Chapter 5 matriculation STPM

July 28, 2018 | Author: Jue Saadiah | Category: Potential Energy, Power (Physics), Gravity, Mass, Kinetic Energy
Share Embed Donate


Short Description

Work, energy and power...

Description

CHAPTER 5

WORK, ENERGY AND POWER

CHAPTER 5: Work, Energy and Power  (3 Hours)

CHAPTER 5

WORK, ENERGY AND POWER

Learning Outcome: 5.1 Work (1 hour) At the end of this chapter, students should be able to: (a)Define and use work done by a force. 



W   F  s

(b)) Dete (b Determ rmin ine e work done from the forcedisplacement graph.

CHAPTER 5 5.1

WORK, ENERGY AND POWER

Work, W 

Work done by a constant force 

is defined as the product of the component of the force parallel to the displacement times the displacementt of a body. displacemen body. OR is defined as the scalar (dot) product between force and displacement of a body. body.

CHAPTER 5 Mathematically :

WORK, ENERGY AND POWER 



W   F  s

W    F cos θ  s  Fs cos θ  Where,

 F : magnitude of  force

the bo  body  s : displacement of  the 



θ  : the the angle betwee  between n F and s

CHAPTER 5

WORK, ENERGY AND POWER



It is a scalar  quantity. scalar quantity.



Dimension :

W    F  s W   ML2T 2 



The S.I. unit of work is kg m2 s

2

or  joule  joule (J). (J).

The joule The joule (1 J) is defined as the work done by a force of 1 N which results in a displacement of 1 m in the direction of  the force. force.

1 J  1 N m  1 kg m 2 s 2

CHAPTER 5

WORK, ENERGY AND POWER

Work done by a variable force Figure 5.1 shows a force, F whose magnitude changes with the displacement, displacement, s  . For a small displacement, s  the force remains 1  almost constant at F 1 and work done therefore becomes W 1 = F 1  s  . 1 

CHAPTER 5

WORK, ENERGY AND POWER  F/N   F  N 

 F 4  F 1 0  s1



Figure 5.1 W 1  s1

 s4

 s2  s  s N 

To find the total work done by a variable force, W when the displacement changes from s=s1 to s=s2, we can divide the displacement into N small successive displacements :  s1 ,  s2 ,  s3

 ,

Thus

…, …,

 s N 

W   F  s  F   s 

 F  s

CHAPTER 5 

WORK, ENERGY AND POWER

When N

W  

  ,

 s2



 s1

 s  0, therefore

 Fds

 F/  N

Work = Area

0  s1

 s2  s/ m

CHAPTER 5

WORK, ENERGY AND POWER

Applications of work’s equation Case 1 : 

Work done by a horizontal force,  F on an object (Figure 4.2). 

 F  

Figure 5.2

W   W   Fs

 Fs cos θ  and

 s

θ   0



Case 2 : 

Work done by a vertical force, F on an object (Figure 4.3). 

 F 

Figure 5.3

W   Fs cos θ and θ   90 W   0 J   s



CHAPTER 5

WORK, ENERGY AND POWER

Case 3 : 

Work done by a horizontal forces, F 1 and F 2 on an object  (Figure 5.4).  F  

1

Figure 5.4



W   W   W    F  s  F  s W   F   F   s s  F   F   F  1

2

1

2

nett 

1

and

2

nett 

1

 s   F nett  s

Work done by a force, F and frictional force, force , f on an object  (Figure 5.5). F    

 f 



s W nett    F nett  s  s and  F nett   F cos θ    f   ma W    F cos cos    f  s  s OR W   mas Figure 5.5





 s

W   W 

Case 4 : 

 F 2

W 1  F 1 s cos 0 W 2  F 2 s cos 0

2

CHAPTER 5 

WORK, ENERGY AND POWER

Caution : 

Work done on an object is zero when F = 0 or s = 0 and = 90 .

CHAPTER 5 

Sign for work. 

WORK, ENERGY AND POWER

W   Fs cos 

If 0 0 (positive)



work done on the system ( by the external force) where energy is transferred to the system.

If 90
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF