CBSE Sample Paper Solutions for Class 11 Mathematics - Set A
Short Description
For All CBSE Sample Papers for Class 11 Maths visit: http://schools.aglasem.com/?p=37965 For All CBSE Sample Papers f...
Description
AglaSem Schools
SAMPLE QUESTION PAPER–6 Section-A 1. We have R = {(x, y) : (x – y) is odd natural number x A, y B}.
1
R = {5, 4}
2.
1
f (x) =
.
5 x
It is defined when 5 – x > 0 x < 5. Domain of f = {x : x R , x < 5}
Range = (0, ).
1
m o c
tan 8 x 8 x 8 x 8 tan 8 x = lim lim = . 3 x 0 sin 3 x x 0 sin 3 x 3 x 3x
.
3.
m e s
4.
1
cosec (– 1410°) = cosec (– 360° × 4 + 30)
a l g
1
= cosec 30° = 2. x2 = 2 x= y3 = 2 y–3=
5.
a . s
2
4+2=6
ol
and
o h
sc
A (–2, –3)
–5
O (2, –5)
– 10
y = – 10 + 3 = – 7 1
Co-ordinates of B are (6, – 7).
.
6. If two lines do not intersect in plane, then they are parallel.
w
w
w
7.
B (x, y)
1
Section - B L.H.S. =
cos A cos B cos C a b c 2 2 2 2 b c a a c2 b2 a2 b2 c2 = 2abc 2abc 2abc
1 2
b2 c2 a2 a2 c2 b2 a2 b2 c2 1 2abc a2 b2 c2 = = R.H.S. Hence proved. 1 2abc =
OR 1 5 and sec = 2 3
Given that,
cot =
tan = 2 and tan =
1 2
5 1 3
AglaSem Schools 25 9 9
tan = tan = + tan ( +) =
4 3
[ B , 2 2
tan tan 1 tan tan
1
2 = = 3 4 11 12 3 3 2
tan ( + ) =
4 3
1
2 11
1 2 1 c os 7 2 = 1 s in 7 2 1 1 2 cos 7 .cos 7 2 2 = 1 1 2 sin 7 . cos 7 2 2 2 1 2 cos 7 2 = sin 15
8.
L.H.S. = c ot 7
m o c
m e s
.
1
a l g
a . s
l o o
.
h c s
w
=
1 cos 15 sin 1 5
=
1 cos (45 30 ) sin (45 30)
=
w
w
=
1 cos 45 cos 30 sin 45 sin 30 sin 45. cos 30 cos 45 sin 30 1 3 1 1 1 2 2 2 2 1 3 1 1 2 2 2 2
( 3 1) 1 2 2 = 3 1 2 2
2 2 3 1 = 3 1 = =
(2 2 3 1)( 3 1) ( 3 1)( 3 1) 2 6 3 3 2 2 3 1 ( 3)2 12
1
1
AglaSem Schools 2 6 2 32 2 4 = 2 = 6 3 22 =
6 3 2 4 Hence proved. 1
= R.H.S. 9. We have
2kx – 5k = (x – 3).x
2
(k – 3).x2 – 2kx + 5k = 0
= (–2 k)2 – 4 (k – 3). 5k
1
= 4k2 – 20k (k – 3) = 4k (k – 5k + 15) = 4k (– 4k + 15)
om
= 4k (4k – 15) For real and unequal root
.c
>0
– 4k (4k – 15) > 0
4k (4k – 15) < 0
a l g
15 4
00
For domain, as
x2 + 1 > 0.
f(x) is defined for all x R.
Domain of f = R.
l o o
ch
.s
14.
m e s
, x R
½
a l g
½
f(x) = y
1
.c
a . s
For range, let
1
w
y=
x2 =
w
w
x=
x2 2
x 1
y 1 y
y 1 y
1
½
1
1 – y > 0 y < 1 and y > 0. Range : 0 < y < 1.
½
f (x) = sin (5x – 8)
f (x) = lim
h 0
f ( x h) f ( x) h
= lim
sin {5 ( x h) 8} sin (5 x 8) h
= lim
2 cos h
h 0
h 0
= 2 lim
h 0
1 h
1
5 x 5h 8 5 x 8 5 x 5h 8 5 x 8 ·sin 2 2
5h 5h cos 5x 8 2 ·sin 2
1
AglaSem Schools
5h sin 2 5h = 5 lim cos (5 x 8 5 h 0 2 h 2
1
5h sin 2 = 5.cos (5x – 8). lim h0 5h 2 sin x 1 = 5 cos (5x – 8), lim x 0 x
1
1 ,x R x [ x] 0 < (x – [x]) < 1, x R
15.
f(x) = As,
1
m o c
But when x Z x – [x] = 0
0 < (x – [x]) < 1, x R – Z
Domain of f = R – Z.
m e s
For range, as
0 < x – [x] < 1, x R – Z
0<
1<
1 < f(x) <
1
o h
and x, b, c, y are in G.P.
w
w
Let r be common ratio.
w
.
sc
a=
x y 2
1
....(i) 1
b = xr, c = xr2, y = xr3 1/3
y r= x
y b = x x
and
1
0, y > 0 ....(ii) Take
3x
3x + 3y = 60
At
x = 0, y = 20
and
y = 0, x = 20
+
1
3y
30 =
60
2 20
m o c
At (0, 0); 0 + 0 < 60, (True) Now take
C(0, 10)
1
i.e., (0, 0) is included.
10
x + 3y = 30
At
x = 0, y = 10
and
y = 0, x = 30.
X'
At (0, 0); 0 + 0 < 30, (True)
25.
L.H.S. =
10
20 A(20, 5)
30
40
.
w
w
w
X 3y = 30
a . s
1·22 2·32 .... n(n 1)2 12 ·2 22 ·3 .... n2 (n 1)
l o o
h c s
x+
a l g
2
So, shaded region OABC is the solution region.
.
m e s
0 Y'
So, origin is also included.
B(15, 5)
=
[ n(n 1)2 ] [ n2 (n 1)]
=
[ n3 2n2 n] [ n3 n2 ]
=
n3 2 n2 n n3 n2
1
1
n2 (n 1)2 n(n 1)(2 n 1) n(n 1) 2 4 6 2 = n2 (n 1)2 n(n 1)(2 n 1) 4 6
3n2 (n 1)2 4n(n 1)(2n 1) 6n(n 1) 12 = 3n2 (n 1)2 2n(n 1)(2n 1) 12
1
=
n(n 1)(3n2 3n 8n 4 6) n( n 1)(3n2 3n 4n 2)
1
=
3n2 11n 10 3n2 7n 6
1
AglaSem Schools
(3n 5)(n 2) = (3n 1)(n 2) =
3n 5 = R.H.S. 3n 1
Hence proved. 1
26. Given that,
(a + ib) (c + id) (e + if) (g + ih) = A + iB
1
(a – ib) (c – id) (e – if) (g – (ih) = A – iB
2
(A + iB) (A – iB) = (a + ib) (a – ib) (c + id)
(c – id) (e + if) (e – if) (g + ih) (g – ih) 2 2
2
2
2
2
A + B = (a + b ) (c + d2) (e2 + f2) (g2 + h2).
1
OR We have
z2i = 5, where z is only complex number. z 5 4i z 2i z 5 4i
2
x iy 2 i x iy 5 4i
2
( x 2) i( y 1) ( x 5) i( y 4)
2
1
1
l o o
( x 2) i( y 1) ( x 2) i( y 1) ( x 5) i ( y 4) ( x 5) i( y 4) = 25
h c s
( x 2) i( y 1)][( x 2) i( y 1) [( x 5) i( y 4)] [( x 5) i( y 4)]
.
w
= 25
1
(x + 2)2 + (y – 1)2 = 25 [(x + 5)2 + (y + 4)2]
x2 + 4 + 4x + y2 + 1 – 2y = 25 (x2 + 25 + 10x + y2 + 16 + 8y]
a l g
1
= 25
a . s
.
m e s
= 25
m o c
|z|2 = zz
As,
= 25
w
25x2 + 25y2 + 250x + 200y + 1025 – x2 – y2 – 4x + 2y – 5 = 0
w
2
1
2
24x + 24y + 246x + 202y + 1020 = 0 12x2 + 12y2 + 123x + 101y + 510 = 0.
1
View more...
Comments