Chapter_13_Solutions Shigley's Mechanical Engineering Design 9th Edition Solutions Manual
December 19, 2016 | Author: Mahdi Majidniya | Category: N/A
Short Description
Download Chapter_13_Solutions Shigley's Mechanical Engineering Design 9th Edition Solutions Manual...
Description
Chapter 13
d P 17 / 8 2.125 in N 1120 dG 2 d P 2.125 4.375 in N3 544
13-1
NG PdG 8 4.375 35 teeth
Ans.
C 2.125 4.375 / 2 3.25 in
Ans.
______________________________________________________________________________
nG 1600 15 / 60 400 rev/min p m 3 mm Ans.
13-2
Ans.
C 3 15 60 2 112.5 mm Ans. ______________________________________________________________________________
NG 16 4 64 teeth
13-3
Ans.
dG NG m 64 6 384 mm
Ans.
d P N P m 16 6 96 mm
Ans.
C 384 96 / 2 240 mm
Ans.
______________________________________________________________________________ 13-4
Mesh:
a 1/ P 1/ 3 0.3333 in Ans. b 1.25 / P 1.25 / 3 0.4167 in Ans. c b a 0.0834 in Ans. p / P / 3 1.047 in Ans. t p / 2 1.047 / 2 0.523 in Ans.
Pinion Base-Circle:
d1 N1 / P 21/ 3 7 in d1b 7 cos 20 6.578 in
Gear Base-Circle:
Ans.
d 2 N 2 / P 28 / 3 9.333 in d 2 b 9.333cos 20 8.770 in
Base pitch:
pb pc cos / 3 cos 20 0.984 in
Ans.
Ans.
Contact Ratio: mc Lab / pb 1.53 / 0.984 1.55 Ans. See the following figure for a drawing of the gears and the arc lengths.
Chapter 13, Page 1/35
______________________________________________________________________________ 13-5 1/2
(a)
14 / 6 2 32 / 6 2 A0 2 2
(b) tan 1 14 / 32 23.63
Ans.
32 /14 66.37
Ans.
tan
1
(c) d P 14 / 6 2.333 in dG 32 / 6 5.333 in
2.910 in
Ans.
Ans. Ans.
Chapter 13, Page 2/35
From Table 13-3, 0.3A 0 = 0.3(2.910) = 0.873 in and 10/P = 10/6 = 1.67 0.873 < 1.67 F 0.873 in Ans. ______________________________________________________________________________ (d)
13-6
(a)
pn / Pn / 4 0.7854 in pt pn / cos 0.7854 / cos 30 0.9069 in px pt / tan 0.9069 / tan 30 1.571 in pnb pn cos n 0.7854 cos 25 0.7380 in
(b)
Eq. (13-7):
(c)
pt Pn cos 4 cos 30 3.464 teeth/in
Ans.
t tan 1 tan n / cos tan 1 (tan 25 / cos 30 ) 28.3 Ans. Table 13-4: a 1/ 4 0.250 in Ans. b 1.25 / 4 0.3125 in Ans. 20 dP 5.774 in Ans. 4 cos 30 36 dG 10.39 in Ans. 4 cos 30 ______________________________________________________________________________ (d)
13-7
N P 19 teeth, N G 57 teeth, n 20 , mn 2.5 mm
(a)
pn mn 2.5 7.854 mm
Ans.
pn 7.854 9.069 mm Ans. cos cos 30 pt 9.069 px 15.71 mm Ans. tan tan 30 mn 2.5 mt 2.887 mm Ans. cos cos 30 pt
(b)
Chapter 13, Page 3/35
tan 20 22.80 cos 30
t tan 1 (c)
a mn 2.5 mm
Ans.
Ans.
b 1.25mn 1.25 2.5 3.125 mm dP
Ans.
N Nmt 19 2.887 =54.85 mm Pt
Ans.
dG 57 2.887 164.6 mm Ans. ______________________________________________________________________________ 13-8
(a)
Using Eq. (13-11) with k = 1, = 20º, and m = 2, NP
2k m m 2 1 2m sin 2 2 1 2m sin
2 1 2 2 sin 20 2 1
2
2
2
14.16 teeth
1 2 2 sin 2 20
Round up for the minimum integer number of teeth. N P = 15 teeth Ans. (b) (c) (d)
Repeating (a) with m = 3, N P = 14.98 teeth. Rounding up, N P = 15 teeth. Ans. Repeating (a) with m = 4, N P = 15.44 teeth. Rounding up, N P = 16 teeth. Ans. Repeating (a) with m = 5, N P = 15.74 teeth. Rounding up, N P = 16 teeth. Ans.
Alternatively, a useful table can be generated to determine the largest gear that can mesh with a specified pinion, and thus also the maximum gear ratio with a specified pinion. The Max N G column was generated using Eq. (13-12) with k = 1, = 20º, and rounding up to the next integer. Min N P 13 14 15 16 17 18
Max N G 16 26 45 101 1309 unlimited
Max m = Max N G / Min N P 1.23 1.86 3.00 6.31 77.00 unlimited
With this table, we can readily see that gear ratios up to 3 can be obtained with a minimum N P of 15 teeth, and gear ratios up to 6.31 can be obtained with a minimum N P of 16 teeth. This is consistent with the results previously obtained. ______________________________________________________________________________
Chapter 13, Page 4/35
13-9
Repeating the process shown in the solution to Prob. 13-8, except with = 25º, we obtain the following results. (a) For m = 2, N P = 9.43 teeth. Rounding up, N P = 10 teeth. Ans. (b) For m = 3, N P = 9.92 teeth. Rounding up, N P = 10 teeth. Ans. (c) For m = 4, N P = 10.20 teeth. Rounding up, N P = 11 teeth. Ans. (d) For m = 5, N P = 10.38 teeth. Rounding up, N P = 11 teeth. Ans. For convenient reference, we will also generate the table from Eq. (13-12) for = 25º.
Max N G Max m = Max N G / Min N P Min N P 9 13 1.44 10 32 3.20 11 249 22.64 12 unlimited unlimited ______________________________________________________________________________ 13-10 (a)
The smallest pinion tooth count that will run with itself is found from Eq. (13-10). NP
2k 1 1 3sin 2 3sin 2 2 1
1 3sin 20 2
12.32
(b)
1 3sin 2 20
13 teeth
Ans.
The smallest pinion that will mesh with a gear ratio of m G = 2.5, from Eq. (13-11) is NP
2k m m 2 1 2m sin 2 2 1 2m sin 2 1
2.5 2.52 1 2 2.5 sin 2 20 1 2 2.5 sin 2 20 14.64 15 teeth Ans.
The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-12) is NG
N P2 sin 2 4k 2 4k 2 N P sin 2 152 sin 2 20 4 1
2
4 1 2 15 sin 2 20
45.49 45 teeth
Ans.
Chapter 13, Page 5/35
(c)
The smallest pinion that will mesh with a rack, from Eq. (13-13),
2 1 2k 2 sin sin 2 20 17.097 18 teeth Ans. ______________________________________________________________________________ NP
13-11 n 20 , 30
From Eq. (13-19), t tan 1 tan 20 / cos 30 22.80
(a)
The smallest pinion tooth count that will run with itself, from Eq. (13-21) is NP
2k cos 1 1 3sin 2 t 3sin 2 t 2 1 cos 30
1 3sin 22.80 2
1 3sin 2 22.80
8.48 9 teeth (b)
Ans.
The smallest pinion that will mesh with a gear ratio of m = 2.5, from Eq. (13-22) is 2 1 cos 30 2.5 2.52 1 2 2.5 sin 2 22.80 NP 2 1 2 2.5 sin 22.80 9.95 10 teeth Ans.
The largest gear-tooth count possible to mesh with this pinion, from Eq. (13-23) is NG
N P2 sin 2 t 4k 2 cos 2 4k cos 2 N P sin 2 t 102 sin 2 22.80 4 1 cos 2 30
4 1 cos 2 30 2 20 sin 2 22.80
26.08 26 teeth (c)
Ans.
The smallest pinion that will mesh with a rack, from Eq. (13-24) is 2k cos 2 1 cos 30 NP sin 2 t sin 2 22.80
11.53 12 teeth Ans. ______________________________________________________________________________
Chapter 13, Page 6/35
tan n 1 tan 20 22.796 tan cos cos 30 Program Eq. (13-23) on a computer using a spreadsheet or code, and increment N P . The first value of N P that can be doubled is N P = 10 teeth, where N G ≤ 26.01 teeth. So N G = 20 teeth will work. Higher tooth counts will work also, for example 11:22, 12:24, etc.
13-12 From Eq. (13-19),
t tan 1
Use N P = 10 teeth, N G = 20 teeth
Ans.
Note that the given diametral pitch (tooth size) is not relevant to the interference problem. ______________________________________________________________________________ tan n 1 tan 20 13-13 From Eq. (13-19), 27.236 t tan tan cos cos 45 Program Eq. (13-23) on a computer using a spreadsheet or code, and increment N P . The first value of N P that can be doubled is N P = 6 teeth, where N G ≤ 17.6 teeth. So N G = 12 teeth will work. Higher tooth counts will work also, for example 7:14, 8:16, etc. 1
Use N P = 6 teeth, N G = 12 teeth Ans. ______________________________________________________________________________ 13-14 The smallest pinion that will operate with a rack without interference is given by Eq. (1313). 2k NP sin 2 Setting k = 1 for full depth teeth, N P = 9 teeth, and solving for , 2 1 2k sin 1 28.126 Ans. NP 9 ______________________________________________________________________________
sin 1
13-15
(a)
(b)
Eq. (13-3):
pn mn 3 mm
Eq. (13-16):
pt pn / cos 3 / cos 25 10.40 mm
Eq. (13-17):
px pt / tan 10.40 / tan 25 22.30 mm
Eq. (13-3):
mt pt / 10.40 / 3.310 mm
Ans.
Ans. Ans.
Ans.
Chapter 13, Page 7/35
Eq. (13-19):
t tan 1
tan n tan 20 tan 1 21.88 cos cos 25
Ans.
Ans. Eq. (13-2): d p = m t N p = 3.310 (18) = 59.58 mm Eq. (13-2): d G = m t N G = 3.310 (32) = 105.92 mm Ans. ______________________________________________________________________________ (c)
13-16 (a) Sketches of the figures are shown to determine the axial forces by inspection. The axial force of gear 2 on shaft a is in the negative z-direction. The axial force of gear 3 on shaft b is in the positive z-direction. Ans. The axial force of gear 4 on shaft b is in the positive z-direction. The axial force of gear 5 on shaft c is in the negative z-direction. Ans. 12 16 700 77.78 rev/min ccw 48 36
(b)
nc n5
(c)
d P 2 12 / 12 cos 30 1.155 in dG 3
Ans.
48 / 12 cos 30 4.619 in
1.155 4.619 2.887 in Ans. 2 16 / 8 cos 25 2.207 in
Cab dP4
d G 5 36 / 8 cos 25 4.965 in
Cbc 3.586 in Ans. ______________________________________________________________________________ 20 8 20 4 40 17 60 51 4 nd 00 47.06 rev/min cw Ans. 51 ______________________________________________________________________________
13-17
e
6 18 20 3 3 10 38 48 36 304 3 n9 1200 11.84 rev/min cw Ans. 304 ______________________________________________________________________________
13-18
e
Chapter 13, Page 8/35
13-19 (a) (b)
12 1 540 162 rev/min cw about x. Ans. 40 1 d P 12 / 8 cos 23 1.630 in nc
d G 40 / 8 cos 23 5.432 in
d P dG 3.531 in 2
Ans.
32 8 in at the large end of the teeth. Ans. 4 ______________________________________________________________________________
(c)
d
13-20 Applying Eq. (13-30), e = (N 2 / N 3 ) (N 4 / N 5 ) = 45. For an exact ratio, we will choose to factor the train value into integers, such that N2 / N3 = 9 N4 / N5 = 5
(1) (2)
Assuming a constant diametral pitch in both stages, the geometry condition to satisfy the in-line requirement of the compound reverted configuration is N2 + N3 = N4 + N5
(3)
With three equations and four unknowns, one free choice is available. It is necessary that all of the unknowns be integers. We will use a normalized approach to find the minimum free choice to guarantee integers; that is, set the smallest gear of the largest stage to unity, thus N 3 = 1. From (1), N 2 = 9. From (3), N 2 + N 3 = 9 + 1 = 10 = N 4 + N 5 Substituting N 4 = 5 N 5 from (2) gives 10 = 5 N 5 + N 5 = 6 N 5 N 5 = 10 / 6 = 5 / 3 To eliminate this fraction, we need to multiply the original free choice by a multiple of 3. In addition, the smallest gear needs to have sufficient teeth to avoid interference. From Eq. (13-11) with k = 1, = 20°, and m = 9, the minimum number of teeth on the pinion to avoid interference is 17. Therefore, the smallest multiple of 3 greater than 17 is 18. Setting N 3 = 18 and repeating the solution of equations (1), (2), and (3) yields N 2 = 162 teeth N 3 = 18 teeth N 4 = 150 teeth N 5 = 30 teeth Ans. ______________________________________________________________________________ Chapter 13, Page 9/35
13-21 The solution to Prob. 13-20 applies up to the point of determining the minimum number of teeth to avoid interference. From Eq. (13-11), with k = 1, = 25°, and m = 9, the minimum number of teeth on the pinion to avoid interference is 11. Therefore, the smallest multiple of 3 greater than 11 is 12. Setting N 3 = 12 and repeating the solution of equations (1), (2), and (3) yields N 2 = 108 teeth N 3 = 12 teeth N 4 = 100 teeth N 5 = 20 teeth Ans. ______________________________________________________________________________ 13-22 Applying Eq. (13-30), e = (N 2 / N 3 ) (N 4 / N 5 ) = 30. For an exact ratio, we will choose to factor the train value into integers, such that N2 / N3 = 6 N4 / N5 = 5
(1) (2)
Assuming a constant diametral pitch in both stages, the geometry condition to satisfy the in-line requirement of the compound reverted configuration is N2 + N3 = N4 + N5
(3)
With three equations and four unknowns, one free choice is available. It is necessary that all of the unknowns be integers. We will use a normalized approach to find the minimum free choice to guarantee integers; that is, set the smallest gear of the largest stage to unity, thus N 3 = 1. From (1), N 2 = 6. From (3), N2 + N3 = 6 + 1 = 7 = N4 + N5 Substituting N 4 = 5 N 5 from (2) gives 7 = 5 N5 + N5 = 6 N5 N5 = 7 / 6 To eliminate this fraction, we need to multiply the original free choice by a multiple of 6. In addition, the smallest gear needs to have sufficient teeth to avoid interference. From Eq. (13-11) with k = 1, = 20°, and m = 6, the minimum number of teeth on the pinion to avoid interference is 16. Therefore, the smallest multiple of 3 greater than 16 is 18. Setting N 3 = 18 and repeating the solution of equations (1), (2), and (3) yields N 2 = 108 teeth N 3 = 18 teeth N 4 = 105 teeth Ans. N 5 = 21 teeth ______________________________________________________________________________
Chapter 13, Page 10/35
13-23 Applying Eq. (13-30), e = (N 2 / N 3 ) (N 4 / N 5 ) = 45. For an approximate ratio, we will choose to factor the train value into two equal stages, such that
N 2 / N3 N 4 / N5 45 If we choose identical pinions such that interference is avoided, both stages will be identical and the in-line geometry condition will automatically be satisfied. From Eq. (13-11) with k = 1, = 20°, and m 45 , the minimum number of teeth on the pinions to avoid interference is 17. Setting N 3 = N 5 = 17, we get
N 2 N 4 17 45 114.04 teeth Rounding to the nearest integer, we obtain N 2 = N 4 = 114 teeth N 3 = N 5 = 17 teeth
Ans.
Checking, the overall train value is e = (114 / 17) (114 / 17) = 44.97. ______________________________________________________________________________ 13-24 H = 25 hp, i = 2500 rev/min Let ω o = 300 rev/min for minimal gear ratio to minimize gear size.
o 300 1 i 2500 8.333 o N N 1 2 4 i 8.333 N 3 N 5 Let
N2 N4 1 1 N3 N5 8.333 2.887
From Eq. (13-11) with k = 1, = 20°, and m = 2.887, the minimum number of teeth on the pinions to avoid interference is 15. Let
N 2 = N 4 = 15 teeth N 3 = N 5 = 2.887(15) = 43.31 teeth
Try N 3 = N 5 = 43 teeth. 15 15
o 2500 304.2 43 43 Too big. Try N 3 = N 5 = 44.
Chapter 13, Page 11/35
15 15
o 2500 290.55 rev/min 44 44 N 2 = N 4 = 15 teeth, N 3 = N 5 = 44 teeth Ans. ______________________________________________________________________________ 13-25 (a) The planet gears act as keys and the wheel speeds are the same as that of the ring gear. Thus, nA n3 900 16 / 48 300 rev/min Ans. (b)
nF n5 0, nL n6 , e 1 n 300 1 6 0 300 300 n6 300 n6 600 rev/min Ans.
The wheel spins freely on icy surfaces, leaving no traction for the other wheel. The car is stalled. Ans. ______________________________________________________________________________ (c)
13-26 (a)
The motive power is divided equally among four wheels instead of two.
Locking the center differential causes 50 percent of the power to be applied to the rear wheels and 50 percent to the front wheels. If one of the rear wheels rests on a slippery surface such as ice, the other rear wheel has no traction. But the front wheels still provide traction, and so you have two-wheel drive. However, if the rear differential is locked, you have 3-wheel drive because the rear-wheel power is now distributed 50-50. ______________________________________________________________________________ (b)
13-27 Let gear 2 be first, then n F = n 2 = 0. Let gear 6 be last, then n L = n 6 = –12 rev/min. 20 16 16 nL n A 30 34 51 nF nA 16 0 n A 12 n A 51 12 nA 17.49 rev/min (negative indicates cw) Ans. 35 / 51 ______________________________________________________________________________ e
13-28 Let gear 2 be first, then n F = n 2 = 0 rev/min. Let gear 6 be last, then n L = n 6 = 85 rev/min.
Chapter 13, Page 12/35
20 16 16 nL n A 30 34 51 nF nA 16 0 nA 85 nA 51 16 nA nA 85 51 16 n A 1 85 51 85 nA 123.9 rev/min 16 1 51 e
The positive sign indicates the same direction as n 6 . nA 123.9 rev/min ccw Ans. ______________________________________________________________________________ 13-29 The geometry condition is d5 / 2 d 2 / 2 d3 d 4 . Since all the gears are meshed, they will all have the same diametral pitch. Applying d = N / P, N5 / (2 P) N 2 / (2 P) N3 / P N 4 / P
N5 N 2 2 N3 2 N 4 12 2 16 2 12 68 teeth
Ans.
Let gear 2 be first, n F = n 2 = 320 rev/min. Let gear 5 be last, n L = n 5 = 0 rev/min. e
12 16 12 3 nL nA 16 12 68 17 nF nA
320 nA nA
17 0 nA 3
3 320 68.57 rev/min 14
The negative sign indicates opposite of n 2 . nA 68.57 rev/min cw Ans. ______________________________________________________________________________ 13-30 Let n F = n 2 , then n L = n 7 = 0. e
nL n5 20 16 36 0.5217 nF n5 16 30 46
0 n5 0.5217 10 n5
Chapter 13, Page 13/35
0.5217 10 n5 n5 5.217 0.5217n5 n5 0
n5 1 0.5217 5.217
5.217 1.5217 n5 nb 3.428 turns in same direction ______________________________________________________________________________ n5
13-31 (a)
2 n / 60 H T 2 Tn / 60
(T in N m, H in W)
60 H 103
So
T
So
F32t
2 n 9550 H / n (H in kW, n in rev/min) 9550 75 Ta 398 N m 1800 mN 2 5 17 r2 42.5 mm 2 2 Ta 398 9.36 kN r2 42.5
F3b Fb3 2 9.36 18.73 kN in the positive x-direction. (b)
Ans.
mN 4 5 51 127.5 mm 2 2 Tc 4 9.36 127.5 1193 N m ccw r4
T4 c 1193 N m cw
Ans.
Note: The solution is independent of the pressure angle. ______________________________________________________________________________ Chapter 13, Page 14/35
N N P 6 d 2 4 in, d 4 4 in, d5 6 in, d 6 24 in d
13-32
24 24 36 e 1/ 6 24 36 144 nF n2 1000 rev/min
nL n6 0 n nA 0 nA 1 e L nF nA 1000 nA 6 nA 200 rev/min Noting that power equals torque times angular velocity, the input torque is T2
550 lbf ft/s 60 s 1 rev 12 in H 25 hp 1576 lbf in n2 1000 rev/min hp min 2 rad ft
For 100 percent gear efficiency, the output power equals the input power, so Tarm
H 25 hp 550 lbf ft/s 60 s 1 rev 12 in 7878 lbf in n A 200 rev/min hp min 2 rad ft
Next, we’ll confirm the output torque as we work through the force analysis and complete the free body diagrams. Gear 2 1576 788 lbf 2 F32r 788 tan 20 287 lbf
Wt
Gear 4
FA4 2W t 2 788 1576 lbf
Chapter 13, Page 15/35
Gear 5
Arm
Tout 1576 9 1576 4 7880 lbf in
Ans.
______________________________________________________________________________ 13-33 Given: m = 12 mm, n P = 1800 rev/min cw, N 2 = 18T, N 3 = 32T, N 4 = 18T, N 5 = 48T Pitch Diameters:
d 2 = 18(12) = 216 mm, d 3 = 32(12) = 384 mm, d 4 = 18(12) = 216 mm, d 5 = 48(12) = 576 mm
Gear 2 From Eq. (13-36), 60 000 150 60 000 H 7.368 kN Wt dn 216 1800 d 216 Ta 2 Wt 2 7.368 795.7 N m 2 2 W r 7.368 tan 20 2.682 kN
Gears 3 and 4
384 216 Wt 7.368 2 2 t W 13.10 kN W r 13.10 tan 20 4.768 kN Ans.
______________________________________________________________________________
Chapter 13, Page 16/35
13-34 Given: P = 5 teeth/in, N 2 = 18T, N 3 = 45T, n 20 , H = 32 hp, n 2 = 1800 rev/min Gear 2 Tin
63025 32 1800
1120 lbf in
18 3.600 in 5 45 dG 9.000 in 5 1120 W32t 622 lbf 3.6 / 2 W32r 622 tan 20 226 lbf dP
Fat2 W32t 622 lbf,
Fa 2 6222 226 2
Far2 W32r 226 lbf
1/2
662 lbf
Each bearing on shaft a has the same radial load of R A = R B = 662/2 = 331 lbf. Gear 3 W23t W32t 622 lbf W23r W32r 226 lbf
Fb3 Fb 2 662 lbf RC RD 662 / 2 331 lbf Each bearing on shaft b has the same radial load which is equal to the radial load of bearings A and B. Thus, all four bearings have the same radial load of 331 lbf. Ans. ______________________________________________________________________________ 13-35 Given: P = 4 teeth/in,
n 20 ,
N P = 20T,
n 2 = 900 rev/min
N P 20 5.000 in P 4 63025 30 2 Tin 4202 lbf in 900 W32t Tin / d2 / 2 4202 / 5 / 2 1681 lbf d2
W32r 1681 tan 20 612 lbf
Chapter 13, Page 17/35
The motor mount resists the equivalent forces and torque. The radial force due to torque is Fr
4202 150 lbf 14 2
Forces reverse with rotational sense as torque reverses.
The compressive loads at A and D are absorbed by the base plate, not the bolts. For W32t , the tensions in C and D are
M AB 0
1681 4.875 15.25 2 F 15.25 0
F 1109 lbf
Chapter 13, Page 18/35
If W32t reverses, 15.25 in changes to 13.25 in, 4.815 in changes to 2.875 in, and the forces change direction. For A and B,
1681 2.875 2 F1 13.25 0 F1 182.4 lbf For W32r ,
M 612 4.875 11.25 / 2 6426 lbf in a
14 / 2 11.25 / 2
F2
6426 179 lbf 4 8.98
2
2
8.98 in
At C and D, the shear forces are: FS 1 153 179 5.625 / 8.98 179 7 / 8.98 2
2
At A and B, the shear forces are: FS 2 153 179 5.625 / 8.98 179 7 / 8.98 145 lbf 2
2
The shear forces are independent of the rotational sense. The bolt tensions and the shear forces for cw rotation are,
Chapter 13, Page 19/35
For ccw rotation,
______________________________________________________________________________ 13-36 (a)
N 2 = N 4 = 15 teeth, P
N d
d
N 3 = N 5 = 44 teeth
N P
15 2.5 in Ans. 6 44 d3 d5 7.33 in Ans. 6 d2 d4
(b)
(c)
Vi V2 V3
d 2 n2
2.5 2500
1636 ft/min Ans. 12 d n 2.5 2500 15 / 44 Vo V4 V5 4 4 558 ft/min 12 12 Input gears: Wti 33000
12
H 33000 25 504.3 lbf 504 lbf Vi 1636
Wri Wti tan 504.3 tan 20 184 lbf W 504.3 537 lbf Wi ti Ans. cos cos 20
Output gears: H 33000 25 Wto 33000 1478 lbf Vo 558
Ans.
Ans.
Ans.
Ans.
Wro Wto tan 1478 tan 20 538 lbf Ans. Wto 1478 Wo 1573 lbf Ans. cos 20 cos 20
(d)
d 2.5 Ti Wti 2 504.3 630 lbf in 2 2
Ans.
Chapter 13, Page 20/35
2
2
44 44 To Ti 630 5420 lbf in Ans. 15 15 ______________________________________________________________________________
(e)
13-37 H 35 hp, ni 1200 rev/min, =20 N 2 N 4 16 teeth, N3 N5 48 teeth, P 10 teeth/in N 16 (a) nintermediate n3 n4 2 ni 1200 400 rev/min N3 48 N N 16 16 no 2 4 ni 1200 133.3 rev/min N3 N5 48 48 (b)
P
N d
d
Ans. Ans.
N P
16 1.6 in Ans. 10 48 d3 d5 4.8 in Ans. 10 d n 1.6 1200 502.7 ft/min Vi V2 V3 2 2 12 12 d n 1.6 400 167.6 ft/min Vo V4 V5 4 4 12 12 d2 d4
(c)
Wti 33000
H 33000 35 2298 lbf lbf Vi 502.7
Wri Wti tan 2298 tan 20 836.4 lbf W 2298 2445 lbf Wi ti Ans. cos cos 20
Wto 33000
H 33000 35 6891 lbf Vo 167.6
Ans. Ans.
Ans. Ans.
Ans.
Wro Wto tan 6891tan 20 2508 lbf Ans. Wto 6891 Wo 7333 lbf Ans. cos 20 cos 20
(d)
d 1.6 Ti Wti 2 2298 1838 lbf in 2 2 2
Ans.
2
48 48 (e) To Ti 1838 16 540 lbf in Ans. 16 16 ______________________________________________________________________________
Chapter 13, Page 21/35
13-38 (a)
For
o 2 , from Eq. (13-11), with m = 2, k = 1, 20 i 1 2 1 NP 2 22 1 2 2 sin 2 20 14.16 2 1 2 2 sin 20
So
N P min 15
(b)
P
Ans.
N 15 1.875 teeth/in d 8
Ans.
(c) To transmit the same power with no change in pitch diameters, the speed and transmitted force must remain the same. For A, with = 20°, W tA = F A cos20° = 300 cos20° = 281.9 lbf For A, with = 25°, same transmitted load, F A = W tA /cos25° = 281.9/cos25° = 311.0 lbf
Ans.
Summing the torque about the shaft axis, d d WtA A WtB B 2 2 d / 2 W d A 281.9 20 704.75 lbf WtB WtA A d B / 2 tA d B 8 WtB 704.75 FB 777.6 lbf Ans. cos 25 cos 25 ______________________________________________________________________________
13-39 (a)
For
o 5 , from Eq. (13-11), with m = 5, k = 1, 20 i 1 2 1 NP 5 52 1 2 5 sin 2 25 10.4 1 2 5 sin 2 25
So
N P min 11
(b)
m
Ans.
d 300 27.3 mm/tooth N 11
Ans.
(d) To transmit the same power with no change in pitch diameters, the speed and transmitted force must remain the same.
Chapter 13, Page 22/35
For A, with = 20°, W tA = F A cos20° = 11 cos20° = 10.33 kN For A, with = 25°, same transmitted load, F A = W tA /cos25° = 10.33 / cos 25° = 11.40 kN
Ans.
Summing the torque about the shaft axis, d d WtA A WtB B 2 2 d / 2 W d A 11.40 600 22.80 kN WtB WtA A d B / 2 tA d B 300 WtB 22.80 FB 25.16 kN Ans. cos 25 cos 25 ______________________________________________________________________________
13-40 (a)
Using Eq. (13-11) with k = 1, = 20º, and m = 2, NP
2k m m 2 1 2m sin 2 2 1 2m sin
2 1 2 2 sin 20 2 1
2
2
2
1 2 2 sin 2 20 14.16 teeth
Round up for the minimum integer number of teeth. Ans. N F = 15 teeth, N C = 30 teeth d 125 8.33 mm/tooth N 15
(b)
m
(c)
T
(d)
From Eq. (13-36),
H
Wt
Ans.
2 kW 1000 W rev 60 s 100 N m 191 rev/min kW 2 rad min
60 000 2 60 000 H 1.60 kN 1600 N dn 125 191
Ans.
Or, we could have obtained W t directly from the torque and radius,
Chapter 13, Page 23/35
Wt
T 100 1600 N d / 2 0.125 / 2
Wr Wt tan 1600 tan 20 583 N Ans. W 1600 W t 1700 N Ans. cos cos 20 ______________________________________________________________________________
13-41 (a)
Using Eq. (13-11) with k = 1, = 20º, and m = 2, NP
2k m m 2 1 2m sin 2 2 1 2m sin
2 1 2 2 sin 20 2 1
2
2
2
1 2 2 sin 2 20 14.16 teeth
Round up for the minimum integer number of teeth. N C = 15 teeth, N F = 30 teeth Ans. (b)
(c)
(d)
N 30 3 teeth/in d 10
P
Ans.
550 lbf ft/s 12 in rev 60 s 1 hp 70 rev/min hp ft 2 rad min T 900 lbf in Ans. T
H
From Eqs. (13-34) and (13-35), V
dn
10 70
183.3 ft/min 12 H 33000 1 Wt 33000 180 lbf V 183.3 12
Ans.
Wr Wt tan 180 tan 20 65.5 lbf Ans. W 180 W t 192 lbf Ans. cos cos 20 ______________________________________________________________________________ N d 1.30 13-42 (a) Eq. (13-14): tan 1 P tan 1 P tan 1 Ans. 18.5 3.88 N d G G
(b)
Eq. (13-34):
V
dn 12
2 1.30 600 12
408.4 ft/min
Ans.
Chapter 13, Page 24/35
(c)
Eq. (13-38):
H 10 33 000 808 lbf V 408.4 Wr Wt tan cos 808 tan 20 cos18.5 279 lbf
Eq. (13-38):
Wa Wt tan sin 808 tan 20 sin18.5 93.3 lbf
Eq. (13-35):
Wt 33 000
Ans. Ans. Ans.
The tangential and axial forces agree with Prob. 3-74, but the radial force given in Prob. 3-74 is shown here to be incorrect. Ans. ______________________________________________________________________________
Tin 63 025H / n 63025 2.5 / 240 656.5 lbf in
13-43
W t T / r 656.5 / 2 328.3 lbf
tan 1 2 / 4 26.565 tan 1 4 / 2 63.435
a 2 1.5cos 26.565 / 2 2.67 in
W r 328.3 tan 20 cos 26.565 106.9 lbf W a 328.3 tan 20 sin 26.565 53.4 lbf
W = 106.9i – 53.4j + 328.3k lbf R AG = –2i + 5.17j,
R AB = 2.5j
M 4 R AG W + R AB FB T 0 Solving gives R AB FB 2.5 FBz i 2.5 FBx k R AG W 1697i 656.6 j 445.9k So
1697i 656.6 j 445.9k 2.5FBz i 2.5 FBxk Tj 0 FBz 1697 / 2.5 678.8 lbf T 656.6 lbf in FBx 445.9 / 2.5 178.4 lbf
So 1/ 2
2 2 FB 678.8 178.4
702 lbf
Ans.
F A = – (F B + W) = – (–178.8i – 678.8k + 106.9i – 53.4j + 328.3k) = 71.5i + 53.4j + 350.5k
Chapter 13, Page 25/35
FA (radial) 71.52 350.52
1/ 2
358 lbf
Ans.
FA (thrust) 53.4 lbf Ans. ______________________________________________________________________________ 13-44
d 2 18 /10 1.8 in, d3 30 /10 3.0 in d2 / 2 1 0.9 tan 30.96 d / 2 1.5 3
tan 1
180 59.04 9 DE 0.5cos 59.04 0.8197 in 16 t W 25 lbf W r 25 tan 20 cos 59.04 4.681 lbf W a 25 tan 20 sin 59.04 7.803 lbf
W = –4.681i – 7.803j +25k R DG = 0.8197j + 1.25i R DC = –0.625j M D R DG W R DC FC T 0 R DG W 20.49i 31.25 j 5.917k R DC FC 0.625 FCz i 0.625 FCx k
20.49i 31.25 j 5.917k 0.625 FCz i 0.625 FCx k Tj 0 T 31.25 lbf in
Ans.
FC 9.47i 32.8k lbf
FC 9.47 2 32.82
F 0
1/2
Ans. 34.1 lbf
Ans.
FD 4.79i 7.80 j 57.8k lbf 1/2
2 2 FD (radial) 4.79 57.8 58.0 lbf Ans. a FD (thrust) W 7.80 lbf Ans. ______________________________________________________________________________
Chapter 13, Page 26/35
13-45
Pt Pn cos 4 cos 30 3.464 teeth/in
t tan 1 dP
tan n tan 20 tan 1 22.80 cos cos 30
18 5.196 in 3.464
The forces on the shafts will be equal and opposite of the forces transmitted to the gears through the meshing teeth. Pinion (Gear 2) W r W t tan t 800 tan 22.80 336 lbf W a W t tan 800 tan 30 462 lbf W 336i 462 j 800k lbf Ans. 1/2
W 336 462 8002 2
Gear 3
2
983 lbf
Ans.
W 336i 462 j 800k lbf Ans. W 983 lbf Ans. 32 dG 9.238 in 3.464 TG W t r 800 9.238 7390 lbf in
______________________________________________________________________________
Chapter 13, Page 27/35
13-46 From Prob. 13-45 solution,
Notice that the idler shaft reaction contains a couple tending to turn the shaft end-overend. Also the idler teeth are bent both ways. Idlers are more severely loaded than other gears, belying their name. Thus, be cautious. ______________________________________________________________________________ 13-47 Gear 3: Pt Pn cos 7 cos 30 6.062 teeth/in
tan 20 0.4203, t 22.8 cos 30 54 d3 8.908 in 6.062 W t 500 lbf W a 500 tan 30 288.7 lbf W r 500 tan 22.8 210.2 lbf W3 210.2i 288.7 j 500k lbf Ans. Gear 4: 14 d4 2.309 in 6.062 8.908 W t 500 1929 lbf 2.309 W a 1929 tan 30 1114 lbf W r 1929 tan 22.8 811 lbf W4 811i 1114 j 1929k lbf Ans. ______________________________________________________________________________ tan t
13-48 Pt 6 cos 30 5.196 teeth/in 42 d3 8.083 in 5.196 t 22.8
Chapter 13, Page 28/35
16 3.079 in 5.196 63025 25 T2 916 lbf in 1720 T 916 Wt 595 lbf r 3.079 / 2 W a 595 tan 30 344 lbf W r 595 tan 22.8 250 lbf d2
W 344i 250 j 595k lbf
R DC 6i,
R DG 3i 4.04 j
M D R DC FC R DG W T 0 R DG W 2404i 1785 j 2140k
(1)
R DC FC 6 FCz j 6 FCy k
Substituting and solving Eq. (1) gives
T 2404i lbf in FCz 297.5 lbf FCy 365.7 lbf
F FD FC W 0 Substituting and solving gives FCx 344 lbf FDy 106.7 lbf FDz 297.5 lbf
FC 344i 356.7 j 297.5k lbf Ans. FD 106.7 j 297.5k lbf Ans. ______________________________________________________________________________
Chapter 13, Page 29/35
13-49
Since the transverse pressure angle is specified, we will assume the given module is also in terms of the transverse orientation.
d 2 mN 2 4 16 64 mm d3 mN3 4 36 144 mm d 4 mN 4 4 28 112 mm 6 kW 1000 W rev 60 s 35.81 N m 1600 rev/min kW 2 rad min T 35.81 Wt 1119 N d 2 / 2 0.064 / 2 T
H
Chapter 13, Page 30/35
W r W t tan t 1119 tan 20 407.3 N
W a W t tan 1119 tan15 299.8 N F2 a 1119i 407.3j 299.8k N Ans. F3b 1119 407.3 i 1119 407.3 j
711.7i 711.7 j N Ans. F4c 407.3i 1119 j 299.8k N Ans. ______________________________________________________________________________
13-50
N 14 36 2.021 in, d3 5.196 in Pn cos 8cos 30 8cos 30 15 45 d4 3.106 in, d5 9.317 in 5cos15 5cos15
d2
For gears 2 and 3: t tan 1 tan n / cos tan 1 tan 20 / cos 30 22.8
For gears 4 and 5: t tan 1 tan 20 / cos15 20.6
F23t T2 / r2 1200 / 2.021/ 2 1188 lbf 5.196 1987 lbf 3.106 F23r F23t tan t 1188 tan 22.8 499 lbf F54t 1188
F54r 1986 tan 20.6 746 lbf F23a F23t tan 1188 tan 30 686 lbf F54a 1986 tan15 532 lbf
Next, designate the points of action on gears 4 and 3, respectively, as points G and H, as shown. Position vectors are Chapter 13, Page 31/35
R CG 1.553 j 3k R CH 2.598 j 6.5k R CD 8.5k Force vectors are F54 1986i 748 j 532k F23 1188i 500 j 686k FC FCx i FCy j FD FDx i FDy j FDz k Now, a summation of moments about bearing C gives
M C R CG F54 R CH F23 R CD FD 0 The terms for this equation are found to be R CG F54 1412i 5961j 3086k R CH F23 5026i 7722 j 3086k R CD FD 8.5 FDy i 8.5 FDx j
When these terms are placed back into the moment equation, the k terms, representing the shaft torque, cancel. The i and j terms give 3614 425 lbf Ans. 8.5 13683 FDx 1610 lbf Ans. 8.5 FDy
Next, we sum the forces to zero. F FC F54 F23 FD 0 Substituting, gives
F i F j 1987i 746 j 532k 1188i 499 j 686k 1610i 425 j F k 0 x C
y C
z D
Solving gives FCx 1987 1188 1610 1565 lbf F 746 499 425 672 lbf y C z D
Ans.
Ans.
F 532 686 154 lbf Ans. ______________________________________________________________________________
Chapter 13, Page 32/35
VW
13-51
WW t
dW nW
0.100 600
60 60 H 2000 637 N VW
m/s
L px NW 25 1 25 mm
tan 1 tan 1
L dW 25 4.550 lead angle 100
WW t
W
cos n sin f cos V VS W 3.152 m/s cos cos 4.550 In ft/min: V S = 3.28(3.152) = 10.33 ft/s = 620 ft/min Use f = 0.043 from curve A of Fig. 13-42. Then, from the first of Eq. (13-43) W
637 5323 N cos14.5 sin 4.55 0.043cos 4.55
W y W sin n 5323sin14.5 1333 N
W z 5323 cos14.5 cos 4.55 0.043 sin 4.55 5119 N The force acting against the worm is W 637i 1333 j 5119k N
Thus, A is the thrust bearing.
Ans.
R AG 0.05 j 0.10k , R AB 0.20k M A R AG W R AB FB T 0 R AG W 122.6i 63.7 j 31.85k R AB FB 0.2 FBy i 0.2 FBx j
Substituting and solving gives
T 31.85 N m Ans. FBx 318.5 N, FBy 613 N So
FB 318.5i 613 j N
Ans.
Chapter 13, Page 33/35
2 2 FB 613 318.5 F FA W R B 0
Or
1/2
691 N radial
FA W FB 637i 1333j 5119k 318.5i 613j
318.5i 1946 j 5119k
Ans.
FAr 318.5i 1946 j N
Radial
1/2
2 2 FAr 318.5 1946 1972 N a Thrust FA 5119 N ______________________________________________________________________________
13-52 From Prob. 13-51, WG 637i 1333j 5119k N pt px So
dG
N G px
48 25
382 mm
Bearing D takes the thrust load. M D R DG WG R DC FC T 0 R DG 0.0725i 0.191j R DC 0.1075i The position vectors are in meters. R DG WG 977.7i 371.1j 25.02k R DC FC 0.1075 FCz j 0.1075 FCy k
Putting it together and solving,
T 977.7 N m Ans. FC 233 j 3450k N, F FC WG FD 0
FC 3460 N
Ans.
FD FC WG 637i 1566 j 1669k N
Ans.
Radial FDr 1566 j 1669k N Or
FDr 15662 1669 2 FDt 637i N
1/ 2
2289 N (total radial)
(thrust)
Chapter 13, Page 34/35
______________________________________________________________________________ 13-53
VW
1.5 600
235.7 ft/min 12 33000 0.75 W x WW t 105.0 lbf 235.7 pt px 0.3927 in 8 L 0.3927 2 0.7854 in 0.7854 9.46 1.5 105.0 W 515.3 lbf cos 20 sin 9.46 0.05cos 9.46 W y 515.3sin 20 176.2 lbf W z 515.3 cos 20 cos 9.46 0.05sin 9.46 473.4 lbf
tan 1
So
W 105i 176 j 473k lbf
Ans.
T 105 0.75 78.8 lbf in
Ans.
______________________________________________________________________________ 13-54 Computer programs will vary.
Chapter 13, Page 35/35
View more...
Comments