chapter 2 tutorial .pdf

Share Embed Donate


Short Description

Solid Mechanics - Strain...

Description

Problem 2-1 An air-filled rubber ball has a diameter of 150 mm. If the air pressure within it is increased until the ball's diameter becomes 175 mm, determine the average normal strain in the rubber. d0  150mm

Given:

d  175mm

Solution: H H

Sd  Sd0 Sd0 0.1667

mm mm

Ans

Problem 2-2 A thin strip of rubber has an unstretched length of 375 mm. If it is stretched around a pipe having an outer diameter of 125 mm, determine the average normal strain in the strip. L 0  375mm

Given: Solution:

L  S ˜ ( 125) mm H H

SL  SL0 SL 0 0.0472

mm mm

Ans

Problem 2-3 The rigid beam is supported by a pin at A and wires BD and CE. If the load P on the beam causes the end C to be displaced 10 mm downward, determine the normal strain developed in wires CE and BD. Given:

a  3m

L CE  4m

b  4m

L BD  4m

'LCE  10mm Solution:

'LBD 

§ a · ˜ 'L ¨ © a  b ¹ CE H CE 

H BD 

'LCE L CE 'L BD LBD

'LBD

4.2857 mm

H CE

0.00250

mm mm

Ans

H BD

0.00107

mm mm

Ans

Problem 2-4 The center portion of the rubber balloon has a diameter of d = 100 mm. If the air pressure within it causes the balloon's diameter to become d = 125 mm, determine the average normal strain in the rubber. d0  100mm

Given:

d  125mm

Solution: H

H

Sd  Sd0 Sd0 0.2500

mm mm

Ans

Problem 2-5 The rigid beam is supported by a pin at A and wires BD and CE. If the load P on the beam is displace 10 mm downward, determine the normal strain developed in wires CE and BD. Given:

a  3m

b  2m

c  2m

L CE  4m

L BD  3m

' tip  10mm Solution: 'LBD a

=

'L CE

'LCE

ab

ab

=

' tip abc

'LCE 

§ a  b ·˜ ' ¨ © a  b  c ¹ tip

'LCE

7.1429 mm

'LBD 

§ a ·˜ ' ¨ © a  b  c ¹ tip

'LBD

4.2857 mm

Average Normal Strain: H CE 

H BD 

'LCE L CE 'L BD LBD

H CE

0.00179

mm mm

Ans

H BD

0.00143

mm mm

Ans

Problem 2-6 The rigid beam is supported by a pin at A and wires BD and CE. If the maximum allowable normal strain in each wire is Hmax = 0.002 mm/mm, determine the maximum vertical displacement of the load P. Given:

a  3m

b  2m

L CE  4m

L BD  3m

H allow  0.002

mm mm

c  2m

Solution: 'LBD a

=

'L CE

'LCE

ab

ab

=

' tip abc

Average Elongation/Vertical Displacement: 'LBD  L BD˜ H allow

'LCE  LCE˜ H allow

'LBD

6.00 mm

' tip 

§ a  b  c · ˜ 'L ¨ © a ¹ BD

' tip

14.00 mm

'LCE

8.00 mm

' tip 

§ a  b  c · ˜ 'L ¨ © a  b ¹ CE

' tip

11.20 mm

(Controls !)

Ans

Problem 2-7 The two wires are connected together at A. If the force P causes point A to be displaced horizontally 2 mm, determine the normal strain developed in each wire. Given: a  300mm

T  30deg

' A  2mm Solution: Consider the triangle CAA': I A  180deg  T L CA'  L CA'

' CA  ' CA

IA 2

2



150 deg



a  ' A  2˜ a˜ ' A ˜ cos I A 301.734 mm L CA'  a a 0.00578

mm mm

Ans

Problem 2-8 Part of a control linkage for an airplane consists of a rigid member CBD and a flexible cable AB. If a force is applied to the end D of the member and causes it to rotate by T = 0.3°, determine the normal strain in the cable. Originally the cable is unstretched. Given: a  400mm

b  300mm

c  300mm

T  0.3deg Solution: L AB 

2

2

a b

L AB

500 mm

Consider the triangle ACB': I C  90deg  T L AB' 

2

IC



2

a  b  2˜ a˜ b˜ cos I C

L AB'

501.255 mm

H AB 

LAB'  L AB L AB

H AB

90.3 deg

0.00251

mm mm

Ans

Problem 2-9 Part of a control linkage for an airplane consists of a rigid member CBD and a flexible cable AB. If a force is applied to the end D of the member and causes a normal strain in the cable of 0.0035 mm/mm determine the displacement of point D. Originally the cable is unstretched. a  400mm

Given:

H AB  0.0035

b  300mm

c  300mm

mm mm

Solution: 2

L AB 

2

a b

L AB





L AB'  L AB˜ 1  H AB

500 mm

L AB'

501.750 mm

Consider the triangle ACB': I C = 90deg  T L AB' =

2



2

a  b  2˜ a˜ b˜ cos I C

ª a2  b2  L 2º AB' » I C  acos « 2˜ a˜ b ¬ ¼ IC

90.419 deg

T  I C  90deg

' D  ( b  c) ˜ T

T

0.41852 deg

T

0.00730 rad

'D

4.383 mm

Ans

Problem 2-10 The wire AB is unstretched when T = 45°. If a vertical load is applied to bar AC, which causes T = 47°, determine the normal strain in the wire. Given: T  45deg

'T  2deg

Solution: 2

2

LAB =

L L

LCB =

( 2L)  L

2

2

LAB =

2L

LCB =

5L

From the triangle CAB: I A  180deg  T



IA

135.00 deg

IB

18.435 deg

I' B

20.435 deg



sin I B sin I A = L LCB

§ L˜ sin I A ·

I B  asin ¨

©

5L

¹

From the triangle CA'B: I' B  I B  'T







sin I' B sin 180deg  I A' = L LCB

§ 5˜ L˜ sin I' B ·

I A'  180deg  asin ¨

©

I A'

L

¹

128.674 deg

I' C  180deg  I' B  I A' I' C

30.891 deg





sin I' B sin I' C = L L A'B

LA'B 

H AB 

˜L sin I' B

sin I' C

L A'B  LAB LAB

LAB 

H AB

2L

0.03977

Ans

Problem 2-11 If a load applied to bar AC causes point A to be displaced to the left by an amount 'L, determine the normal strain in wire AB. Originally, T = 45°. Given:

T  45deg 'L L

H AC =

Solution:

2

2

L AB =

L L

L CB =

( 2L )  L

2

2

L AB =

2L

L CB =

5L

From the triangle A'AB: I A  180deg  T

IA

2

135.00 deg







L A'B =

'L  LAB  2˜ 'L ˜ L AB ˜ cos I A

L A'B =

'L  2˜ L  2˜ 'L ˜ L

H AB =

2

2

2

L A'B  LAB LAB 2

H AB =

'L  2˜ L  2˜ 'L ˜ L  2

2L

2L 2

H AB =

ª1 ˜ § 'L ·º  1  § 'L ·  1 « ¨ » ¨ ¬2 © L ¹¼ ©L ¹

Neglecting the higher-order terms,

§ 'L · H AB = ¨ 1  L ¹ © ª ¬

H AB = «1  H AB =

0.5

1

1 § 'L · º ˜¨  .....»  1 2 © L ¹ ¼

1 § 'L · ˜¨ 2 © L ¹

(Binomial expansion)

Ans

Alternatively, H AB =

L A'B  LAB LAB

H AB = H AB =

'L˜ sin T 2L 1 § 'L · ˜¨ 2 © L ¹

Ans

Problem 2-12 The piece of plastic is originally rectangular. Determine the shear strain Jxy at corners A and B if the plastic distorts as shown by the dashed lines. Given: a  400mm

b  300mm

'Ax  3mm

'Ay  2mm

'Cx  2mm

'Cy  2mm

'Bx  5mm

'By  4mm

Solution: Geometry : For small angles, D

E

\

T

'Cx

D

0.00662252 rad



E

0.00496278 rad



\

0.00662252 rad

b  'Cy 'By  'Cy



a  'Bx  'Cx 'Bx  'Ax



b  'By  'Ay 'Ay a  'Ax

T

0.00496278 rad

Shear Strain : 3

J xy_B  E  \

J xy_B

11.585 u 10

J xy_A   T  \

J xy_A

11.585 u 10

rad

3

rad

Ans Ans

Problem 2-13 The piece of plastic is originally rectangular. Determine the shear strain Jxy at corners D and C if the plastic distorts as shown by the dashed lines. Given: a  400mm

b  300mm

'Ax  3mm

'Ay  2mm

'Cx  2mm

'Cy  2mm

'Bx  5mm

'By  4mm

Solution: Geometry : For small angles, D

E

\

T

'Cx

D

0.00662252 rad



E

0.00496278 rad



\

0.00662252 rad

b  'Cy 'By  'Cy



a  'Bx  'Cx 'Bx  'Ax



b  'By  'Ay 'Ay a  'Ax

T

0.00496278 rad

Shear Strain : 3

J xy_D  D  T

J xy_D

11.585 u 10

J xy_C   D  E

J xy_C

11.585 u 10

rad

3

rad

Ans Ans

Problem 2-14 The piece of plastic is originally rectangular. Determine the average normal strain that occurs along th diagonals AC and DB. Given: a  400mm

b  300mm

'Ax  3mm

'Ay  2mm

'Cx  2mm

'Cy  2mm

'Bx  5mm

'By  4mm

Solution: Geometry : 2

2

2

2

L AC 

a b

L DB 

a b

L A'C'  L A'C' L DB'  L DB'

L AC

500 mm

L DB

500 mm

a  'Ax  'Cx 2  b  'Cy  'Ay 2 500.8 mm

a  'Bx 2  b  'By 2 506.4 mm

Average Normal Strain : H AC 

LA'C'  L AC LAC

H AC

1.601 u 10

H BD 

LDB'  L DB L DB

H BD

12.800 u 10

 3 mm

mm  3 mm

mm

Ans

Ans

Problem 2-15 The guy wire AB of a building frame is originally unstretched. Due to an earthquake, the two columns of the frame tilt T = 2°. Determine the approximate normal strain in the wire when the frame is in thi position. Assume the columns are rigid and rotate about their lower supports. Given: a  4m

b  3m

c  1m

T  2deg

Solution: T=

§ T ·˜ S ¨ © 180 ¹

T

0.03490659 rad

Geometry : The vertical dosplacement is negligible. 'Ax  c˜ T

'Ax

34.907 mm

'Bx  ( b  c) ˜ T

'Bx

139.626 mm

L AB  L A'B'  L A'B'

2

2

a b

L AB

5000 mm

a  'Bx  'Ax 2  b2 5084.16 mm

Average Normal Strain : H AB  H AB

LA'B'  L AB LAB 16.833 u 10

 3 mm

mm

Ans

Problem 2-16 The corners of the square plate are given the displacements indicated. Determine the shear strain along the edges of the plate at A and B. Given: ax  250mm 'v  5mm

ay  250mm 'h  7.5mm

Solution: At A :

§ T' A ·

tan ¨

© 2 ¹

=

ax  'h ay  'v

§ ax  'h ·

T' A  2˜ atan ¨

© ay  'v ¹

J nt_A 

§ S ·  T' ¨ A © 2¹

T' A

1.52056 rad

J nt_A

0.05024 rad

I' B

1.62104 rad

Ans

At B :

§ I' B ·

tan ¨

© 2 ¹

=

ay  'v ax  'h

§ ay  'v ·

I' B  2˜ atan ¨

© ax  'h ¹

S J nt_B  I' B  2

J nt_B

0.05024 rad

Ans

Problem 2-17 The corners of the square plate are given the displacements indicated. Determine the average normal strains along side AB and diagonals AC and DB. Given:

ax  250mm

ay  250mm

'v  5mm

'h  7.5mm

Solution: For AB : L AB  L A'B' 

2

ax  ay

2

ax  'h 2  ay  'v 2

H AB 

LA'B'  L AB LAB

L AB

353.55339 mm

L A'B' H AB

351.89665 mm 4.686 u 10

 3 mm

mm

Ans

For AC :

2˜ ay  'v

L AC  2 ay

L AC

L A'C' 

L A'C'

H AC 

LA'C'  L AC LAC

500 mm 510 mm

H AC

20.000 u 10

L DB  2 ax

L DB

500 mm

L D'B' 

L D'B'

 3 mm

mm

Ans

For DB :

H DB 

2˜ ax  'h

LD'B'  L DB LDB

H DB

485 mm  3 mm

30.000 u 10

mm

Ans

Problem 2-18 The square deforms into the position shown by the dashed lines. Determine the average normal strain along each diagonal, AB and CD. Side D'B' remains horizontal. Given: a  50mm

b  50mm

'Bx  3mm 'Cx  8mm

'Cy  0mm L AD'  53mm

T' A  91.5deg Solution: For AB :





'By  L AD'˜ cos T' A  90deg  b 2

2

'By

2.9818 mm

L AB 

a b

L AB

70.7107 mm

L AB' 

a  'Bx 2  b  'By 2

L AB'

70.8243 mm

H AB  H AB

LAB'  L AB L AB

 3 mm

1.606 u 10

mm

Ans

For CD : 'Dy  'By L CD  L C'D' 

2

2

a b

2.9818 mm

L CD

70.7107 mm

a  'Cx 2  b  'Dy 2  2˜ a  'Cx ˜ b  'Dy ˜ cos T'A

L C'D'

79.5736 mm

H CD 

LC'D'  L CD LCD

H CD

'Dy

 3 mm

125.340 u 10

mm

Ans

Problem 2-19 The square deforms into the position shown by the dashed lines. Determine the shear strain at each of its corners, A, B, C, and D. Side D'B' remains horizontal. a  50mm

Given:

b  50mm

'Bx  3mm 'Cx  8mm T' A  91.5deg Solution:

T' A

'Cy  0mm LAD'  53mm

1.597 rad

Geometry :





'By  LAD'˜ cos T' A  90deg  b

'By

2.9818 mm

'Dy  'By

'Dy

2.9818 mm

'Dx

1.3874 mm





'Dx  L AD'˜ sin T' A  90deg In triangle C'B'D' :

'Cx  'Bx 2  b  'By 2

LC'B'  LC'B'

54.1117 mm

LD'B'  a  'Bx  'Dx

48.3874 mm

a  'Cx  'Dx 2  b  'Dy 2

LC'D'  LC'D'

LD'B'

79.586 mm 2

2

2

LC'B'  LD'B'  LC'D' cos T B' = 2˜ L C'B' ˜ L D'B'









ª L 2  L 2  L 2º « C'B' D'B' C'D' » T B'  acos « » ¬ 2˜ LC'B' ˜ LD'B' ¼

T B'

101.729 deg

T B'

1.7755 rad

T D'  180deg  T' A

T D'

88.500 deg

T D'

1.5446 rad

T C'  180deg  T B'

T C'

78.271 deg

T C'

1.3661 rad

Shear Strain :

0.5S  T B' 0.5S  T C' 0.5S  T D'

3

J xy_A  0.5S  T' A

J xy_A

26.180 u 10

J xy_B 

J xy_B

204.710 u 10

J xy_C

204.710 u 10

J xy_D

26.180 u 10

J xy_C  J xy_D 

rad

3

3

3

rad

rad

rad

Ans Ans Ans Ans

Problem 2-20 The block is deformed into the position shown by the dashed lines. Determine the average normal strain along line AB. Given:

'xBA  ( 70  30)mm 'xB'A  ( 55  30)mm 'yB'A 



2

2

'yBA  100mm



110  15 mm

Solution: For AB : 2

2

L AB 

'xBA  'yBA

L AB' 

'xB'A  'yB'A

H AB  H AB

2

2

L AB

107.7033 mm

L AB'

111.8034 mm

LAB'  L AB L AB 38.068 u 10

 3 mm

mm

Ans

Problem 2-21 A thin wire, lying along the x axis, is strained such that each point on the wire is displaced 'x = k x2 along the x axis. If k is constant, what is the normal strain at any point P along the wire? 'x = k˜ x

Given:

2

Solution: H=

d 'x dx

H = 2˜ k˜ x

Ans

Problem 2-22 The rectangular plate is subjected to the deformation shown by the dashed line. Determine the averag shear strain Jxy of the plate. a  150mm

Given:

b  200mm

'a  0mm

'b  3mm

Solution:

§ 'b · © a¹

'T  atan ¨ 'T

1.146 deg

'T

19.9973 u 10

3

rad

Shear Strain : J xy  'T J xy

3

19.997 u 10

rad

Ans

Problem 2-23 The rectangular plate is subjected to the deformation shown by the dashed lines. Determine the averag shear strain Jxy of the plate. Given:

a  200mm

'a  3mm

b  150mm

'b  0mm

Solution:

§ 'a · © b ¹

'T  atan ¨ 'T

1.146 deg

'T

19.9973 u 10

3

rad

Shear Strain : J xy  'T J xy

19.997 u 10

3

rad

Ans

Problem 2-24 The rectangular plate is subjected to the deformation shown by the dashed lines. Determine the average normal strains along the diagonal AC and side AB. Given:

a  200mm

b  150mm

'Ax  3mm 'Bx  0mm

'Ay  0mm 'By  0mm

'Cx  0mm 'Dx  3mm

'Cy  0mm 'Dy  0mm

Solution: Geometry : 2

L AC 

2

a b

L AB  b L A'C  L A'C L A'B  L A'B

L AC

250 mm

L AB

150 mm

a  'Cx  'Ax 2  b  'Cy  'Ay 2 252.41 mm 2

'Ax  b

2

150.03 mm

Average Normal Strain : H AC 

LA'C  L AC L AC

H AC

9.626 u 10

H AB 

LA'B  L AB L AB

H AB

199.980 u 10

 3 mm

mm  6 mm

mm

Ans

Ans

Problem 2-25 The piece of rubber is originally rectangular. Determine the average shear strain Jxy if the corners B and D are subjected to the displacements that cause the rubber to distort as shown by the dashed lines Given:

a  300mm

b  400mm

'Ax  0mm 'Bx  0mm

'Ay  0mm 'By  2mm

'Dx  3mm

'Dy  0mm

Solution:

§ 'By ·

'T AB  atan ¨

© a ¹

'T AB

0.38197 deg

'T AB

6.6666 u 10

3

rad

§ 'Dx ·

'T AD  atan ¨

© b ¹

'T AD

0.42971 deg

'T AD

7.4999 u 10

3

rad

Shear Strain : J xy_A  'T AB  'T AD J xy_A

14.166 u 10

3

rad

Ans

Problem 2-26 The piece of rubber is originally rectangular and subjected to the deformation shown by the dashed lines. Determine the average normal strain along the diagonal DB and side AD. Given:

a  300mm

b  400mm

'Ax  0mm 'Bx  0mm

'Ay  0mm 'By  2mm

'Dx  3mm

'Dy  0mm

Solution: Geometry : 2

L DB 

2

a b

L AD  b

L DB

500 mm

L AD

400 mm

L D'B' 

a  'Bx  'Dx 2  b  'Dy  'By 2

L AD' 

'Dx  b  'Dy

2



2

L AD'

L D'B'

400.01 mm

Average Normal Strain : H BD 

LD'B'  L DB LDB

H BD

6.797 u 10

H AD 

L AD'  L AD L AD

H AD

28.125 u 10

 3 mm

mm  6 mm

mm

Ans

Ans

496.6 mm

Problem 2-27 The material distorts into the dashed position shown. Determine (a) the average normal strains Hx and Hy , the shear strain Jxy at A, and (b) the average normal strain along line BE. Given:

a  80mm

E x  80mm

b  125mm

Bx  0mm By  100mm

'Ax  0mm 'Ay  0mm

'Cx  10mm 'Cy  0mm

'Dx  15mm 'Dy  0mm

E y  50mm

Solution: 'xAC  'Cx  'Ax 'yAC  'Cy  'Ay § 'Cx · 'T AC  atan ¨ b

©

¹

'xAC 'yAC

10.00 mm

'T AC

79.8300 u 10

0.00 mm 3

rad

Since there is no deformation occuring along the y- and x-axis, H x_A  'yAC

H x_A 2

0

Ans

2

'xAC  b  b

H y_A 

b

H y_A

Ans

0.00319

J xy_A  'T AC J xy_A

79.830 u 10

3

rad

Ans

Geometry : 'Bx 'Cx 'Ex 'Dx

=

'Bx 

§ By · ¨ ˜ 'C ©b¹ x

'Bx

8 mm

'By  0mm =

L BE  L B'E'  H BE 

By b Ey b

'Ex 

§ Ey · ¨ ˜ 'D ©b¹ x

'Ex

6 mm

'Ey  0mm

Ex  Bx 2  Ey  By 2

L BE

a  'Ex  'Bx 2  Ey  'Ey  'By 2 L B'E'  L BE L BE

H BE

L B'E'

 3 mm

17.913 u 10

94.34 mm

mm

92.65 mm

Ans

Note: Negative sign indicates shortening of BE.

Problem 2-28 The material distorts into the dashed position shown. Determine the average normal strain that occurs along the diagonals AD and CF. Given: a  80mm

E x  80mm

b  125mm

Bx  0mm By  100mm

'Ax  0mm 'Ay  0mm

'Cx  10mm 'Cy  0mm

'Dx  15mm 'Dy  0mm

E y  50mm

Solution: 'xAC  'Cx  'Ax 'yAC  'Cy  'Ay § 'Cx · 'T AC  atan ¨ b

©

¹

'xAC 'yAC

10.00 mm

'T AC

79.8300 u 10

0.00 mm 3

rad

Geometry : L AD  L CF  L A'D'  L A'D' L C'F  L C'F

2

a b 2

a b

2

2

L AD

148.41 mm

L CF

148.41 mm

a  'Dx  'Ax 2  b  'Dy  'Ay 2 157.00 mm

a  'Cx 2  b  'Cy 2 143.27 mm

Average Normal Strain : H AD 

L A'D'  L AD LAD

H AD

57.914 u 10

H CF 

LC'F  L CF LCF

H CF

34.653 u 10

 3 mm

mm

 3 mm

mm

Ans

Ans

Problem 2-29 The block is deformed into the position shown by the dashed lines. Determine the shear strain at corners C and D. Given:

a  100mm

'Ax  15mm 'Bx  15mm

b  100mm

L CA'  110mm Solution: Geometry :

§ 'Ax ·

'T C  asin ¨

© LCA' ¹ § 'Bx ·

'T D  asin ¨

©

LCA'

¹

'T C

7.84 deg

'T C

0.1368 rad

'T D

7.84 deg

'T D

0.1368 rad

Shear Strain : J xy_C  'T C J xy_C

3

136.790 u 10

rad

Ans

J xy_D  'T D J xy_D

136.790 u 10

3

rad

Ans

Problem 2-30 The bar is originally 30 mm long when it is flat. If it is subjected to a shear strain defined by Jxy = 0.0 x, where x is in millimeters, determine the displacement 'y at the end of its bottom edge. It is distorte into the shape shown, where no elongation of the bar occurs in the x direction. Given:

L  300mm

J xy = 0.02 ˜ x unit  1mm

Solution: dy = tan J xy dx dy = tan ( 0.02 ˜ x) dx



'y

´ µ ¶0

L

´ 1 dy = µ tan ( 0.02 ˜ x) ˜ ( unit) dx ¶0 30

´ 'y  µ ¶0 'y

tan ( 0.02x) ˜ ( unit) dx

9.60 mm

Ans

Problem 2-31 The curved pipe has an original radius of 0.6 m. If it is heated nonuniformly, so that the normal strain along its length is H = 0.05 cos T, determine the increase in length of the pipe. Given:

r  0.6m

H = 0.05 ˜ cos T

Solution: ´ 'L = µ H dL ¶ 90deg

´ 'L = µ ¶0

90deg

´ 'L  µ ¶0 'L

0.05 ˜ cos T d rT

0.05 ˜ r˜ cos T dT

30.00 mm

Ans

Problem 2-32 Solve Prob. 2-31 if H = 0.08 sin T . Given:

r  0.6m

H = 0.08 ˜ sin T

Solution: ´ 'L = µ H dL ¶ 90deg

´ 'L = µ ¶0

90deg

´ 'L  µ ¶0 'L

0.08 ˜ sin T d rT 0.08 ˜ r˜ sin T dT

0.0480 m

Ans

Problem 2-33 A thin wire is wrapped along a surface having the form y = 0.02 x2, where x and y are in mm. Origina the end B is at x = 250 mm. If the wire undergoes a normal strain along its length of H = 0.0002x, 2

§ dy · ˜ dx . determine the change in length of the wire. Hint: For the curve, y = f (x), ds = 1  ¨ © dx ¹ Given:

Bx  250mm

H = 0.0002 ˜ x

unit  1mm

Solution: y = 0.02x

2

dy = 0.04x dx 2

´ 'L = µ H ds ¶

§ dy · ˜ dx ¨ © dx ¹

ds =

1

ds =

1  ( 0.04x) ˜ dx

2

B ´ x 2 'L = µ ( 0.0002x) ˜ 1  ( 0.04x) dx ¶0 250

´ 'L  ( unit) ˜ µ ¶0 'L

42.252 mm

2

( 0.0002x) ˜ 1  ( 0.04x) dx Ans

Problem 2-34 The fiber AB has a length L and orientation If its ends A and B undergo very small displacements uA and vB, respectively, determine the normal strain in the fiber when it is in position A'B'. Solution: Geometry: L A'B' =

L˜ cos T  uA 2  L˜ sin T  vB 2

L A'B' =

L  uA  vB  2L ˜ vB˜ sin T  uA˜ cos T 2

2



2



Average Normal Strain: H AB =

L A'B' ˜ L L 2

H AB =

1

2

uA  vB L

2







2˜ vB˜ sin T  uA˜ cos T 1 L

Neglecting higher-order terms uA2 and vB2 , H AB =

1





2˜ vB˜ sin T  uA˜ cos T 1 L

Using the binomial theorem: H AB = 1  H AB =



1 ª 2˜ vB˜ sin T  uA˜ cos T « 2¬ L

vB˜ sin T L



uA˜ cos T L

º»  ..  1

Ans

¼

Problem 2-35 If the normal strain is defined in reference to the final length, that is,

H'

n

=

lim

po

§ 's'  's · ¨ p' © ' s' ¹

instead of in reference to the original length, Eq.2-2, show that the difference in these strains is represented as a second-order term, namely, Hn - H'n = Hn H'n. Solution:

Hn =

' S'  ' S 'S

§ 'S'  'S ·  § 'S'  'S · ¨ © 'S ¹ © 'S' ¹

H n  H'n = ¨

2

'S'  2˜ 'S ˜ 'S'  ' S H n  H'n = 'S ˜ 'S' H n  H'n =

2

'S'  'S 2 'S ˜ 'S' § 'S'  'S · ˜ § 'S'  'S · ¨ © 'S ¹ © 'S' ¹

H n  H'n = ¨



H n  H'n = H n ˜ H'n

(Q.E.D.)

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF