Chap 012

Share Embed Donate


Short Description

Download Chap 012...

Description

Chapter 12 Simple Regression

True / False Questions

1. A scatter scatter plot is used used to visualize visualize the associat association ion (or lack lack of association) beteen to !uantitative variables.  "rue  "rue

#alse

2. "he correl correlation ation coe$cien coe$cientt r  measures  measures the strength of the linear relationship beteen to variables.  "rue  "rue

#alse

%. &earson's earson's correl correlation ation coe$cient coe$cient (r ) re!uires that both variables be interval or ratio data.  "rue  "rue

#alse

. f r  *  * .++ and n * 1,- then the correlation is significant at  * ./+ in a to0tailed test.  "rue  "rue

#alse

+. A sample sample corre correlat lation ion r  *  * ./ indicates a stronger linear relationship relationship than r  *  * 0.,/.  "rue  "rue

#alse

,. A common common source source of spurious spurious correl correlation ation betee beteen n X  and  and Y  is  is hen a third unspecied variable Z  aects  aects both X  and  and Y .  "rue  "rue

#alse

3. "he correl correlation ation coe$cien coe$cientt r  ala4s  ala4s has the same sign as b1 in Y  *  * b/ 5 b1 X   X .  "rue  "rue

#alse

6. "he tted intercept in a regression regression has little meaning if no data values values near X  *  * / have been observed.  "rue  "rue

#alse

7. "he least least s!uares s!uares regression regression line line is obtained obtained hen the sum of the s!uared residuals is minimized.  "rue  "rue

#alse

1/ n a simple regression- if the coe$cient for X  is  is positive and . signicantl4 dierent from zero- then an increase in X  is  is associated ith an increase in the mean (i.e.- the e8pected value) of Y .  "rue  "rue

#alse

11 n least0s!uares regression- the residuals e1- e2- . . . - en ill ala4s . have a zero mean.  "rue  "rue

#alse

12 9hen using the least s!uares method- the column of residuals ala4s . sums to zero.  "rue  "rue

#alse

1% n the model Sales * 2,6 5 3.%3  Ads- an additional :1 spent on ads . ill increase sales b4 3.%3 percent.  "rue  "rue

#alse

1 f R2 * .%, in the model Sales * 2,6 5 3.%3  Ads ith n * +/- the to0 . tailed test for correlation correlation at α * ./+ ould sa4 that there is a signicant correlation correlation beteen Sales and Ads.  "rue  "rue

#alse

1+ f R2 * .%, in the model Sales * 2,6 5 3.%3  Ads- then Ads e8plains %, . percent of the variation in Sales.  "rue  "rue

#alse

1, "he ordinar4 least least s!uares regression regression line ala4s ala4s passes through the . point .  "rue  "rue

#alse

13 "he least s!uares regression regression line gives gives unbiased estimates of β/ and .  β1.  "rue  "rue

#alse

16 n a simple regression- the correlation coe$cient r  is  is the s!uare root of 2 . R.  "rue  "rue

#alse

17 f SSR is 16// and SSE SSE is 2//- then R2 is .7/. .  "rue  "rue #alse 2/ "he idth of a prediction prediction interval for an individual value value of Y  is  is less . than standard error se.  "rue  "rue

#alse

21 f SSE regression- the statistician ill conclude that the SSE is near zero in a regression. proposed model probabl4 has too poor a t to be useful.  "rue  "rue

#alse

22 #or a regression ith 2// observations- e e8pect that about 1/ . residuals ill e8ceed to standard errors.  "rue  "rue

#alse

2% Condence intervals for predicted Y  are less precise hen the residuals . are ver4 small.  "rue

#alse

2 Cause0and0eect direction beteen X  and Y  ma4 be determined b4 . running the regression tice and seeing hether Y  * β/ 5 β1 X  or X  * β1 5 β/Y  has the larger R2.  "rue

#alse

2+ "he ordinar4 least s!uares method of estimation minimizes the . estimated slope and intercept.  "rue

#alse

2, ;sing the ordinar4 least s!uares method ensures that the residuals ill . be normall4 distributed.  "rue

#alse

23 f 4ou have a strong outlier in the residuals- it ma4 represent a dierent . causal s4stem.  "rue

#alse

26 A negative correlation beteen to variables X  and Y  usuall4 4ields a . negative p0value for r .  "rue

#alse

27 n linear regression beteen to variables- a signicant relationship . e8ists hen the p0value of the t  test statistic for the slope is greater than α.  "rue

#alse

%/ "he larger the absolute value of the t  statistic of the slope in a simple . linear regression- the stronger the linear relationship e8ists beteen X  and Y .  "rue

#alse

%1 n simple linear regression- the coe$cient of determination (R2) is . estimated from sums of s!uares in the AA table.  "rue

#alse

%2 n simple linear regression- the p0value of the slope ill ala4s e!ual . the p0value of the F  statistic.  "rue

#alse

%% An observation ith high leverage ill have a large residual (usuall4 an . outlier).  "rue

#alse

% A prediction interval for Y  is narroer than the corresponding . condence interval for the mean of Y .  "rue

#alse

%+ 9hen X  is farther from its mean- the prediction interval and condence . interval for Y  become ider.  "rue

#alse

%, "he total sum of s!uares (SST ) ill never e8ceed the regression sum of . s!uares (SSR).  "rue

#alse

%3 ?@igh leverage? ould refer to a data point that is poorl4 predicted b4 . the model (large residual).  "rue

#alse

%6 "he studentized residuals permit us to detect cases here the . regression predicts poorl4.  "rue

#alse

%7 A poor prediction (large residual) indicates an observation ith high . leverage.  "rue

#alse

/ Ill-conditioned  refers to a variable hose units are too large or too . small (e.g.- :2-%-+,3).  "rue

#alse

1 A simple decimal transformation (e.g.- from 16-271 to 16.271) often . improves data conditioning.  "rue

#alse

2 "o0tailed t-tests are often used because an4 predictor that diers . signicantl4 from zero in a to0tailed test ill also be signicantl4 greater than zero or less than zero in a one0tailed test at the same α.  "rue

#alse

% A predictor that is signicant in a one0tailed t-test ill also be . signicant in a to0tailed test at the same level of signicance α.  "rue

#alse

 =mission of a relevant predictor is a common source of model . misspecication.  "rue

#alse

+ "he regression line must pass through the origin. .  "rue #alse , =utliers can be detected b4 e8amining the standardized residuals. .  "rue #alse

3 n a simple regression- there are n 0 2 degrees of freedom associated . ith the error sum of s!uares (SSE).  "rue

#alse

6 n a simple regression- the F  statistic is calculated b4 taking the ratio of  . MSR to the MSE.  "rue

#alse

7 "he coe$cient of determination is the percentage of the total variation . in the response variable Y  that is e8plained b4 the predictor X .  "rue

#alse

+/ A dierent condence interval e8ists for the mean value of Y  for each . dierent value of X .  "rue

#alse

+1 A prediction interval for Y  is idest hen  X  is near its mean. .  "rue #alse +2 n a to0tailed test for correlation at α * ./+- a sample correlation . coe$cient r  * /.2 ith n * 2+ is signicantl4 dierent than zero.  "rue

#alse

+% n correlation anal4sis- neither X  nor Y  is designated as the . independent variable.  "rue

#alse

+ A negative value for the correlation coe$cient (r ) implies a negative . value for the slope (b1).  "rue

#alse

++ @igh leverage for an observation indicates that X  is far from its mean. .  "rue #alse

+, Autocorrelated errors are not usuall4 a concern for regression models . using cross0sectional data.  "rue

#alse

+3 "here are usuall4 several possible regression lines that ill minimize . the sum of s!uared errors.  "rue

#alse

+6 9hen the errors in a regression model are not independent- the . regression model is said to have autocorrelation.  "rue

#alse

+7 n a simple bivariate regression- F calc * t calc2. .  "rue #alse ,/ Correlation anal4sis primaril4 measures the degree of the linear . relationship beteen X  and Y .  "rue

#alse

Multiple Choice Questions

,1 "he variable used to predict another variable is called the . A. B. C. .

response variable. regression variable. independent variable. dependent variable.

,2 "he standard error of the regression . A. is based on s!uared deviations from the regression line. B. ma4 assume negative values if b1 D /. C. is in s!uared units of the dependent variable. . ma4 be cut in half to get an appro8imate 7+ percent prediction interval. ,% A local trucking compan4 tted a regression to relate the travel time . (da4s) of its shipments as a function of the distance traveled (miles).  "he tted regression is Time * 03.12, 5 /./21 Distance - based on a sample of 2/ shipments. "he estimated standard error of the slope is /.//+%. #ind the value of t calc to test for zero slope.

A. B. C. .

2., +./2 ./ %.1+

, A local trucking compan4 tted a regression to relate the travel time . (da4s) of its shipments as a function of the distance traveled (miles).  "he tted regression is Time * 03.12, 5 ./21 Distance - based on a sample of 2/ shipments. "he estimated standard error of the slope is /.//+%. #ind the critical value for a right0tailed test to see if the slope is positive- using α * ./+.

A. B. C. .

2.1/1 2.++2 1.7,/ 1.3%

,+ f the attendance at a baseball game is to be predicted b4 the e!uation .  Attendance * 1,-+// 0 3+ Temperatre - hat ould be the predicted attendance if Temperatre  is 7/ degreesE

A. B. C. .

,-3+/ 7-3+/ 12-2+/ 1/- /2/

,, A h4pothesis test is conducted at the + percent level of signicance to . test hether the population correlation is zero. f the sample consists of 2+ observations and the correlation coe$cient is /.,/- then the computed test statistic ould be

A. B. C. .

2./31. 1.7,/. %.+73. 1.,+.

,3 9hich of the folloing is not  a characteristic of the F-test in a simple . regressionE

A. t is a test for overall t of the model. B. "he test statistic can never be negative. C. t re!uires a table ith numerator and denominator degrees of freedom. . "he F 0test gives a dierent p0value than the t 0test.

,6 A researcher's F8cel results are shon belo using Femlab (labor force . participation rate among females) to tr4 to predict !ancer  (death rate per 1//-/// population due to cancer) in the +/ ;.S. states.

9hich of the folloing statements is not  trueE

A. "he standard error is too high for this model to be of an4 predictive use. B. "he 7+ percent condence interval for the coe$cient of Femlab  is 0.27 to 0/.26. C. Signicant correlation e8ists beteen Femlab  and !ancer  at α * . /+. . "he to0tailed p0value for Femlab  ill be less than ./+.

,7 A researcher's results are shon belo using Femlab  (labor force . participation rate among females) to tr4 to predict !ancer  (death rate per 1//-/// population due to cancer) in the +/ ;.S. states.

9hich statement is valid regarding the relationship beteen Femlab and !ancer E

A. A rise in female labor participation rate ill cause the cancer rate to decrease ithin a state. B. "his model e8plains about 1/ percent of the variation in state cancer rates. C. At the ./+ level of signicance- there isn't enough evidence to sa4 the to variables are related. . f 4our sister starts orking- the cancer rate in 4our state ill decline.

3/ A researcher's results are shon belo using Femlab  (labor force . participation rate among females) to tr4 to predict !ancer  (death rate per 1//-/// population due to cancer) in the +/ ;.S. states.

9hat is the R2 for this regressionE

A. B. C. .

.7/16 ./762 .6%7+ .1,/+

31 A nes netork stated that a stud4 had found a positive correlation . beteen the number of children a orker has and his or her earnings last 4ear. Gou ma4 conclude that

A. people should have more children so the4 can get better Hobs. B. the data are erroneous because the correlation should be negative. C. causation is in serious doubt. . statisticians have small families. 32 9illiam used a sample of ,6 large ;.S. cities to estimate the . relationship beteen !rime (annual propert4 crimes per 1//-/// persons) and Income (median annual income per capita- in dollars). @is estimated regression e!uation as !rime * 26 5 /./+/ Income.  9e can conclude that

A. the slope is small so Income has no eect on !rime. B. crime seems to create additional income in a cit4. C. ealth4 individuals tend to commit more crimes- on average. . the intercept is irrelevant since zero median income is impossible in a large cit4.

3% Iar4 used a sample of ,6 large ;.S. cities to estimate the relationship . beteen !rime (annual propert4 crimes per 1//-/// persons) and Income (median annual income per capita- in dollars). @er estimated regression e!uation as !rime * 26 5 /./+/ Income. f Income decreases b4 1///- e ould e8pect that !rime ill

A. B. C. .

increase b4 26. decrease b4 +/. increase b4 +//. remain unchanged.

3 Amelia used a random sample of 1// accounts receivable to estimate . the relationship beteen Da"s (number of da4s from billing to receipt of pa4ment) and Si#e (size of balance due in dollars). @er estimated regression e!uation as Da"s * 22 5 /.//3 Si#e ith a correlation coe$cient of .%//. #rom this information e can conclude that

A. 7 percent of the variation in Da"s is e8plained b4 Si#e. B. autocorrelation is likel4 to be a problem. C. the relationship beteen Da"s and Si#e is signicant. . larger accounts usuall4 take less time to pa4. 3+ &rediction intervals for Y  are narroest hen . A. the mean of X  is near the mean of Y . B. the value of X  is near the mean of X . C. the mean of X  diers greatl4 from the mean of Y . . the mean of X  is small. 3, f n * 1+ and r  * .27,- the corresponding t 0statistic to test for zero . correlation is

A. B. C. .

1.31+. 3.6,2. 2./6. impossible to determine ithout α.

33 ;sing a to0tailed test at α * ./+ for n * %/- e ould reHect the . h4pothesis of zero correlation if the absolute value of r  e8ceeds

A. B. C. .

.2772. .%,/7. ./2+/. .2//.

36 "he ordinar4 least s!uares (=JS) method of estimation ill minimize . A. B. C. .

neither the slope nor the intercept. onl4 the slope. onl4 the intercept. both the slope and intercept.

37 A standardized residual ei * 02.2/+ indicates . A. B. C. .

a rather poor prediction. an e8treme outlier in the residuals. an observation ith high leverage. a likel4 data entr4 error.

6/ n a simple regression- hich ould suggest a signicant relationship . beteen X  and Y E

A. B. C. .

Jarge p0value for the estimated slope Jarge t  statistic for the slope Jarge p0value for the F  statistic Small t 0statistic for the slope

61 9hich is indicative of an inverse relationship beteen X  and Y E . A. A negative F  statistic B. A negative p0value for the correlation coe$cient C. A negative correlation coe$cient . Fither a negative F  statistic or a negative p0value

62 9hich is not  correct regarding the estimated slope of the =JS . regression lineE

A. B. C. .

t is divided b4 its standard error to obtain its t  statistic. t shos the change in Y  for a unit change in X . t is chosen so as to minimize the sum of s!uared errors. t ma4 be regarded as zero if its p0value is less than α.

6% Simple regression anal4sis means that . A. the data are presented in a simple and clear a4. B. e have onl4 a fe observations. C. there are onl4 to independent variables. . e have onl4 one e8planator4 variable. 6 "he sample coe$cient of correlation does not  have hich propert4E . A. B. C. .

t can range from 01.// up to 51.//. t is also sometimes called &earson's r . t is tested for signicance using a t 0test. t assumes that Y  is the dependent variable.

6+ 9hen comparing the 7/ percent prediction and condence intervals for . a given regression anal4sis

A. the prediction interval is narroer than the condence interval. B. the prediction interval is ider than the condence interval. C. there is no dierence beteen the size of the prediction and condence intervals. . no generalization is possible about their comparative idth. 6, 9hich is not  true of the coe$cient of determinationE . A. B. C. .

t is the s!uare of the coe$cient of correlation. t is negative hen there is an inverse relationship beteen X  and Y . t reports the percent of the variation in Y  e8plained b4 X . t is calculated using sums of s!uares (e.g.- SSR- SSE- SST ).

63 f the tted regression is Y  * %.+ 5 2.1 X  (R2 * .2+- n * 2+)- it is . incorrect  to conclude that

A. B. C. .

Y  increases 2.1 percent for a 1 percent increase in  X . the estimated regression line crosses the Y  a8is at %.+. the sample correlation coe$cient must be positive. the value of the sample correlation coe$cient is /.+/.

66 n a simple regression Y  * b/ 5 b1 X  here Y  * number of robberies in a . cit4 (thousands of robberies)- X  * size of the police force in a cit4 (thousands of police)- and n * + randoml4 chosen large ;.S. cities in 2//6- e ould be least  likel4 to see hich problemE

A. Autocorrelated residuals (because this is time0series data) B. @eteroscedastic residuals (because e are using totals uncorrected for cit4 size) C. 07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

1,. "he ordinar4 least s!uares regression line ala4s passes through the point

.

TRUE

 "he =JS formulas re!uire the line to pass through this point.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation. Topic+ Regression Terminolog" 

13. "he least s!uares regression line gives unbiased estimates of β/ and  β1. TRUE

 "he e8pected values of the =JS estimators b/ and b1 are the true parameters β/ and β1.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

16. n a simple regression- the correlation coe$cient r  is the s!uare root of R2. TRUE

n fact- e could use the notation r 2 instead of R2 hen talking about simple regression .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

17.

f SSR is 16// and SSE is 2//- then R2 is .7/. TRUE

R2 * SSRLSST  * SSRL(SSR 5 SSE) * 16//L(16// 5 2//) * .7/.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Tests 5or Signi6cance

2/. "he idth of a prediction interval for an individual value of Y  is less than standard error se. FALSE

 "he formula for the interval idth multiplies the standard error b4 an e8pression Q 1.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

21.

f SSE is near zero in a regression- the statistician ill conclude that the proposed model probabl4 has too poor a t to be useful. FALSE

SSF is the sum of the s!uare residuals- hich ould be smaller if the t is good.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Tests 5or Signi6cance

22. #or a regression ith 2// observations- e e8pect that about 1/ residuals ill e8ceed to standard errors. TRUE

f the residuals are normal- 7+. percent (17/ of 2//) ill lie ithin M2se (so 1/ outside).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

2%. Condence intervals for predicted Y  are less precise hen the residuals are ver4 small. FALSE

Small residuals impl4 a small standard error and thus a narro@er  prediction interval.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

2. Cause0and0eect direction beteen X  and Y  ma4 be determined b4 running the regression tice and seeing hether Y  * β/ 5 β1 X  or X  *  β1 5 β/Y  has the larger R2. FALSE

Cause and eect cannot be determined in the conte8t of simple regression models.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation. Topic+ Simple Regression

2+. "he ordinar4 least s!uares method of estimation minimizes the estimated slope and intercept. FALSE

=JS minimizes the sum of s!uared residuals.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

2,. ;sing the ordinar4 least s!uares method ensures that the residuals ill be normall4 distributed. FALSE

=JS produces unbiased estimates but cannot ensure normalit4 of the residuals.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 Test residals 5or 2iolations o5 regression assmptions. Topic+ Residal Tests

23. f 4ou have a strong outlier in the residuals- it ma4 represent a dierent causal s4stem. TRUE

=utliers might come from a dierent population or causal s4stem.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 0t)er Regression &roblems 0ptionalB

26. A negative correlation beteen to variables X  and Y  usuall4 4ields a negative p0value for r . FALSE

 "he p0value cannot be negative.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ 7isal Displa"s and !orrelation Anal"sis

27. n linear regression beteen to variables- a signicant relationship e8ists hen the p0value of the t  test statistic for the slope is greater than α. FALSE

ReHect β1 * / if the p0value is less t)an α.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

%/. "he larger the absolute value of the t  statistic of the slope in a simple linear regression- the stronger the linear relationship e8ists beteen X  and Y . TRUE

 "he correlation coe$cient measures linearit4- regardless of its sign (5 or 0).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

%1. n simple linear regression- the coe$cient of determination (R2) is estimated from sums of s!uares in the AA table. TRUE

R2 * SSRLSST  or R2 * 1 0 SSELSST .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

%2.

n simple linear regression- the p0value of the slope ill ala4s e!ual the p0value of the F  statistic. TRUE

 "his is true onl4 if there is one predictor (but is no longer true in multiple regression).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

%%. An observation ith high leverage ill have a large residual (usuall4 an outlier). FALSE

 "he concepts are distinct (a high0leverage point could have a good t).  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

%.

A prediction interval for Y  is narroer than the corresponding condence interval for the mean of Y . FALSE

&redicting an individual case re!uires a ider condence interval than predicting the mean.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

%+.

9hen X  is farther from its mean- the prediction interval and condence interval for Y  become ider. TRUE

 "he idth increases hen X  diers from its mean (revie the formula).  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

%,.

"he total sum of s!uares (SST ) ill never e8ceed the regression sum of s!uares (SSR). FALSE

 "he identit4 is SSR 5 SSE * SST .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

%3. ?@igh leverage? ould refer to a data point that is poorl4 predicted b4 the model (large residual). FALSE

A high0leverage observation ma4 have a good t (onl4 its X  value determines its leverage).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

%6. "he studentized residuals permit us to detect cases here the regression predicts poorl4. TRUE

Studentized residuals resemble a t 0distribution. A large studentized t 0 value (e.g.- t  D 02.// or t  Q 5 2.//) ould implies a poor t.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

%7. A poor prediction (large residual) indicates an observation ith high leverage. FALSE

@igh leverage indicates an unusuall4 large or small  value (not a poor prediction). A high0leverage observation ma4 have a good t or a poor  t. =nl4 its X  value determines its leverage.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

/.   Ill-conditioned  refers to a variable hose units are too large or too small (e.g.- :2-%-+,3). TRUE

n F8cel- a s4mptom of poor data conditioning is e8ponential notation (e.g.- .%F 5 /,).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 &er5orm r egression anal"sis @it) E%cel or ot)er so5t@are. Topic+ 0t)er Regression &roblems 0ptionalB

1. A simple decimal transformation (e.g.- from 16-271 to 16.271) often improves data conditioning. TRUE

Peeping data magnitudes similar helps avoid e8ponential notation (e.g.- .%F 5 /,).  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 &er5orm r egression anal"sis @it) E%cel or ot)er so5t@are. Topic+ 0t)er Regression &roblems 0ptionalB

2.

"o0tailed t-tests are often used because an4 predictor that diers signicantl4 from zero in a to0tailed test ill also be signicantl4 greater than zero or less than zero in a one0tailed test at the same α. TRUE

 "rue because the critical t  is larger in the to0tailed test (the default in most softare).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

%. A predictor that is signicant in a one0tailed t-test ill also be signicant in a to0tailed test at the same level of signicance α. FALSE

#alse because the critical t  ould be larger in a to0tailed test.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

. =mission of a relevant predictor is a common source of model misspecication. TRUE

n a multivariate orld- simple regression ma4 be inade!uate.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 &er5orm r egression anal"sis @it) E%cel or ot)er so5t@are. Topic+ 0t)er Regression &roblems 0ptionalB

+. "he regression line must pass through the origin. FALSE

 "he =JS intercept estimate does not- in general- e!ual zero. 9e might be unable to reHect a zero intercept if a t 0test- but the tted intercept is rarel4 zero.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

,. =utliers can be detected b4 e8amining the standardized residuals. TRUE

A poor t implies a large t 0value (e.g.- larger than M% ould be an outlier).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

3. n a simple regression- there are n 0 2 degrees of freedom associated ith the error sum of s!uares (SSE). TRUE

 "his is true in simple regression  because e estimate to parameters ( β/ and β1).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

6.

n a simple regression- the F  statistic is calculated b4 taking the ratio of MSR to the MSE. TRUE

B4 denition- F calc * MSRMSE (obtained from the AA table).  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

7. "he coe$cient of determination is the percentage of the total variation in the response variable Y  that is e8plained b4 the predictor  X . TRUE

R2 * SSRLSST  or R2 * 1 0 SSELSST  lies beteen / and 1 and often is e8pressed as a percent.  AA!S*+ Anal"tic *looms+ 8nderstand Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

+/. A dierent condence interval e8ists for the mean value of Y  for each dierent value of X . TRUE

Both the interval idth and also E(Y T X ) * β/ 5 β1 X  depend on the value of X .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

+1.

A prediction interval for Y  is idest hen X  is near its mean. FALSE

 "he prediction interval is narro@est  hen X  is near its mean. Revie the formula- hich has a term ( % i - )2 in the numerator. "he minimum ould be hen % i  .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

+2. n a to0tailed test for correlation at α * ./+- a sample correlation coe$cient r  * /.2 ith n * 2+ is signicantl4 dierent than zero. TRUE

t calc * r N(n 0 2)L(1 0 r 2)O1L2 * (.2)N(2+ 0 2)L(1 0 .2 2)O1L2 * 2.217 Q t ./2+ * 2./,7 for d.5. * 2+ 0 2 * 2%.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

+%.

n correlation anal4sis- neither X  nor Y  is designated as the independent variable. TRUE

n correlation anal4sis- X  and Y  covar4 ithout designating either as ?independent.?  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

+. A negative value for the correlation coe$cient (r ) implies a negative value for the slope (b1). TRUE

 "he sign of r  must be the same as the sign of the slope estimate b1.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

++. @igh leverage for an observation indicates that X  is far from its mean. TRUE

B4 denition- observations have higher leverage hen X  is far from its mean.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ 8nsal 0bser2ations

+,. Autocorrelated errors are not usuall4 a concern for regression models using cross0sectional data. TRUE

9e more often e8pect autocorrelated residuals in time series data.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4 Test residals 5or 2iolations o5 regression assmptions. Topic+ Residal Tests

+3. "here "here are usuall4 usuall4 several several possible possible regr regressio ession n lines that that ill ill minimiz minimize e the sum of s!uared errors. errors. FALSE

 "he =JS solution for the estimators estimators b/ and b1 is uni!ue.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

+6. 9hen the err errors ors in in a regr regressio ession n model model are are not independe independentnt- the the regression regression model is said to have autocorrelation. TRUE

#or e8ample- in rst0order autocorrelation Gt  depends  depends on Gt 01 01.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4 Test Test residals 5or 2iolations o5 regression assmptions. Topic+ Residal Tests 2 +7. n a sim simple ple bivari bivariate ate regress egression ion-- F calc calc  * t  calc calc .

TRUE

 "his statement is true onl4 in a simple regression (one predictor).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

,/. Corre Correlat lation ion anal4 anal4sis sis prima primaril ril4 4 measur measures es the degree of the linear relationship beteen X  and  and Y . TRUE

 "he sign of r  indicates  indicates the direction  and its magnitude indicates the linearit4. degree  of linearit4.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

Multiple Choice Questions

,1. "he variabl variable e used used to predict predict another another variabl variable e is called called the the

A. B. C. .

response variable. regression variable. independent variable. dependent variable.

9e might also call the independent variable a predictor  of  of Y .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation. Topic+ Simple Regression

,2. "he standa standard rd erro errorr of the regr regress ession ion

A. is based on s!uared deviations from from the regression regression line. B. ma4 assume negative values if b1 D /. C. is in s!uared units of the dependent variable. . ma4 .  ma4 be cut in half ha lf to get an appro8imate appro8imate 7+ percent prediction prediction interval.

n a simple regression- the standard error is the s!uare root of the sum of the s!uared residuals divided b4 (n 0 2).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Tests 5or Signi6cance

,%. A local local truckin trucking g compan4 compan4 tted tted a regr regressio ession n to relate relate the travel travel time time (da4s) of its shipments as a function of the distance traveled (miles).  "he tted regression regression is Time * 03.12, 5 /./21 Distance - based on a sample of 2/ shipments. "he estimated standard error of the slope is /.//+%. #ind the value of t calc calc  to test for zero slope.

A.  A.  B.   B. C.  .   . t calc calc *

2., +./2 ./ %.1+ * (/./21)L(/.//+%) (/./21)L(/. //+%) * ./%6.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

,. A local trucking compan4 tted a regression to relate the travel time (da4s) of its shipments as a function of the distance traveled (miles).  "he tted regression is Time * 03.12, 5 ./21 Distance - based on a sample of 2/ shipments. "he estimated standard error of the slope is /.//+%. #ind the critical value for a right0tailed test to see if the slope is positive- using α * ./+.

A.  B.  C.  D. 

2.1/1 2.++2 1.7,/ 1.3%

#or d.5. * n 0 2 * 2/ 0 2 * 16- Appendi8  gives t ./+ * 1.3%.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

,+. f the attendance at a baseball game is to be predicted b4 the e!uation Attendance * 1,-+// 0 3+ Temperatre - hat ould be the predicted attendance if Temperatre  is 7/ degreesE

A.  B.  C.  .

,-3+/ 7-3+/ 12-2+/ 1/- /2/

 "he predicted Attendance is 1,-+// 0 3+(7/) * 7-3+/.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation. Topic+ Simple Regression

,,. A h4pothes h4pothesis is test test is conducted conducted at at the + percent percent level level of signica signicance nce to test hether the population correlation is zero. f the sample consists of 2+ observations and the correlation correlation coe$cient is /.,/then the computed test statistic ould be

A.  A.  B.   B. C.  .   .

2./31. 1.7,/. %.+73. 1.,+.

N( N(n 0 2)L(1 0 r 2)O1L2 * (.,/)N(2+ 0 2)L(1 0 .,/ 2)O1L2 * %.+73. t calc calc  * r  Comment Re!uires Re!uires formula handout or memorizing the formula.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

,3. ,3.

9hic 9hich h of the the fol follo loi ing ng is is not  a  a characteristic of the F-test in a simple regressionE

A. t is a test for overall t of the model. B. "he test statistic can never be negative. C. t C.  t re!uires re!uires a table ith numerator and denominator degrees of freedom. D.  "he F 0test 0test gives a dierent p0value than the t 0test. 0test. F calc calc is the ratio of to variances (mean s!uares) that measures overall t. "he test statistic cannot be negative because the variances are non0negative. n a simple regressionregression- the F 0test 0test ala4s agrees ith the t 0test. 0test.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

,6. A resear researcher cher's 's F8cel F8cel results results are shon belo using Femlab (labor force participation rate among females) to tr4 to predict !ancer  (death rate per 1//-/// population due to cancer) in the +/ ;.S. states.

9hich of the folloing statements is not  trueE  trueE

A. "he standard error is too high for this model to be of an4 predictive use. B. "he B.  "he 7+ percent condence interval for the coe$cient of Femlab is 0.27 to 0/.26. C. Signicant correlation correlation e8ists beteen Femlab and !ancer  at  at α * . /+. . "he to0tailed p0value for Femlab  ill be less than ./+.

 "he magnitude of se depends on Y  (and (and- in this case- the t calc calc indicates signicance).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

,7. A resea researc rcher her's 's resu results lts are are shon shon belo belo usin using g Femlab (labor force participation rate among females) to tr4 to predict !ancer  (death  (death rate per 1//-/// population due to cancer) in the +/ ;.S. states.

9hich statement is valid regarding the relationship beteen Femlab and !ancer E

A. A A.  A rise in female labor participation rate ill cause the cancer rate to decrease ithin a state. B. "his model e8plains about 1/ percent of the variation in state cancer rates. C. At C.  At the ./+ level of signicance- there isn't enough evidence to sa4 the to variables are related. . f .  f 4our sister starts orking- the cancer rate in 4our state sta te ill decline. t is customar4 to e8press the R2 as a percent (here(here- the t calc calc indicates signicance).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

3/. A researcher's results are shon belo using Femlab (labor force participation rate among females) to tr4 to predict !ancer  (death rate per 1//-/// population due to cancer) in the +/ ;.S. states.

9hat is the R2 for this regressionE

A.  B.  C.  . 

.7/16 ./762 .6%7+ .1,/+

R2 * SSRLSST   * (+-%33.6%,)L(+-3+.22+) * ./762.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

31. A nes netork stated that a stud4 had found a positive correlation beteen the number of children a orker has and his or her earnings last 4ear. Gou ma4 conclude that

A. people should have more children so the4 can get better Hobs. B. the data are erroneous because the correlation should be negative. C. causation is in serious doubt. . statisticians have small families.  "here is no a priori basis for e8pecting causation.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

32. 9illiam used a sample of ,6 large ;.S. cities to estimate the relationship beteen !rime (annual propert4 crimes per 1//-/// persons) and Income  (median annual income per capita- in dollars). @is estimated regression e!uation as !rime * 26 5 /./+/ Income. 9e can conclude that

A. the slope is small so Income has no eect on !rime. B. crime seems to create additional income in a cit4. C. ealth4 individuals tend to commit more crimes- on average. D. the intercept is irrelevant since zero median income is impossible in a large cit4. Uero median income makes no sense (signicance cannot be assessed from given facts).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Simple Regression

3%. Iar4 used a sample of ,6 large ;.S. cities to estimate the relationship beteen !rime (annual propert4 crimes per 1//-/// persons) and Income  (median annual income per capita- in dollars). @er estimated regression e!uation as !rime * 26 5 /./+/ Income.  f Income  decreases b4 1///- e ould e8pect that !rime ill

A. B. C. .

increase b4 26. decrease b4 +/. increase b4 +//. remain unchanged.

 "he constant has no effect so V!rime * /./+/ VIncome * /./+/(0 1///) * 0+/.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation.

Topic+ Simple Regression

3. Amelia used a random sample of 1// accounts receivable to estimate the relationship beteen Da"s (number of da4s from billing to receipt of pa4ment) and Si#e (size of balance due in dollars). @er estimated regression e!uation as Da"s * 22 5 /.//3 Si#e ith a correlation coe$cient of .%//. #rom this information e can conclude that

A. 7 percent of the variation in Da"s is e8plained b4 Si#e. B. autocorrelation is likel4 to be a problem. C. the relationship beteen Da"s and Si#e is signicant. . larger accounts usuall4 take less time to pa4.

R2 * .%/2 * ./7. "hese are not time0series data- so there is no reason to e8pect autocorrelation. 9e cannot Hudge signicance ithout more information.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ ; $ard /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

3+.

&rediction intervals for Y  are narroest hen

A. the mean of X  is near the mean of Y . B. the value of X  is near the mean of X . C. the mean of X  diers greatl4 from the mean of Y . . the mean of X  is small. Revie the formula- hich has ( % i - )2 in the numerator. "he minimum ould be hen % i  .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

3,.

f n * 1+ and r  * .27,- the corresponding t 0statistic to test for zero correlation is

A.  B.  C.  .

1.31+. 3.6,2. 2./6. impossible to determine ithout α.

t calc * r N(n 0 2)L(1 0 r 2)O1L2 * (.27,)N(1+ 0 2)L(1 0 .27, 2)O1L2 * 1.31+.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

33.

;sing a to0tailed test at α * ./+ for n * %/- e ould reHect the h4pothesis of zero correlation if the absolute value of r  e8ceeds

A.  B.  C.  . 

.2772. .%,/7. ./2+/. .2//.

;se r crit * t ./2+L(t ./2+2 5 n 0 2)1L2 * (2./6)L(2./6 2 5 %/ 0 2) 1L2 * .%,/7 for d.5. * %/ 0 2 * 26.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

36. "he ordinar4 least s!uares (=JS) method of estimation ill minimize

A. B. C. .

neither the slope nor the intercept. onl4 the slope. onl4 the intercept. both the slope and intercept.

=JS method minimizes the sum of s!uared residuals.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

37.

A standardized residual ei * 02.2/+ indicates

A. B. C. .

a rather poor prediction. an e8treme outlier in the residuals. an observation ith high leverage. a likel4 data entr4 error.

 "his residual is be4ond M2se but is not an outlier (and ithout % i e cannot assess leverage).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3- Identi5" nsal residals and )ig)-le2erage obser2ations. Topic+ Residal Tests

6/. n a simple regression- hich ould suggest a signicant relationship beteen X  and Y E

A.  B.  C.  . 

Jarge p0value for the estimated slope Jarge t  statistic for the slope Jarge p0value for the F  statistic Small t 0statistic for the slope

 "he larger the t calc the more e feel like reHecting $/ β1 * /.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

61. 9hich is indicative of an inverse relationship beteen X  and Y E

A. A negative F  statistic B. A negative p0value for the correlation coe$cient C. A negative correlation coe$cient . Fither a negative F  statistic or a negative p0value F calc and the p0value cannot be negative.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ Anal"sis o5 7ariance+ 02erall Fit 

62.

9hich is not  correct regarding the estimated slope of the =JS regression lineE

A. B. C. D.

t is divided b4 its standard error to obtain its t  statistic. t shos the change in Y  for a unit change in X . t is chosen so as to minimize the sum of s!uared errors. t ma4 be regarded as zero if its p0value is less than α.

9e ould reHect $/ β1 * / if its p0value is less than the level of signicance.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

6%. Simple regression anal4sis means that

A. the data are presented in a simple and clear a4. B. e have onl4 a fe observations. C. there are onl4 to independent variables. D. e have onl4 one e8planator4 variable. Mltiple  regression has more than one independent variable (predictor).  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation. Topic+ Simple Regression

6. "he sample coe$cient of correlation does not  have hich propert4E

A. t can range from 01.// up to 51.//. B. t is also sometimes called &earson's r . C. t is tested for signicance using a t 0test. D. t assumes that Y  is the dependent variable. Correlation anal4sis makes no assumption of causation or dependence.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

6+. 9hen comparing the 7/ percent prediction and condence intervals for a given regression anal4sis

A. the prediction interval is narroer than the condence interval. B. the prediction interval is ider than the condence interval. C. there is no dierence beteen the size of the prediction and condence intervals. . no generalization is possible about their comparative idth. Indi2idal  values of Y  var4 more than the mean of Y .  AA!S*+ Anal"tic *looms+ Remember  Diclt"+  Eas"  /earning 0b1ecti2e+ 3-4? Distingis) bet@een con6dence and prediction inter2als 5or Y. Topic+ !on6dence and &rediction Inter2als 5or Y 

6,.

9hich is not  true of the coe$cient of determinationE

A. t is the s!uare of the coe$cient of correlation. B. t is negative hen there is an inverse relationship beteen X  and Y . C. t reports the percent of the variation in Y  e8plained b4 X . . t is calculated using sums of s!uares (e.g.- SSR- SSE- SST ). R2 cannot be negative.  AA!S*+ Anal"tic *looms+ Remember  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4< Interpret t)e standard error= R3= A>07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

63.

f the tted regression is Y  * %.+ 5 2.1 X  (R2 * .2+- n * 2+)- it is incorrect  to conclude that

A. B. C. .

Y  increases 2.1 percent for a 1 percent increase in  X . the estimated regression line crosses the Y  a8is at %.+. the sample correlation coe$cient must be positive. the value of the sample correlation coe$cient is /.+/.

;nits are not percent unless Y  is alread4 a percent.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-43 Interpret t)e slope and intercept o5 a r egression e:ation. Topic+ Simple Regression

66.

n a simple regression Y  * b/ 5 b1 X  here Y  * number of robberies in a cit4 (thousands of robberies)- X  * size of the police force in a cit4 (thousands of police)- and n * + randoml4 chosen large ;.S. cities in 2//6- e ould be least  likel4 to see hich problemE

A. Autocorrelated residuals (because this is time0series data) B. @eteroscedastic residuals (because e are using totals uncorrected for cit4 size) C. 07A table= and F test. Topic+ 0rdinar" /east S:ares Formlas

11%. #ind the sample correlation coe$cient for the folloing data.

A.  B.  C.  . 

.6711 .712 .7622 .7++,

;se F8cel *C=RRFJ(ata- Gata) to verif4 4our calculation using the formula for r .  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

11. #ind the slope of the simple regression

A.  B.  C.  . 

* b/ 5 b1 % .

1.6%% %.27 /.3,2 02.226

;se F8cel to verif4 4our calculations using the formulas for b/ and b1.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

11+. #ind the sample correlation coe$cient for the folloing data.

A.  B.  C.  . 

.3271 .63%, .7116 .7+,%

;se F8cel *C=RRFJ(ata- Gata) to verif4 4our calculation using the formula for r .  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4 !alclate and test a correlation coecient 5or signi6cance. Topic+ 7isal Displa"s and !orrelation Anal"sis

11,. #ind the slope of the simple regression

A.  B.  C.  D. 

* b/ 5 b1 % .

2.+7+ 1.1/7 02.221 1.66

;se F8cel to verif4 4our calculations using the formulas for b/ and b1.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

113. A researcher's results are shon belo using n * 2+ observations.

 "he 7+ percent condence interval for the slope is

A. B. C. .

N 0%.262- 01.26O. N 0.%7- 0/.213O. N1.116- +./2,O. N 0/.776- 5/.776O.

#or d.5. * n 0 2 * 2+ 0 2 * 2%- t ./2+ * 2./,7- so 02.26% M (2./,7) (/.776++).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4J !alclate and interpret con6dence inter2als 5or regression coecients. Topic+ Tests 5or Signi6cance

116. A researcher's regression results are shon belo using n * 6 observations.

 "he 7+ percent condence interval for the slope is

A. B. C. .

N1.%%%N1.,/2N1.2,6N1.116-

2.26O. 2./,O. 2.%76O. 2.7O.

#or d.5. * n 0 2 * 6 0 2 * ,- t ./2+ * 2.3- so 1.6%%% M (2.3) (/.2%/3).  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ 3 Medim /earning 0b1ecti2e+ 3-4J !alclate and interpret con6dence inter2als 5or regression coecients. Topic+ Tests 5or Signi6cance

117. Bob thinks there is something rong ith F8cel's tted regression. 9hat do 4ou sa4E

A. B.  C. .

"he estimated e!uation is obviousl4 incorrect. "he R2 looks a little high but otherise it looks =P. Bob needs to increase his sample size to decide. "he relationship is linear- so the e!uation is credible.

A visual estimate of the slope is V " LV %  * (,2+ 0 1//)L(2// 0 /) * 2.,2+- so the indicated slope less than 1 must be rong- plus the visual intercept is 1// (not 1+.,1) and the t seems better than R2 * .226.  AA!S*+ Anal"tic *looms+ Appl"  Diclt"+ ; $ard /earning 0b1ecti2e+ 3-49 Fit a simple regression on an E%cel scatter plot. Topic+ 0rdinar" /east S:ares Formlas

Short Answer Questions

12/. &edro became interested in vehicle fuel e$cienc4- so he performed a simple regression using 7% cars to estimate the model !it"M&' * β/ 5 β1 (eig)t  here (eig)t  is the eight of the vehicle in pounds. @is results are shon belo. 9rite a brief anal4sis of these results- using hat 4ou have learned in this chapter. s the intercept meaningful in this regressionE Iake a prediction of !it"M&' hen (eig)t  * %///and also hen (eig)t  * ///. o these predictions seem believableE f 4ou could make a car 1/// pounds lighter- hat change ould 4ou predict in its !it"M&'E

t is reasonable that a causal relationship might e8ist beteen a vehicle's eight and its I&W. 9e e8pect a negative slope (heavier vehicles ould get loer I&W). "he coe$cient of (eig)t  diers from zero at an4 common value of α (the p0value is less than .///1) and the F  statistic is huge. "he condence interval for the coe$cient of the predictor (eig)t  does not include zero. "he highl4 signicant predictor (eig)t  is consistent ith the high coe$cient of determination (R2 * .311)- hich sa4s that ell over half the variation in I&W is e8plained b4 (eig)t . f (eig)t  * %///- e predict M&' * 3./6 0 .//6/ (eig)t  * 3./6 0 .//6/(%///) * 2%./+ mpg. f (eig)t  * ///- e predict M&' * 3./6 0 .//6/ (eig)t  * 3./6 0 .//6/(///) * 1+./+ mpg. "he intercept is not meaningful since no vehicle has zero eight or a eight close to zero.

#eedback t is reasonable to postulate that a causal relationship might e8ist beteen a vehicle's eight and its I&W. =ur a priori e8pectation ould be that the slope should be negative since e ould e8pect that heavier vehicles ould get loer I&W. "he coe$cient of (eig)t  diers from zero at an4 common value of α (the  p0value is less than .///1) and the F  statistic is huge. "he condence interval for the coe$cient of the predictor (eig)t  does not include zero. "he slope's sign is negative- as anticipated a priori. "he highl4 signicant predictor (eig)t  is consistent ith the high coe$cient of determination (R2 * .311)- hich sa4s that ell over half the variation in I&W is e8plained b4 (eig)t . f (eig)t  * %///- e predict M&' * 3./6 0 .//6/ (eig)t  * 3./6 0 .//6/(%///) * 2%./+ mpg. 9hen (eig)t  * ///- e ould predict M&' * 3./6 0 .//6/ (eig)t  * 3./6 0 .//6/(///) * 1+./+ mpg. "he intercept is not meaningful since no vehicle has zero eight or an4 eight close to zero.  AA!S*+ ReKecti2e T)ining *looms+ E2alate Diclt"+ ; $ard /earning 0b1ecti2e+ 3-4C Test )"pot)eses abot t)e slope and intercept b" sing t tests. Topic+ Tests 5or Signi6cance

121. Iar4 noticed that old coins are smoother and more orn. She eighed %1 nickels and recorded their age- and then performed a simple regression to estimate the model (eig)t  * β/ 5 β1 Age here eight is the eight of the coin in grams and Age is the age of the coin in 4ears. @er results are shon belo. 9rite a brief anal4sis of these results- using hat 4ou have learned in this chapter. Iake a prediction of (eig)t  hen Age * 1/- and also hen Age * 2/. 9hat does this tell 4ouE s the intercept meaningful in this regressionE

t is reasonable to postulate a causal relationship beteen a coin's age and its eight (negative slope- since e ould e8pect that coins ill ear don ith usage). "he coe$cient of  Age diers from zero at an4 common α (the p0value is less than .///1) and the F  test statistic is large. "he condence interval for the coe$cient of  Age does not include zero- and its sign is negative- as anticipated a priori. espite the signicant predictor Age- the coe$cient of determination (R2 * .2) shos that less than half the variation in nickel eights is e8plained b4 Age. f Age * 1/- e predict (eig)t  * +./21/ 0 .///  Age * +./21/ 0 .///(1/) * .761 gm. f  Age * 2/- e predict (eig)t  * +./21/ 0 .///  Age * +./21/ 0 .///(2/) * .71 gm. "he intercept is meaningful if Age * / as in the sample data set (or at least some Age value near zero). "he intercept is logicall4 meaningful because Age * / is something e might observe (i.e.- a nel4 minted nickel).

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF