Circular Water Tank With Domcal Top and Base

June 2, 2018 | Author: Sourav Chandra | Category: Beam (Structure), Stress (Mechanics), Classical Mechanics, Materials, Chemical Product Engineering
Share Embed Donate


Short Description

Circular Water Tank With Domcal Top and Base...

Description

DESIGN DESIGN OF CIRCULAR CIRCULAR WATER TANK ( D o m i c a l

Name of work:- pkn 1 Tank capacity 2 3

Live load Free board

4

Conrete

5 6 7

400000 ltr

M

scbc

Steel fy Nominal Cover   Reinforcement Top Dome (main / distri. ) Top Ring Beam Main two ldge srirrups

Vertivcal

(Water side )

Ring bars

t o p an an d b a s e )  

Depth of water   2

mm

3 unit weight 25000 N/m m 13 115 N/mm2 Tensile stress Effective Cover  mm 35

8

mm F

160

20

mm F

4

8

mm F

300

mm c/c

12

mm F

110

mm c/c

110

mm c/c

2

N/mm

wt of water  200 mm

N/m

mm c/c both way Nos.

Distribution steel

8

mm F

210

mm c/c

8

mm F

90

mm c/c

30

mm F

8

Nos

Bottom Ring Beam

3

N/mm m

12

(both di

m

1400 0.20 20 7 415 25

(both direction)

Bottom Dom slab

4.00 9800

8 mm f 160 160 mm c/c c/c 350

2000 11600

230

20 mm f Ring

4

12 mm f Bars

220

mm c/c

210

mm c/c

110

mm c/c

Nos

4000 8 mm f

12 mm f Bars 12 mm f 110 110 mm c/c c/c

8 mm f Bars 90 mm c/c c/c Both Both side side 8 8 [email protected]

Nos. Bars mm f strirup

30 200

850

mm f

mm c/c 550

DESIGN OF CIRCULAR WATER TANK (Domical top and base) Tank capacity Live load Free board Conrete

400000 1400 0.20 M20 cbc 7 fy 415 25

Steel Nominal cover 

ltr 2 N/mm m

Depth of w ater = 4.00 wt of water  = 9800 = 200 wt. of concrete = #### m = 13 Tensile stess = 115 Effective cover  = 35

2

N/mm 2 N/mm mm

1 D e s i g n C o n s t a n t s : -  For For HYSD HYSD Bars Bars 2 sst = 115 N/mm

scbc = k =

7

N/mm

0.442

wt. of concrete

2

m = J

=

0.853

R

=

= ####

2

N/mm

3

13 1.318

Effective depth of tank

=

2

xD

If D is the inside diameter of tank, we have =



N/mm mm

Cocrete M - = 20

2 Dimention of tank:- 

from which D

m 3 N/mm mm 3 N/mm

400

x

4

3.143

x

3.80

=

4

11.57

Provide a diameter of 

x

m

11.60

=

3.80

=

say

=

4.00

- 0.20 =

3.80 m

400000

x

1000

1000

x

1000

11.60

m

m

3 D e s ig Membrane analysis: ig n o f r o o f d o m e : -   We shall design the top dome and ring beam on membrane analysis, analysis considring these to be independednt of tankwall which is assumed to be freee at top, Let the rise of the dome be = 2.00 m and its thickness = 100 m R = 11.60 / 2 = 5.80 m 3 3 . 6 + 4 the radius r  is given by = R2 = (2r - rise) rise = 5.80 2= (2r(2r-2 2)2 = = 9.41 m 4 2500 N/m2 Self load of dome = 0.1 x 1 x 1 x ## #### = 1400 N/m2 Live load = Total load 3900 N/m2 = 5.8 7.41 = = 0.616 and = 0.79 or  f '= 38 degree sin f cos f = 9.41 9.41 2 wr 1- cos f wr cos f + cos f -1 Hoop stress = Maridian stress = 2 t 1+cos f t sin f Maximum hoop stress oqurs at f = 0 1+1-1 3900 x 9.41 and its magnitude = = 183495 N/m2 = 0.1835 N/mm2 Safe 0.1 1+1 38 degree Maximum meridian stress will be at F = f = 3900 x 9.41 1- 0.787 and its magnitude = = 206002 N/m2 = 0.206 N/mm2 Safe 0.1 0.379 The stress stress are with in safe limit. However However provide provide minimum minimum reinforceme reinforcement nt @ 0.3 % of area in each direction. direction. 0.3 2 = x 1000 x 100 = 300 \  As mm 100 2 3.14xdia 3.14 x 8 x 8 mm2 using 8 mm mm bars A = = = 50 4 x100 4 x 100 Spacing of hoop Bars = 1000 x 50 / 300 = 167 say = 160 mm Hence Provided 8 mm F bar, @ 160 mm c/c in both direction. 3 Design of ring beam :- 

The thicknes kness s of dome

=

120 mm assum sumed

Meridional thrust per metre length of dome at its base.= 206002 x1 x Horizontal component T  per metre length .= 24720 cos 38 = 24720 x

\ hoop tension

= 19466

[email protected]

x

11.60 2

=

112903

steel required =

0.12 =

24720 N/m

0.79 =

19466 N/m

112903

/

115 = 982

mm

2

2

3.14xdia 3.14 x 20 x 20 = = 314 mm2 4 x100 4 x 100 No.of hoop Bars = 982 / 314 = 4 No. say 4.0 No. Hence Provided 4 No. 20 mm F Ring bar, for symetry. 2 1256 Actual , Ast = 4 x 314 = mm E uivelent area of com osite section of beam of area of cross section A is =A+(m-1)Ash=  A +( 13 1 )x 1256 =  A+ 15072 112903 2 = = 1.2  Allowing a stress of 1.2 N/mm in composite section we have  A + #### From which  A + 15072 = 112903 / 1.2 or A = 79014 mm2 actual area = 80500 mm2 Hence provide a Ring beam size 350 x 230 mm f strirrups @ 300 mm c/c to tie ring beam. Provide 8 mm These ring are lapped with dome reinforcement as shown in fig. using 20

mm bars

A

=

4 Design of tank wall:-  Since dome roof has been design on membrane the analysis, the tank wall may be assumed to be free on top and bottom, and the tank wall will be subjected to purely hoop stress. wHD 9800 x 4.00 x 11.60 = = 227360 N/m Maximum hoop tension at base= 2 2 2 1977  Area of ring = 227360 / 115 = or 989 mm2 both side mm 2 3.14xdia 3.14 x 12 x 12 using 12 mm bars A = = = 113 4 x100 4 x 100 Spacing of hoop Bars = 1000 x 113 / 989 = 114 say = 110 mm 12 mm F bar, @ 110 mm c/c in both direction. Hence Provided 1000 x 113 2 Actual , Ast = 2 x = 2055 mm 110 The spacing of ring may be increased towards the top, since pressure varies lineearly

2

mm

Using a tensile stress of 1.2N/mm2 for the the combined section , 227360 thickness T is given by= = 1.2 1000 T +( 13 1 )x 2055 From which 3xD +5 =

Minimum thickness Hence provided

=

170

T 3

= x

169 4

mm +

5

cm =

17

=

170

mm

mm thickness throughout the height, through the thickness at the top can be reuced.

Distribution reinforcement -

100

450 0.28 Distribution reinforcement area = x 100 Provide half the reinfocement near each face, Asd = 2 3.14xdia using 8 mm bars A = 4 x100 / The spacing of  8 mm f bars = 1000 x 50 Hence Provided 8 mm F bar, @

100

Asd

=

0.3

-

0.1

x

170

170

=

0.28

x

1000 =

%

476

mm

2

238 mm2 3.14 x 8 4 x 238 = 210 mm c/c 210 mm c/c =

5 D e s ig n o f B o t t o m d o m e : -   for bottom dome h 2 = 2.20 m and its thickness = 200 mm R = 11.60 = R2 = (2r - rise) rise the radius r  is given by x 2.20 x 2.20 )= 33.64 + 4.84 5.80 2= 2 2.20 Weight of water over the surface of dome is given by eq. 2 h2 D H x (3R2 - h2) Ww = P x w x 4 3 x 4.00 2.20 x( 3.00 11.60 = 3.14 x 9800 x 3 4 2946706 N = Total surface of Dome =2 p R2h2= 3.14 x 8.75 x 2.00 x 2.20 = 120.9 Self load of dome = 120.9 x 0.2 x 25000 = 604500 N/m2 = 2946706 N/m2 [email protected] Weight of water

x 8 100

=

50

/

=

5.80 m

2

)/

4.40 = 8.75

x

8.75 -

m

2.20 )

mm2

m

Load p2 per unit area = 5.8 = = sin f 8.75

0.663 p2R2

Maximum hoop stress at center =

2xt2 p2.R2

Maximum Maridian stress =

Total load = 3551206 N/m2 3551206 / 120.9 = 29373 N/m2 6.55 and = 0.75 or   f '= 41 degree cos f = 8.75 29373 x 8.75 = = 642534 N/m2 = 0.643 N/mm 2 Safe 2 0.2 x 1- cos

f

2

t2 sin f 29373 x 8.75 1 - 0.749 = x = 735362 N/mm2 0.2 0.663 x 0.663 W2 3551206  Alternatively shear force F 2 = = = 97496 N/m 3.14 x 11.60 pD F2 97496 Meriditional thrust T 2 = = = 147084 N/m 0.663 sinf2 147084 Meriditional stress = = 0.735 N/mm2 1000 x 200 The stress are with in safe limit. However provide minimum reinforcement 200 100 x = 0.27 % Ast = 0.3 0.1 450 100 0.27 2 Distribution reinforcement area = x 200 x 1000 = 540 mm 100 2 3.14xdia 3.14 x 8 x 8 using 8 mm bars  A = = = 50 4 x100 4 x 100 Spacing of hoop Bars = 1000 x 50 / 540 = 93 say = 90 mm 8 mm F bar, @ 90 mm c/c in both direction. Hence Provided The thickness of dome

Design of ring beam :- 

=

Meridional thrust per metre length of dome at its base.= 735362 Horizontal component T  per metre length .= 147072 cos 41 =  Alternatively, p2 = F2 Cot f2 = #### x

\ hoop tension

=

110094

x

11.60 2

=

638545

2

mm

200 mm assumed x1

x

0.2

=

147072

N/m

147072

x

0.75 =

110094

N/m

1.129 =

110103

steel required =

638545

/

115 = 5553 mm2

2

mm bars

A

=

of area of cross section A is =A+(m-1)Ash=

 A

+(

2

13 -

 Allowing a stress of 1.2 N/mm in composite section we have From which

 A + 67824 = Beam width =

Hence provide a Ring beam size Provide

Safe

3.14xdia 3.14 x 30 x 30 = = 707 mm2 4 x100 4 x 100 No.of hoop Bars = 5553 / 707 = 8 No. say 8 No. mm Ring bar, for symetry. F Hence Provided 8 No. 30 2 5652 = 8 x 707 = mm Equivelent area of composite section of beam

using 30

Actual , Ast

Safe

8 mm

550 x

f strirrups @

638545

/

550

1 =

 A 1.2 or A Beam depth

)x 5652 =  A+

67824

638545 = 1.2 + #### = 464297 mm2 = 850

actual area = 467500 mm2 200 mm c/c to tie ring beam. 850 mm

 Alternatively, the above f bar verticaly provided @ above spacing on the inner  face of the tank wall may betaken around the rings. Reinforcement shown in drawing 

[email protected]

DESIGN OF CIRCULAR WATER TANK (Domical top and base)

8 mm f 230

160 mm c/c 2000 11600

350

20 mm f Ring

4

12 mm f Bars

220

mm c/c

210

mm c/c

12 mm f Bars

110

mm c/c

30 mm f Bars 12 mm f 110 mm c/c 0

8

mm c/c

Nos

4000 8 mm f

0 mm f Ring 0 mm c/c 0 850

[email protected]

30 mm f Bars

8

mm c/c

0 mm f Ring

0

mm c/c both side 2.00 R= 5.80

F f

Fig 1

f

VALUES OF DESIGN CONSTANTS Grade of concrete Modular Ratio

M-15 18.67

M-20 13.33

M-25 10.98

M-30 9.33

M-35 8.11

M-40 7.18

scbc N/mm2 m scbc

5

7

8.5

10

11.5

13

93.33

93.33

93.33

93.33

93.33

93.33

kc

0.4

0.4

0.4

0.4

0.4

0.4

 jc

0.867

0.867

0.867

0.867

0.867

0.867

Rc

0.867

1.214

1.474

1.734

1.994

2.254

Pc (%)

0.714

1

1.214

1.429

1.643

1.857

kc

0.329

0.329

0.329

0.329

0.329

0.329

 jc

0.89

0.89

0.89

0.89

0.89

Rc

0.89 0.732

1.025

1.244

1.464

1.684

1.903

Pc (%)

0.433

0.606

0.736

0.866

0.997

1.127

kc

0.289

0.289

0.289

0.289

0.289

0.289

 jc

0.904

0.904

0.904

0.904

0.904

0.904

Rc

0.653

0.914

1.11

1.306

1.502

1.698

Pc (%)

0.314

0.44

0.534

0.628

0.722

0.816

kc

0.253

0.253

0.253

0.253

0.253

0.253

 jc

0.916

0.916

0.916

0.914

0.916

0.916

Rc

0.579

0.811

0.985

1.159

1.332

1.506

Pc (%)

0.23

0.322

0.391

0.46

0.53

0.599

(a) sst = 140 N/mm2 (Fe 250) (b) sst = 190 N/mm2 (c ) sst = 230 N/mm2 (Fe 415) (d) sst = 275 N/mm2 (Fe 500)

Permissible shear stress Table 100As bd

v

in concrete (IS : 456-2000)

Permissible shear stress in concrete tv N/mm M-15 M-20 M-25 M-30 M-35

2

M-40

< 0.15

0.18

0.18

0.19

0.2

0.2

0.2

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75

0.22 0.29 0.34 0.37 0.40 0.42 0.44 0.44 0.44 0.44 0.44 0.44

0.22 0.30 0.35 0.39 0.42 0.45 0.47 0.49 0.51 0.51 0.51 0.51

0.23 0.31 0.36 0.40 0.44 0.46 0.49 0.51 0.53 0.55 0.56 0.57

0.23 0.31 0.37 0.41 0.45 0.48 0.50 0.53 0.55 0.57 0.58 0.6

0.23 0.31 0.37 0.42 0.45 0.49 0.52 0.54 0.56 0.58 0.60 0.62

0.23 0.32 0.38 0.42 0.46 0.49 0.52 0.55 0.57 0.60 0.62 0.63

3.00 and above

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete

tc.max

M-15 1.6

M-20 1.8

M-25 1.9

M-30 2.2

M-35 2.3

M-40 2.5

Gra

t

Shear stress tc 100As bd

0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61

M-20

0.17 0.18 0.18 0.18 0.19 0.19 0.19 0.2 0.2 0.2 0.21 0.21 0.21 0.22 0.22 0.22 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.28 0.28 0.28 0.29 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.32 0.32

Reiforcement % M-20  

0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.46 0.47 0.48 0.49 0.50 0.51

modification factore Ta

100As bd

0.14 0.15 0.18 0.21 0.24 0.27 0.3 0.32 0.35 0.38 0.41 0.44 0.47 0.5 0.55 0.6 0.65 0.7 0.75 0.82 0.88 0.94 1.00 1.08 1.16 1.25 1.33 1.41 1.50 1.63 1.64 1.75 1.88 2.00 2.13 2.25

Degree 1 2 3 4 5 6

 

% fy 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

Value of angle sin cos 0.017 1.000 0.035 0.999 0.052 0.999 0.070 0.998 0.087 0.996 0.104 0.995

200

1.90 1.80 1.70 1.60 1.55 1.50 1.50 1.45 1.40 1.35 1.35 1.30 1.30 1.25 1.25 1.20 1.18 1.17 1.16 1.15 1.14 1.13 1.12 1.11 1.11 1.11

tan 0.017 0.035 0.052 0.070 0.087 0.105

250

328

2.0 1.75 1.65 1.55 1.5 1.45 1.4 1.35 1.3 1.3 1.25 1.2 1.2 1.18 1.16 1.14 1.13 1.12 1.1 1.1 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.00

2 1.85 1.75 1.65 1.5 1.4 1.35 1.30 1.25 1.2 1.16 1.13 1.1 1.1 1.07 1.05 1.03 1.01 1.0 0.99 0.97 0.96 0.95 0.94 0.93 0.92 0.92 0.91 0.91 0.90 0.87 0.86

Degree 1 2 3 4 5 6

0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13

0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.4 0.4 0.4 0.4 0.4 0.4

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

0.122 0.139 0.156 0.174 0.191 0.208 0.225 0.242 0.259 0.276 0.292 0.309 0.326 0.342 0.358 0.375 0.391 0.407 0.422 0.438 0.454 0.469 0.485 0.500 0.515 0.530 0.545 0.559 0.573 0.858 0.602 0.616 0.629 0.643 0.656 0.669 0.682 0.695 0.707 0.719 0.731 0.742 0.755 0.766 0.777 0.788 0.799 0.809 0.819 0.829 0.839 0.848

0.993 0.990 0.988 0.985 0.981 0.978 0.974 0.970 0.966 0.961 0.956 0.951 0.946 0.940 0.934 0.927 0.921 0.924 0.906 0.898 0.891 0.883 0.875 0.866 0.857 0.848 0.839 0.829 0.819 0.809 0.799 0.788 0.777 0.766 0.755 0.743 0.731 0.719 0.707 0.695 0.682 0.669 0.656 0.643 0.629 0.616 0.602 0.588 0.574 0.559 0.545 0.530

0.123 0.140 0.158 0.176 0.194 0.213 0.231 0.249 0.268 0.287 0.306 0.325 0.344 0.364 0.384 0.404 0.424 0.440 0.466 0.488 0.510 0.532 0.554 0.577 0.601 0.625 0.649 0.675 0.700 1.060 0.754 0.781 0.810 0.839 0.869 0.900 0.933 0.966 1.000 1.036 1.072 1.109 1.150 1.192 1.235 1.280 1.327 1.376 1.428 1.483 1.540 1.600

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51

0.4 0.4 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.45

1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64

0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.46

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

0.857 0.866 0.875 0.883 0.891 0.899 0.906 0.914 0.921 0.927 0.934 0.940 0.946 0.951 0.956 0.961 0.966 0.970 0.974 0.978 0.982 0.985 0.988 0.999 0.993 0.995 0.996 0.998 0.999 0.999 0.9998 1.000

0.515 0.500 0.485 0.470 0.454 0.438 0.423 0.407 0.391 0.375 0.358 0.342 0.326 0.309 0.292 0.276 0.259 0.242 0.225 0.208 0.191 0.174 0.156 0.139 0.122 0.105 0.087 0.070 0.052 0.035 0.017 0.000

1.664 1.732 1.804 1.880 1.963 2.051 2.145 2.246 2.356 2.475 2.605 2.747 2.904 3.078 3.271 3.488 3.732 4.011 4.332 4.705 5.145 5.673 6.315 7.178 8.145 9.517 11.431 14.302 19.083 28.637 57.295 1.000

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

Table Carpentors's coefficents Factors H+d A    D    /    H    f   o   e   u    l   a    V

0.2 0.3 0.4 0.5 1.0 2.0 4.0

F 10 0.046 0.032 0.024 0.02 0.012 0.006 0.004

20 0.028 0.019 0.014 0.02 0.006 0.003 0.002

30 0.022 0.014 0.01 0.009 0.005 0.002 0.002

40 0.015 0.01 0.007 0.006 0.003 0.002 0.001

10 0.55 0.5 0.45 0.37 0.3 0.27

1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16

0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50

2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15

0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Permissible Bond stress Table de of conc bd

M-10 --

(N / mm

M-15 0.6

M-20 0.8

M-25 0.9

bd

in concrete (IS : 456-2000)

M-30 1

M-35 1.1

M-40 1.2

M-45 1.3

Development Length in tension Plain M.S. Bars

H.Y.S.D. Bars

Grade of  concrete

tbd (N / mm2)

kd = Ld F

tbd (N / mm2)

M 15

0.6

58

0.96

60

M 20

0.8

44

1.28

45

M 25

0.9

39

1.44

40

M 30

1

35

1.6

36

M 35

1.1

32

1.76

33

M 40

1.2

29

1.92

30

M 45

1.3

27

2.08

28

M 50

1.4

25

2.24

26

kd = Ld

F

Permissible stress in concrete (IS : 456-2000) 2 Permission stress in compression (N/mm ) Permissible stress in bond (Average) for  Grade of  2 Bending acbc Direct (acc) plain bars in tention (N/mm ) concrete 2 2 2 (N/mm2) (N/mm2) (N/mm2) in kg/m Kg/m Kg/m --M 10 3.0 300 2.5 250 0.6 60 M 15 5.0 500 4.0 400 0.8 80 M 20 7.0 700 5.0 500 0.9 90 M 25 8.5 850 6.0 600 1.0 100 M 30 10.0 1000 8.0 800 1.1 110 M 35 11.5 1150 9.0 900 1.2 120 M 40 13.0 1300 10.0 1000 1.3 130 M 45 14.5 1450 11.0 1100 140 16.0 12.0 1.4 M 50 1600 1200

Maximum shear stress tc.max in concrete (IS : 456-2000) Grade of concrete

tc.max

M-15 1.6

M-20 1.8

M-25 1.9

M-30 2.2

M-35 2.3

M-40 2.5

le 415

1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.15 1.05 1.02 1.20 0.98 0.96 0.94 0.92 0.91 0.90 0.89 0.86 0.86 0.85 0.84 0.83 0.83 0.82 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81

500 2.00 1.80 1.65 1.50 1.40 1.35 1.30 1.20 1.16 1.08 1.00 0.95 0.90 0.86 0.84 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.74 0.73 0.72 0.72 0.72 0.71 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68

sin 0.017 0.035 0.052 0.070 0.087 0.104

Degree 1 2 3 4 5 6

0.122 0.139 0.156 0.174 0.191 0.208 0.225 0.242 0.259 0.276 0.292 0.309 0.326 0.342 0.358 0.375 0.391 0.407 0.422 0.438 0.454 0.469 0.485 0.500 0.515 0.530 0.545 0.559 0.573 0.588 0.602 0.616 0.629 0.643 0.656 0.669 0.682 0.695 0.707 0.719 0.731 0.742 0.755 0.766 0.777 0.788 0.799 0.809 0.819 0.829 0.839 0.848

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

0.857 0.866 0.875 0.883 0.891 0.899 0.906 0.914 0.921 0.927 0.934 0.940 0.946 0.951 0.956 0.961 0.966 0.970 0.974 0.978 0.982 0.985 0.988 0.999 0.993 0.995 0.996 0.998 0.999 0.999 0.9998 1.000

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

or cylenlidrical tank (Reyolndhand book) K1 20 0.5 0.43 0.39 0.37 0.28 0.22 0.2

K2 30 0.45 0.38 0.35 0.32 0.24 0.19 0.17

40 0.4 0.33 0.3 0.27 0.21 0.16 0.14

10 0.32 0.35 0.44 0.48 0.62 0.73 0.8

20 0.46 0.53 0.58 0.63 0.73 0.81 0.85

30 0.53 0.6 0.65 0.69 0.74 0.85 0.87

40 0.5 0.66 0.7 0.73 0.83 0.88 0.9

M-50 1.4 fs = 120 =fy200

2.0

fs =145 =fy250 fs =190 =fy328

1.6

fs =240 =fy415 fs = 290 =fy500

1.2 0.8 0.4

0

0.4

0.8

1.2

1.6

2.0

Modification factore Fig 7.1 Fs= steel stress of service load =0.58fy for steeel f y 500

= Fs 290 N/mm

2

f y 415

= Fs 240 N/mm

2

f y 328 f y 250

= Fs 190 N/mm 2 = Fs 145 N/mm

f y 207

= Fs 120 N/mm

2

2

2.4

2.8

3.2

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF