Chapter 4 Matrices

Share Embed Donate


Short Description

Download Chapter 4 Matrices...

Description

CHAPTER 4 MATRICES

1.

Given that P = P =

     ), , Q = Q = ( and PQ = PQ = ( (  ) )      

k and n , (a) find the value of k and (b) hence, using matrices, solve solve the following following simultaneous equations: 2x  – y = 7  – 3y = 5x  – y = 16  – 6y =

2.

(a) Express

 ) ( )as a single matrix. (   

(b) Using matrices, matrices, solve the following following simultaneous equations: 5x  – y = 7  – y = 4x + x + 3y  3y = =  – 2

3.

(a) If K = K =

 ), find the matrix L. and KL = ( (  )   

(b) Hence, using matrices, solve solve the following following simultaneous equations: 2x  – y = 1  – 5y = 4x  – y =  – 1  – 7y =

4.

(a) Find the inverse matrix of

(  ).

(b) Hence, using matrices, solve solve the following following simultaneous equations: y = 9 2x  –  – 3y = 5x  – y = 19  – 4y =

5.

Given that S = S =

(   ),

m such S has no inverse, such that S has (a) find the value of m  (b) if m  =  – 5, hence, using matrices, solve the following simultaneous equations: 4x  – y = 7  – 3y = 7x + x + my = my = 12

6.

Given that P = (

),  

(a) Find the inverse matrix of P , (b) Hence, using matrices, solve the following simultaneous equations: 6x  – 3y = 0 4x  – 5y =  – 12 7.

) ()  () , it is found that    

In solving the matrix equation(

()   (  )() .

(a) Find the values of m , p , q , r and s . (b) Hence, find the value of x and y .

8.

(a) If given T = (

), find the inverse of matrix T .  

(b) Hence, calculate the value of x  and y  that satisfies the following equation: 7x + 2y = 3 6x + 3y = 0

9.

Given that the inverse matrix of

(  ) is K ,

(a) find the matrix K, (b) hence, using matrices, solve the following simultaneous equations: 4x  – y = 11 6x  – 5y = 27

) and the inverse matrix of K is   ( ).     

10. Given that K = ( 

(a) Find the value of m and n . (b) Hence, using matrices, calculate the value of x  and y  that satisfies the following equation:



K ()  ()



ANSWER:   6   12  15   5

 2  3     5  4 

3 

1



2 

4) a) Let A as the inverse matrix of

  4   8  15   5

1) a) Q =

3 

1

1   6

3 

3   5

2 





 A =

  4  7   5

= k = 3, n =  –  6

1

 2  3    x   7          5 6        y   16  3  7

    2  16 

 1   3  

1  5



5  4

2) a)

b)

  x       y   19    0

 1  19  0 1

3   9  





0 



1 

 5  1    x    7           4 3    y    2 

5) a) If S has no inverse, 4m + 21 = 0 m = 5.25

 4  3    x    7           7  5    y   12  b)

  x    5 1      y   20 21       7

b) 1   7  



5   2 

 x = 1, y =  –  2

  7   14  20   4 1

  5   30  12   4

5 



2 

 L = 1   7 5  



 2  5    x   1          4 7        y    1  b)

  7  6   4



6 

  5  18   4 1

3 



6 

=

2 

 6  3    x    0           4  5    y    12 

=

1

3 

 A =



  x       y 





4  12 

6) a) Let A as the inverse matrix of  P.

3) a) L is the inverse matrix of  K .



3   7  

 x = 1, y =  –  1

1

6   4



2  19 

19 

=



  4  7   5 1

 x = 3, y =  –  1

0 

=

  x  1   3       y  19   4



2 

 2  3    x    9           5  4    y   19 

 x = 2, y =  –  1

  3    4

3 

=

b)

  x  1   6       y  3   5



2 

5  1

    2   1 

 x =  –  2, y =  –  1

b)

  x  1   5      18   4   y   x = 2, y = 4

3   0

    6   12 

.

  x   5  7  1  1         y 4 2   10 28         1  7) a)

10) a) Let A as the inverse matrix of K . m =  –  4,  –  4n = 6  –  34 n=7

 5  7  1     18  4  2  1  1



= m =18, p =5, q =  –  7, r = 4, s =  –  2

  x  1  5  7  1          y  18  4  2  1  1

9

9

 x =  – 

, y =

 x =  –  1, y = 2

  3  2    7   21  12   6 1

 A =

  3  2    7   9   6 1

= 2 

  x   3        3    y   0 

b)

  x       y 

  3  2  3     7   0  9   6 1

 x = 1, y =  –  2

  5   20  6   6 1

1 



4 

9) a) K =



  5  14   6 1

1 



4 

=

 4  1    x   11          6  5    y   27  b)

  x  1   5      14   6   y   x = 2, y =  –  3

  4  3    x    2           2 7    y   16  3    2    x  1  7        34  2  4   16    y 

8) a) Let A as the inverse matrix of  T .

 7   6

 A =

b)

b) 1

3    7   34  2  4  1

1  11 





4  27 

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF