Thermal Conductivity (Wm-!-) dT " " tem#erature difference (!) d x " " distance across section (m)
Q x
= −k A
dT dx
• • •
Heat is conducted in the direction of decreasin$ tem#erature Thus% the tem#erature $radient is ne$ative &hen heat is conducted in 've x-direction -ve si$n to ensure that the heat transfer in 've x-direction is 've uantity
Hot face
Cold face
Hot face temp.
Q x = − k A
dT dx
Temp. gradient
Cold face temp.
Conduction Through
a Flat Slab or Wall Through a Hollow Cylinder Through a Hollow Sphere Through Solids in Series Plane
walls in series Multilayer Cylinders Combined
Convection and Conduction and Overall Coefficients Conduction with nternal Heat !eneration
Plane wall From Fouriers *a&+
dT Q x = − k A dx
x 2
∫
x1
T 1
T 2
Q x
T 2
∫
Q x dx = − kAdT T 1
Q x [ x2 − x1 ] = − k A[T 2 − T 1 ] [T 1 − T 2 ] Q x = k A x 2 − x1 Template copyright 2005
x1
x2
* T 1> T 2
Q x x 2
= −k A
dT dx T at x2
dT ( x ) dx = − ∫ k A dx ∫ dx x T at x 1
4/12/15
Q
1
Template copyright 2005
T 1 − T 2 The rate of heat transfer :Q x = k A x2 − x1 Note that
Thermal Resistance
T 1 > T 2
R T!:
"con#$ction resistance%
Therefore 4/12/15
R TH &
∆ x /k '
Template copyright 2005
T 1
R TH T 2
Calculate the heat loss per square meter of surface area for an insulating wall composed of 25.4 mm thick !er insulating !oard" where the inside temperature is #52.$ % and the outside temperature is 2&$.1 %.
(rom 'pp '.) the thermal con#$cti*ity of fiber ins$lating boar# is 0.04+ ,/m.-. The thicness 21&0.0254 m: q
k
A
=
=
x2
−
x1
(T 1
−
T 2 )
105.1 W/m 2
)52. "nsi#e%
23.1 "$tsi#e%
25.4 mm on fiber ins$lating boar#
0.048 =
0.0254
(352.7
−
297.1)
Conduction Through a Hollow Cylinder Consider the hollow clinder with !n inside r!di"s o# r 1 r 1
q
r 2
T 1
q
T 1
R
T 2
T 2
A = 2π rL where
r 2 ln( ) r 1 R = 2π k L
$
q
=
Alm
=
Alm
q=
k Al m A2
−
T 1
−
r 2
T 2
−
r 1
R =
A1
ln( A2 / A1 ) ( 2π Lr 2 2π Lr 1 ) 2π Lr 2 ln( ) 2π Lr 1 −
=
T 1 − T 2 ln( r 2 / r 1 ) / 2π k L
=
T 1 − T 2 R
r 2 − r 1 k Alm
=
ln( r 2 / r 1 ) 2π k L
Length of Tubing Tubing for Cooling Coil
% thic&'w!lled clindric!l t"in o# h!rd r"er h!*in !n inside r!di"s o# 5mm !nd !n o"tside r!di"s o# 20 mm is ein "sed !s ! tem+or!r coolin coil in ! !th. ,ce w!ter is #lowin r!+idl inside !nd the inside w!ll tem+er!t"re is 274.9-. he o"tside s"r#!ce tem+er!t"re is 297.1-$ % tot!l o# 14.5W m"st e remo*ed #rom the !th coolin coil. ow m!n m o# t"in !re needed
rom %++endi %.3$ k 0.151 W/m.- r 1 = r 2 =
q=
5
= 0.005 m
1000 2 1000
T 1 − T 2 ( 2π k L) ln( r 2 / r 1 )
= 0.02 m
he c!lc"l!tion will e done #irst #or ! lenth o# 1 m t"in A2
Alm
=
q
kAlm
=
=
−
A1
ln( A2 / A1 ) T 1 r 2
−
T 2
−
r 1
=
=
0.1257
−
0.0314
=
ln(0.1257 / 0.0314)
0.151(0.082)(
274.9 0.02
−
−
0.08 m 2
297.1
0.005
)
15.2W
−
The negati*e sign in#icates that the heat flow is from r2 on the o$tsi#e to r1 on the insi#e. ince 15.2 , is remo*e# for 1 m length the nee#e# length is:
length
=
14.5W 15.2W / m
=
0.94m
Conduction Through a Hollow Sphere r 2
q
r 1
T 1
R
T 2
T 1
q T 2
A = 4π r 2
T 1 − T 2 T 1 − T 2 = q= R (1 / r 1 − 1 / r 2 ) / 4π k
(
1
−
1
r 1 r 2 where R = 4π k
)
CONDUCTON TH!OU"H SOLDS N S#!#S
Plane $alls in Series A T 1
C
B
q=
T 2 T 3
q
T 1 − T 4 ∆ x A ∆ x B ∆ xC + + k A A k B A k C A
=
T 1 − T 4
− = T 1 T 4 ∑ R R A + R B + RC
T 4
where
q
T 1
R A
T 2
∑ R =
R B
Electrical analogy
∆ x A
k A A
T 3
+
∆ x B
k B A
+
RC
∆ xC
k C A
T 4
EXAMPLE 4.3-1 Heat Flo Through an !n"ulate# $all of a Col# %oo&
% cold'stor!e room is constr"cted o# !n inner l!er o# 12.7 mm o# +ine$ ! middle l!er o# 101. mm o# cor& o!rd$ !nd !n o"ter l!er o# 7.2mm o# concrete. he w!ll s"r#!ce tem+er!t"re is 255.4- inside the cold room !nd 297.1- !t the o"tside s"r#!ce o# the concrete. 6se cond"cti*ities #rom %++endi %.3 #or +ine$ 0.151 #or cor& o!rd$ 0.0433 !nd #or concrete$ 0.72 W/m.-. C!lc"l!te the he!t loss in W #or 1 m2 !nd the tem+er!t"re !t the inter#!ce etween the wood !nd cor& o!rd.
he resist!nce #or e!ch m!teri!l !re RC = R B = R A =
∆ x A k A A
∆ x B k B A
∆ xC k C A
= = =
7.2 × 10
−3
= 0.100
0.72 101 . × 10
−3
0.0433 12.7 × 10 0.151
−3
= 2.34
= 0.0841
q=
= = =
T 1 − T 4 T 1 − T 4 = ∆ x A ∆ x B ∆ xC R A + R B + RC + + k A A k B A k C A 255 255.4 − 297 297.1 0.084 + 2.34 + 0.1 0.1 ' 41.7 2.530 530 − 1.48 W
o c!lc"l!te the tem+er!t"re T 2$ q=
T 1 − T 2 R A
− 1.48 =
255.4 − T 2
0.084 084 T 2 = 25.79 -
%ultilayer Cylinders r 4
r 3
q
r 2
A C B
q=
ln( r 2 / r 1 ) 2π k A L
=
+
T 1 − T 4 R A + R B + R C
r 1
T 1
T 2
T 1 − T 4 ln( r 3 / r 2 ) 2π k B L
=
T 3
+
T 4
ln( r 4 / r 3 ) 2π k C L
T 1 − T 4
∑ R
∑ R =
ln( r 2 / r 1 ) 2π k A L
+
ln( r 3 / r 2 ) 2π k B L
+
ln( r 4 / r 3 ) 2π k C L
EXAMPLE 4.3-' Heat Lo"" fro& an !n"ulate# Pi(e
% thic&'w!lled t"e o# st!inless steel (%) h!*in ! k 21.3 W/m.& with dimensions o# 0.0254m , !nd 0.0508m is co*ered with ! 0.0254m l!er o# !sestos (:) ins"l!tion$ k 0.2423 W/m.&. he inside w!ll tem+er!t"re o# the +i+e is 811- !nd the o"tside s"r#!ce o# the ins"l!tion is !t 310.8-. or ! 0.305m lenth o# +i+e$ c!lc"l!te the he!t loss !nd !lso the tem+er!t"re !t the inter#!ce etween the met!l !nd the ins"l!tion.
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.