Checkpoint Maths 2 Answer

March 12, 2018 | Author: Thooi Joo Wong | Category: Triangle, Litre, Slope, Angle, Elementary Geometry
Share Embed Donate


Short Description

Cambridge Checkpoint...

Description

D - Ans 4 web - 001-024.qxd

17/8/04

11:13 am

Page 1

Checkpoint Maths 2 Answers SECTION ONE

5

Chapter 1 – Shape, space and measures 1 Exercise 1.1 1

2

Sunday

0200

1012

1400

2212

Monday

0200

1012

1348

2200

Tuesday

0310

1122

1510

2322

Wednesday

0336

1148

1321

2133

(d) 1845

(e) 2330

(f) 1650

Thursday

0255

1107

1515

2327

(a) 1900

(b) 1200

(c) 0005

Friday

0057

0909

1436

2248

(d) 2210

(e) 0815

(f) 2015

Saturday

0638

1450

1648

0100

(g) 0745

(h) 1945 (a) 1 hour 2 min (b) 1620 (c) 1926

(a) 0840

(d) 2225 7

(c) 0800

Pupils’ own questions and answers.

(a) 1630

Chapter 2 – Number 1

(b) 1606 (c) 1803 (a)

Depart

Exercise 2.1 (b)

Arrive

Depart

Arrive

0523

0631

5.23 am

6.31 am

0715

0823

7.15 am

8.23 am

0904

1012

9.04 am

10.12 am

1028

1136

10.28 am

11.36 am

1 2

3

(a) 14.8

(b) 31.14

(c) 9.66

(d) 100.01

(e) 44.44

(f) 9.1

(a) 11.1

(b) 10.9

(c) 15.04

(d) 0.01

(e) 11.7

(f) 10

(g) 12

(h) 0

(a) 17.02

(b) 159.36

(c) 43.56

(e) 35.1

(f) 5.1

(h) 10

1445

1553

2.45 pm

3.53 pm

(d) 4

1622

1730

4.22 pm

5.30 pm

(g) 18.63

1809

1917

6.09 pm

7.17 pm

2017

2125

8.17 pm

9.25 pm

Exercise 2.2 1

4

Dubai (local time)

(c) 0955

(b) 0820

3

London

(b) 0535

Exercise 1.2

2

Dubai (local time)

(a) 0830

6

1

London

Stansted

0500

0715

0915

1040

1315

Luton

0630

0845

1045

1210

1445

Gatwick

0805

1020

1220

1345

1620

Heathrow

0850

1105

1305

1430

1705

2 3

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

(a) 20

(b) 30

(c) 24

(d) 14

(e) 43

(f) 18

(a) 18

(b) 9

(c) 11

(d) 0

(e) 27

(f) 1

(a) 15

(b) 18

(c) 2

(d) 35

(e) 15

(f) 6 1 of 24

D - Ans 4 web - 001-024.qxd

2

4

17/8/04

11:14 am

Section 1 – Shape, space and measures 2

(a) (12  8)  2  8

Exercise 3.3

(b) 5  (2  4)  30

1

Pupils’ perpendicular bisector constructions.

2

The orientation of pupils’ diagrams may differ from the ones shown below.

(c) 2  (3  4  5)  4 (d) (10  4)  (3  3)  36 (e) (9  6  3)  2  4  10 (f) (9  6  3)  (2  4)  2 5

Page 2

(a)

(b)

(d)

(e)

(a) 20  8  2  6  22 (b) (20  8)  2  6  12 (c) (20  8)  (2  6)  1.5 (d) 20  (8  2  6)  10 (e) 20  8  (2  6)  19

6

(a) 8  3  4  6  14 (b) (8  3)  4  6  38 (c) (8  3)  (4  6)  22 (d) 8  3  (4  6)  2

Exercise 2.3 1 2

(a) 4

(b) 4

(c) 3

(d) 8

(e) 12

(f) 6

(a) 13

(b) 37

(c) 12

(d) 12.8

(e) 0.125

(f) 0.5

(f)

Chapter 3 – Shape, space and measures 2 Exercise 3.1 1

Circumference

2

Radius, radii

3

Chord

4

Diameter

5

Arc

6

Sector

7

Segment

8

Tangent

(g)

Exercise 3.2 1

Pupils’ drawings.

2

Pupils’ drawings.

3

Pupils’ own patterns.

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

2 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 3

Section 1 – Using and applying mathematics/ICT

3

Pupils’ construction of a regular octagon.

4

(a), (b) Pupils’ constructions.

Chapter 5 – Using and applying mathematics/ICT 1

(c) Point of intersection is the same distance from points A, B and C.

Investigation

5

Pupils’ constructions.

6

Pupils’ constructions.

Chapter 4 – Handling data 1 Exercise 4.1 1

Primary

2

Secondary

3

Secondary

4

Primary

5

Secondary

Only one possible solution for each number is given below. There are many other correct possibilities. Some solutions have included the use of the factorial (!) which, although not covered in the text, could be introduced for more able students. 1 44  44

4 4 2    4 4

4 3 4  4   4

44 4   4 4

4 5 4  4   4

44 6   4 4

4 7 4  4   4

8 (4  4)  4  4

4 9 4  4   4

44  4 10  4

Pupils’ suggested research.

4 11 4!  4    4

44  4 12  4

Q p.19

4 13 4!  4    4

14 4  4  4  4 

Question (c).

15 44  4  4

16 4  4  4  4

Q p.19

4 17 4  4   4

4 18 4  4   4 

4 19 4!  4   4

20

4 21 4!  4    4

22 4  4  4  4 

23 (4!  4  4)  4

24 4  4  4  4

Q p.19

Pupils’ own questions.

Q p.19 Pupils’ own questions.

Exercise 4.2 Pupils’ rewritten questions.

25

4  4 4

4 

4  4  4 4

44 26 4!   4

Exercise 4.3

4 27 4!  4    4

28 4 4  4 4

Pupils’ own questions. Ensure questions are clear, simple, unbiased and relevant.

4 29   4  4! 4

30 4  4  4   4

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

3

3 of 24

D - Ans 4 web - 001-024.qxd

4

17/8/04

11:14 am

Page 4

Section 2 – Number 2

SECTION TWO

ICT activity Pupils’ constructions. As the vertex is dragged, the shape of the triangle changes but the circumference of the circle still passes through each of the three vertices.

Chapter 6 – Number 2 Exercise 6.1 1

Review 1A 1

(a) 1645

(b) 0030

2

0620

3

0900

4

(a) (3  4)  5  35 (b) (8  6)  (7  4)  22 (c) 5  (8  3)  4  51

5

Pupils’ construction of a regular hexagon.

6

arc sector

chord

2

Pupils’ questionnaires. Pupils’ examples of a biased question which should not be used.

(d) A thousandth

(e) One thousand

(f) A thousandth

(g) A thousandth

(h) One thousand

(i) A millilitre

(j) One million

(a) kg

(b) cm

(c) m or cm

(d) ml

(e) t

(f) m

(g) litre

(h) km

(i) litre

(j) cm

Pupils’ lines and measurements.

4

Pupils’ estimates. Answers may vary considerably.

Exercise 6.2

tangent

8

(b) A hundredth

3

1

7

(a) One hundred (c) One thousand

(a) 1 m is 100 cm so to change from m to cm multiply by 100 to change from cm to m divide by 100. (b) 1 m  1000 mm so to change from m to mm multiply by 1000. so to change from mm to m divide by 1000. (c) 1 cm  10 mm so to change from cm to mm multiply by 10. to change from mm to cm divide by 10.

Review 1B

(a) 40 mm

(b) 62 mm

(c) 280 mm

(d) 1200 mm

2040 on Wednesday

(e) 880 mm

(f) 3650 mm

3

2300

(g) 8 mm

(h) 2.3 mm

4

(a) (7  8)  (3  2)  3

(a) 2.6 m

(b) 89 m

(c) 2300 m

(d) 750 m

(e) 2.5 m

(f) 400 m

(g) 3800 m

(h) 25 000 m

1

1625

2

(b) (7  8)  3  2  7

2

3

(c) 7  8  (3  2)  8.6 5

Pupils’ constructions of a perpendicular bisector.

6

Pupils’ examples.

(a) 2 km

(b) 26.5 km

7

Pupils’ questionnaires.

(c) 0.2 km

(d) 0.75 km

8

Pupils’ examples of a badly written question, i.e. not clear, not relevant or biased.

(e) 0.1 km

(f) 5 km

(g) 15 km

(h) 75.6 km

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

4

4 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 5

Section 2 – Algebra 1

5 1 kg is 1000 g so to change kg to g multiply by 1000 to change g to kg divide by 1000. 6 (a) 2000 kg

(b) 7200 kg

(c) 2.8 kg

(d) 0.75 kg

(e) 450 kg

(f) 3 kg

(g) 6.5 kg

(h) 7000 kg

7 (a) 2600 ml

Exercise 7.2 1 2 3

(b) 700 ml

(c) 40 ml

(d) 8 ml

8 (a) 1.5 litres

4

(b) 5.28 litres

(c) 0.75 litres

(d) 0.025 litres

5

9 138.3 tonnes 6

10 (a) 720 ml (b) 0.53 litres

7

Chapter 7 – Algebra 1 Exercise 7.1 1 (a) a  2

(b) a  3

(d) a  6

(e) a  5

2 (a) b  7

(b) b  7

(d) b  5

(e) b  8

3 (a) c  4

(b) c  8

(d) c  4

(e) c  8

4 (a) d  2 (d) d  11

(b) d  4 (b) e  4

(d) e  4

(e) e  3

6 (a) f  3

(b) f  3

(d) f  4

(e) f  7

7 (a) g  4

(b) g  12

(d) g  4

(e) g  6

(d) h  5

(b) h  4 (b) k  4

(d) k  4

(e) k  2

10 (a) m  9 (d) m  1

(b) m  17

(b) a  3

(d) a  2

(e) a  2

(a) b  5

(b) b  2

(d) b  2

(e) b  3

(a) c  2

(b) c  5

(d) c  4

(e) c  3

(a) d  2

(b) d  3

(d) d  3

(e) d  3

(a) e  1

(b) e  3

(d) e  3

(e) e  2

(a) f  1.5

(b) f  1

(d) f  3

(e) f  5

(a) g  1

(b) g  5

(d) g  14

(e) g  1

(c) a  1 (c) b  1 (c) c  3 (c) d  5 (c) e  2 (c) f  1 (c) g  5

Exercise 7.3 (b) a  4 (e) a  1

(c) a  4

2 (a) b  2 (d) b  3

(b) b  3 (e) b  12

(c) b  5

3 (a) c  3 (d) c  8

(b) c  5 (e) c  1

(c) c  9

4 (a) d  9 (d) d  1

(b) d  7 (e) d  5

(c) d  4

5 (a) e  3 (d) e  3

(b) e  2 (e) e  2

(c) e  2

6 (a) f  8 (d) f  4

(b) f  7 (e) f  6

(c) f  3

(c) g  3

7 (a) g  4 (d) g  3

(b) g  14 (e) g  5

(c) g  3

(c) h  5

8 (a) h  2 (d) h  3

(b) h  3 (e) h  3

(c) h  10

(c) k  5

9 (a) j  8 (d) j  14

(b) j  15 (e) j  27

(c) j  32

10 (a) k  6 (d) k  15

(b) k  4 (e) k  16

(c) k  6

(c) b  7 (c) c  3 (c) d  9 (c) e  2 (c) f  6

(e) h  11

9 (a) k  6

(a) a  2

1 (a) a  3 (d) a  5

(e) d  9

5 (a) e  2

8 (a) h  2

(c) a  4

(c) m  13

(e) m  4

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

5

5 of 24

D - Ans 4 web - 001-024.qxd

6

17/8/04

11:14 am

Page 6

Section 2 – Shape, space and measures 4

Chapter 8 – Shape, space and measures 3

Chapter 9 – Shape, space and measures 4

Exercise 8.1

Exercise 9.1

(a) 18.85 cm

(b) 78.54 cm

(c) 125.66 mm

(d) 3.14 m

(a) 25.13 cm

(b) 21.99 cm

(c) 75.40 mm

(d) 39.58 m

(a) 31.4 cm

(b) 35.7 cm

(c) 61.7 cm

(d) 121.4 mm

(e) 13.7 cm

(f) 100.7 cm

4

(a) 235.6 cm

(b) 424 times

5

6.3 cm

6

37.70 m

1 2 3

1

2

3

Exercise 8.2 1

(a) 28.3 cm2

(b) 176.7 cm2

(c) 2.0 mm2 (e) 167.4 cm 2

(d) 918.6 cm2 2

(f) 0.1 cm2

(a) 100.5 cm2

(b) 78.5 cm2

(c) 58.9 cm2

(d) 62.1 cm2

(e) 1.9 cm

2

(f) 43.4 cm2

4

Exercise 8.3 1

(a) 25 cm2 (b) 19.6 cm2 (1 dp) (c) 5.4 cm2 (1 dp)

2

11.4 cm2

3

(a) 25.1 cm2 (1 dp)

Exercise 9.2 1

(b) 21.5% (1 dp) 4

(a) 268 cm2 (b) 81 cm

5

5969 m2

6

Ring 1  37.7 cm2 Ring 2  62.8 cm2 Ring 3  88.0 cm2

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

6 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 7

Section 2 – Shape, space and measures 4

2

7

Exercise 9.3 1

2

3

4

5

6

3

4

Exercise 9.4 The diagrams that follow show only two possible nets for the three-dimensional shapes in the question. Other nets are possible. 1 5

6

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

7 of 24

D - Ans 4 web - 001-024.qxd

8

17/8/04

11:14 am

Page 8

Section 2 – Shape, space and measures 4

2

4

5

3

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

8 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 9

9

Section 2 – Using and applying mathematics/ICT

6

P/D

Perimeter/diagonal for even-sided regular polygons



3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80

0

2

4

6 8 Number of sides

10

12

14

Perimeter/diagonal for odd-sided regular polygons 3.50 3.45

P/D

3.40 3.30 3.25 3.20



3.15 3.10

0

2

4

6 8 Number of sides

10

12

14

The results for odd and even-sided regular polygons can be combined on a graph as follows:

Chapter 10 – Using and applying mathematics/ICT 2

Perimeter/diagonal for regular polygons 3.6 3.5 3.4

Investigation

3.3

Pupils will produce a variety of nets. The net using the smallest amount of card is shown below:

3.1

P/D

3.2



3.0 2.9 2.8 2.7 2.6 2.5

35 51 cm 8

20

8

20

56 cm

ICT activity 1–7 Pupils generate their own regular polygons and measure the perimeter and diagonal length of each. 8

(a) Pupils’ results should show that, as the number of sides of the regular polygon increases, so the value perimeter  diagonal gets closer to .

0

2

4

6 8 Number of sides

10

12

14

Review 2A 1

(a) 40 mm

(b) 284 mm

(c) 850 mm

2

(a) 7200 kg

(b) 2.8 kg

(c) 50 kg

3

(a) 2300 ml

(b) 400 ml

(c) 8.9 ml

4

1600 ml

5

(a) a  4

(b) b  13

(c) m  5

6

38.96 cm (2 dp)

7

452.39 cm2

8

18.8 cm2 (1 dp)

(b) The value perimeter  diagonal gets closer to , but the results for even and odd-sided regular polygons differ because they approach  differently. This is shown in the following graphs. Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

9 of 24

D - Ans 4 web - 001-024.qxd

10

9

17/8/04

11:14 am

Page 10

Section 3 – Algebra 2

Different nets are possible to this one.

10 Different nets are possible to this one.

4 cm

5 cm 5 cm

4 cm

5 cm

4 cm 12 cm

10 cm

5 cm

4 cm

10 Different nets are possible to this one.

SECTION THREE 5 cm 10 cm

4 cm

Chapter 11 – Algebra 2 Exercise 11.1 1

(a) a is less than 6 (b) b is greater than 5

4 cm

(c) c is not equal to 10 2

Review 2B

(a) x is less than or equal to 7 (b) y is greater than or equal to 3

1

(a) 3500 m

(b) 0.75 m

(c) 0.28 m

2

(a) 800 g

(b) 4100 g

(c) 70 g

3

(a) 0.7 litres

(b) 20 litres

(c) 0.005 litre

4

2.32 litres

5

(a) a  8

6

42.16 cm (2 dp)

7

226.19 cm2

8

(a) 345.6 m

9

Different nets are possible to this one.

(c) z is less than or equal to 10 3

(a) d is greater than 4 (b) e is less than 7 (c) f is not equal to 8

(b) b  1.5

(c) c  5

4

(a) m is less than 8 (b) n is greater than 5 (c) f is not equal to 5

5

(b) 5656 m2

(a) s is less than or equal to 6 (b) t is greater than or equal to 9 (c) u is not equal to 3

4 cm

Exercise 11.2 12 cm

1



2



3



4



5



6



7



8



9



10 

Exercise 11.3 4 cm

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

1

a  10

2 b 7

3

c 5

4

d 6

5

e  10

6 f 76

7

g 12

8

h5

9

j 4

10 k  7 10 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 11

Section 3 – Algebra 3

Exercise 11.4

11

Exercise 11.6

1 2

3

4

5

6

7

2

3

4

5

6

7

2 3

1

3 a 6

2 4b 7

3

6 c9

4 0 d3

5

2 e 1

6 3  f  3

7

1  g 4

8 3 h 2

5  i  1

2

3

4

5

6

7

9

2

3

4

5

6

7

Exercise 11.7

2

3

4

5

6

7

10 4 j  4

4 5 6 2

3

4

5

6

7

2

3

4

5

6

7

2

3

4

5

6

7

0.5

0.6

0.7

0.8

0.9

1.0

2.2

2.3

2.4

2.5

2.6

2.7

7 8 9

1

11 a 18

2 21  a 40

3

160 h  200

4 14 t 28

5

300 n 400

6 155 h 185

7

7 n 11

8 1 n 8

9

10  d  12

10 40  n  50

Chapter 12 – Algebra 3 Exercise 12.1

10

1 (a) p  m  q

(b) q  m  p

2 (a) p  m  d

(b) m  d  p

3 (a) s  r  3t

rs (b) t   3 (b) c  2d  x

7

xc 4 (a) d   2

12

d  3b 5 (a) a   2

d  2a (b) b   3

6

p  5s 6 (a) r   3

3r  p (b) s   5

m 7 (a) r    p 2

m (b) p  r   2

w 8 (a) r    2p 5

1 w (b) p   r   2 5

9 (a) r  w  dt

wr (b) t   d

Exercise 11.5 1 2

3

4

5

6

7

2 2

3

4

5

6

3 7

8

9

10

11

4 1

2

3

4

5

5 2

3

4

5

6

7

6 2

3

4

5

6

7

7 –6

–5

–4

–3

–2

–1

8 –9

–8

–7

–6

–5

–4

–2

–1

0

1

2

3

–1

0

1

2

3

4

9 10 Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

yc 10 (a) m   x





c (b) m   yx

Exercise 12.2 1

(a) a  c  b

(b) b  c  a

2

(a) a  b  c

(b) c  a  b 11 of 24

D - Ans 4 web - 001-024.qxd

12

17/8/04

11:14 am

Page 12

Section 3 – Shape, space and measures 5

s 3 (a) p   qr

s (b) r   pq

4 (a) q  r  3p

rq (b) p   3

5 (a) p  t  mn

tp (b) n   m

r  3q 6 (a) p   2

r  2p (b) q   3

7 (a) m  rn

m (b) n   r

vw 8 (a) d   s

ds (b) v   w

tw 9 (a) m   n

mn (b) w   t



1 10 (a) w   t  mn

1 (a) q  r  p

(b) q  s  2r

2 (a) r  4p  2q

(b) q  2p  3s

r 3 (a) q   p

qs (b) r   p

r3 4 (a) p   q

q4 (b) r   p

5 (a) n  r  m

e  62°

6 f  55°

7

g  90°

8 h  144°

9

i  154°

10 j  35°

Exercise 13.2



1 1 (b) m   t   n w

Exercise 12.3

5

1

a  110°

2 b  145°

3

c  55°

4 d  95°

5

e  100°

6 f  125°

7

g  106°

8 h  150°

9

i  90°

10 j  60°

Exercise 13.3 1

Pupils’ drawings and measured angles.

2

Pupils’ drawings and measured angles.

3

Pupils’ drawings and measured angles.

4

Pupils’ own observations leading to: vertically opposite angles are equal.

Exercise 13.4 1

Pupils’ drawings and measured angles.

(b) n  m  p

2

Pupils’ drawings and measured angles.

3p  n 6 (a) m   2

3x  q (b) p   2

3

Pupils’ drawings and measured angles.

4

uv 7 (a) x   y

rs (b) p   q

Pupils’ own observations leading to: corresponding angles are equal.

2p  5 8 (a) q   6

6q  5 (b) p   2

3x  7y 9 (a) z   4

3x  4z (b) y   7

8q 10 (a) r   2p

(b) q  2pr  8

Chapter 13 – Shape, space and measures 5 Exercise 13.1

Exercise 13.5 1 a  40°

b  140°

2 c  60°

d  120°

3 e  40°

f  140°

4 g  48°

h  132°

5 j  144°

k  36°

6 l  70°

m  110°

7 n  80°

o  100° p  100° q  80°

8 r  43°

s  137°

w  145° x  145° y  35°

1

a  130°

2

b  140°

9 v  35°

3

c  135°

4

d  70°

10 a  36°

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

t  137°

u  43° z  145° 12 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 13

13

Section 3 – Using and applying mathematics/ICT 3

Chapter 14 – Handling data 2

3

(a)

Rainfall compared with hours of sunshine

Exercise 14.1 Pupils’ own explanations should accompany each answer.

Rainfall (mm)

1

(a) Likely to be a positive correlation. (b) No correlation. (c) Likely to be a positive correlation. (d) Likely to be a negative correlation, though there will be exceptions for vintage motorcycles.

0

(e) Different correlations possible – check explanation for justification. 4

(a)

(h) Likely to be a positive correlation.

Time (min)

Distance from school plotted against travel time 45 35 25 15 5 0

14

100 80 60 40 20 10

20 30 40 50 60 Adult illiteracy rate (%)

70

(b) Pupils’ explanations.

5

10 15 20 Distance (km)

25

30

Male life expectancy (years)

Distance from school plotted against travel time 45 35 25 15 5 0

5

10 15 20 Distance (km)

(c) Pupils’ explanations. (d)

(c) Pupils’ explanations.

Time (min)

12

120

0

(b) Strong/moderate positive correlation. (d)

4 6 8 10 Hours of sunshine

Correlation between adult illiteracy and infant mortality Infant mortality per 100

(g) Up to adulthood there is a positive correlation. However, once adulthood is reached there is no correlation. (a)

2

(b) Very little/no correlation. Pupils’ explanations.

(f) Likely to be a negative correlation.

2

8 7 6 5 4 3 2 1

25

(e) About 11 km

Correlation between male and female life expectancy in different countries 75 65 55 45 35 30

40 50 60 70 80 90 Female life expectancy (years)

30

Chapter 15 – Using and applying mathematics/ICT 3 Investigation Pupils will each produce a table of results and a graph of their results. Answers to questions will depend on class results.

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

13 of 24

D - Ans 4 web - 001-024.qxd

14

17/8/04

11:14 am

Page 14

Section 4 – Number 3

ICT activity

6

(b) Strong positive correlation

Pupils produce their own angle booklets. 7

Review 3A 1 (a) 2

3

(b)

(c) 

(a) c  b  a pn (c) q   m

w (d) t   2(mn  5) q  70°

r  110°

(b) s  104°

t  38°

u  38°

(c) Likely to be no correlation; pupils’ explanations.

SECTION FOUR Chapter 16 – Number 3

4

b  100° c  80° d  35° e  105° f  40° g  35° h  80°

5

(a)

Exercise 16.1 1

(b) 2

6

(a) Likely to be a positive correlation; pupils’ explanations. (b) Likely to be a negative correlation (with the exception of vintage cars); pupils’ explanations. (c) Many factors may affect this. For a given painter at a particular point in time, though, it is likely to be a positive correlation. Pupils’ explanations.

Review 3B 1

(a) x 50%

2

(a) 4

(b) 21 x 55 5

6

7

3

4 5

0.8

0.9

8

qp (a) r   3 t(n  2) (c) v   m

1.0

(b) €160

(d) €60

(e) €450

(a) 3 years

(b) 4 years

(d) 6 years

(e) 312 years

1.2

 

1 t (b) r   5   2 m 1 2q (d) p   r   5 3

1 2

(a) 5%

(b) 6%

(d) 712%

(e) 412%

(c) 8%

(a) €400

(b) €800

(c) €466.67

(d) €850

Exercise 16.3 1

€20 loss

2

€6 loss

4

€5 loss

5

€1400 loss

3

€3 profit

1

70%

2 50%

3 75%

4 25%

5

50%

6 60%

7 25%

8 75%

9

75%

10 70%

Exercise 16.5 62.5%

2

60%

(b) p  57° q  57° r  87° s  93°

3

50%

a  130° f  115°

4

30%

5

33.3% (1 dp)

q  150°

b  130° c  50° g  115° h  65°

(c) 5 years

Exercise 16.2

1

(a) r  30°

(c) €90

9

1.1

 

(a) €30

Exercise 16.4

(b) 0.7

(a) Likely to be a negative correlation; pupils’ explanations. (b) Likely to be a positive correlation; pupils’ explanations.

(d)

xw (b) b   3

(a) p  70°

(a) Weak negative correlation

d  65° e  65° i  65°

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

14 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 15

Section 4 – Algebra 4

6 28.6% (1 dp)

15

Exercise 17.4

7 40%

1 (a) 3(3m  5)

(b) 2(8  3p)

8 35%

2 (a) 2(2p  3)

(b) 6(3  2b)

9 42%

3 (a) 3(2y  1)

(b) 2(2a  3b)

10 37.5%

4 (a) 3(a  b)

(b) 4(2a  3b  5c)

5 (a) a(3b  4c  5d)

(b) 2p(4q  3r  2s)

6 (a) b(b  c)

(b) 2a(2a  5b)

7 (a) ab(c  d  e)

(b) m(2m  3)

8 (a) 3ab(c  3d)

(b) 5a(a  2b)

9 (a) 2ab(4a  3b)

(b) p2(2q2  3r2)

Chapter 17 – Algebra 4 Exercise 17.1 1 (a) 2(2a  5)

(b) 5(2a  3)

(c) 3(3a  7)

2 (a) 3(2b  1)

(b) 5(2b  1)

(c) 5(5b  2)

3 (a) 5(3c  5)

(b) 4(3c  2)

(c) 8(a  3)

4 (a) 4(2  d)

(b) 2(3  2d)

(c) 6(3  2d)

5 (a) 2(3a  2b)

(b) 7(c  2d)

(c) 4(3a  4b)

6 (a) 4(6p  7q) (b) 6(a  5b)

(c) 7(3d  2e)

7 (a) 3(2a  3b  4c)

(b) 2(4a  b  2c)

(c) 3(2p  3q  5r) 8 (a) 4(3m  4n  9r)

(b) 7(a  2b  5c)

(c) 8(8p  4q  2r) 9 (a) 3(3a  b  6c)

(b) 4(6p  8q  3r)

(c) 3(a  b  c) 10 (a) 6(a  2b  3c)

(b) 7(p  q  r)

10 (a) 12(a  2)

(b) 21(2a  3)

11 (a) 11a(1  b)

(b) 4a(1  4  2b)

12 (a) 5b(a  2c  3b)

(b) 2b2(4a  3)

13 (a) a(a 1)

(b) b(1  b)

14 (a) b (1  b)

(b) a(a2  a  1)

15 (a) p(p2  2p  3)

(b) m(7m2  9m  4)

16 (a) 3a(2a2  a  4)

(b) 5a(a2  2a  5)

17 (a) 28ab(2a  b)

(b) 12b(6a  3c  4d)

18 (a) 2a (2b  3c)

(b) 7m2n(2mn  3)

19 (a) 6ab(ab  2)

(b) 3c2(1  5c)

20 (a) 5a(b  c)

(b) 13bc(b  2c)

2

3

(c) 15(2p  4q  r)

Exercise 17.5 Exercise 17.2

1 (a) (a  b)(c  d)

(b) (p  q)(r  s)

1

(a) x(2a  3b  4c)

(b) b(7a  8c)

2 (a) (m  n)(p  q)

(b) (a  c)(b  d)

2

(a) q(3p  4  5s)

(b) n(2m  3r  5p)

3 (a) (a  2)(b  c)

(b) (a  3)(b  c)

3

(a) x(4a  3x)

(b) b(4a  3b)

4 (a) (a  4)(b  c)

(b) (a  3)(b  c)

4

(a) p(6p  5q)

(b) m(7n  2m)

5 (a) (p  q)(m  n)

(b) (p  q)(n  m)

5

(a) x(x  a)

(b) p(qr  p)

6 (a) (a  b)(c  d)

(b) (r  t)(s  v)

7 (a) (x  y)(w  v)

(b) (a  b)(a  c)

Exercise 17.3

8 (a) (x  y)(z  x)

(b) (p  r)(q  p)

1

(a) 2y(2x  3z)

(b) 3q(3p  4r)

9 (a) (m  n)(n  r)

(b) (p  r)(x  y)

2

(a) 5m(3n  2p)

(b) 7c(2b  3c)

10 (a) (a  3c)(b  2c)

(b) (a  d)(b  1)

3

(a) 6p(q  5p)

(b) 5x(3x  2y)

4

(a) 4xy(3x  2y)

(b) 5ab(2b  5a)

5

(a) 7a(x  2y  3z)

(b) 3x2(10a  2b  3c)

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

15 of 24

D - Ans 4 web - 001-024.qxd

16

17/8/04

11:14 am

Page 16

Section 4 – Handling data 3

Exercise 17.6

Exercise 19.2

1

(a) (3a  b)(b  c)

(b) (2p  q)(3r  s)

1

1  36

2

(a) (x  y)(z  y)

(b) (4a  b)(2c  b)

2

5  8

3

(a) (r  2s)(3t  r)

(b) (2m  3n)(q  2m)

3 (a)

4

(a) (5f  g)(f 2  h)

(b) (ab  c)(d  c)

5

(a) (2gh  i)(jk  i)

(b) (a  b)(c  b)

Chapter 18 – Shape, space and measures 6 Exercise 18.1 1 2 3

(a) 24 cm3

(b) 150 cm3

(d) 4000 cm3

(e) 1500 cm3

(a) 120 cm3

(b) 120 cm3

(d) 4000 cm3

(e) 3861 cm3

(c) 40 cm3 (c) 270 cm3

1  5

(b)

2  5

(c)

2  25

(d)

3  5

Exercise 19.3 1

7  25

2

8  25

3

5  25

4

1  25

5

2  25

6

2  25

7

3  25

8 Mutually exclusive

9

2  25

10

1  25

11

17  25

12

15  25

or 35

13

25  25

14

20  25

or 45

15

8  25

16

13  25

or 15

or 1

(a) 339.3 cm3 (1 dp)

(b) 2827.4 cm3 (1 dp)

17

12  25

18

7  25

(c) 954.3 cm3 (1 dp)

(d) 924.7 cm3 (1 dp)

19

4  25

20

3  25

2

1  36

4

20  36

(e) 155.0 cm3 (1 dp)

Exercise 19.4

Exercise 18.2 1

224 cm3

2

225 cm3

3

3200 cm3

4

1500 cm

3

5

3930 cm3 (3 sf)

1

1  36

3

4  36

5

1  36

6

11  36

7

1  18

8

16  36

or 49

9

1  18

10

16  36

or 49

or 19

or 59

Exercise 19.5

Exercise 18.3 1

8 cm

2

(a) 5 cm

(b) 6.5 cm

3

(a) 9 cm

(b) 81 cm2

4

10 cm

5

1.51 cm (2 dp)

Chapter 19 – Handling data 3 Exercise 19.1 1

Independent

3

They are mutually exclusive events.

2

Independent

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

1

1  8

2

1  12

3

19  96

4

1  96

5

3  8

6

2  12

or 16

7

46  96

or 2438

8

6  96

or 116

9 0 (it is impossible to throw a red face on the dodecahedron) 10

96  96

or 1 16 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 17

Section 5 – Algebra 5

Chapter 20 – Using and applying mathematics/ICT 4

Review 4B 1

7 years

Investigation

2

66.5%

1 2

3

(a) 8 cm2

(b) 40 cm3

(c) 32 cm2

(d) 320 cm3

(a) Small triangular cross-section  21 cm2 Enlarged triangular cross-section  84 cm2 (b) Volume of small prism  168 cm Volume of enlarged prism  1344 cm3 3

3,4 Pupils investigate the relationship between scale factor of enlargement and its effect on the area factor and volume factor of enlargement. If the scale factor of enlargement is n, the area factor of enlargement is n2 and the volume factor of enlargement is n3.

The screenshot below shows an example of the formulae that can be used:

Pupils prepare a report based on their findings.

Review 4A 1

€2600

2

4.2%

3

66.7% (1 dp)

4

600%

5

(a) 4(4a  3)

7

251.3 cm3 (1 dp)

8

(a) Pupils’ examples.

4

(a) (r  3s)(2t  r)

5

48 cm3

6

8.9 cm

7

(a)

4  10

8

(a)

4  6

or 25

or 23

(b)

(b) (4ab2  c)(a  d)

2  10

or 15

(b) 26 or 13

(c)

6  10

(c)

2  9

or 35

SECTION FIVE Exercise 21.1 1

Pupils’ tables of sets of co-ordinates leading to y  2x

2

Pupils’ tables of sets of co-ordinates leading to y  12x  1

3

Pupils’ tables of sets of co-ordinates leading to yx2

4

Pupils’ tables of sets of co-ordinates leading to y  12x  3

5

Pupils’ tables of sets of co-ordinates leading to y  x

6

Pupils’ tables of sets of co-ordinates leading to y  12x  3

7

Pupils’ tables of sets of co-ordinates leading to y4

8

Pupils’ tables of sets of co-ordinates leading to x  3

9

Pupils’ explanations.

(b) x(4x  1)

(c) 2bc(3b  1  2c) (a) (2c  a)(3b  c)

(b) 7r(2r  3)

(c) 3t(2t2  3t  m)

Chapter 21 – Algebra 5

ICT activity

6

(a) 4(2p  q)

17

(b) (4p  q2)(2p  r)

Exercise 22.2 (b) Pupils’ examples.

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

1

Sloping

2

Sloping

3

Vertical

4

Sloping 17 of 24

D - Ans 4 web - 001-024.qxd

18

17/8/04

11:14 am

Page 18

Section 5 – Algebra 5

5 Horizontal

4

y

6 Vertical

4

y=3

7 Sloping

2

8 Horizontal 9 Sloping

–2

10 Sloping

0

2

4

x

–2

Exercise 21.3 1

5

y 6

y 4

4

y=x+2

2

y – x = –1

2 –2 –4

–2

0

2

4

x

–2 2

4 x = –2

4

2

0

y = 2x – 3 2

–4

–2

0

2

4

x

–2

6 x

4

6 x

4

y

y

–2 3

2

–2 6

2

–2

0

7

y 6

y 4 4

2y = x + 6

2 2

–2

0

y= 2

1 2x

+1 4

x

–4

–2

0

2

4

x

–2

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

18 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 19

Section 5 – Algebra 5

y 6

8

Exercise 21.5 1

4

2

0

2

4

(a) y  3x  1

(b) Gradient  3

(a) y  12x  2

(b) Gradient  12

(c) y intercept  2

x 4

–2

(a) y  4x  4

(b) Gradient  4

(c) y intercept  4 5

y 6

9

(b) Gradient  1

(c) y intercept  1 3

–2

(a) y  x  1 (c) y intercept  1

y = –x + 3

2

–4

19

(a) y  x  3

(b) Gradient  1

(c) y intercept  3 6

Pupils’ observations.

4

Exercise 21.6 2

0

–2

1

y = –2x + 2 2

4

x

–2 10

y 4 2

2

–4

0

–2

–2

2 4 y + x = –1

x

–4 3

Exercise 21.4 Pupils’ own line graphs accompany questions 1–10.

(a) Gradient  2

y intercept  1

(b) Gradient  3

y intercept  1

(c) Gradient  12

y intercept  3

(d) Gradient  1

y intercept  0

(e) Gradient  1

y intercept  12

(f) Gradient  3

y intercept  4

(g) Gradient  1

y intercept  4

(h) Gradient  1

y intercept  0

(a) Gradient  2

y intercept  4

(b) Gradient  1

y intercept  2

(c) Gradient  3

y intercept  0

(d) Gradient  2

y intercept  4

(e) Gradient  3

y intercept  1

(f) Gradient  1

y intercept  1

(g) Gradient  5

y intercept  4

(h) Gradient  2

y intercept  4

(a) Gradient  1

y intercept  2

(b) Gradient  2

y intercept  1

(c) Gradient  3

y intercept  1

(d) Gradient  1

y intercept  0

1 Gradient  1

2 Gradient  2

(e) Gradient  4

y intercept  8

3 Gradient  12

4 Gradient  2

(f) Gradient  3

y intercept  3

6 Gradient  4

(g) Gradient  0

y intercept  4

5 Gradient 

12

7 Gradient  13 9 Gradient  0

8 Gradient  3

(h) Gradient 

1  2

y intercept  3

10 Gradient  infinite

11 Pupils’ own observations. Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

19 of 24

D - Ans 4 web - 001-024.qxd

20

17/8/04

11:14 am

Page 20

Section 5 – Handling data 4

Chapter 22 – Shape, space and measures 7 Exercise 22.1 1

a  40°

2

b  43°

3

c  30°

4

d  45°

5

e  25°, f  35°

6

g  27°, h  27°, i  36°

Exercise 22.2

2

e  48° h  132°

f  84° i  48°

5

k  108°

l  108°

6

m  120° r  60°

n  60° s  120°

Name of polygon

Number of triangles

Total sum of interior angles

1

150 cm2

2

138 cm2

triangle

1

180°

3

288 cm2

4

quadrilateral

2

2  180°  360°

4

108 cm2

5

pentagon

3

3  180°  540°

5

703.7 cm2 (1 dp)

6

hexagon

4

4  180°  720°

6

155.5 cm2 (1 dp)

8

octagon

6

6  180°  1080°

7

480 cm2

9

nonagon

7

7  180°  1260°

8

262 cm2

10

decagon

8

8  180°  1440°

12

dodecagon

10

10  180°  1800°

The number of sides is always 2 more than the number of triangles.

3

Sum of the interior angles Size of each interior angle

3

p  120° t  120°

q  60°

Chapter 23 – Shape, space and measures 8

3

Number of sides

g  132° j  48°

Exercise 23.1

1 Number of sides

4

4

5

6

8

9

10

12

Exercise 23.2 1

9 cm

2

3 cm

3

(a) 11.3 cm (1 dp)

(b) 2226 cm2

4

(a) 13 cm

(b) 450 cm2

5

2 mm

180° 360° 540° 720° 1080° 1260° 1440° 1800°

Chapter 24 – Handling data 4 60° 90° 108° 120° 135° 140° 144° 150°

Size of each 120° 90° 72° 60° exterior angle

45°

40°

36°

Exercise 22.3

30°

Exercise 24.1 1

Discrete

2 Continuous

3

Discrete

4 Continuous

5

Continuous

6 Continuous

7

Discrete

8 Continuous

9

Continuous (usually) 10 Discrete

1

a  75°

2

b  70° c  120°

Exercise 24.2

3

d  104°

Pupils’ examples.

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

20 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 21

21

Section 5 – Handling data 4

Exercise 24.3 1

5

Distances travelled to school 70 60 Frequency

6

Frequency 0 1

12 10 8 6 4 2

7

8

0– 10– 3

30– 50– Mark (%)

70–

90 – 100

Heights of students

40

0– 1– 2– 3– 4– 5– 6– 7 – 8 Distance (km)

Mass (kg) 0– 1– 2– 3– 4– 5– 6– 7– 8– 9– 10–11

Maths test results

2 4 3 5 8 4 2 1

0

Time (secs)

8– 10– 12– 14– 16– 18– 20– 22–24

Frequency

0

3

14

8

1

2

2

0

Number of books

0– 10– 20– 30– 40– 50–60

Frequency

8

14

26

20

8

4

9

30

Points scored

0– 10– 20– 30– 40– 50– 60– 70–80

20

Frequency

0

1

3

5

11

6

4

2

10

Exercise 24.4 0 19

Mean annual temperatures in two cities 30

Temperatures in 50 towns in July Frequency

20 15 10

city A

5

15–

20– 25– 30– 35 – 40 Temperature (°C)

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

0– 10 – 20 – 30 – 40 –5 0

20



0 –

20 18 16 14 12 10 8 6 4 2 0

city B

25



4

0–

17 0–

Height (cm)

1

18

16 0–

15 0–

0– 14

13

0–

0

10

Frequency

30 20 0

2

Frequency

40

10

0 65– 70– 75– 80– 85– 90 – 95 Scores

Frequency

50



Frequency

Scores in a golf competition 20 18 16 14 12 10 8 6 4 2

Temperature (°C)

21 of 24

D - Ans 4 web - 001-024.qxd

22

17/8/04

11:14 am

Page 22

Section 5 – Reviews

2

Ages of spectators compared

Frequency (1000s)

30

football

25

golf

20

1

Pupils’ observations based on their results.

2

Pupils’ examples.

ICT activity Pupils’ analyses of test results.

15 10

Review 5A

5

Age

60 70 – –8 0

30 – 40 – 50 –

10 – 20 –

0–

0

1

yx2

2

(a)

y 4

3 Pupils’ sketches of frequency polygons. 4 Pupils’ sketches of frequency polygons. 5

0

–2

school A

2

x

4

–2 school B

y

(b)

4

8

y = 12 x + 2

7–

Distance (km)

6–

5–

4–

3–

2–

1–

2

0–

Frequency

Distances travelled by pupils to two schools 45 40 35 30 25 20 15 10 5 0

y = 2x – 1

2

–4

–2

Pupils’ explanations. ‘On average’, pupils at school A travel less distance to school than those at school B. 6 Pupils’ sketches of frequency polygons.

0

2

–2 3

(a) Gradient  4, y intercept  5

7 Pupils’ sketches of frequency polygons.

(b) Gradient  1, y intercept  0

8 Pupils’ sketches of frequency polygons.

(c) Gradient  12, y intercept  1 (d) Gradient  2, y intercept  1

9 Pupils’ sketches of frequency polygons. 10 Pupils’ sketches of frequency polygons.

Chapter 25 – Using and applying mathematics/ICT 5

4 x

4

120°

5

a  75°, b  135°

6

226.2 cm2

7

8 cm

Investigation Pupils’ calculations based on their packaging. Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

22 of 24

D - Ans 4 web - 001-024.qxd

17/8/04

11:14 am

Page 23

Section 5 – Reviews

8

23

Maths test results Frequency

8 6 4 2 0

0–

10–

20–

30–

40– 50– Score

60–

70–

80– 90 – 100

Review 5B 1

y  2x  2

2

(a)

y 4 y=x+3 2

–4

0

–2

4 x

2

–2 y

(b)

4 y = –x + 3 2

–2

0

2

4

x

–2 3

(a) Gradient  3, y intercept  1 (b) Gradient  1, y intercept  4 (c) Gradient  2, y intercept  2 (d) Gradient  2, y intercept  12

4

72°

5

a  100°, b  80°, c  220°

6

176 cm2

7

628.3 cm2

8

Pupils’ reports.

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

23 of 24

D - Ans 4 web - 001-024.qxd

24

17/8/04

11:14 am

Page 24

Section 6 – Handling data

SECTION SIX – CHECKPOINT QUESTIONS

Shape, space and measures 1 (a) a 60°, b 60°, c 60° (b) Equilateral

Number

2 172 cm2

1

5 or 6

3 6 cm

2

About 47 000 feet

4 4 cm

3

(a) (i) Each small division on the scale shows 10 grams (ii) Arrow X shows a mass of 280 grams

5 12 cm2

(b) Pupils’ scales marked to show 70 g.

7 (a) 13 km/litre (b) 117 km

(c) (i) 39 cents (ii) 11 cents 4

(a) (i) 32 litres (ii) $36

8 (a) (i) 80°

(ii) 30°

(b) (i) 35°

(ii) 55°

9 (a) 384 cm

(b) 54 (km) 40 (min) 60 (km/h)

1

(c) 8 cm

3

3x(5x  2)

4

x2  5x  6

5

(2ab  c)(4b  c)

6

3

7

(a) p  12

8

(a) 2, 1, 1, 2

(b) 512 cm3 (b) 14 350 m2

(a) Primary (b) (i) Pupils’ explanations (ii) Pupils’ own questions

(b) 7x  6  20

2

(iii) 55°

Handling data

(a) (7x  6) cm

vu t   a

2

10 (a) 444.2 m

Algebra 1

6 4 minutes

2

(a) Pupils’ scatter diagrams with line of best fit drawn. (b) 14

(b) q  7

(c) r  3

(b) Pupils’ graphs with line y  x  2 drawn. (c) 23

Checkpoint Maths 2 © 2004, Hodder & Stoughton Educational

24 of 24

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF