Ccnp Route lab

Share Embed Donate


Short Description

Lab Material...

Description

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt Penta CCIE # 12353

Comprehensive Coverage of the CCNP – Route Blueprint

(R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 1 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt Penta CCIE # 12353

Module 1 – VLSM and Route Summarization

(R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 2 of 197

Variable-Length Subnet Mask Definition Variable-Length Subnet Mask(VLSM): provides the ability to have more than one subnet mask within your major network. It also allows you to further subnet your already subnetted networks. Requires Classless Routing Protocols.

Advantages Efficient Use of IP addresses: Without VLSMs, networks would have to use the same subnet mask throughout the network. But all your networks don’t have the same number of hosts. For example: You have 2 LAN connected via a Serial Point-to-point connection. Each LAN has 50 Hosts on it. When you assign the subnet mask, it has to be consistent across your network. So you end up assign a sub-network address to the WAN connection with 62 hosts, whereas you only need 2. Greater Capability for Route Summarization: Route Summarization is covered in detail, later on in this module.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 3 of 197

Calculating VLSMs

25 Hosts 25 Hosts 25 Hosts

25 Hosts

In this example, we want to connect the Main Site to the Branch Offices. If we used a fixed length subnet mask, we would need 4 networks for the LANs and 3 Networks for WANs, a total of 7 networks. Let us say we have a Class C address of 200.200.200.0 assigned to us. If we need 7 networks, we have to borrow 4 bits, giving us 14 networks. But it will only give us 14 hosts per network. In order to get around this problem, we will use VLSMs. In VLSMs, we can get away with borrowing only 3 bits. 3 bits give us 6 usable networks with 30 hosts per network. We will use the first 4 networks for our LAN based networks, and subnet the fifth one further to give us additional networks with less hosts on each for our WAN connections. Our WAN connections only require 2 hosts per network and we need 3 Networks. Subnetting the 200.200.200.0 network into 6 subnets  We borrow 3 bits, giving us a new mask of 255.255.255.224 or 27 bit Subnet Mask.  Our new networks are as follows: • 200.200.200.32/27 • 200.200.200.64/27 • 200.200.200.96/27 • 200.200.200.128/27 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 4 of 197

• •

200.200.200.160/27 200.200.200.192/27

 We will assign the first 4 networks to our LAN-Based Networks.  We can take either the 5th or 6th network and further subnet it. Let’ use the 5th network and further subnet it. Decimal Binary Subnet :200.200.200.10100000 (200.200.200.160) Mask : 255.255.255.11100000 (255.255.255.224)  We only need 2 hosts per WAN connection. We will borrow a further 3 bits from this network, leaving only 2 bits for hosts on each network.  The network numbers are as follows: 200.200.200.10100100 200.200.200.10101000 200.200.200.10101100 200.200.200.10110000 200.200.200.10110100 200.200.200.10111000

(200.200.200.164) Valid (200.200.200.168) Valid (200.200.200.172) Valid (200.200.200.176) Valid (200.200.200.180) Valid (200.200.200.184) Valid

Host Range: 165-166 Host Range: 169-170 Host Range: 173-174 Host Range: 177-178 Host Range: 181-182 Host Range: 185-186

 So you can choose any 3 of the above network addresses for the WAN connections.

200. 200.200.32/ 27 200. 200.200.164/30

25 Hosts 25 Hosts

200. 200.200.168/30

200. 200.200.64/ 27

25 Hosts 200. 200.200.96/ 27

25 Hosts

200. 200.200.128/27 200. 200.200.172/30

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 5 of 197

Written Exercise for Calculating VLSMs Exercise 1

25 Hosts

5 Hosts

25 Hosts 5 Hosts

5 Hosts

Objective: Given an IP address of 200.1.1.0, use VLSMs to assign IP addresses in a efficient manner by minimizing loss of host addresses. Write the Network Addresses for all the networks including the WAN connections. Make sure to write the Subnet Mask in the bit format (/24).

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 6 of 197

Route Summarization Definition Route Summarization: reduces the number of routes that a router must maintain because it represents a series of network numbers in a single summary address. Advantages  Reduces the size of Routing Tables  Isolates Topology changes from other routes in a Large Network

Routing Table 150. 50. 33. 0/24 150. 50. 34. 0/24 150. 50. 35. 0/24

150. 50. 33. 0/24

150. 50. 34. 0/24

A

Routing Table 150. 50. 0.0/ 16

B

150. 50. 35. 0/24

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 7 of 197

Summarizing within an Octet Let us say that we the following networks connected to a Router named LA:

150.50.64.0/24 150.50.65.0/24 150.50.66.0/24 150.50.67.0/24 150.50.68.0/24 150.50.69.0/24 150.50.70.0/24 150.50.71.0/24

LA is connected to another router SD. LA wants to minimize the number of entries it sends to SD. Write the network in Binary Format. 150.50.01000000.00000000 150.50.01000001.00000000 150.50.01000010.00000000 150.50.01000011.00000000 150.50.01000100.00000000 150.50.01000101.00000000 150.50.01000110.00000000 150.50.01000111.00000000

(150.50.64.0) (150.50.65.0) (150.50.66.0) (150.50.67.0) (150.50.68.0) (150.50.69.0) (150.50.70.0) (150.50.71.0)

Starting from High order bits towards low order bits (Left to Right), look at the bits that are common and draw a line. 150.50.01000000.00000000 150.50.01000001.00000000 150.50.01000010.00000000 150.50.01000011.00000000 150.50.01000100.00000000 150.50.01000101.00000000 150.50.01000110.00000000 150.50.01000111.00000000

(150.50.64.0) (150.50.65.0) (150.50.66.0) (150.50.67.0) (150.50.68.0) (150.50.69.0) (150.50.70.0) (150.50.71.0)

The summarized address will be address you get from the common high order bits. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 8 of 197

150.50.01000000.00000000 (150.50.64.0). Your Subnet mask will the number of common bits, which is 16 + 16 + 5 = 21 The Route that will be sent is 150.50.64.0/21.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 9 of 197

Written Exercise for Route Summarization Exercise 1

131.107.1.192/28

131.107.1.208/28

LA

SF

131.107.1.64/28

131.107.1.80/28

OC

131.107.1.128/28 131.107.1.144/28 131.107.1.160/28 131.107.1.176/28

131.107.1.96/28

SD 131.107.1.112/28

Where would you do Route Summarization?

What would the Summarized addresses be?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 10 of 197

Written Exercise for Route Summarization Exercise 2

131.107.1.128/28

131.107.1.144/28

LA

SF

131.107.1.176/28

131.107.1.160/28

OC

SD

131.107.1.64/28 131.107.1.80/28 131.107.1.96/28 131.107.1.112/28 131.107.1.192/28 131.107.1.208/28

131.107.1.48/28

Where would you do Route Summarization?

What would the Summarized addresses be?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 11 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 2 – RIP v1 Labs

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 12 of 197

Lab 1 – Basic RIP Configuration

R1

S 0/0(.1)

R2

192.1.12.0/24

L0 1.1.1.1/8

S 0/0 (.2)

L0 2.2.2.2/8

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0

Objective: Configuring RIP v1 on the routers to exchange routes between the routers. On R1 router#conf t router(config)#hostname R1 R1(config)#Router RIP R1(config-router)#no auto-summary R1 (config-router)#net 1.0.0.0 R1 (config-router)#net 192.1.12.0 On R2 Router#conf t router(config)#hostname R2 R2(config)#Router RIP Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 13 of 197

R2(config-router)#no auto-summary R2 (config-router)#net 2.0.0.0 R2 (config-router)#net 192.1.12.0 On Both Routers •

Type Show ip route



What networks do you see listed?



Ping your partner’s Loopback Interface address. Are you successful?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 14 of 197

Lab 2 – RIP Operation (Note: This lab builds on the configuration of Lab 1) Objective: Looking at the operation of RIP v1. You will take a look at the Broadcast classfull updates. You will also take a look at the effect of PassiveInterface command and the effect of turning off Split Horizon.

On Both Routers Rx#debug ip rip (Where x is your Router number)

RIP: Sending V1 update to 255.255.255.255 via Serial 0/0 (192.1.12.1) RIP: Build update entries Network 10.0.0.0 metric 1 RIP: Sending V1 update to 255.255.255.255 via Loopback 0 (1.1.1.1) RIP: Build update entries Network 2.0.0.0 Network 192.1.12.0 RIP: received V1 update from 192.1.12.2 on serial 0/0 2.0.0.0 in 1 hop

Interesting Facts • • • •

Does not include the directly connected network (192.1.12.0) in its update towards R2. Does not include 2.0.0.0 network although it does exist in its routing table back towards R2. The destination address is a Broadcast It does not send periodic updates at constant intervals (Time Jitters)

On R1 R1(config)#int loopback 0 R1(config-if)#shut RIP:

build flash update entries network 1.0.0.0 metric 16 RIP: sending v1 update to 255.255.255.255 via Serial0/0 (192.1.12.1)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 15 of 197

Interesting Facts  When a route goes down, the router does not wait for Periodic Update. It sends a Triggered update with a Poisoned route with a metric of 16  Notice R2 also sends an immediate Triggered Update back, indicating that you can’t reach 10.0.0.0 cannot be reached through it.

On R1 R1(config)#int loopback 0 R1(config-if)#no shut

Turning Split Horizon Off On Both Routers Rx(Config)#int s 0/0 Rx(Config-if)#no ip split-horizon RIP: Sending v1 update to 255.255.255.255 via Serial0/0 (192.1.12.1) RIP: build update entries network 1.0.0.0 metric 1 network 192.1.12.0 metric 1 network 2.0.0.0 metric 2

Interesting Facts •

The router is advertising all routes. Even the ones that it learned from the same router. The reason it does make it to the routing table is because the Router has a better metric to the route.

Passive Interfaces On Both Routers Rx(config)#router rip Rx(config-router)#passive interface Loopback 0

Interesting Facts  The router stops advertising from the Loopback interface. The command is useful for cutting down unnecessary broadcast over an interface that only has hosts on it and no router. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 16 of 197

Lab 3 – RIP using UNICAST (Note: This lab builds on the configuration of Lab 2) Objective: Turn Spilt-Horizon back on. You would like to send Unicast updates between R1 and R2 instead of Broadcast updates.

Turning Split Horizon Back on On Both Routers Rx(Config)#int s 0/0 Rx(Config-if)#ip split-horizon

Sending Unicast Updates on S 0/0 interface On R1 R1(config)#Router rip R1(config-router)#passive interface S 0/0 R1(config-router)#neighbor 192.1.12.2

On R2 R2(config)#Router rip R2(config-router)#passive interface S 0/0 R2(config-router)#neighbor 192.1.12.1 •

Passive interface command disables RIP from sending broadcasts over a specific interface. The neighbor allows updates to go to specific IP addresses. So It will disables all RIP broadcasts and only send unicast updates to each other.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 17 of 197

Lab 4 – Injection of Default Route

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

E 0/0 (.2)

192.1.23.0/24

S 0/0(.4)

E 0/0 (.3)

192.1.34.0/24

L0 4.4.4.4/8 R4

S 0/0 (.3)

L0 3.3.3.3/8

R3

R1 Configuration Interface Loopback 0 E 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 E 0/0 S 0/0

R3 Configuration Interface Loopback 0 S 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 18 of 197

E 0/0

191.1.34.3

255.255.255.0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

R4 Configuration Interface Loopback 0 S 0/0

Objective: R1 is acting as the ISP and R2 is the Edge Router for a company that is running RIP internally between R2, R3 and R4. R1 will have static routes towards all the company networks. R2 will have a default route pointing towards R1. On R1 R1#conf t R1(config)#ip R1(config)#ip R1(config)#ip R1(config)#ip R1(config)#ip

route route route route route

2.0.0.0 255.0.0.0 192.1.12.2 3.0.0.0 255.0.0.0 192.1.12.2 4.0.0.0 255.0.0.0 192.1.12.2 192.1.23.0 255.255.255.0 192.1.12.2 192.1.34.0 255.255.255.0 192.1.12.2

On R2 R2#conf t R2(config)# ip route 0.0.0.0 0.0.0.0 192.1.12.1 R2(config)#Router RIP R2(config-router)#no auto-summary R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#net 192.1.23.0 On R3 R3#conf t R3(config)#Router RIP R3(config-router)#no auto-summary R3(config-router)#net 3.0.0.0 R3(config-router)#net 192.1.23.0 R3(config-router)#net 192.1.34.0 On R4 R4#conf t Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 19 of 197

R4(config)#Router RIP R4(config-router)#no auto-summary R4(config-router)#net 4.0.0.0 R4(config-router)#net 192.1.34.0 On R3 and R4



Type Show IP route. Do you see an entry learned through RIP that has a *?



By default, RIP will advertise the default route to other RIP enabled routers.



Enter Debug IP RIP and view the routing table entries going from R2 to R3 and R4.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 20 of 197



Lab 5 – Default Network using Default Information Originate

(Builds on Lab 4) Objecctive: Use the default-information originate instead of the default-route on R2 to inject the default route into R3 and R4. You will no longer be using the default route towards R1. Configure a static route to provide reachability towards 1.0.0.0 network.

On R2 R2(config)#no ip route 0.0.0.0 0.0.0.0 192.1.12.1 R2(config)#clear ip route * R2(config)#ip route 1.0.0.0 255.0.0.0 192.1.12.1

On R3 and R4  Type Show IP route. Do you see an entry learned through RIP that has a *?  This is done by using the Default-information originate on R2  Enter Debug IP RIP and view the routing table entries going from R2 to R3 and R4.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 21 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 3 – RIP v2 Labs

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 22 of 197

Lab 1 – Basic RIP v2 Configuration

R1

S 0/0(.1)

192.1.12.0/2

L0 1.1.1.1/8

R2 S 0/0 (.2)

L0 2.2.2.2/8

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0

Objective: Configuring RIP v1 on the routers to exchange routes between the routers. On R1 router#conf t router(config)#hostname R1 R1(config)#Router RIP R1(config-router)#no auto-summary R1(config-router)#version 2 R1 (config-router)#net 1.0.0.0 R1 (config-router)#net 192.1.12.0 On R2 Router#conf t Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 23 of 197

router(config)#hostname R2 R2(config)#Router RIP R2(config-router)#no auto-summary R2(config-router)#version 2 R2 (config-router)#net 2.0.0.0 R2 (config-router)#net 192.1.12.0 On Both Routers •

Type Show ip route



What networks do you see listed?



Ping your partner’s Loopback Interface address. Are you successful?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 24 of 197

Lab 2 – RIP 2 Operation (Note: This lab builds on the configuration of Lab 2) Objective: Looking at the operation of RIP v2. You will take a look at the Multicast classless updates.

On Both Routers Rx#debug ip rip (Where x is your Router number) RIP: Sending V2 update to 224.0.0.9 via Serial 0/0 (192.1.12.1) RIP: Build update entries Network 1.0.0.0/8 metric 1, External Tag 0 RIP: Sending V2 update to 224.0.0.9 via Loopback 0 (1.1.1.1) RIP: Build update entries Network 2.0.0.0/8 metric 2, External Tag 0 Network 192.1.12.0/8 metric 1, External Tag 0 RIP: received V2 update from 192.1.12.2 on serial 0/0 2.0.0.0/8 in 2 hop metric 1, External Tag 0

Interesting Facts • • •

Update is a V2 Update Includes the Subnet Mask The destination address.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 25 of 197

Lab 3 – Compatibility with RIP Version 1

R1

S 0/0(.1)

192.1.12.0/2

L0 1.1.1.1/8

R2 S 0/0 (.2)

L0 2.2.2.2/8 E 0/0 (.2)

192.1.23.0/2

S 0/0(.4)

192.1.34.0/2

L0 4.4.4.4/8 R4

E 0/0 (.3) S 0/0 (.3)

L0 3.3.3.3/8 R3

R1 Configuration Interface Loopback 0 E 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3 191.1.34.3

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 E 0/0 S 0/0

R3 Configuration Interface Loopback 0 S 0/0 E 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 26 of 197

R4 Configuration Interface Loopback 0 S 0/0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

Objective: R3 does not support RIP v2. Configure R1, R2 and R4 with RIP v2. Configure R3 with RIP V1. Allow R2 and R4 to exchange routes with R3. On R1 R1#conf t R1(config)#Router RIP R1(config-router)#no auto-summary R1(config-router)#version 2 R1(config-router)#net 192.1.12.0 R1(config-router)#net 1.0.0.0 On R2 R2#conf t R2(config)#Router RIP R2(config-router)#no auto-summary R2(config-router)#version 2 R2(config-router)#net 192.1.12.0 R2(config-router)#net 192.1.23.0 R2(config-router)#net 2.0.0.0 R2(config-router)#Interface E 0/0 R2(config-if)#ip rip send v1 R2(config-if)#ip rip receive v1 On R3 R3#conf t R3(config)#Router RIP R3(config-router)#no auto-summary R3(config-router)#version 1 R3(config-router)#net 192.1.23.0 R3(config-router)#net 192.1.34.0 R3(config-router)#net 3.0.0.0 On R4 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 27 of 197

R4#conf t R4(config)#Router RIP R4(config-router)#no auto-summary R4(config-router)#version 2 R4(config-router)#net 192.1.34.0 R4(config-router)#net 4.0.0.0 R4(config-router)#Interface S 0/0 R4(config-if)#ip rip send version 1 R4(config-if)#ip rip receive version 1 On R2 •

Type Debug ip rip



When R2 sends an update to R1, what address does it use?



When R2 sends an update to R3, what address does it use?



When R4 sends an update to R3, what version does it use?



When R3 sends an update to R2 and R4, what version does it use?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 28 of 197

Lab 4 – RIP V2 Plain Text Authentication (Note: This lab builds on the configuration of Lab 3) Objective: Configure Plain Text Authentication on all routers. Enable RIP v2 on R3. Disable sending of v1 updates on R2 and R4 before enabling authentication on all the routers.

Enable RIP V2 on all routers and Disable IP RIP Send and Receive Version 1 commands R1 (Requires no change) R2 R2(config)#interface E 0/0 R2(config-if)#no ip rip send version 1 R2(config-if)#no ip rip receive version 1 R3 R3(config)#Router RIP R3(config-router)#version 2 R4 R4(config)#interface S 0/0 R4(config-if)#no ip rip send version 1 R4(config-if)#no ip rip receive version 1 Enable Plain-text Authentication of all the Routers R1 R1(config)#key chain KC-1 R1(config-keychain)#key 1 R1(config-keychain-key)#key-string CISCO R1(config-keychain-key)#exit Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 29 of 197

R1(config)#int S 0/0 R1(config-if)#ip rip authentication key-chain KC-1 R2 R2(config)#key chain KC-1 R2(config-keychain)#key 1 R2(config-keychain-key)#key-string CISCO R2(config-keychain-key)#exit R2(config)#int S 0/0 R2(config-if)#ip rip authentication key-chain KC-1 R2(config-if)#int E0/0 R2(config-if)# ip rip authentication key-chain KC-1 R3 R3(config)#key chain KC-1 R3(config-keychain)#key 1 R3(config-keychain-key)#key-string CISCO R3(config-keychain-key)#exit R3(config)#int S 0/0 R3(config-if)#ip rip authentication key-chain KC-1 R3(config-if)#int E0/0 R3(config-if)# ip rip authentication key-chain KC-1 R4 R4(config)#key chain KC-1 R4(config-keychain)#key 1 R4(config-keychain-key)#key-string CISCO R4(config-keychain-key)#exit R4(config)#int S 0/0 R4(config-if)#ip rip authentication key-chain KC-1 Checking the Authentication On all Routers •

Type Debug ip rip



Can you see the authentication happening?



Can you see the password in the debug information?



What is the password that is being passed between the routers? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 30 of 197

Lab 5 – RIP V2 MD5 Authentication (Note: This lab builds on the configuration of Lab 4) Objective: Configure MD5 Authentication on all routers.

Enable RIP V2 MD 5 Authentication on all routers R1 R1#config t R1(config)#int S 0/0 R1(config-if)#ip rip authentication mode md5 R2 R2#config t R2(config)#int S 0/0 R2(config-if)#ip rip authentication mode md5 R2(config-if)#int E 0/0 R2(config-if)# ip rip authentication mode md5 R3 R3#config t R3(config)#int E 0/0 R3(config-if)#ip rip authentication mode md5 R3(config)#int S 0/0 R3(config-if)#ip rip authentication mode md5 R4 R4#config t R4(config)#int S 0/0 R4(config-if)#ip rip authentication mode md5 Checking the Authentication On all Routers •

Type Debug ip rip



Can you see the authentication happening and if so, can you see the actual password?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 31 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 4 – EIGRP

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 32 of 197

Enhanced IGRP (EIGRP) •

Cisco proprietary routing protocol.



First released in 1994 with IOS version 9.21.



Advance Distance Vector/Hybrid routing protocol that has the behavior of distance vector with several Link State features, such as dynamic neighbor discovery.

Features •

Rapid Convergence: EIGRP uses DUAL to achieve rapid convergence. It stores a backup route if one is available, so it can quickly re-converge incase a route goes down. If no backup route exists, EIGRP will send a query to its neighbor/s to discover an alternate path. These queries are propagated until an alternate route is found.



Reduced Bandwidth Usage/Incremental Updates: In EIGRP updates are still sent to directly connected neighbors, much like distance vector protocols, but these updates are:  Non-Periodic: The updates are not sent at regular intervals, rather when a metric or a topology change occurs.  Partial: Updates will include the routes that are changed and not every route in the routing table.  Bounded: Updates are sent to affected routers only. Another issue regarding bandwidth usage is the fact that EIGRP by default will only consume 50% of the bandwidth of the link during convergence. This parameter can be adjusted to a higher or lower value eith the following command: Ip bandwidth-percent eigrp



Classless Routing Protocol: This means that advertised routes will include their subnet mask, this feature will eliminate the issue pertaining to discontiguous networks. VLSM and Manual Summarization is also supported on any router within the enterprise.



Security: With IOS version 11.3 or better, EIGRP can authenticate using only MD5, the reason EIGRP does not support clear text is because, Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 33 of 197

EIGRP can only be used within CISCO routers, and all Cisco routers support MD5 authentication. But the routes are not encrypted, so a sniffer can easily see the password/s. •

Multiple Network Layer Protocol Support: EIGRP can support IP, IPX, and AppleTalk, whereas the other routing protocols support only one routed protocol. EIGRP will also perform auto-redistribution with NLSP, IPXRIP, RTMP. EIGRP supports incremental SAP and RIP updates, 224 HOPS, and it uses bandwidth + delay which is far more better than just Ticks and Hops used by IPXRIP. For RTMP it supports event driven updates, but it must run in a clientless networks(WAN), and also a better metric calculation.



Use Of Multicast Instead Of Broadcast: EIGRP uses multicast address of 224.0.0.10 instead of broadcast.



Unequal and Equal Cost Path Load-Balancing: This feature will enable the administrators to distribute traffic flow in the network. By default EIGRP will use up to 4 paths and this can be increased to 6.



OSI and EIGRP: Like all TCP/IP routing protocols EIGRP relies in IP to deliver the packets, EIGRP maps to the transport layer of OSI and uses protocol number 88.



Support Of Different Topology: EIGRP can support broadcast multiaccess topologies such as Token-Ring, and Ethernet. Point to point topology such as HDLC. NBMA topology such as Frame-Relay.



Easy configuration: The configuration of EIGRP is very similar to IGRP which is very simple.



Support of hierarchical addressing scheme: Eigrp supports FLSM, VLSM, CIDR/Supernetting.



100% Loop Free: EIGRP uses DUAL to attain fast convergence while maintaining a totally loop free topology at every instance.



Metrics: EIGRP uses 2 step metric: 1. VECTOR 2. COMPOSITE  Vector metric is: Min MTU, MAX Load, Min Reliability, Total delay, Min Bandwidth and Hop count.  The vector metric of a route received from a neighbor is computed from the received vector metric and the metric of the interface through which the route was received. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 34 of 197

 After the vector is received and calculated it is stored in the topology table.  The vector metric is never adjusted in the outgoing updates, the router always reports the values it has in its topology table and relies on the receiving router to adjust the values.

S 0/0 10.1.1.2/30

S 0/1 10.2.1.1/30

R-B S 0/0 10.2.1.2/30

S 0/0 10.1.1.1/30

R-C

R-A

S 0/1 10.3.1.2/30

S 0/1 10.4.1.1/30

R-D S 0/1 10.4.1.2/30

S 0/0 10.3.1.1/30

 In the above diagram, the minute the Ethernet port on R-A comes active, it notifies R-B, and R-D with its own vector metric, R-D, and R-B will adjust these values based on the parameters of their interface to R-A, and then they will advertise that cost to R-C.  EIGRP uses the same formula as IGRP to calculate its composite metric, with one difference and that is EIGRP scales the metric component by 256 to achieve a finer metric granularity. This metric is calculated using Bandwidth, Delay, Reliability, Load, and MTU. The formula that it uses is as follows:  You can view the detailed vector and composite metric of a single EIGRP route from the topology table with the following command: “ sh ip eigrp top “ •

EIGRP Metric Calculation uses the following formula:  Metric = [107/Bandwidth(min))+(Delay(Sum)]/10)]*256 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 35 of 197

 Bandwidth = the smallest of all bandwidths in the path to a given destination divided by 10,000,000.  Delay = the sum of all the delay values assigned to the interfaces along the path to a given destination divided by 10. •

To find out the value of bandwidth and the delay associated to a given interface, “ sh interface < the interface type > x “ where x is the interface number.  These values can be changed with the following interface mode commands:  “ bandwidth < bandwidth in Kbps> “  “ delay < delay in tens of microseconds > “

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 36 of 197

Terminology •

Feasible Distance: FD is equal to advertised distance of a neighbor plus the cost of the link to that neighbor. In some cases we may have multiple routes to the same destination, in situation like that FD will be based on the lowest metric.



Feasibility Condition: It is a condition that is met if a neighbor’s advertised distance to a destination is lower than the router’s FD to that same destination. o FC states, that the route must be advertised by a downstream neighbor (with respect to the destination), and the cost of the advertising routes to the destination must be less than or equal to the cost of the route that is currently being used by the router receiving the advertisement.



Successor: A directly connected neighboring router that has the best route to a given destination. These routers are always downstream routers. o In order for a neighbor to become the successor, that neighbor must firstmeet the FC. Successors are entries that are kept in the routing table.



Feasible Successor: FS are downstream neighboring router/s through which a destination can be reached. FS are nothing but backup routes to a given destination, or second best route to a given destination. o FS s are kept in the topology table, and there may be more than one FS per destination. o If a neighbor’s advertising distance to a destination meets the FC, the neighbor becomes a FS for that destination.



Active State: When a router loses its route to a destination and no FS is available in the topology table, the router goes into active state, in this state the router sends out queries to all neighbors in order to find a route to that destination. It is possible for the routers that are receiving the queries to send queries to their neighbor, this can create a ripple effect.



Passive State: When there is no change in the internetwork, there is no need to do a computation or convergence, so the routers are all in passive state. Even when a router loses its successor, as long as that router has a FS in the topology table, the router will remain in the passive state (normal state), and it will place the FS in the routing table, and no computation will be performed. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 37 of 197



Topology Table: This includes route entries for all the destinations that the router has learned. FS are kept in this table for rapid convergence.



Neighbor table: Each Eigrp router has a neighbor table that has a list of adjacent routers. Neighbor relationships ensure a bi-directional communication between each of the directly connected neighbor.



Routing Table: Eigrp uses the best path to a given destination (the Successor/s) from the topology table and places it into the routing table.



Downstream: A router which is closer to the destination than the local router.



Upstream: This router is further away from the destination than the local router. This router will use the local router to get to the destination.



Advertised Distance: Is a distance reported to the current router, by a neighbor. Sometimes its referred to as Reported Distance.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 38 of 197

Packet Types •

Hello: Used for neighbor discovery process. Hello packets are sent as multicasts, and they use unreliable delivery meaning that they do not need an ACK, as long as these packets are received the routers can determine that the neighbor is up.



Update: Update packets convey route information, these are transferred when necessary, and are sent only to the routers that require the information. When updates are requested by a single router, the sending router will use unicast to convey the route information’s, but if an up date is requested by more than one router, then the updates are multicast out to 224.0.0.10 address. The updates require ACK s. These packets are used when a router comes up for the first time, or when there is a topology change, or the metric of a route is changed for better or worst.



Acknowledgements or ACK s: These packets are sent by the routers to acknowledge the receipt of an update. Acknowledgement packets use unicast and use unreliable delivery method.



Queries: When a router looses its successor and has no feasible successor in the topology table, it will send a query to all neighbors in the neighbor table. Queries will always use multicast and requires an ACK.



Replies: These packets are sent in response to queries, these packets will always use unicast and require an ACK.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 39 of 197

EIGRP Summarization • •



Purpose: Smaller routing table, smaller updates, and query boundary. Auto-summarization: Auto-summarization is turned on by default, and it is done on the major network boundary, subnets are summarized to a single classfull networks. Manual Summarization: Auto-summarization can be turned off, unlike OSPF manual summarization can be done on any router in any location.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 40 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 4 – EIGRP Labs

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 41 of 197

Lab 1 – Configuring Basic EIGRP

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0

Objective: Configuring EIGRP to look at the basic configuration on EIGRP.

On R1 R1(config)#Router eigrp 12 R1 (config-router)#net 1.0.0.0 R1 (config-router)#net 192.1.12.0

On R2 R2(config)#Router eigrp 12 R2 (config-router)#net 2.0.0.0 R2 (config-router)#net 192.1.12.0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 42 of 197

Test the Configuration •

Type SH IP ROUTE



What routes do you see?



Are the metrics advertised correct?



Breakdown the Calculation for the Metric.



Metric = Bandwidth (min) + Delay(sum)



Type SH IP OSPF NEIGHBOR H Address 0 192.1.12.2

Interface Hold Uptime SRTT RTO (sec) (ms) Cnt Se0/0 10 00:06:21 12

Q

Seq Num 200 0



What is the Hello Time?



Type SH IP EIGRP TOPOLOGY. This shows the Topology table.



Type SH IP EIGRP TOPOLOGY 2.0.0.0.



Notice the Vector and Composite Metric



Type SH IP EIGRP TRAFFIC



See how the Hello # are changing and updates are not.



Bring the loopback interface down



Note the Values in the output. See how the queries number increased



Bring the loopback interface back up



Note how the update # changes

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 43 of 197

Changing the Hello-interval and Hold-time timers On Both Routers R1(config)#int S 0/0 R1(config-if)#ip hello-interval eigrp 12 20 R1(config-if)#ip hold-time eigrp 12 60 •

Type SH IP EIGRP NEIGHBOR



What and whose time do you see?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 44 of 197

Lab 2 - Basic Metric Calculation

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

E 0/0 (.2)

192.1.23.0/24

S 0/0(.4)

E 0/0 (.3)

192.1.34.0/24

L0 4.4.4.4/8

S 0/0 (.3)

L0 3.3.3.3/8

R4

R3

Objective: Verifying the EIGRP Metric calculations.

R1 Configuration Interface Loopback 0 E 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 E 0/0 S 0/0

R3 Configuration Interface Loopback 0 S 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 45 of 197

E 0/0

191.1.34.3

255.255.255.0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

R4 Configuration Interface Loopback 0 S 0/0

On R1 R1(config)#Router eigrp 1 R1(config-router)#net 1.0.0.0 R1(config-router)#net 192.1.12.0

On R2 R2(config)#Router eigrp 1 R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#net 192.1.23.0

On R3 R3(config)#Router eigrp 1 R3(config-router)#net 3.0.0.0 R3(config-router)#net 192.1.23.0 R3(config-router)#net 192.1.34.0

On R4 R4(config)#Router eigrp 1 R4(config-router)#net 4.0.0.0 R4(config-router)#net 192.1.34.0 •

Type SH IP ROUTE



Do you see all the routes?



Type SH IP EIGRP NEIGHBOR.



Who are your neighbors?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 46 of 197



Lab 3 the – Neighbor command Verify that Metric Calculations are done based on the with EIGRP Metric calculation formula: Metric = [ 10 /BW(min) +EIGRP Delay(sum) / 10] * 256 7

(Note: This lab builds on the configuration of Lab 2) Objective: Configuring Passive Interfaces on EIGRP to disable sending of Multicast Updates on an Interface. Use Unicast updates to set up the neighbor relationship.

On R1 and R2 •

Type SH IP ROUTE



Do you see all the routes?



Type SH IP EIGRP NEIGHBOR



Do you see your Neighboring router?

Configure Passive-Interface on R1 and R2 towards each other Rx(config)#Router eigrp 1 Rx(config-router)#Passive-interface S 0/0



With RIP, the passive-interface command RIP doesn’t send updates but continue to receive routes.



Type SH IP EIGRP NEIGHBOR



Do R1 and R2 see each other as neighbors?

Configure Neighbor Statements on R1 and R2 to establish the relationship On R1 R1(config)#Router eigrp 1 R1(config-router)#Neighbor 192.1.12.2 S 0/0

On R2 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 47 of 197

R2(config)#Router eigrp 1 R2(config-router)#Neighbor 192.1.12.1 S 0/0

On R1 and R2 •

Type SH IP ROUTE



Do you see all the routes?



Type SH IP EIGRP NEIGHBOR



Do you see your Neighboring router?



In EIGRP, the Neighbor command requires the interface. By specifying the interface, you tell it to suppress the Multicast update on the interface and instead, send Unicast Updates. But because of the passive-interface command, it also suppressing the Unicast updates.

Conclusion : The passive interface command under EIGRP blocks both Unicast and Multicast updates. If you want to send Unicast updates only, use the Neighbor command along with the interface.

On R1 R1(config)#Router eigrp 1 R1(config-router)#No passive-interface S 0/0

On R2 R2(config)#Router eigrp 1 R2(config-router)#No passive-interface S 0/0

On R1 and R2 •

Type SH IP ROUTE



Do you see all the routes?



Type SH IP EIGRP NEIGHBOR



Do you see your Neighboring router? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 48 of 197

Lab 4 –Unequal-Cost Load Balancing (Note: This lab builds on the configuration of Lab 3)

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

E 0/0 (.2)

E 0/0 (.1)

192.1.23.0/24

192.1.14.0/24

E 0/0 (.3)

E 0/0 (.4)

L0 3.3.3.3/8

L0 4.4.4.4/8

S 0/0(.4)

192.1.34.0/24 R4

S 0/0 (.3)

R3

Objective: Configure the Ethernet link between R1 and R4. Configure the Variance command to support unequal cost load balancing. This lab shows you the Feasible Condition come into play.

R1 Configuration Interface E 0/0

IP Address 192.1.14.1

Subnet Mask 255.255.255.0

IP Address 192.1.14.4

Subnet Mask 255.255.255.0

R4 Configuration Interface E 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 49 of 197

Configuring the extra link between R1 and R4 and enabling EIGRP on the new link On R1 R1(config)#Router eigrp 1 R1(config-router)#net 192.1.14.0

On R4 R4(config)#Router eigrp 1 R4(config-router)#net 192.1.14.0

Changing the Bandwidth and Delay to simulate certain Link speeds between the Routers. Set the Delay on all the Interfaces to 2000 to simulate a WAN setup between R1, R2, R3 and R4 Router R1 R1 R2 R2 R3 R3 R4 R4

Interface E 0/0 S 0/0 S 0/0 E 0/0 E 0/0 S 0/0 S 0/0 E 0/0

Bandwidth 64 128 128 512 512 256 256 64

On R1 R1(config)#Interface S 0/0 R1(config-if)#bandwidth 128 R1(config-if)#Interface E 0/0 R1(config-if)#bandwidth 64 R1(config-if)#delay 2000

On R2 R2(config)#Interface E 0/0 R2(config-if)#bandwidth 512 R2(config-if)#delay 2000 R2(config-if)#Interface S 0/0 R2(config-if)#bandwidth 128 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 50 of 197

On R3 R3(config)#Interface E 0/0 R3(config-if)#bandwidth 512 R3(config-if)#delay 2000 R3(config-if)#Interface S 0/0 R3(config-if)#bandwidth 256

On R4 R4(config)#Interface E 0/0 R4(config-if)#bandwidth 64 R4(config-if)#delay 2000 R4(config-if)#Interface S 0/0 R4(config-if)#bandwidth 256

Configure the Variance Command on the routers to support unequal Load balancing •

Note you have 2 ways to get to the diagonally opposite loopback networks

• Calculate the metric to get to the diagonally opposite loopback networks for both Paths •

Metric = [ 107/BW(min) + Delay(sum) / 10] * 256



Input the appropriate Variance for the EIGRP 1 process. Variance is based on your composite metric. (Variance = Best Path/Worst Best) Rounded up

On All Routers Rx(config)#Router EIGRP 1 Rx(config-router)#Variance xx

On All Routers •

Type Clear ip route *



Type SH IP ROUTE.



Do all the routers show dual paths to get the diagonally opposite loopback networks. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 51 of 197



If not, Why?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 52 of 197

Lab 5 – Route Summarization Group A

L0 10.1.4.0 – L3 10.1.7.0/24

R1

S 0/0(.1)

L0 10.1.8.0 – L3 10.1.11.0/24

R2

192.1.12.0/24 S 0/0 (.2)

E 0/0 (.2)

192.1.23.0/24

L0 10.1.16.0 – L3 10.1.19.0/24

S 0/0(.4)

192.1.34.0/24

R4

E 0/0 (.3) S 0/0 (.3)

R3

L0 10.1.12.0 – L3 10.1.15.0/24

Group B Objective: Configure EIGRP Route Summarization on individual routers and the Backbone routers connecting the two groups to each other.

R2 from each group will have E 0/1 connected to the backbone using the 10.5.1.0 /24 network. Use the following for x (A=1,B=2) R1 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 E 0/0

IP Address 10.x.4.1 10.x.5.1 10.x.6.1 10.x.7.1 10.x.1.1

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 53 of 197

R2 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 E 0/0 S 0/0 E 0/1

IP Address 10.x.8.1 10.x.9.1 10.x.10.1 10.x.11.1 10.x.1.2 10.x.2.1 10.5.1.y

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 10.x.12.1 10.x.13.1 10.x.14.1 10.x.15.1 10.x.3.1 10.x.2.2

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 10.x.16.1 10.x.17.1 10.x.18.1 10.x.19.1 10.x.3.1

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

R3 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 E 0/0 S 0/0

R4 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 E 0/0

R1 on Both Groups R1(config)#Router eigrp 1 R1(config-router)#net 10.0.0.0 R1(config-router)#net 192.X.12.0 R1(config-router)#no auto-summary

R2 on Both Groups R2(config)#Router eigrp 1 R2(config-router)#net 10.0.0.0 R2(config-router)#net 192.X.12.0 R2(config-router)#net 192.X.23.0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 54 of 197

R2(config-router)#no auto-summary

R3 on Both Groups R3(config)#Router eigrp 1 R3(config-router)#net 10.0.0.0 R3(config-router)#net 192.X.23.0 R3(config-router)#net 192.X.34.0 R3(config-router)#no auto-summary

R4 on Both Groups R4(config)#Router eigrp 1 R4(config-router)#net 10.0.0.0 R4(config-router)#net 192.X.34.0 R4(config-router)#no auto-summary Objective: Configure EIGRP Route Summarization on individual routers and the Backbone routers connecting the two groups to each other. •

Type SH IP ROUTE. Do you see all the loopback networks?



Let’s do summarization on each router.



On each router, calculate the summary address and enter it on the appropriate interfaces.



Write down your summary address and mask.



Apply it to your appropriate interfaces using the following command:

• IP summary-address eigrp 1 [summary-address] [mask] •

Type SH IP ROUTE. Do you see less routes now?



Get together with your group and figure out a summarization for the Border router (Router connecting to the backbone).



Write it down

• On the Border Router’s type the following commands: •

Router(config)#int E 0/1 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 55 of 197



Router(config-if)#ip summary-address eigrp 1 [address] [Mask]



Type SH IP ROUTE



Is the routing table the same? If not, what is the change?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 56 of 197

Lab 6 – Injecting Default Route with Route Redistribution

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

E 0/0 (.2)

192.1.23.0/24

S 0/0(.4)

E 0/0 (.3)

192.1.34.0/24

L0 4.4.4.4/8 R4

S 0/0 (.3)

L0 3.3.3.3/8

R3

R1 Configuration Interface Loopback 0 E 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3 191.1.34.3

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 E 0/0 S 0/0

R3 Configuration Interface Loopback 0 S 0/0 E 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 57 of 197

R4 Configuration Interface Loopback 0 S 0/0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

Objective: R1 is acting as the ISP and R2 is the Edge Router for a company that is running EIGRP internally between R2, R3 and R4. R1 will have static routes towards all the company networks. R2 will have a default route pointing towards R1. R2 should inject the default route into R3 and R4.

On R1 R1(config)#ip R1(config)#ip R1(config)#ip R1(config)#ip R1(config)#ip

route route route route route

2.0.0.0 255.0.0.0 192.1.12.2 3.0.0.0 255.0.0.0 192.1.12.2 4.0.0.0 255.0.0.0 192.1.12.2 192.1.23.0.0.0 255.255.255.0 192.1.12.2 192.1.34.0.0.0 255.255.255.0 192.1.12.2

On R2 R2(config)# ip route 0.0.0.0 0.0.0.0 192.1.12.1 R2(config)#Router EIGRP 1 R2(config-router)#no auto-summary R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#net 192.1.23.0

On R3 R3(config)#Router EIGRP 1 R3(config-router)#no auto-summary R3(config-router)#net 3.0.0.0 R3(config-router)#net 192.1.23.0 R3(config-router)#net 192.1.34.0

On R4 R4(config)#Router EIGRP 1 R4(config-router)#no auto-summary R4(config-router)#net 4.0.0.0 R4(config-router)#net 192.1.34.0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 58 of 197

On R3 and R4 •

Type Show IP route. Do you have reachability towards the 1.0.0.0 network?

On R2 •

Type Ping 1.1.1.1



Does it work?

On R3 and R4 •

Type Ping 1.1.1.1



Does it work?



Type SH IP ROUTE



Do you have any routes to the 1.1.1.1 or any Default gateway set?

Use the Redistribute command on R2 to redistribute the Default Route into EIGRP On R2 R2(config)#router eigrp 1 R2(config-router)#redistribute static metric 10000 1000 255 1 1500

On R3 and R4 •

Type SH IP ROUTE



Do you see a Default Route? If so, who is advertising it?



Type Ping 1.1.1.1



Were you successful?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 59 of 197

Lab 7 – Injecting Default Route with  Summary-Address Command (Based on Lab 6 Configuration) Objective: This lab is based on the previous lab. R2 will have a default route pointing towards R1. R2 should inject the default route into R3 and R4 using the Summary address command instead of Route Redistribution.

Remove the redistribute static and ip route statements from R2 On R2 R1(config)#router eigrp 1 R1(config-router)#no redistribute static metric 10000 1000 255 1 1500

Test the connection from R3 & R4 towards the 1.0.0.0 network On R3 and R4 •

Type Ping 1.1.1.1



Does it work?



Type SH IP ROUTE



Any route to 1.0.0.0 network or a Default-gateway?

Add the summary routes on R2 E 0/0 Interfaces towards R3 On R2 R2(config)#int E 0/0 R2(config-if)#ip summary-address eigrp 1 0.0.0.0 0.0.0.0

Test the new configuration On R3 and R4 •

Type Ping 4.4.4.4



Does it work? Why or Why Not? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 60 of 197

Lab 8 –Redistributing Directly Connected Networks

L0 1.1.1.1/8

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 2.2.2.2/8

L1 11.11.11.11/8 E 0/0 (.2)

192.1.23.0/24

S 0/0(.4)

E 0/0 (.3)

192.1.34.0/24

L0 4.4.4.4/8 R4

S 0/0 (.3)

L0 3.3.3.3/8

R3

R1 Configuration Interface Loopback 0 Loopback 1 E 0/0

IP Address 1.1.1.1 11.11.11.11 192.1.12.1

Subnet Mask 255.0.0.0 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3

Subnet Mask 255.0.0.0

R2 Configuration Interface Loopback 0 E 0/0 S 0/0

R3 Configuration Interface Loopback 0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 61 of 197

S 0/0 E 0/0

192.1.23.3 191.1.34.3

255.255.255.0 255.255.255.0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

R4 Configuration Interface Loopback 0 S 0/0

Objective: Inject the 1.0.0.0 and 11.0.0.0 networks into EIGRP without using the Network command.

Configuring EIGRP on R1 – R4. Don’t advertise the Loopbacks in EIGRP on R1 yet. On R1 R1(config)#Router EIGRP 1 R1(config-router)#no auto-summary R1(config-router)#network 192.1.12.0

On R2 R2(config)#Router EIGRP 1 R2(config-router)#no auto-summary R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#net 192.1.23.0

On R3 R3(config)#Router EIGRP 1 R3(config-router)#no auto-summary R3(config-router)#net 3.0.0.0 R3(config-router)#net 192.1.23.0 R3(config-router)#net 192.1.34.0

On R4 R4#conf t R4(config)#Router EIGRP 1 R4(config-router)#no auto-summary R4(config-router)#net 4.0.0.0 R4(config-router)#net 192.1.34.0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 62 of 197

Redistribute all your directly connected networks on R1 On R1 R1(config)#router eigrp 1 R1(config-router)#redistribute connected

On R2, R3 and R4 •

Type SH IP ROUTE



Do you see the 1.0.0.0 and 11.0.0.0 networks?



What type of entry is it?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 63 of 197

Lab 9 –Redistributing EIGRP into EIGRP with different AS # (Uses the same topology as Lab 8) Objective: Redistributing EIGRP from one AS to another. Run EIGRP in AS 11 between R1 and R2. Run EIGRP in AS 1 between R2, R3 and R4. Remove eigrp 1 from R1. Remove network 192.1.12.0 and 2.0.0.0 from EIGRP 1 on R2. Run EIGRP 11 between R1 and R2. Advertise the Loopbacks on both the Routers in EIGRP 11.

On R1 R1(config)#no router eigrp 1 R1(config)#router eigrp 11 R1(config-router)#no auto-summary R1(config-router)#net 192.1.12.0 R1(config-router)#net 1.0.0.0 R1(config-router)#net 11.0.0.0

On R2 R2(config)#router eigrp 1 R2(config-router)#no net 2.0.0.0 R2(config-router)#no net 192.1.12.0 R2(config-router)#Router eigrp 11 R2(config-router)#net 192.1.12.0 R2(config-router)#net 2.0.0.0

On R1, R3 and R4 •

Type SH IP ROUTE



Do you see all the routes?

Mutually Redistribute between EIGRP 1 and EIGRP 11 on R2. On R2 R2(config)#router eigrp 1 R2(config-router)#redistribute eigrp 11 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 64 of 197

R2(config-router)#router eigrp 11 R2(config-router)#redistribute eigrp 1

On R1, R2 and R4 •

Type SH IP ROUTE



Do you see all the routes?



Are the metric’s the correct metrics?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 65 of 197

Lab 10 –Redistributing EIGRP into RIP (Uses the same topology as Lab 9) Objective: Performing Redistribution between RIP and EIGRP Run RIP between R1 and R2. Run EIGRP in AS 1 between R2, R3 and R4.

Remove EIGRP 11 from R1 and R2. Run RIP v2 between R1 and R2. Advertise all the loopbacks on these 2 routers in RIP On R1 R1(config)#no router eigrp 11 R1(config)#router rip R1(config-router)#version 2 R1(config-router)#net 192.1.12.0 R1(config-router)#net 1.0.0.0

On R2 R2(config)#no router eigrp 11 R2(config)#router rip R2(config-router)#version 2 R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0

On R1, R3 and R4 •

Type SH IP ROUTE



Do you see all the routes?

Perform mutual Route redistribution between RIP and EIGRP on R2 On R3 R3(config)#router eigrp 1 R3(config-router)#redistribute rip metric 10000 1000 255 1 1500 R3(config-router)#router rip Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 66 of 197

R3(config-router)#redistribute eigrp 1 metric 3

On R1, R3 and R4 •

Type SH IP ROUTE



Do you see all the routes?



Ping 1.1.1.1 from R4 and Ping 4.4.4.4 from R1.



Are you successful?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 67 of 197

Lab 11 –Redistributing EIGRP into RIP using Route Filtering (Uses the same topology as Lab 10) Objective: This lab builds on the configuration of the previous labs. We will add some new routes on R1 and R4 and inject them into the appropriate protocols. We will filter certain routes from getting redistributed into the other routing protocol

Add the following Loopbacks on R1 and R4 and advertise them into RIP on R1 and EIGRP 1 on R4 R1 Interface Loopback 11 Loopback 12 Loopback 13 Loopback 14

IP Address 11.0.0.1 12.0.0.1 13.0.0.1 14.0.0.1

Subnet Mask 255.0.0.0 255.0.0.0 255.0.0.0 255.0.0.0

IP Address 15.0.0.1 16.0.0.1 17.0.0.1 18.0.0.1

Subnet Mask 255.0.0.0 255.0.0.0 255.0.0.0 255.0.0.0

R4 Interface Loopback 15 Loopback 16 Loopback 17 Loopback 18

On R1 R1(config)#interface Loopback 11 R1(config-if)#ip address 11.0.0.1 255.0.0.0 R1(config-if)#interface Loopback 12 R1(config-if)#ip address 12.0.0.1 255.0.0.0 R1(config)#interface Loopback 13 R1(config-if)#ip address 13.0.0.1 255.0.0.0 R1(config)#interface Loopback 14 R1(config-if)#ip address 14.0.0.1 255.0.0.0 R1(config-if)#router rip R1(config-router)#net 11.0.0.0 R1(config-router)#net 12.0.0.0 R1(config-router)#net 13.0.0.0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 68 of 197

R1(config-router)#net 14.0.0.0

On R4 R4(config)#interface Loopback 15 R4(config-if)#ip address 15.0.0.1 255.0.0.0 R4(config-if)#interface Loopback 16 R4(config-if)#ip address 16.0.0.1 255.0.0.0 R4(config)#interface Loopback 17 R4(config-if)#ip address 17.0.0.1 255.0.0.0 R4(config)#interface Loopback 18 R4(config-if)#ip address 18.0.0.1 255.0.0.0 R4(config-if)#Router eigrp 1 R4(config-router)#net 15.0.0.0 R4(config-router)#net 16.0.0.0 R4(config-router)#net 17.0.0.0 R4(config-router)#net 18.0.0.0

On R1, R3 and R4 •

Type SH IP ROUTE



Do you see all the routes?

Deny 11.0.0.0 & 12.0.0.0 RIP routes to be redistributed into EIGRP On R2 R2(config)#access-list 1 deny 11.0.0.0 0.255.255.255 R2(config)#access-list 1 deny 12.0.0.0 0.255.255.255 R2(config)#access-list 1 permit any R2(config)#Route-map R-2-E permit 10 R2(config-route-map)#match ip address 1 R2(config-route-map)#router eigrp 1 R2(config-router)#redistribute rip route-map R-2-E

On R3 and R4 •

Type SH IP ROUTE



Do you see all the 11.0.0.0 and 12.0.0.0 routes?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 69 of 197



Do you see all the other RIP routes?

Deny 15.0.0.0 & 16.0.0.0 EIGRP routes to be redistributed into RIP R2(config)#access-list 2 deny 15.0.0.0 0.255.255.255 R2(config)#access-list 2 deny 16.0.0.0 0.255.255.255 R2(config)#access-list 2 permit any R2(config)#route-map E-2-R permit 10 R2(config-route-map)#match ip address 2 R2(config-route-map)#router rip R2(config-router)#redistribute eigrp 1 route-map E-2-R

On R1 •

Type SH IP ROUTE



Do you see all the 15.0.0.0 and 16.0.0.0 routes?



Do you see all the other EIGRP routes?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 70 of 197

Lab 12 – Redistributing Static using Route Filtering (Uses the same topology as Lab 11) Objective: R1 and R2 will not be running any routing protocol between them. R1 will use a default route pointing towards R2. R2 will create static routes for the R1 networks. You would like to inject some of these static routes into the already running EIGRP instance between R2, R3 and R4.

Disabling RIP between R1 and R2. Configuring a Default Route on R1 pointing towards R2. Configure Static routes on R2 for all the R1 networks On R1 R1(config)# ip route 0.0.0.0 0.0.0.0 192.1.12.2 R1(config)#no Router RIP

On R2 R2(config)#ip route 1.0.0.0 255.0.0.0 192.1.12.1 R2(config)#ip route 11.0.0.0 255.0.0.0 192.1.12.1 R2(config)#ip route 12.0.0.0 255.0.0.0 192.1.12.1 R2(config)#ip route 13.0.0.0 255.0.0.0 192.1.12.1 R2(config)#ip route 14.0.0.0 255.0.0.0 192.1.12.1 R2(config)#no Router RIP

Redistribute all the Static routes on R2 into EIGRP except the 11.0.0.0 and 14.0.0.0 networks On R2 R2(config)#access-list 3 deny 11.0.0.0 0.255.255.255 R2(config)#access-list 3 deny 14.0.0.0 0.255.255.255 R2(config)#access-list 3 permit any R2(config)#route-map S-2-E permit 10 R2(config-route-map)#match ip address 3 R2(config-route-map)#router eigrp 1 R2(config-router)#redistribute static route-map S-2-E

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 71 of 197

On R3 and R4 •

Type SH IP ROUTE



Verify that you see all the static routes except the 11.0.0.0 and 14.0.0.0 networks



Can you Ping 11.0.0.1?



Can you Ping 12.0.0.1?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 72 of 197

Lab 13 – EIGRP Authentication (Uses the same topology as Lab 12) Objective: Use MD5 to authenticate the Routers that are running EIGRP

Setting up the Key for the Passwords On R2 R2(config)#key chain KC-1 R2(config-keychain)#key 1 R2(config-keychain-key)#key-string cisco

On R3 R3(config)#key chain KC-1 R3(config-keychain)#key 1 R3(config-keychain-key)#key-string cisco

On R4 R4(config)#key chain KC-1 R4(config-keychain)#key 1 R4(config-keychain-key)#key-string cisco

Applying the Key to theInterface On R2 R2(config)#int E 0/0 R2(config-if)#ip authentication key-chain eigrp 1 KC-1 R2(config-if)#ip authentication mode eigrp 1 md5

On R3 R3(config)#int E 0/0 R3(config-if)#ip authentication R3(config-if)#ip authentication R3(config-if)#int S 0/0 R3(config-if)#ip authentication R3(config-if)#ip authentication

key-chain eigrp 1 trinet mode eigrp 1 md5 key-chain eigrp 1 trinet mode eigrp 1 md5

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 73 of 197

On R4 R4(config)#int S 0/0 R4(config-if)#ip authentication key-chain eigrp 1 trinet R4(config-if)#ip authentication mode eigrp 1 md5

On R2, R3 and R4 o Type Debug eigrp packet o Notice the authentication is md5

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 74 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 5 – OSPF

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 75 of 197

Open Shortest Path First (OSPF) History • •

OSPF Version 1 was specified in RFC 1131 in 1988. This protocol was finalized in 1989. OSPF Version 2 (Current version). The most recent specifications are specified in RFC 2328.

OSPF Features • • • • • •

• • • • • • •

Scales better than Distance Vector Routing protocols. It virtually has no practical Hop Count Limit. Provides Load Balancing Introduces the concept of Area’s to ease management and control traffic. Provides Authentication. Uses Multicast versus Broadcasts. Convergence is Faster than in Distance Vector Routing protocols. The reason for that is it floods the changes to all neighboring routers simultaneously rather than in a chain. Supports Variable Length Subnet Masking (VLSM), FLSM and Supernetting. Provides bit-based Route summarization. There are no periodic updates. Updates are only sent when there are changes. Router only send changes in updates and not the entire full tables. OSPF uses a Cost Value, instead of hop count. Cost is based on the speed of the link. Cost = 108/Bandwidth. Classless Routing Protocol. It relies on IP to deliver the Packets. Use port 89.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 76 of 197

Areas and Router Types Areas • • • • • • • • • • •

Area is a logical grouping of OSPF routers. Areas divide an OSPF domain into sub-domains. Areas allow OSPF to be extremely scalable. Areas reduce the Memory, CPU utilization and amount of traffic in a network. Most of the traffic can be restricted to within the area. Routers within an area will have no detailed knowledge of the topology outside of their area. Reduced size of the Database reduces Memory requirements for the routers. Area’s identified by a 32-bit Area ID. Can be denoted in Decimal format(0) or Dotted format (0.0.0.0) OSPF requires one area to be Area 0, known as the backbone area. Backbone area or Area 0, connects all the other area to each other. Three types of Traffic may be defined in relation to areas:  Intra-area traffic consists of packets that are passed between routers within a single area.  Inter-area traffic consists of packets that are passed between routers in different areas.  External traffic consists of packets that are passed between a router within the OSPF domain and a router within another Autonomous systems.

Router Types • •

Routers, like Traffic, can be categorized in relation to areas. The different Router Types are as follows:  Internal Routers are routers whose interfaces all belong to the same area. These routers have a single Link State Database.  Area Border Routers (ABR) connect one or more areas to the backbone area and has at least one interface that belongs to the backbone, and must maintain as separate Link State Database for each of its connected areas. Must be a more resourceful router than a Internal Router.  Backbone Routers are routers with at least one interface attached to the backbone. Although this requirement means that ABR’s are also backbone routers, but not all Backbone routers are ABR’s. An Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 77 of 197

Internal Router having all its interfaces in Area 0 is also a Backbone router.  Autonomous System Boundary Router (ASBR) are gateways for external traffic, injecting routes into the OSPF domain that were learned from other protocols, such as BGP or EIGRP or RIP or IGRP. An ASBR can be located anywhere within the OSPF autonomous system. It may be an Internal, Backbone or ABR router.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 78 of 197

OSPF Terminology Interface: A Connection between the router and one of its attached Networks Link State: The status of a link between two routers, that is, a router’s interface and its relationship to its neighboring routers. The link states are advertised to other routers in a special packet called link-state advertisements (LSA). Link State Advertisement(LSA): • Is the packet that is used by the routers to tell each other about the state of a Link. • Certain types LSA’s are flooded throughout the network and certain ones only within the area. • The ones that are flooded within the area, are used to create a topology database, also known as the Link State Database. Router ID: • A 32-bit number assigned to each OSPF enabled router. • It’s used to uniquely identify a router within an Autonomous System. • Its calculated at boot time • It’s the highest Loopback address on a Router. If there is no loopback configured, it will be the highest configured address on the router. Neighbors: Two routers that have interfaces on a common network. A neighbor relationship is usually discovered and maintained by the Hello Protocol. Adjacent: OSPF routers form adjacency with neighboring routers in order to exchange routing information. Flooding: A technique used to distribute LSA’s between routers. Databases or Tables: There are 3 OSPF Database or Tables: • Neighbor Database: Contains the information about Directly connected neighbors • Link-State Database: Link States of all the routers in an Area. All routers in the same area will have an identical Link State Database. • Routing Table: Derived from the Link State Database by running the SPF(also known as the Dijkstra Algorithms).

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 79 of 197

OSPF Network Types OSPF Defines Three Main Network Types: • • •

Broadcast Multi-access Networks Point-to-point Networks Non-broadcast Multi-access (NBMA) Networks

Broadcast Networks • • • • • • • • •

Networks like Ethernet, Token-Ring and FDDI are examples of Broadcast Multi-access Networks For OSPF to exchange routes, they must establish a Neighbor Adjacency this is done by Hello Protocol. Hello Protocol is responsible fro establishing and maintaining neighbor relationships. Hello packets are multicast packets OSPF routers on broadcast networks will elect a Designated Router (DR)and Backup Designated Router(BDR). All the other routers will establish the adjacency with the DR and BDR rather than with all the other routers on a Multi-access networks. All routers communicate to the DR using a Multicast address of 224.0.0.6. The DR communicates with all the routers using a Multicast address of 224.0.0.5. The Hello Packet contains the Following fields:  Router ID: Router’s Identification. Each router has to have a unique ID.  Hello Interval: It specifies the frequency in seconds that a router sends hello’s. In order to form a neighbor relationship, the Hello Interval on the router’s has to match.  Dead Interval: It specifies the time in seconds that a router waits to hear from a neighbor before declaring the neighbor router down. By default, it is 4 times the hello interval. In order to form a neighbor relationship, the Dead Interval on the router’s has to match.  Neighbor’s: The list of neighbors with which a bi-directional communication has been established. Bi-directional communication is indicated when the router sees itself listed in the neighbor’ hello packet.  Area ID: The ID of an area that the router belongs to. In order to form a neighbor relationship, the router’s have to belong to the same Area. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 80 of 197

 Router Priority: An 8-bit number that indicates the priority of this router when selecting a DR/BDR.  DR and BDR IP: If it is known, the IP address of the DR and BDR.  Authentication Password: If authentication is enabled, two routers must use the same password. Although OSPF routers, support authentication, the routes are still send across unencrypted.  Stub Area Flag: Specifies the Type of area the router is in. The flag has to match for the routers to establish adjacency. Different types of areas are discussed later.

DR and BDR election Process For the Election process to function properly, the following conditions must exist: •



• • • • •

Each multi-access interface of each router has a Router Priority value, which is an 8-bit integer ranging from 0 – 255. The default priority on Cisco Routers is 1 and can be changed on a per multi-access interface basis with the command IP OSPF Priority. Routers with a Priority of 0 are ineligible to become a DR or BDR. Hello packets include fields for the originating router to specify its Router Priority and for the IP addresses of the connected interfaces of the routers it considers the DR and BDR. When an interface first becomes active on a multi-access network, it sets the DR and BDR fields to 0.0.0.0 in the Hello Packet. The election process takes place after the 2-way communication has taken place. The Router with the Highest Priority becomes the DR and next highest priority becomes the BDR. In case of a tie, for either the DR or BDR, the Highest Router ID ( IP Address) is used to break the tie. Once a DR or BDR is chosen, even if a new router with a higher priority comes up, it will not become a DR or BDR.

Point-to-point Networks • •



Networks like T1 or a Fractional T1, that connect a pair of Routers to each other are examples of Point-to-point networks. Neighbors on a Point-to-point network form adjacency with each other. The destination address on Point-to-point networks is always 224.0.0.5, known as AllSPFRouters. There are no DR or BDR router types on a Point-to-point network. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 81 of 197

NBMA Networks • •

• • •

Networks like Frame Relay,X.25 or ATM, are examples of NBMA networks. These type of networks do have the capability to connect more than two routers but have no capability of broadcasts. A packet sent by one of the attached routers would not be received by all other attached routers. OSPF routers on NBMA elect a DR and BDR and all OSPF packets are unicast. All routers form an adjacency with the DR and BDR. Careful selection of DR and BDR has to be done in the Hub-and-Spoke configuration of NBMA networks.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 82 of 197

OSPF Protocols and Packets • •



OSPF consists of a set of individual protocols all working together to build a fast and scalable interior routing protocol. OSPF protocols are: • Hello Protocol • Exchange Protocol • Flooding Protocol These protocols are used in different packet types. The different packet types, their descriptions are listed in the following Table.

Packet Type 1

Name

Description

Protocol Used

Hello

Used to build Adjacencies or Neighbor Relations. Carries Parameters on which neighbors must agree in order to form an adjacency Used to check Synchronization between routers Used to request specific Link State records from a Neighbor Router Used to send specific Link State records from router to router Used to Acknowledge the above Packet to provide Reliability

Hello

2

Database Description

3

Link State Request

4

Link State Update

5

Link State Advertisements

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 83 of 197

Exchange

Exchange

Flooding

All

Problems with a large OSPF single area •

Frequent SPF algorithm calculation: In large networks, network changes are inevitable, so the routers would have to spend more CPU cycles for recalculating SPF.



Large Routing Table: Each router would need to maintain at least one entry per network, and if we have provided redundancy to some of the links, then more entries will be found in the routing table.



Huge Link-State Database: Remember each point-to-point link will have 2 entries and so on, so one can imagine the number of entries in that database.

Solution in Hierarchical routing (multiple Areas) •

In OSPF we can divide a large Area into smaller areas.



Routing still occurs between the areas called inter-area routing.



If one of the areas is having a flapping link, it will not have an effect on the other areas, because the traffic will always be restricted to that area If you summarization is performed on the ABR.

Benefits •

Reduced Frequency of SPF calculation: detailed routing information is kept within each area so its not necessary to flood all Link-State changes to all other areas, thus not all routers need to run the SPF calculations.



Smaller Routing Table: Because detailed routing information is kept within an area, the routers within an area will have smaller routing table.



Reduced Link-State Updates: LSU s can contain a variety of LSA types, instead of sending an LSU about each network within an area, you can advertise a single or fewer summarized routes between areas to reduce overhead associated with LSU s.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 84 of 197

Multi-Area Components • • • •

Routers LSAs Areas Virtual-Links

Note. Hierarchical routing enables routing efficiency because it allows you to control the type of routing information that you allow in and out of an area.

Routers In an OSPF Multi-Area 1. Internal Routers (IR): • •

All interfaces are in the same area. All routers have an identical Link-State database.

2. Back Bone Routers (BBR): • •

All the IR s in area 0 are called the backbone routers. They must have at least one interface in Area 0.

3. Area Border Routers (ABR): • • • •

Routers that have interfaces to multiple areas. These routers will maintain a separate Link-State Database for each area to which they are connected. An exit point for an area. ABR s can summarize the routes from one area and advertise a summarized route/s to the other areas.

4. Autonomous System Boundary Routers (ASBR): • •

Routers that have at least one interface into an external network such as Non-OSPF network. These routers can redistribute Non-OSPF routes into OSPF networks.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 85 of 197

Link-State Types 1. 2. 3. 4. 5. 6. 7.

LSA LSA LSA LSA LSA LSA LSA

Type Type Type Type Type Type Type

1: 2: 3: 4: 5: 6: 7:

Router Link Entry. Network Link Entry. Summary Link Entry. Summary Link Entry. Autonomous System External Link Entry. MOSPF. NSSA.

1. LSA Type 1: • • • • •

Router Link Entry. Identified by the letter O in the routing table. Generated by all routers. Describes the states of the router’s link to the area. Flooded within any area.

2. LSA Type 2: • • • • •

Network Link Entry. Identified by the letter O in the routing table. Generated by DR/BDR in multi-access networks. Describes the set of routers attached to that multi-access networks. Flooded within any area that has DR/BDR s.

3. LSA Type 3: • • • • •

Summary Link Entry Identified by the letter IA in the routing table. Generated by ABR. Describes the networks in a given area to the backbone area and vise versa. Flooded throughout the backbone area or from backbone area to other areas.

4. LSA Type 4: •

Summary Network Link Entry. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 86 of 197

• •

• • •

LSA Type 4s are not seen in the routing table, LSA Type 4 is only seen in the Link-State Database. Generated by the ASBR. In a multi-area it will be given to the ABR of the same area , and the ABR will flood the LSAs to the other areas. Describes reachibility to ASBR. Flooded throughout an OSPF autonomous area except in Totally Stubby areas. When LSA Type 4s are flooded, LSA Type 5s are seen as well.

5. LSA Type 5: • • • • • •

Autonomous System External Link Entry. Identified by the letter E1 or E2 in the routing table. Generated by the ASBR. Describes the routes to destination/s external to the OSPF autonomous system. Flooded throughout an OSPF autonomous system except STUB, TOTALLY STUBBY, and NSSA areas. When LSA Type 5s are flooded, LSA Type 4s are seen as well.

6. LSA Type 6: • • •

Group Membership Link Entry. Flooded by a Multicast OSPF Router (MOR). Distributes group-membership location information throughout the routing domain.

7. LSA Type 7: • • • • •

Not-So-Stubby Autonomous System External Link Entry. Generated by ASBR in a NSSA. These LSAs are then translated to LSA Type 5 and flooded into the Backbone Area. Identified by the letter N1 or N2 in the routing tables of the routers in that particular NSSA. Describes the routes to destination/s external to the OSPF autonomous system.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 87 of 197

E1, E2, N1, and N2 entries in the routing table: The cost of an external route differs depending on the external type configuration on the ASBR. The external-types are as follows: •

E1: If a packet is E1 then the metric is calculated by adding the external cost to the internal cost of each link the packet crosses, used only when there are multiple ASBRs advertising a route to the same AS.



E2 (default): If a packet is E2 it will only have the external cost assigned, meaning ASBR’s cost to get to an external route, used only when there is one ASBR advertising an external route/s.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 88 of 197

Types Of Areas 1. Standard or Normal Area: • •

This could be any area that is not configured as Stub, Totally Stubby, or NSSA. Can accept any LSA Types 1,2,3,4,5 .

2. Back Bone Area (transit area): • • •



This is Area 0, area 0 must exist. All the other areas must have a Physical or Logical connectivity to the backbone area. If a new area is added and it does not have direct connection to the backbone area, a virtual link must be configured to provide the needed connectivity to the backbone area. The virtual Link provides the disconnected area with a logical path to the backbone so the disconnected area can communicate with other areas.

3. Stub Area: • • •



Does not accept information about routes external to the AS. If routers need to route to networks outside an AS, they will use a default route (0.0.0.0). This kind of area reduces the size of the Link-State Database, and as a result of that it reduces the memory requirements of the routers inside that area. External networks LSA Type 5s are not allowed to be flooded into a Stub area, to get to external networks, routers will use the default route.

4. Totally Stubby Area: • • • • •

Does not accept external AS routes, or summary routes from other areas internal to the AS. A default route is injected for reachibility to other networks outside that area. Cisco Proprietary solution. Flooded LSAs are: LSA Type 1, and Type 2. Can only be used if all the routers are CISCO. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 89 of 197



To get to external networks, routers will use the default route.

5. Not-So-Stubby: • • • • • • •

Available in IOS versions 11.2 and higher. Defined in RFC 1587. It’s a hybrid Stub area, that can accept external routes with using LSA Type 7s. LSA Type 7s can be originated and advertised throughout a NSSA. LSA Type 7s will then be translated into LSA Type 5s by the ABR and flooded into area 0. NSSA can only receive LSA Types 1,2,3, and 7. Prior to NSSA, if an area had an external route, that area could not be set to STUB of any kind.

Virtual-Links and their Purpose •

Linking an area that does not have a physical connection to the Backbone area.



Linking fragmented Backbone area.



To add redundancy incase a router failure causes the Backbone area to be split into two.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 90 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 5 – OSPF Labs

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 91 of 197

Lab 1 – OSPF Over Ethernet

R2

R1

L0 2.2.2.2/8

L0 1.1.1.1/8

E 0/0 (.2)

E 0/0 (.1)

L0 192.1.100.0/24

E 0/0 (.4)

E 0/0 (.3)

L0 3.3.3.3/8

L0 4.4.4.4/8 R3

R4

R1 Configuration Interface Loopback 0 E 0/0

IP Address 1.1.1.1 192.1.100.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.100.2

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 3.3.3.3 192.1.100.3

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 E 0/0

R3 Configuration Interface Loopback 0 E 0/0

R4 Configuration Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 92 of 197

Interface Loopback 0 E 0/0

IP Address 4.4.4.4 192.1.100.4

Subnet Mask 255.0.0.0 255.255.255.0

Objective: Configuring OSPF over an Ethernet network and getting used to different Show commands

On R1 R1(config)#Router ospf 1 R1 (config-router)#net 1.0.0.0 0.255.255.255 area 0 R1 (config-router)#net 192.1.100.0 0.0.0.255 area 0

On R2 R2(config)#Router ospf 1 R2 (config-router)#net 2.0.0.0 0.255.255.255 area 0 R2 (config-router)#net 192.1.100.0 0.0.0.255 area 0

On R3 R3(config)#Router ospf 1 R3 (config-router)#net 3.0.0.0 0.255.255.255 area 0 R3 (config-router)#net 192.1.100.0 0.0.0.255 area 0

On R4 R4(config)#Router ospf 1 R4 (config-router)#net 4.0.0.0 0.255.255.255 area 0 R4 (config-router)#net 192.1.100.0 0.0.0.255 area 0

Test the Configuration •

Type SH IP OSPF NEIGHBOR Neighbor ID: Neighbor’s Router ID Pri: Neighbor’s Priority, used in DR and BDR election State: Init State First Hello is sent 2-Way Neighbor discovered, but adjacency not built Exstart Neighbor’s form a Master/Slave Relationship. Based on the Highest IP address. Initial sequence number established Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 93 of 197

Exchange The router’s exchange Database Description packets to tell each other about the routes it knows about. A request list is created. Loading Link State Request is sent to each other and based on the LSR’s received, Link State Update packets are sent back in both directions. Full All neighbors have a consistent Database. DR The neighbor is the DR BDR The neighbor is the BDR DROTHER The neighbor is neither a DR nor BDR Address: The address of the neighbor router’s interface Interface: The local interface that connects to the neighbor router Format: 2.2.2.2 3.3.3.3 4.4.4.4



1 1 1

full/drother full/bdr full/dr

192.1.100.2 192.1.100.3 192.1.100.4

E 0/0 E 0/0 E 0/0

Type SH IP OSPF DATABASE ROUTER.

Displays all the router LSA’s received by your router. •

Type SH IP OSPF DATABASE NETWORK

Displays all the Network LSA’s received by your router. Send out by the DR. Includes the following information: o DR Address o All the attached routers of the area •

Type SH IP OSPF INTERFACE E 0/0

Shows the following information: • • • • • •

IP Address of the Interface Area ID Process ID Network Type Cost (108/Bandwidth) DR and BDR Router ID’s and IP addresses Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 94 of 197

• • •

Interval’s for Hello, Dead, Wait and Retransmit Total # of Neighbors and Adjacent Neighbors Type SH IP ROUTE O – OSPF Intra-Area Route 110 – Administrative Distance for OSPF 11 – Cost

Default Cost Values for Common Intrefaces Interface FDDI/Fast Ethernet Loopback HSSI 16 M Token Ring Ethernet 4 M Token Ring Serial

Cost 1 1 2 6 10 25 64

Other Useful Commands

Command IP OSPF COST [Value] IP OSPF Hello-Interval [Value] IP OSPF Dead-Interval [Value] IP OSPF Priority [Value]

auto-cost reference-bandwidth

Debug IP OSPF Packet Debug IP OSPF Adj

Explanation Changes the default cost of an Interface Change the Hello-interval Changes the Dead-interval Changes the Priority. Used in forcing one of the router’s to be the DR or BDR Used when you have a Gigabit Ethernet connection and 108 does not work correctly. Shows all packets for OSPF Displays the Hello packets and DR and BDR Election

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 95 of 197

Lab 2 –Specifying DR and BDR (Builds on Lab 1) Objective: Controlling the selection of the DR and BDR on a Ethernet Segment

On R1 R1(config)#Int E 0/0 R1(config-if)#IP OSPF priority 100 R1(config-if)#shut

On R2 R2(config)#Int E 0/0 R2(config-if)#IP OSPF priority 50 R2(config-if)#shut

On R3 R3(config)#Int E 0/0 R3(config-if)#IP OSPF priority 0 R3(config-if)#shut

On R4 R4(config)#Int E 0/0 R4(config-if)#IP OSPF priority 0 R4(config-if)#shut •

Bring All E 0/0 interfaces UP



Type SH IP OSPF NEIGHBOR



Use Up arrow key and Enter to keep on repeating the commands and see the state of the routers going from Init to Full. Also note the Roles of the Routers



Type SH IP OSPF INT E 0/0 to see the DR and BDR for the Network.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 96 of 197

Lab 3 – Clear Text Authentication (Builds on Lab 2) Objective: Use Clear Text authentication to authenticate all 4 routers •

Type DEBUG IP OSPF PACKET

You should see the following output: OSPF: rcv. V:2 t:1 l:56 rid:2.2.2.2 Aid:0.0.0.0 chk:965A aut:0 auk: from E 0/0

v: t:

Stands for OSPF Version OSPF Packet Type 1- Hello; 2- Data Description; 3-LS Req. 4- LS Update 5-LSA l: Length of packet rid: Router ID Chk: Checksum Aut: Authentication type 0: No Authentication; 1:Simple; 2:md5 Auk: Authentication Key (used only for md5)



Type U ALL

On RI and R2 Rx(config)#Int E 0/0 Rx(config-if)#IP OSPF authentication-key Cisco Rx(config-if)#IP OSPF authentication

On All Routers •

Type Clear IP Route *



Type SH IP Route



Notice R1 and R2 talk to each other and R3 and R4 only see the directly connected networks

ON R3 and R4 Rx(config)#Int E 0/0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 97 of 197

Rx(config-if)#IP OSPF authentication-key Cisco Rx(config-if)#IP OSPF authentication On All Routers •

Type Debug IP OSPF Packet

You should see the following: OSPF: rcv. V:2 t:1 l:56 rid:2.2.2.2 Aid:0.0.0.0 chk:965A aut:1 auk: from E 0/0



Aut:1 tells you that you are using Simple Authentication

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 98 of 197

Lab 4 – MD5 Authentication (Builds on Lab 3) Objective: Use MD5 authentication to authenticate all 4 routers •

Type U ALL

On All Routers Rx(config)#Int E 0/0 Rx(config-if)#IP OSPF message-digest-key 1 md5 ccnp Rx(config-if)#IP OSPF authentication message-digest

On All Routers •

Type Clear IP Route *



Type SH IP Route



Type Debug IP OSPF Packet



You should see the following:

OSPF: rcv. V:2 t:1 l:56 rid:2.2.2.2 Aid:0.0.0.0 chk:965A aut:2 key: from E 0/0



Aut:2 tells you that you are using md5 authentication

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 99 of 197

Lab 5 – OSPF in a Point-to-Point Configuration

R1

S 0/0(.1)

R2

192.1.12.0/24

L0 1.1.1.1/8

S 0/0 (.2)

L0 2.2.2.2/8

Objective: Configuring OSPF over a Point-to-point network and getting used to different Show commands

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0

On R1 R1(config)#Router ospf 1 R1 (config-router)#net 1.0.0.0 0.255.255.255 area 0 R1 (config-router)#net 192.1.12.0 0.0.0.255 area 0

On R2 R2(config)#Router ospf 1 R2 (config-router)#net 2.0.0.0 0.255.255.255 area 0 R2 (config-router)#net 192.1.12.0 0.0.0.255 area 0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 100 of 197

Test the Configuration •

Type SH IP ROUTE



What routes do you see?



Type SH IP OSPF NEIGHBOR



Notice the State (Full/-). There is no DR or BDR in a Point-to-point network.



Type SH IP OSPF INT S 0/0



Notice the Network Type is POINT-TO-POINT and No DR or BDR information is displayed



Type SH IP OSPF DATABASE NETWORK



No Type 2 LSA (Network LSA’s) are displayed. Type 2 LSA’s are only displayed for Broadcast Multi-access(BMA) or Non-Broadcast Multiaccess Networks(NBMA).

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 101 of 197

Lab 6 – OSPF in a Mixed Topology

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

E 0/0 (.2)

192.1.23.0/24

S 0/0(.4)

E 0/0 (.3)

192.1.34.0/24

L0 4.4.4.4/8

S 0/0 (.3)

R4

L0 3.3.3.3/8

R3

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.2

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3 192.1.34.3

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0 E 0/0

R3 Configuration Interface Loopback 0 E 0/0 S 0/0

R4 Configuration Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 102 of 197

Interface Loopback 0 S 0/0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

Objective: Configuring OSPF with P-2-P and Ethernet networks. You also take a look at the LSA Database

On R1 R1(config)#Router ospf 1 R1(config-router)#net 1.0.0.0 0.255.255.255 area 0 R1(config-router)#net 192.1.12.0 0.0.0.255 area 0

On R2 R2(config)#Router ospf 1 R2(config-router)#net 2.0.0.0 0.255.255.255 area 0 R2(config-router)#net 192.1.12.0 0.0.0.255 area 0 R2(config-router)#net 192.1.23.0 0.0.0.255 area 0

On R3 R3(config)#Router ospf 1 R3(config-router)#net 3.0.0.0 0.255.255.255 area 0 R3(config-router)#net 192.1.23.0 0.0.0.255 area 0 R3(config-router)#net 192.1.34.0 0.0.0.255 area 0

On R4 R4(config)#Router ospf 1 R4(config-router)#net 4.0.0.0 0.255.255.255 area 0 R4(config-router)#net 192.1.34.0 0.0.0.255 area 0 •

Type SH IP ROUTE



Do you see all the routes?



Type SH IP OSPF NEIGHBOR



How many Neighbors do you see and What are their States and Designations



Type SH IP OSPF DATABASE ROUTER Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 103 of 197

You should see Four Router’s Advertising with the following Information •







Router ID: 1.1.1.1 (R1) should advertise 3 links: A link to the Stub Network ( 1.1.1.1) A Point-to-point link to Router 2 (R2) A Stub Network for the Point-to-point link (192.1.12.0) Router ID: 2.2.2.2 (R2) should advertise 4 Links: A link to the Transit Network (192.1.23.0) A link to the Stub Network (2.2.2.2) A Point-to-point link to Router 1 (R1) A Stub Network for the Point-to-point link (192.1.12.0) Router ID: 3.3.3.3 (R3) should advertise 4 Links: A link to the Transit Network (192.1.23.0) A link to the Stub Network (3.3.3.3) A Point-to-point link to Router 4 (R4) A Stub Network for the Point-to-point link (192.1.34.0) Router ID: 4.4.4.4 (R4) should advertise 2 links: A link to the Stub Network ( 4.4.4.4) A Point-to-point link to Router 3 (R3) A Stub Network for the Point-to-point link (192.1.34.0)

Table for the Link ID and Data Type 1

Network Description Point-to-Point Connection to another Router

Link ID Neighboring Router’s ID

2

Connection to a Transit Network

IP address of the DR’s Interface

3

Connection to a Stub Network

IP Address of the Network

Link Data IP Address of originating Router’s Interface to the Network IP Address of the Originating Router’s Interface to the Network Subnet Mask

* A point-to-point link is considered a Stub Network

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 104 of 197

Lab 7 – Redistributing OSPF and RIP (Builds on Lab 6) Objective: Performing Mutual Redistribution between RIP and OSPF. Run RIP between R1 and R2. Run OSPF between R2, R3 and R4.

Disabling OSPF between R1 and R2. Run RIP v2 between R1 and R2. Advertise all the loopbacks in RIP on R1 and R2 On R1 R1(config)#no Router ospf 1 R1(config)#Router rip R1(config-router)#no auto-summary R1(config-router)#version 2 R1(config-router)#net 1.0.0.0 R1(config-router)#net 192.1.12.0

On R2 R2(config)#Router rip R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#router ospf 1 R2(config-router)#no net 192.1.12.0 0.0.0.255 area 0 R2(config-router)#no net 2.0.0.0 0.255.255.255 area 0

On All Router’s •

Type SH IP ROUTE



Do R3 and R4 see the 1.0.0.0 network?



Does R1 see the 3.0.0.0 and 4.0.0.0 network?

Redistribute RIP into OSPF and OSPF into RIP On R2 R2(config)#router rip R2(config-router)#redistribute ospf 1 metric 2 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 105 of 197

R2(config-router)#router ospf 1 R2(config-router)#redistribute rip metric 10 subnets

On All Router’s •

Type SH IP ROUTE on R3 and R4.



Do you see another Type of Route?



How does E2 calculate the Metric?



Ping 1.1.1.1 from R3 and R4. Can you ping?



Ping 4.4.4.4 from R1. Can you Ping?

Redistribute RIP into OSPF and OSPF into RIP Using E1 routes On R2 R2(config)#router ospf 1 R2(config-router)#no redistribute rip metric 10 R2(config-router)#redistribute rip metric 10 metric-type 1

On All Router’s •

Type SH IP ROUTE on R3 and R4.



Do you see another Type of Route?



How does E1 calculate the Metric?

On All OSPF Routers (R2, R3 and R4) •

Type SH IP OSPF BORDER-ROUTERS



How many router’s show in the list?



What type of router is it?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 106 of 197

Lab 8 – Redistributing OSPF and EIGRP (Builds on Lab 7) Objective: Performing Mutual Redistribution between EIGRP and OSPF. Run EIGRP between R1 and R2. Run OSPF between R2, R3 and R4.

Disable RIP between R1 and R2. Run EIGRP 1 instead. Advertise all the loopbacks on R1 and R2 in EIGRP On R1 R1(config)#no router rip R1(config)#router eigrp 1 R1(config-router)#net 1.0.0.0 R1(config-router)#net 192.1.12.0

On R2 R2(config)#no router rip R2(config)#router ospf 1 R2(config-router)#no redistribute rip subnets metric-type 1 R2(config-router)#router eigrp 1 R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0

On All Router’s •

Type SH IP ROUTE



Do R3 and R4 see the 1.0.0.0 network?



Does R1 see the 3.0.0.0 and 4.0.0.0 network?

Redistribute EIGRP into OSPF and OSPF into EIGRP On R2 R2(config)#router eigrp 1 R2(config-router)#redistribute ospf 1 metric 1544 2000 255 1 1500 R2(config-router)#router ospf 1 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 107 of 197

R2(config-router)#redistribute eigrp 1 subnets

On All Router’s •

Type SH IP ROUTE on R3 and R4. Do you see another Type of Route?



Ping 1.1.1.1 from R3 and R4. Can you ping?



Ping 4.4.4.4 from R1. Can you Ping?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 108 of 197

Lab 9 – Redistributing Static Routes with OSPF (Builds on Lab 8) Objective: Redistributing Static routes with OSPF. Configure Static routes between R1 and R2. Redistribute the static routes on R2 into OSPF.

Disable EIGRP between R1 and R2. Configure Static routes on R2 towards R1’s Networks. Configure a default route on R1 towards R2. On R1 R1(config)#no router eigrp 1 R1(config)#ip route 0.0.0.0 0.0.0.0 192.1.12.2

On R2 R2(config)#no router eigrp 1 R2(config)#router ospf 1 R2(config-router)#no redistribute eigrp 1 metric 10 metric-type 1 R2(config-router)#ip route 1.0.0.0 255.0.0.0 192.1.12.1

On All Router’s •

Type SH IP ROUTE



Do R3 and R4 see the 1.0.0.0 network?

Redistribute Static Routers into OSPF. OSPF should add the cost of the links when forwarding the routes downstream On R2 R2(config-router)#router ospf 1 R2(config-router)#redistribute static metric-type 1 subnets

On All Router’s • • •

Type SH IP ROUTE on R3 and R4. Do you see another Type of Route? Ping 1.1.1.1 from R3 and R4. Can you ping? Ping 4.4.4.4 from R1. Can you Ping? Why or why not? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 109 of 197

Lab 10 – Redistributing Connected Networks with OSPF (Builds on Lab 9) Objective: Redistributing directly connected routes into OSPF. Make sure to only redistribute the specified directly connected routes

Create 3 additional Loopback Interfaces on R2 (5.5.5.5/8, 6.6.6.6/8 and 7.7.7.7/8) On R2 R2(config)#int loo 5 R2(config-if)#ip addr 5.5.5.5 255.0.0.0 R2(config-if)#int loo 6 R2(config-if)#ip addr 6.6.6.6 255.0.0.0 R2(config-if)#int loo 7 R2(config-if)#ip addr 7.7.7.7 255.0.0.0

On All Router’s •

Type SH IP ROUTE



Do R3 and R4 see the 5.0.0.0, 6.0.0.0 and 7.0.0.0 networks?

Redistribute the newly created directly connected Networks into OSPF. Also, make sure that R1 can ping R3 and R4 loopbacks. On R2 R2(config)#access-list 1 permit 192.1.12.0 0.0.0.255 R2(config)#access-list 1 permit 5.0.0.0 0.255.255.255 R2(config)#access-list 1 permit 6.0.0.0 0.255.255.255 R2(config)#access-list 1 permit 7.0.0.0 0.255.255.255 R2(config)#route-map C-2-O permit 10 R2(config-route-map)#match ip address 1 R2(config-route-map)#router ospf 1 R2(config-router)#redistribute connected route-map C-2-O subnets

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 110 of 197

On All Router’s •

Type SH IP ROUTE on R3 and R4. Do you see new Routes?



Ping 5.5.5.5 from R3 and R4. Can you ping?



Can you ping 3.3.3.3 and 4.4.4.4 from R1 now?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 111 of 197

Lab 11 – Injecting Default Route into OSPF (Builds on Lab 10) Objective: Injecting Default Route into OSPF

Disable and Re-enable OSPF on R2. Only enable it for the 192.1.23.0 network. Inject a Default route into OSPF so that R3 and R4 can reach R1 and R2 loopback networks. On R2 R2(config)#no router ospf 1 R2(config)#router ospf 1 R2(config-router)#net 192.1.23.2 0.0.0.0 area 0 R2(config-router)#default-information originate always

On All Router’s •

Type SH IP ROUTE



Do you see a 0.0.0.0 route in the routing table of R3 and R4. Is the Gateway of Last resort set?



Can R3 and R4 Ping 1.1.1.1 and the 5.5.5.5 networks?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 112 of 197

Lab 12 – OSPF over NBMA using the Broadcast Network Statement R1

R3

R2 Frame-Relay

Objective: Configure OSPF to run over a NBMA network by changing the network type to Broadcast.

IP addressing and DLCI information Chart Routers R1

IP address S0/0: 192.1.123.1/24

Local DLCI 102

Connecting to: R2

103

R3

R2

S0/0: 192.1.123.2 /24

201

R1

R3

S0/0: 192.1.123.3 /24

301

R1

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 113 of 197

Configure Frame Relay on the S0/0 interface based on the table above. Configure Static Frame-relay map statements. Make sure that Spokes can ping each other. Also configure Loopback Interfaces (1.1.1.1/8 ,2.2.2.2/8 and 3.3.3.3/8) on the respective routes and enable them in OSPF. On R1 R1(config)#int S 0/0 R1(config-if)#ip address 192.1.123.1 255.255.255.0 R1(config-if)#encapsulation frame-relay R1(config-if)#frame-relay map ip 192.1.123.2 102 broadcast R1(config-if)#frame-relay map ip 192.1.123.3 103 broadcast R1(config-if)#no shut R1(config-if)#int loopback 0 R1(config-if)#ip address 1.1.1.1 255.0.0.0 R1(config)#Router ospf 1 R1(config-router)#net 1.1.1.1 0.0.0.0 area 0 R1(config-router)#net 192.1.123.0 0.0.0.255 area 0

On R2 R2(config)#int S 0/0 R2(config-if)#ip address 192.1.123.2 255.255.255.0 R2(config-if)#encapsulation frame-relay R2(config-if)#frame-relay map ip 192.1.123.1 201 broadcast R2(config-if)#frame-relay map ip 192.1.123.3 201 R2(config-if)#no shut R2(config-if)#int loopback 0 R2(config-if)#ip address 2.2.2.2 255.0.0.0 R2(config)#Router ospf 1 R2(config-router)#net 2.2.2.2 0.0.0.0 area 0 R2(config-router)#net 192.1.123.0 0.0.0.255 area 0

On R3 R3(config)#int S 0/0 R3(config-if)#ip address 192.1.123.3 255.255.255.0 R3(config-if)#encapsulation frame-relay R3(config-if)#frame-relay map ip 192.1.123.1 301 broadcast R3(config-if)#frame-relay map ip 192.1.123.2 301 R3(config-if)#no shut R3(config-if)#int loopback 0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 114 of 197

R3(config-if)#ip address 3.3.3.3 255.0.0.0 R3(config)#Router ospf 1 R3(config-router)#net 3.3.3.3 0.0.0.0 area 0 R3(config-router)#net 192.1.123.3 255.255.255.0 area 0

On All Routers  Type SH IP ROUTE  How many networks do you see?  Type SH IP OSPF INT S 0/0?  What type of network is it? Does it send the OSPF routing packets?

Problem: OSPF send’s Multicast packets, which is a form of Broadcast and this is a non-broadcast network. Solution: Turn it into a Broadcast network. In a Hub-n-spoke network, make sure the Hub is the DR by setting the spokes with a priority of 0. On R2 and R3 Rx(config)#int S 0/0 Rx(config-if)#shut Rx(config-if)# IP OSPF Network broadcast Rx(config-if)# IP OSPF priority 0 Rx(config-if)#no shut

On R1 R1(config)#int S 0/0 R1(config-if)#shut R1(config-if)# IP OSPF Network broadcast Rx(config-if)#no shut •

Type SH IP ROUTE



How many networks do you see?



Can you ping the loopback interfaces across the network? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 115 of 197

Lab 13 – OSPF over NBMA using the Neighbor Statement (Builds on Lab 12) Objective: Configure OSPF to run over a NBMA network by using the Neighbor command

Change the Network type back to Non-Broadcast on all the Routers On All Routers Rx(config)#int S 0/0 Rx(config-if)#sh Rx(config-if)# NO IP OSPF network broadcast Rx(config-if)#no shut

On All Routers •

Type SH IP ROUTE



How many networks do you see?



Type SH IP OSPF INT S 0/0?



What type of network is it?

Problem: OSPF send Multicast packets, which is a form of Broadcast and this is a non-broadcast network. Solution: Have OSPF send Unicast Packets using Neighbor Statement On R1 R1(config)#router ospf 1 R1(config-router)#neighbor 192.1.123.2 R1(config-router)#neighbor 192.1.123.3 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 116 of 197

On R2 R2(config)#router ospf 1 R2(config-router)#neighbor 192.1.123.1

On R3 R3(config)#router ospf 1 R3(config-router)#neighbor 192.1.123.1

On All Routers •

Type SH IP ROUTE



How many networks do you see?



Ping the loopback interfaces across the Network.



Are you successful?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 117 of 197

Lab 14 – OSPF over NBMA using the Point-to-Multipoint Network Type (Builds on Lab 13) Objective: Configure OSPF to run over a NBMA network by changing the Network type of point-to-multipoint. This network will not need a DR or BDR.

Delete the Neighbor Statements on all the Routers On R1 R1(config)#router ospf 1 R1(config-router)#no neighbor 192.1.123.2 R1(config-router)#no neighbor 192.1.123.3

On R2 R2(config)#router ospf 1 R2(config-router)#no neighbor 192.1.123.1

On R3 R3(config)#router ospf 1 R3(config-router)#no neighbor 192.1.123.1

On All Routers •

Type SH IP ROUTE



How many networks do you see?



Type SH IP OSPF INT S 0/0?



What type of network is it?

Problem: OSPF send Multicast packets, which is a form of Broadcast and this is a non-broadcast network.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 118 of 197

Solution: Turn the network type to point-to-multipoint, which is a form of point-to-point link and does not require any DR/BDR. Hence no need to set the priorities on the Spokes to 0. Change the Network type back to Point-to-multipoint on all the Routers On R1 R1(config)#int S 0/0 R1(config-if)#sh R1(config-if)#IP ospf network point-to-multipoint R1(config-if)#no shut

On R2 and R3 Rx(config)#int S 0/0 Rx(config-if)#sh Rx(config-if)#IP ospf network point-to-multipoint Rx(config-if)#no IP ospf priority 0 Rx(config-if)#no shut

On All Routers •

Type SH IP ROUTE



How many networks do you see?



Ping the loopback interfaces across the Network.



Are you successful?



Type Show IP ospf interface S 0/0.



Is there a DR/BDR on this network?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 119 of 197

Lab 15 – Multi-Area Connection

L0 1.1.0.0 – L3 1.1.3.0/24

R1

S 0/0(.1)

R2

192.1.12.0/24

L0 2.1.0.0 – L3 2.1.3.0/24

S 0/0 (.2)

Area 10 E 0/0 (.2)

192.1.23.0/24 E 0/0 (.3) S 0/0(.4)

L0 4.1.0.0 – L3 4.1.3.0/24 R4

192.1.34.0/24

Area 100

L0 3.1.0.0 – L3 3.1.3.0/24

S 0/0 (.3)

R3

R1 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 S 0/0

IP Address 1.1.0.1 1.1.1.1 1.1.2.1 1.1.3.1 192.1.12.1

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 2.1.0.1 2.1.1.1 2.1.2.1 2.1.3.1 192.1.12.2 192.1.23.2

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 S 0/0 E 0/0

Area 0

R3 Configuration Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 120 of 197

Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 E0/0 S 0/0

IP Address 3.1.0.1 3.1.1.1 3.1.2.1 3.1.3.1 192.1.23.3 192.1.34.3

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 4.1.0.1 4.1.1.1 4.1.2.1 4.1.3.1 192.1.34.4

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

R4 Configuration Interface Loopback 0 Loopback 1 Loopback 2 Loopback 3 S 0/0

Objective: Configure OSPF in a Multi-area configuration based on the network diagram. Advertise all the loopbacks on all the routers. Verify the different types of routes in a Multi-area configuration.

Configure OSPF and advertise the loopbacks on all the routers based on the network. Configure the Loopbacks in Either Area 10 or Area 100 On R1 R1(config)#Router ospf 1 R1(config-router)#net 1.1.0 0.0.255.255 area 10 R1(config-router)#net 192.1.12 0.0.0.255 area 10

On R2 R2(config)#Router ospf 1 R2(config-router)#net 2.1.0.0 0.0.255.255 area 10 R2(config-router)#net 192.1.12.0.0 0.0.0.255 area 10 R2(config-router)#net 192.1.23.0.0 0.0.0.255 area 0

On R3 R3(config)#Router ospf 1 R3(config-router)#net 192.1.23.0 0.0.0.255 area 0 R3(config-router)#net 192.1.34.0 0.0.0.255 area 100 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 121 of 197

R3(config-router)#net 3.1.0.0 0.0.255.255 area 100 On R4 R4(config)#Router ospf 1 R4(config-router)#net 4.1.0.0 0.0.255.255 area 100 R4(config-router)#net 192.1.34.0 0.0.0.255 area 100

On All Routers •

Type SH IP ROUTE. Do you see all the routes ?



Do you see new type of routes?



What is the designation of the new type of routes?



Type SH IP OSPF BORDER-ROUTERS



Do you see the address of your ABR?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 122 of 197

Lab 16 – Multi-Area Connection using Route Summarization (Builds on Lab 15) Objective: Perform Route summarization such that all the Loopbacks from Area 10 and Area 100 are summarized

Summarize the 1.X.0.0 and 2.X.0.0 Area 10 routes on R2 On R2 R2(config)#router ospf 1 R2(config-router)# area 10 range 1.1.0.0 255.255.252.0 R2(config-router)# area 10 range 2.1.0.0 255.255.252.0

Summarize the 3.X.0.0 and 4.X.0.0 Area 100 routes on R3 On R3 R3(config)#router ospf 1 R3(config-router)# area 100 range 3.1.0.0 255.255.252.0 R3(config-router)# area 100 range 4.1.0.0 255.255.252.0

On All Routers •

Type SH IP ROUTE



Does your routing table have all the entries to all the networks outside your area?



Can you ping the other area Hosts?



What are the benefits of Route Summarization?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 123 of 197

Lab 17 – Configuring Stub Area

L0 1.1.0.0 – L1 1.1.1.0/24

R1

S 0/0(.1)

R2

192.1.12.0/24

L0 2.1.0.0 – L1 2.1.1.0/24

S 0/0 (.2)

Area 10

E 0/0 (.2)

192.1.23.0/24 E 0/0 (.3) S 0/0(.4)

L0 4.1.0.0 – L1 4.1.1.0/24 R4

192.1.34.0/24

Area 100

L0 3.1.0.0 – L1 3.1.1.0/24

S 0/0 (.3)

R3

R1 Configuration Interface Loopback 0 Loopback 1 S 0/0

IP Address 1.1.0.1 1.1.1.1 192.1.12.1

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 2.1.0.1 2.1.1.1 192.1.12.2 192.1.23.2

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 3.1.0.1 3.1.1.1 192.1.23.3

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 Loopback 1 S 0/0 E 0/0

R3 Configuration Interface Loopback 0 Loopback 1 E0/0

Area 0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 124 of 197

S 0/0

192.1.34.3

255.255.255.0

IP Address 4.1.0.1 4.1.1.1 192.1.34.4

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0

R4 Configuration Interface Loopback 0 Loopback 1 S 0/0

Objective: Configure OSPF in a Multi-area configuration based on the network diagram. Configure Area 10 and Area 100 as Stub Area’s to prevent External routes from the Backbone getting injected into it.

Configure OSPF and advertise the loopbacks on all the routers based on the network. Inject the 2.X.0.0 and 3.X.0.0 routes into OSPF using the Redistribute Connected statement such that they appear as External routes in OSPF On R1 R1(config)#Router ospf 1 R1(config-router)#net 192.1.12 0.0.0.255 area 10 R1(config-router)#net 1.1.0.0 0.0.255.255 area 10

On R2 R2(config)#Router ospf 1 R2(config-router)#net 192.1.12.0.0 0.0.0.255 area 10 R2(config-router)#net 192.1.23.0.0 0.0.0.255 area 0 R2(config-router)#redistribute connected subnets

On R3 R3(config)#Router ospf 1 R3(config-router)#net 192.1.23.0 0.0.0.255 area 0 R3(config-router)#net 192.1.34.0 0.0.0.255 area 100 R3(config-router)# redistribute connected subnets

On R4 R4(config)#Router ospf 1 R4(config-router)#net 4.1.0.0 0.0.255.255 area 100 R4(config-router)#net 192.1.34.0 0.0.0.255 area 100 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 125 of 197

On R1 and R4 •

Type SH IP ROUTE. Do you see all the routes ?



Do you see the external Routes (2.1.0.0, 2.1.1.0, 3.1.0.0 and 3.1.1.0)?

Configure Area 10 and 100 as Stub area’s. This will prevent external routes from the backbone from getting injected into it. On R1 and R2 Rx(config)#router ospf 1 Rx(config-router)#area 10 stub

On R3 and R4 Rx(config)#router ospf 1 Rx(config-router)#area 100 stub

On R1 and R4 •

Type SH IP ROUTE. Do you see all the routes ?



Do you see the external Routes (2.1.0.0, 2.1.1.0, 3.1.0.0 and 3.1.1.0)?



Do you see a Default Route?



Who injected this route into OSPF?



Can you still ping the external networks?



What type of routes do you not see in the routing table of a stub area?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 126 of 197

Lab 18 – Configuring a Totally Stub Area (Builds on Lab 17) Objective: Configure Area 10 and 100 as Totally Stubby area’s by also blocking the Inter-Area routes from propagating into it.

On R1 and R4 •

Type SH IP ROUTE. Do you see all the routes ?



Do you see the Inter-Area Routes?

Configure Area 10 and 100 as Totally Stubby area’s to block all inter-area routes from propagating into it. It should still maintain reachability to them On R2 R2(config)#router ospf 1 R2(config-router)#area 10 stub no-summary

On R3 R3(config)#router ospf 1 R3(config-router)#area 10 stub no-summary

On R1 and R4 •

Type SH IP ROUTE. Do you see all the routes ?



Do you see the Inter area Routes?



Do you see a Default Route?



Who gave you this route?



Can you still ping the 1.X.0.0 and 4.1.X.0 networks?



What type of routes do you not see in the routing table of a Totally stub area? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 127 of 197

Lab 19 – Configuring Not-so-Stubby Area

L0 1.1.1.1/24

R1

S 0/0(.1)

R2

192.1.12.0/24

L0 2.2.2.2/24

S 0/0 (.2)

RIP

E 0/0 (.2)

192.1.23.0/24 E 0/0 (.3) S 0/0(.4)

L0 4.4.4.4/24

R4

Area 10

192.1.34.0/24 S 0/0 (.3)

Area 0

L0 3.3.3.3/24

R3

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.255.255.0 255.255.255.0

IP Address 192.1.12.2 192.1.23.2 2.2.2.2

Subnet Mask 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 192.1.23.3 192.1.34.3

Subnet Mask 255.255.255.0 255.255.255.0

R2 Configuration Interface S 0/0 E 0/0 Loopback 0

R3 Configuration Interface E 0/0 S 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 128 of 197

Loopback 0

3.3.3.3

255.255.255.0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.255.255.0 255.255.255.0

R4 Configuration Interface Loopback 0 S 0/0

Objective: Configure OSPF in a Multi-area configuration based on the network diagram. Configure Area 10 as a NSSA Area’ to prevent External routes from the Backbone getting injected into it. Make sure that everybody outside of Area 10 has reachability to external routes injected by the ASBR in Area 10

Configure OSPF between R2, R3 and R4 in the appropriate areas based on the Network diagram. Advertise the Loopbacks on R2 and R3 into OSPF. Inject the 4.0.0.0 networks into OSPF using the Redistribute connected command so that they appear in OSPF as external routes. Run RIP between R1 and R2. Perform mutual Route redistribution between RIP and OSPF on R2. On R1 R1(config)#Router rip R1(config-router)#version 2 R1(config-router)#net 1.0.0.0 R1(config-router)#net 192.1.12.0

On R2 R2(config)#Router rip R2(config-router)#no auto-summary R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#redistribute ospf 1 metric 1 R2(config-router)#Router ospf 1 R2(config-router)#net 192.1.23.2 0.0.0.0 area 1 R2(config-router)#redistribute rip subnets

On R3 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 129 of 197

R3(config)#Router ospf 1 R3(config-router)#net 192.1.23.3 0.0.0.0 area 1 R3(config-router)#net 3.3.3.3 0.0.0.0 area 0 R3(config-router)#net 192.1.34.3 0.0.0.0 area 0

On R4 R4(config)#Router ospf 1 R4(config-router)#net 192.1.34.4 0.0.0.0 area 0 R4(config-router)#redistribute connected subnets

On R3 •

Type SH IP ROUTE



Do you see External Routes from the ABR (R3) and from ASBR(R2)?

Configure Area 10 as a NSSA area. This will stop the ABR from injecting the external routes from the backbone into Area 10. Area 10 external routes should will be injected in a Type 7 routes in Area 10 and then converted back into Type when send into the Backbone area. On R3 and R4 Rx(config)#router ospf 1 Rx(config-router)#area 10 nssa

On R4 •

Type SH IP ROUTE



Do you see any E routes?

On R3 •

Do you see any N routes? What type of LSA is the N routes?

On R2 •

Do you see any N routes? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 130 of 197



Do you still see the 4.0.0.0 network? What type of route is it?



What does the ABR do with the N routes (LSA Type 7)?

On R3 •

Do you see the RIP routes (1.0.0.0, 192.1.12.0) in the routing table?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 131 of 197

Lab 20 – Configuring NSSA – Stub Area (Builds on Lab 19) Objective: Configure Area 10 as a NSSA – Stub area to maintain reachability to the external routes from the Backbone.

On R4 •

Can R4 ping 1.1.1.1?

Configure R3 to inject a default route into R4 by making Area 10 into a NSSA – Stub area R3(config)#Router ospf 1 R3(config-router)#area 10 nssa default-information-originate

On R4 •

Type SH IP ROUTE



Do you see a new N2 Default Route?



Can you Ping 1.1.1.1 now?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 132 of 197

Lab 21 – Configuring NSSA – Totally Stubby Area (Builds on Lab 20) Objective: Configure Area 10 as a NSSA – Totally Stubby area to block the Inter-area routes as well from getting injected into Area 10.

On R4 •

Type SH IP ROUTE



Do you see the IA routes?



What if you want to cut your Routing table by blocking the Inter-area routes from getting injected into Area 10.

Configure Area 10 as a NSSA – Totally Stubby Area On R3 R3(config)#Router ospf 1 R3(config-router)#area 1 nssa no-summary On R4 •

Type SH IP ROUTE



Do you still see Inter-Area routes in Area 10?



Can you still ping 2.2.2.2 and 3.3.3.3 routes?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 133 of 197

Lab 22 – Configuring a Virtual Link

L0 1.1.0.0 – L1 1.1.1.0/24

R1

S 0/0(.1)

R2

192.1.12.0/24

L0 2.1.0.0 – L1 2.1.1.0/24

S 0/0 (.2)

Area 0

E 0/0 (.2)

192.1.23.0/24 E 0/0 (.3) S 0/0(.4)

L0 4.1.0.0 – L1 4.1.1.0/24 R4

192.1.34.0/24

Area 100

Area 10

L0 3.1.0.0 – L1 3.1.1.0/24

S 0/0 (.3)

R3

R1 Configuration Interface Loopback 0 S 0/0

IP Address 1.1.1.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.2

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3 192.1.34.3

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0 E 0/0

R3 Configuration Interface Loopback 0 E 0/0 S 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 134 of 197

R4 Configuration Interface Loopback 0 S 0/0

IP Address 4.4.4.4 192.1.34.4

Subnet Mask 255.0.0.0 255.255.255.0

Objective: Configure a Virtual-link between R2 and R3 to connect Area 100 to the Backbone area using Area 10 as the Transit Area for the Virtual Link

Configure OSPF between R1 – R4 in the Appropriate Areas. Advertise all the interfaces in OSPF. On R1 R1(config)#Router ospf 1 R1(config-router)#net 1.1.1.1 0.0.0.0 area 0 R1(config-router)#net 192.1.12.1 0.0.0.0 area 0

On R2 R2(config)#Router ospf 1 R2(config-router)#router-id 2.2.2.2 R2(config-router)#net 192.1.12.2 0.0.0.0 area 0 R2(config-router)#net 2.2.2.2 0.0.0.0 area 10 R2(config-router)#net 192.1.23.2 0.0.0.255 area 10

On R3 R3(config)#Router ospf 1 R3(config-router)#router-id 3.3.3.3 R3(config-router)#net 192.1.23.3 0.0.0.0 area 10 R3(config-router)#net 3.3.3.3 0.0.0.0 area 10 R3(config-router)#net 192.1.34.3 0.0.0.0 area 100

On R4 R4(config)#Router ospf 1 R4(config-router)#net 192.1.34.4 0.0.0.0 area 100 R4(config-router)#net 4.4.4.4 0.0.0.0 area 100

On R4 •

Type SH IP ROUTE. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 135 of 197



Do you see all the routes ?



What is the reason behind the missing routes?

Configure a Virtual Link between R2 and R3 to connect Area 100 to the Backbone area On R2 R2(config)#router ospf 1 R2(config-router)#area 10 virtual-link 3.3.3.3

On R3 R3(config)#router ospf 1 R3(config-router)#area 10 virtual-link 2.2.2.2

On R4  Type SH IP ROUTE  Can you all the routes from the backbone area?  Can you ping 1.1.1.1?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 136 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 6 – BGP

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 137 of 197

Border Gateway Protocol(BGP) FEATURES          

Inter-domain routing protocol also known as EGP Latest version is 4 Defined in RFC 1771 Autonomous system is a set of routers under a single technical administration, using an IGP & common metrics to route packets within the AS, and using an EGP to route packets to other AS Internet Assigned Numbers Authority (IANA) is responsible for allocating AS numbers AS number is a 16 bit number Range between 1 – 65535 64512 – 65535 reserved for private use like private IP addresses An autonomous system can be connected to more than one ISP. This type of AS is known as a Multihomed AS. This may be done for Redundancy or/and to increase performance through load balancing. BGP exchanges routes between AS in a loop free manner

ROUTING PROTOCOL COMPARISON Protocol

IGP/EGP

DV/LS

OSPF EIGRP BGP

IGP IGP EGP

LS Adv. DV Adv. DV

Hierarchy Required Yes No No

Metric Cost Composite Path Path Vectors or Attributes

WHEN TO USE BGP  An AS allows packets to transit through it to reach other AS (for example, ISP)  An AS has multiple connections to other AS  The flow of traffic entering & leaving your AS must be manipulated

SIZE OF AN INTERNET BGP ROUTER  > 30MB routing table  > 70,000 routes  > 6,500 AS numbers

WHEN NOT TO USE BGP (INSTEAD USE STATIC ROUTES)  A single connection to the Internet or other AS  Routing policy & route selection not a concern Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 138 of 197

 Lack of hardware requirements on the routers  Lack of understanding of route filtering & BGP path selection process  Low bandwidth between AS COMMAND SYNTAX FOR STATIC ROUTES  IP Route prefix mask {Address/Interface} [Distance]

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 139 of 197

BGP Terminology       

Advanced D.V. protocol Runs on top of the TCP port 179 hence provides reliability. Incremental, flash updates Periodic keepalives to verify connectivity Rich metric (called path vectors or attributes) Extremely Scalable BGP routers contain two tables  IGP routing table  BGP routing table  Information can be exchanged  Peers/Neighbors – any two routers that have formed a TCP connection in order to exchange BGP routing information INTERNAL BGP  When BGP neighbors belong to the same AS  Neighbors do not have to be directly connected but need to be able to reach each other. EXTERNAL BGP  BGP neighbors belong to different AS and should be able to reach each other.  Neighbors should be directly connected  Used to connect different Autonomous Systems to each other. POLICY BASED ROUTING  Administrators define policies or rules for how data will flow through the AS  BGP & associated tools cannot end-to-end policies. Admins can only influence how our traffic to our neighboring AS, but not beyond it.  This is known as hop-by-hop routing paradigm

BGP METRICS  Known as Path Attributes  Four Categories of Path Attributes  Well-Known Mandatory  Well-Known Discretionary  Optional Tranistive  Optional Non-Transitive WELL KNOW ATTRIBUTES  Recognized by al compliant BGP implementations Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 140 of 197

 Propagated to other neighbors  Well-Known Mandatory attributes must be present in all update messages  Well-Known Discretionary attributes could be present in an update OPTIONAL ATTRIBUTES  Recognized by some implementation’s  Recognized optional attributes are propagated based on their meaning  Optional Transitive Attributes: If not recognized, are marked as partial & propagated to other neighbors  Optional Non-Transitive Attributes: Discard if not recognized WELL KNOWN MANDATORY  AS Path: It identifies the autonomous systems through which routing information carried in this UPDATE message has passed.  Next-Hop: It defines the IP address of the border router that should be used as the next hop to the destinations listed in the UPDATE message. When going from a EBGP neighbor to an IBGP neighbor, the next hop attribute is carried along in the update.  Origin: Indicates where the route information originated from. It uses an “i” to indicate that the route was learned from an IGP and “e” for a route learned from an EGP. WELL KNOWN DISCRETIONARY  Local Preference: Send within the Local Autonomous System only. Indicates to Local Routers which path to take to exit the AS.  Atomic Aggregate: Indicates that a summarized route has been send to the neighbor. OPTIONAL TRANSITIVE  Aggregator: Indicates the AS # and IP address of the Router that performed the Aggregation,  Community: Indicates the community that the route belongs to. Helps in route-selection policy and filtering traffic. They allow to filter incoming and outgoing routes. They allow routers to make decisions based on the Community a route belongs to. OPTIONAL NON TRANSITIVE  Multi-Exit Discriminator (MED): Also known as Metric, is send to external neighbors. It indicates to the neighbor the preferred path into the AS. ADDITIONAL CISCO PROPERTY  Weight: Arbitrary number between 0 – 65535 which indicates to the router the preferred path to a given destination. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 141 of 197

 The Neighbor IP Address Weight Weight Command is used to set the Weight metric.

Route Selection Decision Process          

Highest Weight Highest Local Preference Route originated by the local router Shortest AS-Path Lowest Origin code ( IGP < EGP) Lowest MED from other AS EBGP over IBGP The Path through the closest IGP Neighbor Oldest route for EBGP Path with the lowest Neighbor BGP Router ID

Basic BGP Configuration Router BGP 100 (Where 100 is the Autonomous system on this router) Neighbor 192.1.1.1 remote-as 200) (The IP address of your BGP Peer and its AS #. If the AS number is the same as your AS #, it indicates that the BGP Routers are IBGP Peer’s or Neighbors Network 1.0.0.0 (What networks to advertise)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 142 of 197

Useful Commands Command SH IP BGP Clear IP BGP *

Description Shows EGP Table Clear EGP Table

Route Reflectors  BGP Split Horizon: Routes learned via IBGP are never propagated to other IBGP Peers. Required to avoid Routing Loops.  In order to let IBGP routers to propagate routes within an Autonomous System it requires a Full Mesh Topology or Use Route Reflectors.  Full Mesh topology result in many BGP sessions being created. This may result in a significant amount of increased traffic which is not feasible for slow WAN Links.  Route Reflectors modify BGP Spilt Horizon by allowing the router configured as the route reflector to propagate routes learned by IBGP to other IBGP Peers.

Prefix List  New in Cisco 12.0 IOS Release  Prefix list can be used as an alternative to access lists in many BGP Route Filtering commands  You can use Show IP prefix-list detail command to see the prefix-list entries.  Advantages include:  Significant Performance Improvement  Support for incremental modifications  More user-friendly command-line interface  Greater Flexibility

Configuration Router BGP 100 Network 192.168.1.0 Neighbor 2.2.2.2 remote-as 200 Neighbor 2.2.2.2 prefix-list test out IP Prefix-list test seq 5 permit 172.0.0.0 / 8 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 143 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 6 – BGP Labs

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 144 of 197

Lab 1 – Connecting EBGP Physical Layout

R1

L0 1.1.1.1/8

S 0/0(.1)

R2

192.1.12.0/24

L0 2.2.2.2/8

S 0/0 (.2)

L1 12.1.0.1/16

L1 11.1.0.1/16

E 0/0 (.2)

192.1.23.0/24

S 0/0(.4)

L0 4.4.4.4/8

L1 14.1.0.1/16

E 0/0 (.3)

192.1.34.0/24

L0 3.3.3.3/8

S 0/0 (.3)

R4

R3

BGP Layout

AS 1

AS 2

R2 R1

R4 R3

AS 4

AS 3

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 145 of 197

L1 13.1.0.1/16

R1 Configuration Interface Loopback 0 Loopback 1 S 0/0

IP Address 1.1.1.1 11.1.0.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.0.0 255.255.255.0

IP Address 2.2.2.2 12.1.0.1 192.1.12.2 192.1.23.2

Subnet Mask 255.0.0.0 255.255.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 13.1.0.1 192.1.23.3 192.1.34.3

Subnet Mask 255.0.0.0 255.255.0.0 255.255.255.0 255.255.255.0

IP Address 4.4.4.4 14.1.0.1 192.1.34.4

Subnet Mask 255.0.0.0 255.255.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 Loopback 1 S 0/0 E 0/0

R3 Configuration Interface Loopback 0 Loopback 1 E 0/0 S 0/0

R4 Configuration Interface Loopback 0 Loopback 1 S 0/0

Objective: Configure E-BGP neighbor relationship between 4 Routers. You will also configure E-BGP neighbor relationships based on loopbacks.

Configure a BGP neighbor relationship between R1 and R2. R1 should be in AS 1 and R2 should be in AS 2. Advertise the loopback networks in BGP. Hard-code the Router ID for the BGP routers as 11.11.11.11 for R1 and 22.22.22.22 for R2. On R1 R1(config)#Router bgp 1 R1(config-router)#no auto-summary R1(config-router)#no sync Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 146 of 197

R1(config-router)#bgp router-id 11.11.11.11 R1(config-router)#network 1.0.0.0 R1(config-router)#network 11.1.0.0 mask 255.255.0.0 R1(config-router)#neighbor 192.1.12.2 remote-as 2

On R2 R2(config)#Router bgp 2 R2(config-router)#no auto-summary R2(config-router)#no sync R2(config-router)#bgp router-id 22.22.22.22 R2(config-router)#network 2.0.0.0 R2(config-router)#network 12.1.0.0 mask 255.255.0.0 R2(config-router)#neighbor 192.1.12.1 remote-as 1

Configure a BGP neighbor relationship between R2 and R3. R2 should already be configured in AS 2 and R3 should be in AS 3. Advertise the loopback network of R3 in BGP. Hard-code the Router ID for R3 as 33.33.33.33 On R2 R2(config)#Router bgp 2 R2(config-router)#neighbor 192.1.23.3 remote-as 3

On R3 R3(config)#Router bgp 3 R3(config-router)#no auto-summary R3(config-router)#no sync R3(config-router)#bgp router-id 33.33.33.33 R3(config-router)#network 13.1.0.0 mask 255.255.0.0 R3(config-router)#neighbor 192.1.23.2 remote-as 2

Configure a BGP neighbor relationship between R3 and R4. R# should already be configured in AS 3 and R4 should be in AS 4. Advertise the loopback network of R4 in BGP. Hard-code the Router ID for R4 as 44.44.44.44. Establish the neighbor relationship based on Loopback 0 addresses. Create static routes to reach the Loopback 0 of the other router. Do not advertise Loopback 0 in BGP. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 147 of 197

On R3 R3(config)#ip route 4.4.4.4 255.255.255.255 192.1.34.4 R3(config)#Router bgp 3 R3(config-router)#neighbor 4.4.4.4 remote-as 4 R3(config-router)#neighbor 4.4.4.4 update-source loopback 0 R3(config-router)#neighbor 4.4.4.4 ebgp-multihop

On R4 R4(config)#ip route 3.3.3.3 255.255.255.255 192.1.34.3 R4(config)#Router bgp 4 R4(config-router)#no auto-summary R4(config-router)#no sync R4(config-router)#bgp router-id 44.44.44.44 R4(config-router)#network 14.1.0.0 mask 255.255.0.0 R4(config-router)#neighbor 3.3.3.3 remote-as 3 R4(config-router)#neighbor 3.3.3.3 update-source loopback 0 R4(config-router)#neighbor 3.3.3.3 ebgp-multiphop

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 148 of 197

Lab 2 – BGP Neighbor MD5 Authentication (Builds on Lab 1) Objective: Configure BGP Authentication using MD5 between all the BGP peers.

Configure MD5 Authentication between R1 and R2 using a password of cisco-12 On R1 R1(config)#Router bgp 1 R1(config-router)#neighbor 192.1.12.2 password cisco-12

On R2 R2(config)#Router bgp 2 R2(config-router)#neighbor 192.1.12.1 password cisco-12

Configure MD5 Authentication between R2 and R3 using a password of cisco-23 On R2 R2(config)#Router bgp 2 R2(config-router)#neighbor 192.1.23.3 password cisco-23

On R3 R3(config)#Router bgp 3 R3(config-router)#neighbor 192.1.23.2 password cisco-23

Configure MD5 Authentication between R3 and R4 using a password of cisco-34 On R3 R3(config)#Router bgp 3 R3(config-router)#neighbor 4.4.4.4 password cisco-34

On R4 R4(config)#Router bgp 4 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 149 of 197

R4(config-router)#neighbor 3.3.3.3 password cisco-34

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 150 of 197

Lab 3 – Configuring Route Reflectors (Builds on Lab 2) Objective: Disable BGP from the previous lab and Re-configure it based on the new topology. Configure Route Reflector to overcome the BGP split-horizon issue.

BGP Layout

R3

AS 234 AS 1

R3

R1

R2

R4

Disable BGP on all 4 routers. Also, delete the static routes for network 4.0.0.0 on R3 and network 3.0.0.0 on R4. On R1 R1(config)#no router bgp 1

On R2 R2(config)#no router bgp 2

On R3 R3(config)#no router bgp 3 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 151 of 197

R3(config)#no ip route 4.4.4.4 255.255.255.255

On R4 R4(config)#no router bgp 4 R4(config)#no ip route 3.3.3.3 255.255.255.255

Configure a neighbor relationship between R1 and R2 based on the Logical diagram. Advertise the Loopback networks on both Routers. Hard-code the Router ID for the BGP routers as 11.11.11.11 for R1 and 22.22.22.22 for R2. On R1 R1(config)#router bgp 1 R1(config-router)#no auto-summary R1(config-router)#no sync R1(config-router)#bgp router-id 11.11.11.11 R1(config-router)#network 1.0.0.0 R1(config-router)#network 11.1.0.0 mask 255.255.0.0 R1(config-router)#neighbor 192.1.12.2 remote-as 234

On R2 R2(config)#Router bgp 234 R2(config-router)#no auto-summary R2(config-router)#no sync R2(config-router)#bgp router-id 22.22.22.22 R2(config-router)#network 2.0.0.0 R2(config-router)#network 12.1.0.0 mask 255.255.0.0 R2(config-router)#neighbor 192.1.12.1 remote-as 1

Configure RIP V2 as the routing protocol within AS 234. Only advertise the internal physical link in RIP on R2, R3 and R4. Do not advertise the link between R1 and R2 in RIP. On R2 R2(config)#Router RIP R2(config-router)#no auto-summary R2(config-router)#version 2 R2(config-router)#network 192.1.23.0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 152 of 197

On R3 R3(config)#Router RIP R3(config-router)#no auto-summary R3(config-router)#version 2 R3(config-router)#network 192.1.23.0 R3(config-router)#network 192.1.34.0

On R4 R4(config)#Router RIP R4(config-router)#no auto-summary R4(config-router)#version 2 R4(config-router)#network 192.1.34.0

Configure neighbor relationships between R2 and R3 and another one between R3 and R4. Do not configure a neighbor relationship between R2 and R4. Advertise the Loopback networks on R3 and R4 under BGP. R3 should have reachability towards R1 routes. Accomplish this by using the Next-hop-self command on R2 towards R3. Also, configure R3 to propagate R2 routes to R4 by configuring it as a Route-Reflector server for R2 and R3. On R2 R2(config)#Router bgp 234 R2(config-router)#neighbor 192.1.23.3 remote-as 234 R2(config-router)#neighbor 192.1.23.3 next-hop-self

On R3 R3(config)#Router bgp 234 R3(config-router)#no auto-summary R3(config-router)#no sync R3(config-router)#bgp router-id 33.33.33.33 R3(config-router)#network 3.0.0.0 R3(config-router)#network 13.1.0.0 mask 255.255.0.0 R3(config-router)#neighbor 192.1.23.2 remote-as 234 R3(config-router)#neighbor 192.1.23.3 route-reflector-client R3(config-router)#neighbor 192.1.34.4 remote-as 234 R3(config-router)#neighbor 192.1.34.4 route-reflector-client Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 153 of 197

Lab 4 – Route Filtering using Distribute List with ACL’s (Builds on R3) Objective: Configure Route Filtering using Distribute Lists with ACL’s

Create the following Loopbacks on R2 Loopback Loopback Loopback Loopback Loopback Loopback Loopback Loopback

1 2 3 4 5 6 7 8

– – – – – – – –

192.2.1.1/24 192.2.2.1/24 192.2.3.1/24 192.2.4.1/24 192.2.5.1/24 192.2.6.1/24 192.2.7.1/24 192.2.8.1/24

On R2 R2(config)#interface Loopback 1 R2(config-if)# ip address 192.2.1.1 R2(config-if)#interface Loopback 2 R2(config-if)# ip address 192.2.2.1 R2(config-if)#interface Loopback 3 R2(config-if)# ip address 192.2.3.1 R2(config-if)#interface Loopback 4 R2(config-if)# ip address 192.2.4.1 R2(config-if)#interface Loopback 5 R2(config-if)# ip address 192.2.5.1 R2(config-if)#interface Loopback 6 R2(config-if)# ip address 192.2.6.1 R2(config-if)#interface Loopback 7 R2(config-if)# ip address 192.2.7.1 R2(config-if)#interface Loopback 8 R2(config-if)# ip address 192.2.8.1

255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0 255.255.255.0

Advertise the newly created routes in BGP. Redistribute the directly connected networks into BGP. These routes should have an origin code of “igp”. On R2 R2(config)#Route-map C-2-B permit 10 R2(config-route-map)#set origin igp Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 154 of 197

R2(config-route-map)#router bgp 234 R2(config-router)#redistribute connected route-map C-2-B

Configure R2 such that it blocks all the 192.2.X.0 routes that have an odd number in the third octet from propagating outside the local AS. Use the distribute-list command to accomplish this task. On R2 R2(config)#access-list 1 deny 192.2.1.0 0.0.254.255 R2(config)#access-list 1 permit any R2(config)#router bgp 234 R2(config-router)#neighbor 192.1.12.1 distribute-list 1 out

Configure R4 such that it blocks all the 192.2.X.0 routes that have an even number in the third octet from coming in. Make sure that even if in the future that a neighbor relationship is established between R2 and R4 these routes don’t come into R4. Use the distribute-list command to accomplish this task. On R4 R4(config)#access-list 1 deny 192.2.0.0 0.0.254.255 R4(config)#access-list 1 permit any R4(config)#router bgp 234 R4(config-router)#distribute-list 1 in

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 155 of 197

Lab 5 – Route Filtering using Prefix-List (Builds on R4) Objective: Configure Route Filtering using Prefix-list. Create the following Loopbacks on R3 Loopback Loopback Loopback Loopback Loopback Loopback Loopback

1 2 3 4 5 6 7

– – – – – – –

150.3.16.1/20 150.3.36.1/22 150.3.40.1/22 150.3.50.1/23 150.3.65.1/24 150.13.0.1/16 150.14.64.1/18

On R3 R3(config)#interface Loopback 1 R3(config-if)# ip address 150.3.16.1 255.255.240.0 R3(config-if)#interface Loopback 2 R3(config-if)# ip address 150.3.36.1 255.255.252.0 R3(config-if)#interface Loopback 3 R3(config-if)# ip address 150.3.40.1 255.255.252.0 R3(config-if)#interface Loopback 4 R3(config-if)# ip address 150.3.50.1 255.255.254.0 R3(config-if)#interface Loopback 5 R3(config-if)# ip address 150.3.65.1 255.255.255.0 R3(config-if)#interface Loopback 6 R3(config-if)# ip address 150.13.0.1 255.255.0.0 R3(config-if)#interface Loopback 7 R3(config-if)# ip address 150.14.64.1 255.255.192.0

Advertise the newly created routes in BGP using the Network command. On R3 R3(config)#Router bgp 234 R3(config-router)#Network 150.3.16.0 mask 255.255.240.0 R3(config-router)#Network 150.3.36.0 mask 255.255.252.0 R3(config-router)#Network 150.3.40.0 mask 255.255.252.0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 156 of 197

R3(config-router)#Network R3(config-router)#Network R3(config-router)#Network R3(config-router)#Network

150.3.50.0 mask 255.255.254.0 150.3.65.0 mask 255.255.255.0 150.13.0.0 150.14.64.0 mask 255.255.192.0

Configure R2 such that it blocks all the 150.X.X.0 routes that have a subnet mask between 17 and 23 bits. On R2 R2(config)#IP Prefix-list PLIST deny 150.0.0.0/8 ge 17 le 23 R2(config)#IP Prefix-list PLIST permit 0.0.0.0/0 le 32 R2(config)#Router bgp 234 R2(config-router)#Neighbor 192.1.23.3 prefix-list PLIST in

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 157 of 197

Lab 6 – Configuring MED Physical Layout

R1

R2

192.1.12.0/24

S 0/0(.1)

S 0/0 (.2)

L0 1.1.1.1/8

L0 2.2.2.2/8

E 0/0 (.2)

E 0/0 (.1)

192.1.23.0/24

192.1.14.0/24

E 0/0 (.3)

E 0/0 (.4)

L0 3.3.3.3/8

L0 4.4.4.4/8

S 0/0(.4)

192.1.34.0/24

S 0/0 (.3)

R4

R3

BGP Layout

R2 AS 1

AS 234 R3 R1

R4

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 158 of 197

R1 Configuration Interface Loopback 0 S 0/0 E 0/0

IP Address 1.1.1.1 192.1.12.1 192.1.14.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.2

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3 192.1.34.3

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 4.4.4.4 192.1.34.4 192.1.14.4

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0 E 0/0

R3 Configuration Interface Loopback 0 E 0/0 S 0/0

R4 Configuration Interface Loopback 0 S 0/0 E 0/0

Objective: Configure BGP in 2 AS’s (1 and 234). Use MED to control incoming traffic into AS 234.

Run RIP V2 as the IGP in AS 234. Advertise the directly connected links under RIP. Do not advertise the external links (192.1.12.0, 192.1.14.0) or the Loopbacks in RIP. On R2 R2(config)#Router RIP R2(config-router)#Version 2 R2(config-router)#No auto-summary R2(config-router)#Network 192.1.23.0

On R3 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 159 of 197

R3(config)#Router RIP R3(config-router)#Version 2 R3(config-router)#No auto-summary R3(config-router)#Network 192.1.23.0 R3(config-router)#Network 192.1.34.0

On R4 R4(config)#Router RIP R4(config-router)#Version 2 R4(config-router)#No auto-summary R4(config-router)#Network 192.1.34.0

Configure the routers under BGP based on the Logical diagram. Configure the Neighbor relationships also based on the Logical diagram. Advertise Loopback 0 Networks on all routers under BGP. Make sure the 1.0.0.0 gets put into the routing table of R3. Also make sure that Routes from R2 are getting propagated to R4 and vice versa using Route-reflectors. On R1 R1(config)#Router BGP 1 R1(config-router)#No auto-summary R1(config-router)#No sync R1(config-router)#Network 1.0.0.0 R1(config-router)#Neighbor 192.1.12.2 remote-as 234 R1(config-router)#Neighbor 192.1.14.4 remote-as 234

On R2 R2(config)#Router BGP 234 R2(config-router)#No auto-summary R2(config-router)#No sync R2(config-router)#Network 2.0.0.0 R2(config-router)#Neighbor 192.1.12.1 remote-as 1 R2(config-router)#Neighbor 192.1.23.3 remote-as 234 R2(config-router)#Neighbor 192.1.23.3 next-hop-self

On R3 R3(config)#Router BGP 234 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 160 of 197

R3(config-router)#No auto-summary R3(config-router)#No sync R3(config-router)#Network 3.0.0.0 R3(config-router)#Neighbor 192.1.23.2 R3(config-router)#Neighbor 192.1.23.2 R3(config-router)#Neighbor 192.1.34.4 R3(config-router)#Neighbor 192.1.34.4

remote-as 234 route-reflector-client remote-as 234 route-reflector-client

All ingress (incoming) traffic to AS 234 should use the path thru R4 using the MED attribute. Configure the MED on R2 to 100. R4’s MED is 0 by default. Lower MED will be preferred. On R2 R2(config)#Route-map SETMED permit 10 R2(config-route-map)#Set metric 100 R2(config-route-map)#exit R2(config)#Router BGP 234 R2(config-router)#Neighbor 192.1.12.1 route-map SETMED out

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 161 of 197

Lab 7 – Setting Local Preference (Builds on Lab 6) Objective: Controlling outgoing traffic using Local Preference.

Configure AS 234 such that all traffic destined for AS 1 should go through R2 in the outbound direction.Use Local-Preference Attribute to accomplish this. On R2 R2(config)#Route-map SETLP permit 10 R2(config-route-map)#Set Local-preference 200 R2(config-route-map)#exit R2(config)#Router BGP 234 R2(config-router)#Neighbor 192.1.12.1 route-map SETLP in

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 162 of 197

Lab 8 – Setting Cisco Weight Attribute (Builds on Lab 7) Objective: Controlling outgoing traffic on the local router without affecting the rest of the AS. Configure R4 such that all traffic destined for network 1.0.0.0 should go directly to R1 instead of going thru R2 as it has a higher Local Preference for the AS.

On R4 R4(config)#Access-list 1 permit 1.0.0.0 0.255.255.255 R4(config)#Route-map SETWT permit 10 R4(config-route-map)#Match address 1 R4(config-route-map)#Set weight 5000 R4(config-route-map)#Route-map SETWT permit 20 R4(config-route-map)#exit R4(config)#Router BGP 234 R4(config-router)#Neighbor 192.1.14.1 route-map SETWT in

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 163 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 7 – Additional Topics

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 164 of 197

Additional Topics IOS DHCP Server •

Allows a Cisco Router to Assign IP Configuration information

Command Syntax: Router(config)#IP dhcp pool pool name Router(dhcp-config)#network network address /Prefix mask Router(dhcp-config)#default-router Router’s Address Router(dhcp-config)#netbios-name-server Name Server Address Router(dhcp-config)#netbios-node-type Node-type Router(dhcp-config)#dns-server Dns Server Address Router(dhcp-config)#lease Days hours minutes Router(config)#ip dhcp excluded-address Low-address High-address

Helper Addresses •

If a client needs to reach a server and does not know the server’s address the client uses a broadcast to find the server’s address. By default, a router will drop the broadcast packet. Helper addresses allow connectivity by forwarding these broadcasts as unicast packets

Server Locations Single Server on a Single Remote Network: Clients need to connect to only one server on a Remote Network. Multiple Servers on a Single Remote Networks: Multiple servers on the Remote Network, either of the same type or different types. Multiple Servers on Multiple Remote Media: Two servers on two separate Networks.

Command Syntax: IP helper-address Address

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 165 of 197



Enables forwarding and specifies destination address for main UDP broadcast packets.



It also changes the destination address from broadcast to unicast or directed address.

By default, forwards the following UDP ports:  TFTP (69)  DNS(53)  Time(37)  NetBIOS Name Service(137)  NetBIOS datagram Service(138)  BOOTP(67)  BOOTP(68)  TACACS(49)  IP Forward-protocol {udp | [port] | •



Specifies which protocols will be forwarded



No would allow you to disable the default protocol(s) from being forwarded

Route Maps •

Route maps can be used for both Redistribution and for Policy Routing.



Route Maps are like Complex Access Lists



You have Lines in Access Lists and Statements in Route Maps



You assign an Access List a Number whereas a Route Map is assigned a Name



You have Addresses and Inverse Masks in Access Lists whereas you have Match Statements in a Route Map.



Like an Access List, there is an “Implicit deny any” at the end of a route map.



Unlike Access Lists Route Maps can be edited without reentering the whole Access Lists.



Route Maps can modify matched route with set command Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 166 of 197

Command Syntax: •

Route-map map name [permit | deny] Sequence Number Route-map is the command Map name is the name of the route tag Permit | deny The action to be taken if the route map match conditions are met Sequence Number Indicates the position a new route map in the list of route map



Match ip address {access-list-number } {…access-list-number}



Match length min max



Set ip next-hop ip address [Defines next hop to which output packets]



Set interface Type / Number [Defines interface to which output packets]

Policy Routing •

Applied to incoming packets



Uses Route maps to define criteria



Policy based routing allows a network administrator to determine and implement routing policies to allow or deny paths based on the following:  

The identity of a particular end system The size of the packets

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 167 of 197

Cisco Certified Network Professional (CCNP) – Route Lab Manual

Authored By:

Khawar Butt

Module 7 – Additional Topics Labs

Penta CCIE # 12353 (R/S,Security,SP,Voice,Storage)

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 168 of 197

Lab 1 – IP Helper Addresses

R1

S 0/0(.1)

R2

192.1.12.0/24 S 0/0 (.2)

E 0/0(.1)

E 0/0(.1)

192.1.11.0/24

192.1.22.0/24

Objective: Configure a Routers as a DHCP Server and assign IP Configurations to local and remote subnets. Configure a Router to forward broadcast from remote subnets to a DHCP Server.

Configure R1 as a DHCP Server. Create a pool for the 192.1.11.0/24 network. The pool should start giving addresses from 192.1.11.11 – 192.1.11.254. It should assign 192.1.11.1 as the default gateway and 192.1.11.5 as the DNS Server. Use a lease time of 3 and a half days. R1 Basic Configuration R1(config)#int S 0/0 R1(config-if)#ip addr 192.1.12.1 255.255.255.0 R1(config-if)#clock rate 128000 R1(config-if)#no shut R1(config-if)#exit R1(config)#int E 0/0 R1(config-if)#ip addr 192.1.11.1 255.255.255.0 R1(config-if)#no shut R1(config-if)#exit R1(config-if)#Router RIP R1(config-router)#version 2 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 169 of 197

R1(config-router)#no auto-summary R1(config-router)#network 192.1.11.0 R1(config-router)#network 192.1.12.0 R2 Basic Configuration R2(config)#int S 0/0 R2(config-if)#ip addr 192.1.12.2 255.255.255.0 R2(config-if)#no shut R2(config-if)#int E 0/0 R2(config-if)#ip addr 192.1.22.1 255.255.255.0 R2(config-if)#no shut R2(config-if)#Router RIP R2(config-router)#version 2 R2(config-router)#no auto-summary R2(config-router)#network 192.1.12.0 R2(config-router)#network 192.1.22.0 R1 DHCP Configuration R1(config)#ip dhcp excluded-address 192.1.11.1 192.1.11.10 R1(config)#IP dhcp pool ABC R1(dhcp-config)#network 192.1.11.0 /24 R1(dhcp-config)#default-router 192.1.11.1 R1(dhcp-config)#dns-server 192.1.11.5 R1(dhcp-config)#lease 3 12 R1(dhcp-config)#exit Objective: Also, configure R1 as a DHCP Server for the 192.1.22.0/24 network. The pool should start giving addresses from 192.1.22.11 – 192.1.22.254. It should assign 192.1.22.1 as the default gateway and 192.1.22.5 as the DNS Server. Use a lease time of 3 and a half days. Make sure R2 forwards the DHCP requests to R1 DHCP. R1 DHCP Configuration R1(config)#ip dhcp excluded-address 192.1.22.1 192.1.22.10 R1(config)#IP dhcp pool DEF R1(dhcp-config)#network 192.1.22.0 /24 R1(dhcp-config)#default-router 192.1.22.1 R1(dhcp-config)#dns-server 192.1.22.5 R1(dhcp-config)#lease 3 12 R1(dhcp-config)#exit Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 170 of 197

R2 Broadcast Forwarding configuration R2(config-if)#ip helper-address 192.1.12.1 R2(config-if)#no shut R2(config-if)#exit PC Configuration •

Configure your PC to obtain an IP Address automatically in either Network Neighborhood (Windows NT) or My Network Places (Windows 2000)



Open a Command prompt



Type IPCONFIG /ALL.



Check the Addresses against the addresses assigned by the IOS DHCP Server.



Make sure the addresses are not from the excluded range

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 171 of 197

Lab 2 – Policy Based Routing

R1

S 0/0(.1)

192.1.12.0/24

L0 1.1.1.1/8 S 0/1(.1)

192.1.112.0/24

R2 S 0/0 (.2)

S 0/1 (.2)

L0 2.2.2.2/8

E 0/0 (.2)

192.1.23.0/24

E 0/0 (.3)

L0 3.3.3.3/8

R3

R1 Configuration Interface Loopback 0 S 0/0 S 0/1

IP Address 1.1.1.1 192.1.12.1 192.1.112.1

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.2 192.1.112.2

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0 255.255.255.0

IP Address 3.3.3.3 192.1.23.3

Subnet Mask 255.0.0.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0 E 0/0 S 0/1

R3 Configuration Interface Loopback 0 E 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 172 of 197

Objective: Configure EIGRP on the network. Advertise all the networks in EIGRP. Use Policy-based Routing to override the default behavior of the routing protocol to a specified policy.

Configure EIGRP as the routing protocol in AS 1. Advertise all the links including the loopbacks in EIGRP. On R1 R1#conf t R1(config)#Router eigrp 1 R1(config-router)#net 1.0.0.0 R1(config-router)#net 192.1.12.0 R1(config-router)#net 192.1.112.0 On R2 R2#conf t R2(config)#Router eigrp 1 R2(config-router)#net 2.0.0.0 R2(config-router)#net 192.1.12.0 R2(config-router)#net 192.1.112.0 R2(config-router)#net 192.1.23.0 On R3 R3#conf t R3(config)#Router eigrp 1 R3(config-router)#net 3.0.0.0 R3(config-router)#net 192.1.23.0

On R2, you want to send all traffic with a Source network address of 3.0.0.0 through S 0/0 and any other traffic thru S 0/0. On R2 R2(config)#access-list 1 permit 3.0.0.0 0.255.255.255 R2(config)#route-map PBR permit 1 R2(config-route-map)#match ip address 1 R2(config-route-map)#set interface S 0/0 R2(config-route-map)#exit R2(config)#route-map PBR permit 2 R2(config-route-map)#set interface S 0/1 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 173 of 197

R2( config-route-map)#exit R2(config)#int E0/0 R2(config-if)#ip policy route-map PBR

On R2 Type Debug ip packet (Look for the interface used to send the packet to 1.1.1.1 when R3 sends the ping).

On R3 •

Type Ping 1.1.1.1



Notice all traffic goes through S 0/1.



Ping 1.1.1.1 with the source of 3.3.3.3.



Notice all traffic from R3 with a source address of 3.3.3.3 goes through S 0/0.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 174 of 197

Lab 3 – GRE with RIP

R1 L0 10.0.0.1/8

S 0/0(.1)

192.1.12.0/24

R2 S 0/0 (.2)

L0 2.2.2.2/8

E 0/0 (.2)

192.1.23.0/24

E 0/0 (.3)

L0 192.168.1.0/24

R3

R1 Configuration Interface Loopback 0 S 0/0

IP Address 10.0.0.1 192.1.12.1

Subnet Mask 255.0.0.0 255.255.255.0

IP Address 2.2.2.2 192.1.12.2 192.1.23.2

Subnet Mask 255.0.0.0 255.255.255.0 255.255.255.0

IP Address 192.168.1.1 192.1.23.3

Subnet Mask 255.255.255.0 255.255.255.0

R2 Configuration Interface Loopback 0 S 0/0 E 0/0

R3 Configuration Interface Loopback 0 E 0/0

Objective: Configure a GRE Tunnel to route between the 10.0.0.0/8 network behind R1 and the 192.168.1.0/24 network behind R3. R2 is simulating the Internet. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 175 of 197

Configure Default routes on R1 and R3 towards R2. R2 is simulating the ISP Router and the Internet. On R1 R1(config)#ip route 0.0.0.0 0.0.0.0 192.1.12.2

On R3 R3(config)#ip route 0.0.0.0 0.0.0.0 192.1.23.2

Configure a GRE Tunnel from R1 to R3. Use a RFC 1918 network for the Tunnel Interface. The GRE Tunnel should be Authenticated. On R1 R1(config)#interface Tunnel13 R1(config-if)#ip address 172.16.0.1 255.255.0.0 R1(config-if)#tunnel source 192.1.12.1 R1(config-if)#tunnel destination 192.1.23.3 R1(config-if)#tunnel key 1234

On R3 R3(config)#interface Tunnel13 R3(config-if)#ip address 172.16.0.3 255.255.0.0 R3(config-if)#tunnel source 192.1.23.3 R3(config-if)#tunnel destination 192.1.12.1 R3(config-if)#tunnel key 1234

Run RIP as a routing protocol over a GRE tunnel so that the Private networks of the company are seen on R1 and R3. On R1 R1(config)#router rip R1(config-router)#version 2 R1(config-router)#network 10.0.0.0 R1(config-router)#network 172.16.0.0 R1(config-router)#no auto-summary

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 176 of 197

On R3 R3(config)#router rip R3(config-router)#version 2 R3(config-router)#network 192.168.1.0 R3(config-router)#network 172.16.0.0 R3(config-router)#no auto-summary

On R1 and R3 •

Type Show IP route. Do you see the private networks from each other.



What is the Routing Source?



On R1, Ping 192.168.1.1 with the source of 10.0.0.1.



Are you successful?? Does R2 have reachability to the 10.0.0.0 or 192.168.1.0 networks?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 177 of 197

Lab 4 – NAT (Builds on Lab 3) Objective: Configure NAT and PAT on R1 and R3 to route traffic from the private networks to the Internet (R2 – 2.2.2.2).

ISP (R2) assigns R1 a public range of 195.1.1.0/24 network. Configure R2 to route all packets destined for this network towards R1. On R2 R2(config)#ip route 195.1.1.0 255.255.255.0 192.1.12.1

Translate the 10.0.0.0 Network behind R1 into a range of Class C addresses assigned to R1 by the ISP. Use the range 195.1.1.1 – 195.1.1.250 for the pool. On R1 R1(config)#access-list 121 permit ip 10.0.0.0 0.255.255.255 any R1(config)#ip nat pool DP 195.1.1.1 195.1.1.254 R1(config)#ip nat inside source list 121 pool DP R1(config)#interface Loopback0 R1(config-if)#ip nat inside R1(config-if)#interface S0/0 R1(config-if)# ip nat outside

R1 should use 195.1.1.251 for its Web Server so that people on the outside can access it. The internal web server is at 10.0.0.80. Configure a secondary address of 10.0.0.80 on the loopback address to test this configuration. On R1 R1(config)#ip nat inside source static 10.0.0.80 195.1.1.251 R1(config)#interface Loopback 0 R1(config-if)#ip address 10.0.0.80 255.0.0.0 secondary

On R1 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 178 of 197



Type Show IP nat translations. Do you see the static translation already present in the translation table.



Ping 195.1.1.252 from R2. Are you successful?



On R1, Ping 2.2.2.2 with the source of 10.0.0.1.



Are you successful?



Type Show IP nat translations. Do you see the Dynamic translation done for the 10.0.0.1 as 195.1.1.1?

ISP (R2) assigns R3 a public range of 195.1.3.32/30 subnet. Configure R2 to route all packets destined for this network towards R3 On R2 R2(config)#ip route 195.1.3.32 255.255.255.252 192.1.23.3

Translate the 192.168.1.0 Network behind R3 using the 195.1.3.33 address (PAT). The entire should be able to go out simultaneously using this address. On R3 R3(config)#access-list 121 permit ip 192.168.1.0 0.0.0.255 any R3(config)#ip nat pool DP 195.1.3.33 195.1.1.33 R3(config)#ip nat inside source list 121 pool DP overload R3(config)#interface Loopback0 R3(config-if)#ip nat inside R3(config-if)#interface E 0/0 R3(config-if)# ip nat outside

There is a web server at 192.168.1.5 and a DNS server at 192.168.1.6. Translate these servers to 192.168.1.34 on the outside. Use Static PAT to accomplish this task. On R3 R3(config)#ip nat inside source static tcp 192.168.1.5 80 195.1.1.34 80 R3(config)#ip nat inside source static udp 192.168.1.6 80 195.1.1.34 53 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 179 of 197

On R3 •

Type Show IP nat translations. Do you see the static translation already present in the translation table.



On R3, Ping 2.2.2.2 with the source of 192.168.1.1.



Are you successful?



Type Show IP nat translations. Do you see the Dynamic translation done?

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 180 of 197

Lab 5 – Configuring IPv6 with RIPng

R1 Lo 0

R2 E 0/0

Lo 0

E 0/0

S 0/0.1

2000:192:1:12::/64

Frame

2000:192:1:23::/64

S 0/0.1 2000:192:1:34::/64 Lo 0

E 0/0

Lo 0

E 0/0

R4

R3

Objective: Configure IPv6 on the Routers. Run RIPng to route between the networks.

Enable IPv6 routing on R1,R2, R3 and R4. Assign IPv6 addresses to the E 0/0 interface of the routers as follows: • • • •

R1 R2 R3 R4

– – – –

2001:1:1:12::1 2001:1:1:12::2 2001:1:1:34::3 2001:1:1:34::4

/64 /64 /64 /64

On R1 R1(config)#ipv6 unicast-routing R1(config)#Interface E 0/0 R1(config-if)#ipv6 address 2001:1:1:12::1/64 R1(config-if)#no shut

On R2 R2(config)#ipv6 unicast-routing R2(config)#Interface E 0/0 R2(config-if)#ipv6 address 2001:1:1:12::2/64 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 181 of 197

R2(config-if)#no shut

On R3 R3(config)#ipv6 unicast-routing R3(config)#Interface E 0/0 R3(config-if)#ipv6 address 2001:1:1:34::3/64 R3(config-if)#no shut

On R4 R4(config)#ipv6 unicast-routing R4(config)#Interface E 0/0 R4(config-if)#ipv6 address 2001:1:1:34::4/64 R4(config-if)#no shut

Configure the Loopback0 interface on all routers using the auto-assigned addresses as follows: • • • •

R1 R2 R3 R4

– – – –

Loopback0 Loopback0 Loopback0 Loopback0

– – – –

2001:1:1:1::/64 2001:2:2:2::/64 2001:3:3:3::/64 2001:4:4:4::/64

On R1 R1(config)#Interface Loopback 0 R1(config-if)#ipv6 address 2001:1:1:1::/64 eui-64

On R2 R2(config)#Interface Loopback 0 R2(config-if)#ipv6 address 2001:2:2:2::/64 eui-64

On R3 R3(config)#Interface Loopback 0 R3(config-if)#ipv6 address 2001:3:3:3::/64 eui-64

On R4 R4(config)#Interface Loopback 0 R4(config-if)#ipv6 address 2001:4:4:4::/64 eui-64 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 182 of 197

Configure Frame-relay between R2 and R3 using the folloing IPV6 addresses: • R2 – 2001:1:1:23::2/64 • R3 – 2001:1:1:23::3/64 Ensure that the routers can ping each other’s serial interface. Also allow R2 and R3 to ping their own IP addresses. Use a suninterface on R2 and R3 for the Frame relay configuration. On R2 R2(config)#Interface S 0/0 R2(config-if)#encap frame-relay R2(config-if)#no shut R2(config-if)#interface S 0/0.1 point-to-point R2(config-subif)#ipv6 address 2001:1:1:23::2/64 R2(config-subif)#frame-relay interface-dlci 203

On R3 R3(config)#Interface S 0/0 R3(config-if)#encap frame-relay R3(config-if)#no shut R3(config-if)#interface S 0/0.1 point-to-point R3(config-subif)#ipv6 address 2001:1:1:23::3/64 R3(config-subif)#frame-relay interface-dlci 302

Configure RIPng on all routers to route all loopbacks. Enable RIPng under the following interfaces: R1 R2 R3 R4

– – – –

E E E E

0/0, 0/0, 0/0, 0/0,

Loopback Loopback Loopback Loopback

0 0, S 0/0.1 0, S 0/0.1 0

On R1 R1(config)#Interface Loopback0 R1(config-if)#ipv6 rip 1234 enable R1(config-if)#Interface E 0/0 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 183 of 197

R1(config-if)#ipv6 rip 1234 enable

On R2 R2(config)#Interface Loopback0 R2(config-if)#ipv6 rip 1234 enable R2(config-if)#Interface E 0/0 R2(config-if)#ipv6 rip 1234 enable R2(config-if)#Interface S 0/0.1 R2(config-if)#ipv6 rip 1234 enable

On R3 R3(config)#Interface Loopback0 R3(config-if)#ipv6 rip 1234 enable R3(config-if)#Interface E 0/0 R3(config-if)#ipv6 rip 1234 enable R3(config-if)#Interface S 0/0.1 R3(config-if)#ipv6 rip 1234 enable

On R4 R4(config)#Interface Loopback0 R4(config-if)#ipv6 rip 1234 enable R4(config-if)#Interface E 0/0 R4(config-if)#ipv6 rip 1234 enable

On All Routers •

Type Show IPv6 Route rip. Do you see all the IPv6 routes learned thru RIPng?



Find out the Interface IP addresses of the Loopbacks by typing Show IPv6 Interface Brief.



Ping these address from each router to ensure connectivity.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 184 of 197

Lab 6 – Configuring OSPF V3 (Builds on Lab 5) Objective: Configure OSPFv3 as the routing protocol to connect the Loopback networks.

Disable RIP NG on all routers on all interfaces. On R1 R1(config)#Interface Loopback 0 R1(config-if)#No ipv6 rip 1234 enable R1(config-if)#Interface E 0/0 R1(config-if)#No ipv6 rip 1234 enable

On R2 R2(config)#Interface Loopback 0 R2(config-if)#No ipv6 rip 1234 enable R2(config-if)#Interface E 0/0 R2(config-if)#No ipv6 rip 1234 enable R2(config-if)#Interface S 0/0.1 R2(config-if)#No ipv6 rip 1234 enable

On R3 R3(config)#Interface Loopback 0 R3(config-if)#No ipv6 rip 1234 enable R3(config-if)#Interface E 0/0 R3(config-if)#No ipv6 rip 1234 enable R3(config-if)#Interface S 0/0.1 R3(config-if)#No ipv6 rip 1234 enable

On R4 R4(config)#Interface Loopback 0 R4(config-if)#No ipv6 rip 1234 enable R4(config-if)#Interface E 0/0 R4(config-if)#No ipv6 rip 1234 enable

Configure the routers in OSPFv3 area 0 and advertise their directly connected interfaces in this area Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 185 of 197

On R1 R1(config)#IPv6 router ospf 1 R1(config-router)#router-id 1.1.1.1 R1(config-router)#Interface Loopback 0 R1(config-if)#ipv6 ospf 1 area R1(config-if)# Interface E 0/0 R1(config-if)#ipv6 ospf 1 area

On R2 R2(config)#IPv6 router ospf 1 R2(config-router)#router-id 2.2.2.2 R2(config-router)#Interface Loopback 0 R2(config-if)#ipv6 ospf 1 area R2(config-if)# Interface E 0/0 R2(config-if)#ipv6 ospf 1 area R2(config-if)# Interface S 0/0.1 R2(config-if)#ipv6 ospf 1 area

On R3 R3(config)#IPv6 router ospf 1 R3(config-router)#router-id 3.3.3.3 R3(config-router)#Interface Loopback 0 R3(config-if)#ipv6 ospf 1 area R3(config-if)# Interface E 0/0 R3(config-if)#ipv6 ospf 1 area R3(config-if)# Interface S 0/0.1 R3(config-if)#ipv6 ospf 1 area

On R4 R4(config)#IPv6 router ospf 1 R4(config-router)#router-id 4.4.4.4 R4(config-router)#Interface Loopback 0 R4(config-if)#ipv6 ospf 1 area R4(config-if)# Interface E 0/0 R4(config-if)#ipv6 ospf 1 area

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 186 of 197

Ensure that the loopback interfaces are advertised with their correct mask. On R1 R1(config)#interface Loopback 0 R1(config-if)# ip ospf network point-to-point

On R2 R2(config)#interface Loopback 0 R2(config-if)# ip ospf network point-to-point

On R3 R3(config)#interface Loopback 0 R3(config-if)# ip ospf network point-to-point

On R4 R4(config)#interface Loopback 0 R4(config-if)# ip ospf network point-to-point

On All Routers •

Type Show IPv6 Route ospf. Do you see all the IPv6 routes learned thru OSPFv3?



Find out the Interface IP addresses of the Loopbacks by typing Show IPv6 Interface Brief.



Ping these address from each router to ensure connectivity.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 187 of 197

Lab 7 – Configuring IPv6 through a IPv4 Network using a Tunnel

R1 Lo 0

R2 E 0/0

Lo 0

E 0/0

S 0/0

2000:1:1:12::/64

Frame

192.1.23.0/24

S 0/0 2000:1:1:34::/64 Lo 0

E 0/0

Lo 0

E 0/0

R4

R3

Objective: IPv6 is running between R1-R2 and between R3-R4. IPv4 is running between R2-R3. You need to connect the 2 IPv6 networks over a IPv4 network using a Tunnel.

Enable IPv6 routing on R1,R2, R3 and R4. Assign IPv6 addresses to the E0/0 interface of the routers as follows: • • • •

R1 R2 R3 R4

– – – –

2001:1:1:12::1 2001:1:1:12::2 2001:1:1:34::3 2001:1:1:34::4

/64 /64 /64 /64

On R1 R1(config)#ipv6 unicast-routing R1(config)#Interface E 0/0 R1(config-if)#ipv6 address 2001:1:1:12::1/64 R1(config-if)#no shut

On R2 R2(config)#ipv6 unicast-routing Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 188 of 197

R2(config)#Interface E 0/0 R2(config-if)#ipv6 address 2001:1:1:12::2/64 R2(config-if)#no shut

On R3 R3(config)#ipv6 unicast-routing R3(config)#Interface E 0/0 R3(config-if)#ipv6 address 2001:1:1:34::3/64 R3(config-if)#no shut

On R4 R4(config)#ipv6 unicast-routing R4(config)#Interface E 0/0 R4(config-if)#ipv6 address 2001:1:1:34::4/64 R4(config-if)#no shut

Configure the Loopback0 interface on all routers using the auto-assigned addresses as follows: • • • •

R1 R2 R3 R4

– – – –

Loopback0 Loopback0 Loopback0 Loopback0

– – – –

2001:1:1:1::1/64 2001:2:2:2::2/64 2001:3:3:3::3/64 2001:4:4:4::4/64

On R1 R1(config)#Interface Loopback 0 R1(config-if)#ipv6 address 2001:1:1:1::1/64

On R2 R2(config)#Interface Loopback 0 R2(config-if)#ipv6 address 2001:2:2:2::2/64

On R3 R3(config)#Interface Loopback 0 R3(config-if)#ipv6 address 2001:3:3:3::3/64

On R4 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 189 of 197

R4(config)#Interface Loopback 0 R4(config-if)#ipv6 address 2001:4:4:4::4/64

Configure RIPng on all routers to route all loopbacks. Enable RIPng under the following interfaces: R1 R2 R3 R4

– – – –

E E E E

0/0, 0/0, 0/0, 0/0,

Loopback Loopback Loopback Loopback

0 0 0 0

On R1 R1(config)#Interface Loopback0 R1(config-if)#ipv6 rip 1234 enable R1(config-if)#Interface E 0/0 R1(config-if)#ipv6 rip 1234 enable

On R2 R2(config)#Interface Loopback0 R2(config-if)#ipv6 rip 1234 enable R2(config-if)#Interface E 0/0 R2(config-if)#ipv6 rip 1234 enable

On R3 R3(config)#Interface Loopback0 R3(config-if)#ipv6 rip 1234 enable R3(config-if)#Interface E 0/0 R3(config-if)#ipv6 rip 1234 enable

On R4 R4(config)#Interface Loopback0 R4(config-if)#ipv6 rip 1234 enable R4(config-if)#Interface E 0/0 R4(config-if)#ipv6 rip 1234 enable

Configure the Frame Relay link between R2 and R3 as an IPv4 Link on the 192.1.23.0/24 network. Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 190 of 197

On R2 R2(config)#Interface S 0/0 R2(config-if)#ip address 192.1.23.2 255.255.255.0 R2(config-if)#encap frame-relay R2(config-if)#frame-relay map ip 192.1.23.3 203 R2(config-if)#no shut

On R3 R3(config)#Interface S 0/0 R3(config-if)#ip address 192.1.23.3 255.255.255.0 R3(config-if)#encap frame-relay R3(config-if)#frame-relay map ip 192.1.23.2 302 R3(config-if)#no shut

Create a Tunnel between R2 and R3 Assign it an IPv6 address of 2001:23:23:23::/64. Set the Tunnel Mode to IPv6. Enable RIPng on the Tunnel Interface On R2 R2(config)#Interface Tunnel 23 R2(config-if)#ipv6 address 2001:23:23:23::2/64 R2(config-if)#tunnel source S 0/0 R2(config-if)# tunnel destination 192.1.23.3 R2(config-if)#ipv6 rip 1234 enable R2(config-if)#tunnel mode IPv6IP

On R3 R3(config)#Interface Tunnel 23 R3(config-if)#ipv6 address 2001:23:23:23::3/64 R3(config-if)#tunnel source S 0/0 R3(config-if)# tunnel destination 192.1.23.2 R3(config-if)#ipv6 rip 1234 enable R3(config-if)#tunnel mode IPv6IP

On All Routers •

Type Show IPv6 Route rip. Do you see all the IPv6 routes learned thru RIPng?



Can you ping the R4 loopback from R1 and vice versa? Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 191 of 197

Lab 8 – Configuring IPv6 over Point-topoint and Multipoint R1

R2

R4 Frame-Relay

R3

IP addressing and DLCI information Chart Routers

IP address

R1

S0/0.123: 2001:150:1:30::1 /64 S0/0.14: 2001:150.1.60::1 /64

Local DLCI 102 103 104

R2

S0/0: 2001:150:1:30::2 /64

201

R3

S0/0: 2001:150:1:30::3 /64

301

R4

S0/0: 2001:150.1.60::4 /64

401

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 192 of 197

Connecting to: R2 R3 R4

R1 R3 R1 R2 R1

Objective: Configure IPv6 over Frame-relay. Configure OSPFv3 to route the loopback networks over the Frame Cloud.

Configure the R1 and R4 as follows: o R1 (The HUB) must be configured with two sub-interfaces, one of the two sub-interfaces must be configured to connect R1 to R4, this subinterface should be configured in a point-to-point manner using the following IP addressing: R1 = 2001:192:1:14::1/64 R4 = 2001:192:1:14::4/64 o R4 should not be configured with a sub-interface.

On R1 R1(config)#IPv6 unicast-routing R1(config)#Interface S0/0 R1(config-if)#Encapsulation frame-relay R1(config-if)#No frame-relay inverse R1(config-if)#No shut R1(config-if)#Int S0/0.14 point-to-point R1(config-subif)#Ipv6 address 2001:192:1:14::1/64 R1(config-subif)#Frame-relay interface-dlci 104

On R4 R4(config)#IPv6 unicast-routing R4(config)#Interface S0/0 R4(config-if)#Encapsulation frame-relay R4(config-if)#No frame-relay inverse R4(config-if)#Ipv6 address 2001:192:1:14::4/64 R4(config-if)#Frame-relay map ipv6 2001:192:1:14::1 401 broadcast R4(config-if)#No shut

Configure the R1, R2 and R3 as follows: o The second sub-interface on R1 must be configured in a multipoint manner, and this sub-interface must be configured to connect R1 to routers R2 and R3 using the following IP addressing: R1 = 2001:192:1:123::1 /64 R2 = 2001:192:1:123::2 /64 R3 = 2001:192:1:123::3 /64.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 193 of 197

o Routers R2, R3 should not be configured with a sub-interface and these routers should NOT rely on Inverse-arp. o Ensure that the R2 can ping R3.

On R1 R1(config)#Int S0/0.123 multipoint R1(config-subif)#Ipv6 address 2001:192:1:123::1/64 R1(config-subif)#Frame-relay map ipv6 2001:192:1:123::2 102 broad R1(config-subif)#Frame-relay map ipv6 2001:192:1:123::3 103 broad

On R2 R2(config)#IPv6 unicast-routing R2(config)#Interface S0/0 R2(config-if)#Encapsulation frame-relay R2(config-if)#No frame-relay inverse R2(config-if)#Ipv6 address 2001:192:1:123::2/64 R2(config-if)#Frame-relay map ipv6 2001:192:1:123::1 201 broadcast R2(config-if)#Frame-relay map ipv6 2001:192:1:123::3 201 R2(config-if)#No shut

On R3 R3(config)#IPv6 unicast-routing R3(config)#Interface S0/0 R3(config-if)#Encapsulation frame-relay R3(config-if)#No frame-relay inverse R3(config-if)#Ipv6 address 2001:192:1:123::3/64 R3(config-if)#Frame-relay map ipv6 2001:192:1:123::1 301 broadcast R3(config-if)#Frame-relay map ipv6 2001:192:1:123::2 301 R3(config-if)#No shut Configure the routers in OSPFv3 area 0 and advertise their directly connected interfaces in this area. Also Configure Loopbacks on all 4 Routers using the 2001:X:X:X::X/64 format

On R1 R1(config)#IPv6 router ospf 1 R1(config-router)#router-id 1.1.1.1 R1(config-router)#Interface Loopback 0 R1(config-if)#ipv6 address 2001:1:1:1::1/64 R1(config-if)#ipv6 ospf 1 area R1(config-if)# Interface S 0/0.14 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 194 of 197

R1(config-subif)#ipv6 ospf 1 area R1(config-subif)# Interface S 0/0.123 R1(config-subif)#ipv6 ospf 1 area R1(config-subif)# Frame-relay map ipv6 Link-Local 102 R1(config-subif)# Frame-relay map ipv6 Link-Local 103 R1(config-subif)# ipv6 ospf network point-to-multipoint (Find the Link-Local Address for R2 and R3 by using Show IPv6 int brief on R2 and R3 respectively. This is required for OSPFv3 Neighbor relationship to be established)

On R2 R2(config)#IPv6 router ospf 1 R2(config-router)#router-id 2.2.2.2 R2(config-router)#Interface Loopback 0 R2(config-if)#ipv6 address 2001:2:2:2::2/64 R2(config-if)#ipv6 ospf 1 area R2(config-if)# Interface S 0/0 R2(config-if)#ipv6 ospf 1 area R2(config-if)# Frame-relay map ipv6 Link-Local 201 R2(config-subif)# ipv6 ospf network point-to-multipoint (Find the Link-Local Address for R1 by using Show IPv6 int brief on R1. This is required for OSPFv3 Neighbor relationship to be established)

On R3 R3(config)#IPv6 router ospf 1 R3(config-router)#router-id 3.3.3.3 R3(config-router)#Interface Loopback 0 R3(config-if)#ipv6 address 2001:3:3:3::3/64 R3(config-if)#ipv6 ospf 1 area R3(config-if)# Interface S 0/0 R3config-if)#ipv6 ospf 1 area R3(config-if)# Frame-relay map ipv6 Link-Local 301 R3(config-subif)# ipv6 ospf network point-to-multipoint (Find the Link-Local Address for R1 by using Show IPv6 int brief on R1. This is required for OSPFv3 Neighbor relationship to be established)

On R4 R4(config)#IPv6 router ospf 1 R4(config-router)#router-id 4.4.4.4 Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 195 of 197

R4(config-router)#Interface Loopback 0 R4(config-if)#ipv6 address 2001:4:4:4::4/64 R4(config-if)#ipv6 ospf 1 area R4(config-if)# Interface S 0/0 R4config-if)#ipv6 ospf 1 area R4(config-if)# Frame-relay map ipv6 Link-Local 401 R4(config-subif)# ipv6 ospf network point-to-point

Ensure that the loopback interfaces are advertised with their correct mask. On R1 R1(config)#interface Loopback 0 R1(config-if)# ip ospf network point-to-point

On R2 R2(config)#interface Loopback 0 R2(config-if)# ip ospf network point-to-point

On R3 R3(config)#interface Loopback 0 R3(config-if)# ip ospf network point-to-point

On R4 R4(config)#interface Loopback 0 R4(config-if)# ip ospf network point-to-point

On All Routers •

Type Show IPv6 Route ospf. Do you see all the IPv6 routes learned thru OSPFv3?



Find out the Interface IP addresses of the Loopbacks by typing Show IPv6 Interface Brief.



Ping these address from each router to ensure connectivity.

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 196 of 197

Summarize the 150.1.0.0 routes on R1 using the longest possible match. On R1 R1(config)#router isis R1(config-if)#summary-address 150.1.4.0 255.255.252.0 level-2

Verifying the Configuration •

On R2, Type Show ip route. The output displays that network the summarized address for the new loopbacks.

R2 Routing Table i L2 C C i L2

1.0.0.0/8 [115/20] via 192.1.12.1, Serial 0/0 2.0.0.0/8 is directly connected, Loopback 0 192.1.12.0/24 is directly connected, Serial 0/0 150.1.4.0/22 [115/20] via 192.1.12.1, Serial 0/0

Copyrights Netscope FZ LLC 2007-2015 Website: http://www.netscopeme.com [email protected] Page 197 of 197

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF