17. (1)
18. (4)
19. (1)
20. (1)
21. (1)
22. (1)
23. (3)
24. (4)
25. (2)
LEVEL - II 1. (3)
2. (3)
3. (4)
4. (3)
5. (2)
6. (3)
7. (4)
8. (2)
9. (3)
10. (2)
11. (2)
12. (2)
13. (4)
14. (4)
15. (2)
16. (1)
17. (4)
18. (4)
19. (1)
20. (1)
21. (3)
22. (2)
23. (2)
24. (1)
25. (1)
LEVEL - III 1. (2)
2. (1)
3. (3)
4. (2)
5. (3)
6. (1)
7. (1)
8. (1)
9. (3)
10. (3)
11. (2)
12. (2)
13. (2)
14. (1)
15. (1)
16. (2)
17. (3)
18. (2)
19. (3)
20. (3)
21. (3)
22. (3)
23. (1)
24. (1)
25. (2)
QUESTIONS ASKED IN AIEEE & OTHER ENGINEERING EXAMS 1. (2)
2. (4)
3. (1)
4. (2)
5. (3)
6. (3)
7. (1)
8. (3)
9. (1)
10. (4)
11. (1)
12. (3)
13. (3)
14. (1)
15. (2)
16. (4)
17. (3)
18. (4)
19. (2)
20. (1)
21. (2)
22. (1)
23. (2)
24. (2)
25. (3)
42 FNS House, 63, Kalu Sarai Market, Sarvapriya Vihar, New Delhi-110016 ! Ph.: (011) 32001131/32 Fax : (011) 41828320
View more...
Comments