Ciclo de Refrigeración de Ciclo de Carnot Inverso

June 18, 2018 | Author: Ulices Mejia Bautista | Category: Refrigeration, Heat Transfer, Energy Technology, Chemical Engineering, Branches Of Thermodynamics
Share Embed Donate


Short Description

Descripción: dewdewd...

Description

CICLO DE REFRIGERACIÓN DE CICLO DE CARNOT INVERSO El ciclo de Carnot es totalmente reversible, permitiendo que los cuatro procesos que comprenden el ciclo puedan invertirse. El resultado es un ciclo que opera en dirección contraria a las manecillas del reloj, que se llama ciclo invertido de Carnot. Un refrigerador o bomba de calor que opera en este ciclo recibe el nombre de refrigerador o bomba de calor de Carnot.  Aunque en la práctica no es utilizado por razones que más ade lante se expondrán, sirve de referencia para evaluar el desempeño de un dispositivo real que trabaje bajo las mismas condiciones de temperatura.

Considere un ciclo de Carnot invertido ejecutado dentro de la campana de saturación de un refrigerante, como el que se muestra en la figura (2.1-a) 1-2 Se transfiere (absorción) calor reversiblemente desde la región fría TL, de forma isoterma donde el refrigerante experimenta cambios de fase. 2-3 Se comprime el refrigerante isoentrópicamente, hasta que alcanza la temperatura máxima TH. 3-4 Se transfiere calor reversiblemente revers iblemente a la región caliente a TH, de forma isoterma, donde el refrigerante experimenta cambios de fase (vapor a líquido). 4-1 Se expande el refrigerante isoentrópicamente hasta, alcanzar la temperatura mínima TL. Los inconvenientes de un ciclo de refrigeración de Carnot como modelo de dispositivo práctico radican en los procesos de compresión y expansión. En general debe evitarse comprimir una mezcla húmeda por el daño de las presencias de pequeñas gotas liquidas puedan causar al compresor (caso análogo de las turbinas de vapor). La expansión con una turbina bajo condiciones similares a la ya descrita es igual de perjudicial, la restricción a las condiciones de saturación limita la capacidad de absorber calor. Las modificaciones para evitar

estos dos tipos de problemas inherentes al ciclo de Carnot conducen en la práctica al ciclo de refrigeración por compresión de vapor. http://termo2-1mi131.blogspot.mx/2013/11/ciclo-de-refrigeracion-de-ciclo-de.html

CICLO INVERSO DE CARNOT Ciclo Invertido de Carnot: El ciclo reversible más eficiente es el ciclo de Carnot y puesto que es un ciclo reversible, los cuatro procesos que comprende el ciclo de carnot pueden invertirse. Por lo que se invertirán las direcciones de los procesos de transferencia de calor y trabajo. Dando como resultado el ciclo invertido de carnot. Procesos que comprende el ciclo invertido de carnot: Proceso 1-2: El refrigerante absorbe calor isotermicamente de una fuente a baja temperatura a TL en la cantidad QL. Proceso 2-3: Se comprime isentropicamente hasta el estado 3 (la temperatura se eleva hasta TH). Proceso 3-4: Rechazo de calor isotermicamente en un sumidero de alta temperatura a TH en la cantidad QH. Proceso 4-1: Se expande isentropicamente hasta el estado 1 (la temperatura desciende hasta TL). Ciclo Ideal de Refrigeración por Compresión de Vapor: Procesos que experimenta el fluido en un ciclo ideal de refrigeración por compresión de vapor: Proceso 1-2: Compresión isentrópica en un compresor. Proceso 2-3: Rechazo de calor a presión constante en el condensador. Proceso 3-4: Estrangulamiento en un dispositivo de expansión. Proceso 4-1: Absorción de calor a presión constante en el evaporador. Ciclo Ideal de Refrigeración por Compresión de Vapor: Los componentes asociados con el ciclo de refrigeración por compresión de vapor son dispositivos de flujo estable. Los cambios en la ec y ep del refrigerante son despreciables, entonces: El Balance de energía se Plantea: (qentrada – qsalida) + (wentrada – wsalida) = he – hi COP Refrigeradores y Bombas de Calor para el ciclo de refrigeración por compresión de vapor Ciclo Real de Refrigeración por Compresión de Vapor: Las Irreversibilidades en las corrientes de fluidos que atraviesan al compresor conducen a un aumento de la temperatura del fluido durante el proceso adiabático. Este efecto se acompaña también de un aumento en la temperatura final respecto a la que se alcanzaría en el caso ideal. Para los casos Reales es mejor trabajar en las siguientes condiciones: El refrigerante es sobrecalentado antes de entrar al compresor de forma de asegurar vapor al compresor. El refrigerante condensado es subeenfriado, por lo difícil de trabajar en la condición de saturación además de reducir el efecto refrigerante. El compresor no es isentrópico por lo que puede haber un aumento o disminución de entropía. Ciclo de Refrigeración en Cascada:Se utilizan en aplicaciones industriales en las que se necesitan temperaturas moderadamente bajas (comprendidas en el intervalo de -25 a -75 ºC (-10 a -100 ºF)). Un ciclo en cascada es sencillamente un conjunto de ciclos de compresión de vapor en serie, tal que el condensador de un ciclo de temperatura inferior proporcione calor al evaporador de un ciclo de temperatura mayor. Características: Es como tener ciclos de refrigeración sencillos operando en serie. 



 

  

Se utiliza cuando se requiere temperaturas relativamente bajas y un gran diferencial de temperatura. Esto a su vez implica manejar una gran diferencial de presión, que en un compresor reciprocante, afecta negativamente el rendimiento del mismo.

 

El calor que desprende el condensador del ciclo inferior es igual al calor que absorbe el calor del ciclo superior.

 

El refrigerante del ciclo inferior y superior, pueden ser distintos, ya que nunca se mezclan.

https://jenniferquimbayosanchez.wordpress.com/2014/05/18/ciclo-inverso-de-carnot/

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF