Chap12(3)-3

March 12, 2019 | Author: Vince Harris | Category: Acceleration, Velocity, Kinematics, Curvature, Euclidean Vector
Share Embed Donate


Short Description

Dynamics...

Description

Chapter 12: Kinematics of a Particle

Particle: • A particle has a mass but negligible size and shape. • A particle can undergo only translational motion. • Obects li!e roc!ets" proectile" or #ehicle may be considered as particles pro#ided motion of the body is characterized by motion of its mass center $a point% and any rotation of the  body is neglected. • Chapter 12 & 1' are de#oted to dynamics of particles.

Rigid Body: A rigid body has mass" size and shape. A rigid A rigid body can undergo both translational and rotational motion. Chapters 1( ) 21 are de#oted to rigid body dynamics.

12.1: Introduction - An Overview of Mechanics echanics: +he study of ho- bodies echanics: +he react to forces acting on them.

*tatics: +he study of *tatics: +he  bodies in e,uilibrium.

 Dynamics: 1. ine!atics & concerned -ith the geometric aspects of motion 2. inetics  ) concerned -ith the forces causing the motion

R"#$I%I&"AR I&"MA$I#' ('ection 12.2) %inear !otion $also called rectilinear motion% is motion along a straight line" and can therefore be described mathematically using only one spatial dimension.

Position of a Particle +his is step & 1 in particle analysis. +he position of the particle at any instant" relati#e to the fi/ed origin" O" is defined by the position #ector r " or the scalar s. *calar s can be positi#e or negati#e. +ypical units for r and s are meters $m% or feet $ft%.

*is+lace!ent of a Particle

+he displacement of the particle is defined as the change in its position. 4ector form:

r = r’ - r 

*calar form: ∆ s  s5 ) s

0isplacement is a #ector ,uantity. 0isplacement  inal Position & 3nitial Position +he total distance tra#eled by the particle" s +" is a positi#e scalar that represents the total length of the path o#er -hich the particle tra#els.

A particle is mo#ing in a circular path of radius r . +he magnitude of displacement and distance after half a circle -ould be: $a% 6ero $b% 7 r  $c% 2 r  $d% 27 r 

,"%O#I$ 4elocity is a measure of the rate of change in the position of a particle. 3t is a #ector  ,uantity $it has both magnitude and direction%. athematically" #  ds8dt 0irection: A positi#e #alue of #elocity indicates that the particle is mo#ing along the assumed positi#e direction of the coordinate a/is. A negati#e #alue indicates that the particle mo#es in the opposite direction.

+he magnitude of the #elocity is called speed" -ith units of m8s or ft8s. *peed is a scalar ,uantity.

A##"%"RA$IO& Acceleration is the rate of change in the #elocity of a particle. 3t is a #ector ,uantity. +ypical units are m8s2 or ft8s2. +he instantaneous acceleration is the time deri#ati#e of #elocity. 4ector form: a  dv 8 dt *calar form: a  d# 8 dt  d 2s 8 dt2 Acceleration can be positi#e $speed increasing% or negati#e $speed decreasing" also called as decelerating%. As the te/t indicates" the deri#ati#e e,uations for #elocity and acceleration can be manipulated to get a ds  # d#

'MMAR O/ I&"MA$I# R"%A$IO&': R"#$I%I&"AR MO$IO&

0ifferentiate position to get #elocity and acceleration.

#  ds8dt a  d#8dt a  # d#8ds

9/ample: +he acceleration of a particle is a function of its displacement and is gi#en as: a  ( x$1 ; kx2%< -here k  is a constant. =i#en: #$ x  %  >.' ft8s ? #$ x  .@'ft%  1'ft8s. ind k . +hin!: hich one of the follo-ing three e,uation -ill help you find k .

#  ds8dt a  d#8dt a ds  # d#

'P"#IA% #A'": #O&'$A&$ A##"%"RA$IO& MO$IO& +he three !inematic e,uations can be integrated for the special case -hen acceleration is constant $a  ac% to obtain #ery useful e,uations. A common e/ample of constant acceleration is gra#ity< i.e." a body freely falling to-ard earth. 3n this case" ac  g  B.1 m8s2  D2.2 ft8s2 do-n-ard. +hese e,uations are: v



∫ dv = ∫ a dt 

vo s

c

o

v

yields

s

yields

# 2 = $#o %2 + 2a $s ) s %

o  s

∫ v dv = ∫ a ds vo

#=#

o



∫ ds = ∫ v dt   s o

yields

 so

c

+at c

= s + # t + $182% a t 2 o o c

c

o

+he three !inematic e,uations are: #  # ; act s  s ;#t ; .' act2 #2  #2 ; 2ac $s & s% Eemember: +o use the abo#e three e,uations: 1%

+he particle must be mo#ing -ith constant acceleration.

2%

Fou must define a fi/ed coordinate a/is and specify positi#e8 negati#e directions before you use these e,ns.

D%

+he magnitudes and signs of s" # and ac" used in the abo#e three e,uations are determined -.r.t to the chosen coordinate a/is.

9/ample: An airplane begins its ta!e)off run at A -ith zero #elocity and a constant acceleration a. Kno-ing that it becomes airborne D s later at B and that the distance AB is 2> ft" determine $a% the acceleration a" $b% the ta!e)off #elocity G B.

9/ample: Automobiles A and B are tra#eling in adacent high-ay lanes and at t    ha#e the positions and speeds sho-n. Kno-ing that automobile A has a constant acceleration of .( m8s 2 and that B has a constant deceleration of .@ m8s 2" determine $a% -hen and -here A -ill o#erta!e B" $b% the speed of each automobile at that time.

12.0 MO$IO& O/ A PRO"#$I%"

MO$IO& O/ A PRO"#$I%"

('ection 12.0)

3f -e ignore the air drag8 air)friction on the particle" then the only force acting on a proectile is its -eight

 Horizontal − Component 

Vertical − Component 

→ ∑ F x = Max = : ⇒ a x = :

↑ ∑ F y = Ma y = − Mg 



dv x

=:

dt  ⇒ v x = Cons tan t  

⇒ a y = − g  ⇒ a y = Cons tan t   Constant acceleration motion along y a/is

Proectile motion can be treated as t-o rectilinear motions" one in the horizontal direction e/periencing zero acceleration and the other in the #ertical direction e/periencing constant acceleration $i.e." from gra#ity%.

I&"MA$I# "A$IO&': 3ORI4O&$A% MO$IO&

#  # ; act s  s ;#t ; .' a ct2

#2  #2 ; 2ac $s & s% *ince a/  " the #elocity in the horizontal direction remains constant $#/  #o/% and the position in the / direction can be determined by: /  /o ; $#o/% t

I&"MA$I# "A$IO&': ,"R$I#A% MO$IO&

*ince the positi#e y)a/is is directed up-ard" ay  & g. Application of the constant acceleration e,uations yields: #y  #oy & g t

#  # ; act s  s ;#t ; .' a ct

2

#2  #2 ; 2ac $s & s%

y  yo ; $#oy% t & H g t2

#y2  #oy2 & 2 g $y & y o%

IMPOR$A&$ "A$IO&' /OR PRO"#$I%" MO$IO&

or Iorizontal otion: /  / ; $#/% t

or 4ertical otion: #y  #y & g t y  y ; $#y% t & H g t2 #y2  #y2 & 2 g $y & y % 3mportant: +ime" Jt  is the only common term that appears in the horizontal and #ertical motion e,uations.

9/ample: A s!i umper starts -ith a horizontal ta!e)off #elocity of 2' m8s and lands on a straight landing hill inclined at DL. 0etermine $a% the time bet-een ta!e)off and landing" $b% the length d  of the ump.

9/ample: A golf ball is struc! -ith a #elocity of  ft8s as sho-n. 0etermine the distance" d " to -here it -ill land.

9/ample: A pump is located near the edge of the horizontal  platform sho-n. +he nozzle at A discharges -ater -ith an initial #elocity of 2' ft8s at an angle of ''M -ith the #ertical. 0etermine the range of #alues of the height h for -hich the -ater enters the opening BC .

12.5: 6"&RA% #R,I%I&"AR MO$IO& - Introduction

Cur#ilinear motion occurs -hen the particle mo#es along a cur#ed path.

A roller coaster car  +he path of motion of a plane

Cur#ed road

#R,I%I&"AR MO$IO&

*ince the path is often described in D)0" #ector analysis -ill be used to formulate the particle5s position" #elocity and acceleration. A particle mo#es along a cur#e defined by the path function" s.

+he position of the particle at any instant is designated by the #ector  r   r $t%. Noth the magnitude and direction of r  may #ary -ith time.

,"%O#I$

4elocity represents the rate of change in the position of a  particle. +he instantaneous #elocity is the time)deri#ati#e of position v  dr 8dt .

+he #elocity #ector" v" is al-ays tangent to the path of motion.

A##"%"RA$IO&

Acceleration represents the rate of change in the #elocity of a particle.

+he instantaneous acceleration is the time)deri#ati#e of #elocity:

a  dv8dt  d2r 8dt2

A&A%'I' O/ #R,I%I&"AR MO$IO& 1% sing Eectangular $/" y" z% Components 2% sing ormal and +angential Components $n)t % D% Cylindrical Coordinates $r" Q" z%

#R,I%I&"AR MO$IO&: R"#$A&6%AR #OMPO&"&$' ('ection 12.7)

3t is often con#enient to describe the motion of a particle in terms of its /" y" z or rectangular components" relati#e to a fi/ed frame of reference. +he position of the particle can be defined at any instant by the  position #ector  r  x i ; y j ; z k . +he /" y" z components may all be functions of time" i.e." /  /$t%" y  y$t%" and z  z$t% . +he magnitude of the position #ector is: r  $/ 2 ; y2 ; z2%.'

R"#$A&6%AR #OMPO&"&$': ,"%O#I$

+he #elocity #ector is the time deri#ati#e of the position #ector: v  dr 8dt  d$/i %8dt ; d$y j %8dt ; d$zk %8dt

*ince the unit #ectors i " j " k  are constant in magnitude and direction" this e,uation reduces to #  # / i  ; #y j  ; #z k  •





-here #/  /  d/8dt" #y  y  dy8dt" #z  z  dz8dt +he magnitude of the #elocity #ector is #  R$#/%2 ; $#y%2 ; $#z%2S.' +he direction of v is tangent to the path of motion.

R"#$A&6%AR #OMPO&"&$': A##"%"RA$IO&

+he acceleration #ector is the time deri#ati#e of the #elocity #ector $second deri#ati#e of the position #ector%: a  dv8dt  d2r 8dt2  a/ i  ; ay j  ; az k  •

-here •

••



••

a/  #/  /  d#/ 8dt" ay  #y  y  d#y 8dt" ••

az  #z  z  d#z 8dt +he magnitude of the acceleration #ector is a  R$a/%2 ; $ay%2 ; $az%2 S.' +he direction of a is usually not tangent to the path of the  particle.

"8a!+le: +he bo/ slides do-n the slope described by the e,uation y  $.' x2% m" -here x is in meters. #/  )D m8s" a x  )1.' m8s2 at x  ' m. ind the y

components of the #elocity and the acceleration of the bo/ at x  ' m.

12.9 #R,I%I&"AR MO$IO& &ORMA% A&* $A&6"&$IA% #OMPO&"&$' O;ective: 0etermine the #elocity and acceleration of a particle tra#eling along a cur#ed path using normal and tangential components.

&ORMA% A&* $A&6"&$IA% #OMPO&"&$' $*ection 12.>% hen a particle mo#es along a cur#ed path" it is sometimes con#enient to describe its motion using coordinates other than Cartesian. hen the  path of motion is !no-n" normal $n% and tangential $t % coordinates are often used. 3n the n-t  coordinate system" the origin" O" is located on the  particle $the origin mo#es -ith the particle%.

+he t )a/is is tangent to the path $cur#e% at the instant considered"  positi#e in the direction of the particle5s motion. +he n)a/is is perpendicular to the t )a/is -ith the positi#e direction to-ard the center of cur#ature of the cur#e.

&ORMA% A&* $A&6"&$IA% #OMPO&"&$' $continued%

+he positi#e n and t  directions are defined by the unit #ectors un and ut" respecti#ely.

+he center of cur#ature" OT" al-ays lies on the conca#e side of the cur#e. +he radius of cur#ature" ρ" is defined as the perpendicular distance from the cur#e to the center of cur#ature at that point.

,"%O#I$ I& $3" n-t #OOR*I&A$" ''$"M

+he #elocity #ector is al-ays tangent to the path of motion $t )direction%. v  # ut

A##"%"RA$IO& I& $3" n-t #OOR*I&A$" ''$"M

Acceleration is the time rate of change of #elocity : . . a  dv8dt  d$#ut%8dt  #ut ; #ut

After mathematical manipulation" the acceleration #ector can be e/pressed as: . a  v ut ; $#28ρ% un  at ut ; an un.

A##"%"RA$IO& I& $3" n-t #OOR*I&A$" ''$"M $continued%

*o" there are t-o components to the acceleration #ector: a  at ut ; an un

• +he tangential component is tangent to the cur#e and in the direction of increasing or decreasing #elocity. . at  # • +he normal or centripetal component is al-ays directed to-ard the center of cur#ature of the cur#e. a n  #28ρ • +he magnitude of the acceleration #ector is  a  R$a t%2 ; $an%2S.'

3POE+A+ 9UA+3O*

+angential Acceleration" at   d#8dt  ormal Acceleration" an  #28V

+he magnitude of the acceleration #ector is a  R$at %2 ; $an%2S.'

'P"#IA% #A'"' O/ MO$IO& +here are some special cases of motion to consider. 1% +he particle mo#es along a straight line. . 2 ρ ∞ W an  # 8ρ = 0 => a  at  # +he tangential component represents the time rate of change in the magnitude of the #elocity. 2% +he particle mo#es along a cur#e at constant speed. .  at  #   W a  an  #28ρ

'P"#IA% #A'"' O/ MO$IO& $continued%

D% *ometimes" the e,uation of the cur#e path follo-ed  by the particle may be gi#en" y   $ x%. +he radius of cur#ature" V" at any point on the path can be calculated from the follo-ing e,uation: D

  dy   1 +  ÷    dx   2

 ρ  =

d2y dx

2

2

"8a!+le: A oat travels around a circular +ath at a s+eed that increases with ti!e< v = (>.>027 t 2) !?s. /ind the !agnitudes of the oat@s velocity and acceleration at the instant t  = 1> s.

"8a!+le: $he !otorcyclist travels along the curve at a constant s+eed of > ft?s. *eter!ine his acceleration when he is located at +oint A. 3int: $reat the !otorcycle and rider as a +article.

"8a!+le: $he auto!oile has a s+eed of > ft?s at +oint A and an acceleration< a< having a !agnitude of 1> ft?s2< acting in the direction shown. *eter!ine the radius of curvature of the +ath at +oint A and the tangential co!+onent of acceleration.

R"%A$I,"-MO$IO& A&A%'I' O/ $CO PAR$I#%"'

All motion is relati#e to some frame of reference

2 trains approaching each other $along a line% at B' !m8h each. Obser#ers on either train see the other coming at B' ; B'  1B !m8h. Obser#er on ground sees ± B' !m8h. Velocity depends on reference frame!!

R"%A$ R"%A $I," PO'I$IO& $*ection 12.1%

+he absolute position of position of t-o  particles A and N -ith respect to the fi/ed /" y" z reference frame are gi#en by r  A and r  B. +he position +he position of N relati#e to A is A is represented by r  BA  r  A  r  B $#ector addition% r  BA  r  B  & r  A

 ote: r  B!A means position of B of B as  as obser#ed from A from A r  A!B means position of A of A as  as obser#ed from B from B +herefore" if

r  B  $1 i  ;  ; 2 j % m

and

r  A  $@ i  ;  ; ' j % m"

then

 & D j % m. r  BA  $( i  &

R"%A$I," ,"%O#I$

+o determine the relati#e #elocity of #elocity  of N -ith respect to A" the time deri#ati#e of of the relati#e position e,uation is ta!en. v BA  v B & v A or  v B  v A ; v BA 3n these e,uations" v B and v A are called absolute #elocities and v BA is the relati#e #elocity of #elocity  of N -ith respect to A.  ote that v BA  ) v AB .

R"%A$I," R"%A$ I," A##"%"RA$ A##"%"RA$IO& IO&

+he time deri#ati#e of the relati#e #elocity e,uation yields a similar #ector relationship bet-een the absolute and absolute  and relati#e accelerations of particles A and N. +hese deri#ati#es yield: a BA  a B & a A or  a B  a A ; a BA

'O%,I&6 PROB%"M' *ince the relati#e motion e,uations are #ector e,uations" problems in#ol#ing them re,uires resol#ing #elocity $or acceleration% #ector along x and y and then performing the #ector operation: v B  v A ; v BA a B  a A ; a BA

"DAMP%": 'hown in figure are two air+lanes flying at sa!e altitude with their res+ective velocities and direction shown. /ind vB?A.

6iven:

#A  (' !m8h #N   !m8h

/ind:

v BA

"DAMP%" (continued% 'olution:

v A  $(' i  % !m8h v B  & cos ( i  &  sin ( j 

 $ &@ i  & (B2.  j % !m8h v BA  v B & v A  $&1' i  & (B2. j % !m8h

# B 8 A =

(−1050)2 +(−692.8)2 = 1258 !m8h

θ   tan)1$

692.8 %  DD.@° 1050

θ 

9/ample: At the instant sho-n" race car A is passing race car B -ith a relati#e #elocity $# A8N% of 1 m8s. Kno-ing that the speeds of both cars are constant and that the relati#e acceleration of car A -ith respect to car B $aA8N% is .2' m8s 2 directed to-ard the center of cur#ature" determine the speed of cars A and B at the instant sho-n.

"8a!+le: At a given instant in an air+lane race< air+lane  A is flying horiEontally in a straight line< and its s+eed is eing increased at a rate of 0 !?s2. Air+lane B is flying at the sa!e altitude as air+lane A and is following a circular +ath of 2>>-! radius. nowing that at the given instant the s+eed of  B is eing decreased at the rate of 2 !?s 2< deter!ine< for the +ositions shown< the acceleration of B relative to A.

AB'O%$" *"P"&*"&$ MO$IO& A&A%'I' O/ $CO PAR$I#%"' ('ection-12.F)

3n many !inematics  problems" the motion of one obect -ill depend on the motion of another obect.

• 3f bloc! A mo#es do-n-ard along the inclined plane" bloc! N -ill mo#e up the other incline. • +his dependency commonly occurs if the particles are interconnected by ine/tensible8 inelastic cords -hich are -rapped around pulley$s%.

PRO#"*R" /OR A&A%'I'- *"P"&*"&$ MO$IO&

 ote: +he length of the cord connecting the t-o particles -ill al-ays remain same8 constant" irrespecti#e of the  position8 location of the t-o  particles.

+he motion of each bloc! can be related mathematically by defining position coordinates" sA and sN. 9ach coordinate a/is is defined from a fi/ed point or datum line" measured positi#e along each plane in the direction of motion of each bloc!.

*"P"&*"&$ MO$IO& $continued%

3n this e/ample" position coordinates sA and sN can be defined from fi/ed datum lines e/tending from the center of the pulley along each incline to bloc!s A and N. *ince" the cord has a fi/ed length" the position coordinates sA and sN are related mathematically by the e,uation sA ; lC0 ; sN  l+ Iere l+ is the total cord length and l C0 is the length of cord  passing o#er the arc C0 on the pulley.

*"P"&*"&$ MO$IO& $continued%

+he #elocities of bloc!s A and N can be related by differentiating the position e,uation. ote that lC0 and l+ remain constant" so dlC08dt  dl+8dt   dsA8dt ; dsN8dt  

W

#N  )#A

+he negati#e sign indicates that as A mo#es do-n the incline $positi#e sA direction%" N mo#es up the incline $negati#e s N direction%. Accelerations can be found by differentiating the #elocity e/pression. aN  )aA .

*"P"&*"&$ MO$IO&: PRO#"*R"'

+hese procedures can be used to relate the dependent motion of  particles mo#ing along rectilinear paths $only the magnitudes of #elocity and acceleration change" not their line of direction%. 1. 0efine position coordinates from fi/ed datum lines" along the path of each particle. 0ifferent datum lines can  be used for each particle. 2. Eelate the position coordinates to the cord length. *egments of cord that do not change in length during the motion may be left out. D. 3f a system contains more than one cord" relate the  position of a point on one cord to a point on another cord. *eparate e,uations are -ritten for each cord. @. 0ifferentiate the position coordinate e,uation$s% to relate #elocities and accelerations. Keep trac! of signsX

"DAMP%"-1

=i#en: 3n the figure on the left" the cord at A is pulled do-n -ith a speed of 2 m8s.  ind: +he speed of bloc! N.

"8a!+le - 2: 'lider locG B !oves to the right with a constant velocity of >> !!?s. *eter!ine (a) the velocity of slider locG A< () the velocity of +oint "  on the cale< (c) the relative velocity of "  w.r.t. A # v"A $.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF