CHE3161 - Semester1 - 2011 - Solutions

Share Embed Donate


Short Description

Solution Paper...

Description

CHE 3161 (JUN 11)

Solution for CHE3161_S1_2011 Question 1.

(20 Marks)

One mole of ideal gas with C  p = (5/2)R  (5/2)R  and C v = (3/2)R  (3/2)R  undergoes the following two sequential steps: (i) Heating from 200 K to 600 K at constant pressure of 3 bar, followed by (ii) Cooling at constant volume. To achieve the same amount of Work  produced   produced by this two-step process, a single isothermal expansion of the same gas from 200 K and 3 bar to some final pressure,  P can be  performed.

(1) Draw all the processes on a P-V  a P-V diagram. diagram.

[4 marks]

(2) What is the final pressure,  P   of the isothermal expansion process assuming mechanical reversibility for both the processes?

[14 marks]

(3) Comment on the value of  P   of the isothermal expansion process assuming mechanical reversibility for the two-steps process while mechanical irreversibility for the isothermal expansion process.

[2 marks]

Solution:

(1)

P 1

Isobaric

2

Isochoric

Isothermal

3

4

V Page 1 of 12

CHE 3161 (JUN 11)

(2) For the two-steps process: !

!!"

!

! !"

! !

!!!! !!! !!! ! !! ! !!! !! ! !! !!

! ! !

Since P 1 = P 2, hence W 12

! P 2V 2 +  P 1V 1

=

Applying Ideal Gas Law: W 12

! RT 2

=

=  R

W 23

1

(T 1 ! T 2 )

" ! 32 PdV 

=

=

+  RT 

0

Therefore, Total  W 13

= W 12 + W 23

=  R

(T 1 ! T 2 )

For the isothermal expansion process: W 14

=

 RT 1 ln

 P 4  P  1

If the two works have to be the same:  RT 1 ln

ln  P 4

 P 4  P 1 =

 P 4  P 1

=

=

 R(T 1

' T 2 )

(1)

(T 1 ' T 2 ) T 1

& (T 1 ' T 2 ) # ! % T 1 " & (200 ' 600) # 3 exp $ ! 200 % "

 P 1 exp $

=

=

0.406bar 

(3) P increases since the left hand term of Eqn (1) will be multiplied by a factor of less that 1 (1 =100% efficiency).

Page 2 of 12

CHE 3161 (JUN 11)

Question 2.

(20 Marks)

Calculate the compressibility (Z), residual enthalpy (HR ), residual entropy (S R ), and residual Gibbs energy (GR ) of propane at 80 oC and 15 bar using the Soave/Redlich/Kwong equation of state. The critical properties of propane are T c = 369.8 K, P c = 42.48 bar, and !  = 0.152.

[20 marks]

Solution:

For the given conditions: T r

=

80 + 273.15 369.8

=

15

0.9550 Pr

=

=

0.3531

42.48

The dimensionless EOS parameters for the R/K EOS are: ! 

=

!

Pr

=

0.08664

T r

Pr

=

0.0320

T r

(T r ;" ) = "#1 + (0.480 + 1.574"  ! 0.176"  ) 1 ! T r 2



q

=

!! (T r )

=

0.4278! (T r )

=

0.08664T r

"T r

(

1/2

2 $ )% = 1.0328

5.3403

We can now solve iteratively for Z using the equation: ( Z  ! ! ) ( Z  ! 0.0320)  Z  = 1 + !  ! q!  = 1 + 0.0320 ! 0.1709  Z ( Z  + ! )  Z ( Z  + 0.0320)

Starting with an initial guess of Z = 1, and iterating gives, Z = 0.8442 Then the integral I is:  I  =

1

! ! " 

ln

 Z  + #$   Z  + !$ 

=

0.0372

The derivative is:

Page 3 of 12

CHE 3161 (JUN 11) d  ln ! (T r ) d  ln T r

0.5 " % T  2 = !(0.480 + 1.574"  ! 0.176"  ) $ ' = !0.6877 # ! (T  ) & r

r

 Next, we can use these values to calculate the residual enthalpy and entropy from:  H  R  RT 

=

" d ln ! (T r )

% ! 1' qI  = !0.4915 # d ln T r &

 Z  ! 1 + $

 R



ln( Z  ! ! ) +

=

 R

d ln " (T r ) d ln T r

qI  = !0.3448

Therefore,  R

 H 

=

 R



=

!1443.031 J.mol-1;

!2.867 J.mol-1.K -1

Knowing these, G

 R

 R

=

 H 

! TS  R

=

!430.572 J.mol-1

Page 4 of 12

CHE 3161 (JUN 11)

Question 3.

(20 Marks)

(1) Prove: An equilibrium liquid/vapour system described by Raoult’s law cannot exhibit an azeotrope. (2) A liquid mixture of cyclohexanone(1)/phenol(2) for which  x1  = 0.6 is in equilibrium with its o

vapour at 144 C. Determine the equilibrium pressure P and vapour composition  y1  from the following information: ln ! 1

!

2

=

 A x2 ; o

ln ! 2 Sat 

2

=

A x1

Sat 

!

At 144 C,

!

The system forms an azeotrope at 144 oC for which

P1

=

75.20  and P2

=

31.66 KPa az

 x1

=

az

y1

=

0.294

Solution:

(1) For a binary system obeying Raoult’s law, sat 

 

(1)

 y2 P  x 2 P2  

(2)

 y1P  x1 P1 =

sat 

=

equations (1) + (2) give, sat 

 y1P +  y2 P  =  x1 P1

+

sat 

 x2 P2

As y1 + y2 =1 and x1 + x2 = 1, therefore sat 

P  =  P2

+  x 1

sat 

 (P1

sat 

! P2 )  

(3)

Equation 3 predicts that P is linear in  x1. Thus no maximum or minimum can exist in this relation. Since such an extremum is required for the existence of an azeotrope, no azeotrope is possible. (2) Based on the known information, we can first determine the value for A, and then calculate equilibrium pressure and vapour composition. From modified Raoult’s law,  yi P  x i ! i Pi sat  =

Page 5 of 12

CHE 3161 (JUN 11)

At the azeotrope, yi= xi, then, P ! i

=

Pi

sat 

Therefore, sat 

! 1

=

P2

sat 

P1

! 2

Given the conditions, 2

ln ! 1

=

A x2 ;

ln ! 2

2

=

A x1

Then,

ln

 ! 1

2

A ( x2

=

! 2

! x12 )

Therefore, ln  A

! 2

=

2

 x2

sat 

! 1

! x12

ln =

 P2

sat 

P1

2

! x12

 x2

Putting in the known numbers for satuation pressures and compositions at the azeotrope:  A = -2.0998

 Next, at x1 = 0.6, x2 = 1-x1 = 0.4, ! 1 ! 2

=

=

2 exp( A x2 ) 0.7146 =

2

exp( A x1 ) sat 

P  =  x1 ! 1P1

=

+  x

0.4696 sat 

! 2 P2

2

=

38.1898 kPa

The vapour composition y1 is: sat 

 y1

=

 x1! 1P1 P

=

0.8443

Page 6 of 12

CHE 3161 (JUN 11)

Question 4.

(20 Marks)

The molar volume (cm 3 mol-1) of a binary liquid system of species 1 and 2 at fixed T  and P  is given  by the equation V  = 120 x1 + 70 x2 + (15 x1 + 8 x2) x1 x2. (a)

(b)

Determine an expression as a function of x1 for (i)

the partial molar volume of species 1,

(ii)

the partial molar volume of species 2, V 2 .

[8 marks]

V 1 .

Using the expressions obtained in (4a), calculate the values for (i)

the pure-species volumes V 1 and V 2 .

(ii)

the partial molar volumes at infinite dilution

!

V 1

and

!

V 2

[12 marks]

.

Solutions:

(a)

V  = 120 x1 + 70 x2 + (15 x1 + 8 x2) x1 x2 But x1 + x2 = 1  x2 = 1 – x1

!

V = 120 x1 + 70(1 – x1) + [15 x1 + 8(1 – x1)] x1(1 – x1) Reagreement and simplification of equation will lead to: V = -7 x13 – x12 + 58 x1 + 70 dV  dx1

(i)

=

!21 x12 ! 2 x1 + 58

Using Eq. (11.15),

V 1

=

V 1

= V  + x

dV  2

dx1

!7 x13 !  x12 + 58 x1 + 70 + (1 !  x1 )(!21 x12 ! 2 x1 + 58)

Reagreement and simplification of equation will lead to:

Page 7 of 12

CHE 3161 (JUN 11) V 1

(ii)

= 14 x

3

1

! 20 x12 ! 2 x1 + 128

Using Eq. (11.16),

V 2

=

V 2

=

V  !  x1

dV  dx1

!7 x13 !  x12 + 58 x1 + 70 !  x1 (!21 x12 ! 2 x1 + 58)

Reagreement and simplification of equation will lead to: V 2

= 14 x

3

+  x

1

2

1

+

70

(b) (i)

For pure species volume, V 1  x1 = 1 3

2

Thus, V 1 = 14(1)  – 20(1)  – 2(1) + 128 V 1 = 120 cm 3 mol-1

For pure species volume, V 2  x2 = 1 or x1 = 0 2

Thus, V 2 = 14(0) + 0  + 70 V 2 = 70 cm 3 mol-1

(i)

For partial volume at infinite dilution,

!

V 1

 x1 = 0 Thus,

!

V 1

!

V 1

= 14(0)3 – 20(0) 2 – 2(0) + 128  = 128 cm 3 mol-1

For partial volume at infinite dilution,

!

V 2

 x2 = 0 or x1 = 1 Page 8 of 12

CHE 3161 (JUN 11)

Thus,

!

V 2

!

V 2

 = 14(1) + 1 2 + 70 = 85 cm3 mol-1

Page 9 of 12

CHE 3161 (JUN 11)

Question 5.

(20 Marks)

Equilibrium at 425 K and 15 bar is established for the gas-phase isomerisation reaction:

n-C4H10( g ) "iso-C4H10( g )

If there is initially 1 mol of reactant and  K   = 1.974, calculate the compostions of the equilibrium mixture ( yn-C4H10 and yiso-C4H10) by two procedures:

(a)

Assume an ideal-gas mixture.

(b)

Assume an ideal solution.

[6 marks] [14 marks]

For n-C4H10: #1 = 0.200; T c,1= 425.1 K; P c,1= 37.96 bar For iso-C4H10: #2 = 0.181; T c,2 = 408.1 K; P c,2= 36.48 bar

Solutions:

Given T  = 425 K, P  = 15 bar, K  = 1.974, no = 1, v

=

!v

i

=

1"1

=

0

Assume species 1 $n-C4H10, species 2 $iso-C4H10.  y1

=

 y 2

=

1 " ! 

=

1 + 0(!  )

1 " ! 



(a)

1 + 0(!  )

= ! 

For an ideal-gas mixture: !v

)

( yi )

vi

=

i

v

v

 y1 1 "  y22

=

 K 

(1 ! *  ) !1 " *   K 

*  =

1 ! * 

(  P  % && ##  K  '  P o $

=

=

 K 

1.974

Page 10 of 12

CHE 3161 (JUN 11)

Thus,

 = 0.664

%

 y1= 1 - % = 0.336  y2= % = 0.664

(b)

For an ideal solution: "v

! ( y )  )

vi

i i

(  P  % & o # K  '  P  $

=

i

For species 1 $n-C4H10: #1 = 0.200; T c,1= 425.1 K; P c,1= 37.96 bar

 P r ,1 !  P c ,1

=

 P 

T r ,1 ! T c ,1

15

 P r ,1

=

=

37.96

0.395

T r ,1

Using Equation (3.65) to determine B o

 B1

=

0.083 !

0.422 1.6

=

1

1 =

0.139 !

0.172 4.2

=

1



425 =

=

425.1

1

o

!0.339

Using Equation (3.66) to determine B  B1

=

1

!0.033

Using Equation (11.68) to determine " 1. ( 1

=

& 0.395 {' 0.339 + 0.2('0.033)}#! = 0.872 % 1 "

exp$

For species 2 $iso-C4H10: #2 = 0.181; T c,2 = 408.1 K; P c,2= 36.48 bar

 P r , 2  P r , 2

!  P 

c, 2

=

 P 

15 =

=

36.48

T r , 2

0.411

Using Equation (3.65) to determine B

T r , 2

! T 

c,2

=



425 =

=

408.1

1.041

o

Page 11 of 12

CHE 3161 (JUN 11) o

 B2

0.083 !

=

0.422 1.6

=

1.041

!0.313

Using Equation (3.66) to determine B1 1

 B2

=

0.139 !

0.172 4.2

=

1.041

!6.29 " 10

!3

Using Equation (11.68) to determine " 2. ) 2

=

& 0.411 # { ( 0.313 + 0.181((6.29 ' 10(3 )}! = 0.883 % 1.041 "

exp$

!v

) ( y +  ) i i

i

vi

=

(  P  % & o #  K  '  P  $

v v ( y1+ 1 ) 1 " ( y2+ 2 ) 2

=

1.974

[(1 ! * )(0.872)]!1[* (0.883)]1

Thus,

=

1.974

 = 0.661

%

 y1= 1 - % = 0.339  y2= % = 0.661

Page 12 of 12

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF