CATERPILLAR 3600 Marine Engine Application and Installation Guide

July 24, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download CATERPILLAR 3600 Marine Engine Application and Installation Guide...

Description

 

Caterpillar 3600 Marine Engine Application & Installation Guide LEKM2005

Table of Contents Introduction Introduction Foreward General Information Basic Engine Consists Engine Description Engine Testing and Certificates Torsional Vibration Analysis Shipbuilder's Responsibility Customer Application Information Engine Data Dimensions and Weights Center of Gravity Technical Data Noise Vibration Engine Performance Engine Ratings Distillate Fuel Heavy Fuel Performance Criteria Marine Performance Curves Marine Performance Parameters Engine Systems Piping Fuel Distillate Fuel Heavy Fuel Lubricating Oil Cooling Fresh Water Cooling Sea Water Cooling  Air   Air Intake Exhaust Starting Air  Crankcase Fumes Disposal

 

Mounting and Alignment Foundation Design Construction Constructio n Materials Dual Engine Installation Mounting Arrangements  Alignment Procedures Controls Pneumatic Control System Electronic Controls Engine Governors Fixed Pitch Propeller Systems Controllable Pitch Propeller Systems Instrumentation Installation Drawings General Drawing Datums and Conventions Engine Installation Drawings Engine Room Installations Ancillary Equipment    Couplings Marine Gears   Propellers Repowering Applications General Foundations Repower Survey Check List Other Applications Ships Service Generators Shaft Generators Bow or Stern Thrusters Hydraulic Pump Drive Service and Maintenance Service Envelopes/Component Weights Spare Parts Kits Expected Parts Life Service Tools Trials and Commissioning Design Review Installation Audit Dock Trials Sea Trials Sea Trials Conditions Reference Publications

 

 ® 

3600 Marine Engine Application and Installation Guide  Introduction  General

LEKM8460

Info Information rmation

8-98

 

 ® 

Introduction Foreward

 

Introduction

To ensure engin es a re in sta lled properly properly,, Caterpillar has support capability unma tched in the industry. From From discipl disc iplines ines required for insta llation, to servicee and ma intena nce deman ded servic year s a fter comple completion, tion, Ca terpillar terpillar continues its commitment to its customer’s successful successful opera tion.

The information presented in this guide should shoul d a id in the planning t hrough customer a ccepta ccepta nce phases of a projec project. t. The guide is arra nged a nd designed to enable the information to be kept current, an d for for t he user to easily locate locate the specific information required.

Over fifty yea rs of develo developing ping ma rine power power equipment ha s culmina culmina ted in a broad line of pra ctical equipment, providing cost-effective selection and inst a llat ion ease. A single source for propulsi pro pulsion on engines engines a nd m ar ine auxiliaries auxili aries assures testing and q uality for for ma tched pa pa ck ckaa ges.

The technical da ta included is for for ea se of of reference refere nce and w ill be upda upda ted periodically. Dealers can also obtain current engine informat ion ion by a cce cessing ssing the Ca terpillar terpillar Tec echnical hnical Ma rketing In forma tion S yst em (TMI). (TMI). This This sys tem should always be checked for the most up to da te engine da ta a vaila ble. ble. The The TMI TMI Syst em is a corpo corpora ra tely oriented oriented comput comput erized sy stem for for collec collectin tin g, preparing, pre paring, mainta ining, ining, a nd communicat communicat ing technical technical dat a r equired fo forr m arketing Ca terpillar terpillar E ngine Division products. products. TMI TMI operat es in a n IMS environment through the Ca terpilla terpilla r Network an d functions functions under under a corpo corpora ra te security system.

Development of inst a llation knowledge Development para lle llels ls equipment a dvan ces. ces. While While this Applic pplicaa tion and In sta llation Guide summa rizes ma ny a spects spects of of installa tion, Ca terpill terpillar ar D ealers stand ready w ith complete complete and deta iled iled a ssistan ce. It is the inst aller’s aller’s responsibil responsibility ity t o consider and avoid possible hazardous condit condit io ions ns w hich could could develop from from t he syst ems involved in a specific specific engine inst a llat ion. T The he suggest io ions ns provided in this guide regar ding a vo voidance idance of of ha za rdous co conditions apply to all a pplic pplicat at ions ions a nd a re necessarily necessarily of a general na ture since only the insta ller ller is familiar w ith the details of of a particular particular inst a llat ion. T The he suggest io ions ns provided in th is guide should be considered considered a s

It must a lwa ys be emp emphasized hasized to refe referr t o the TMI TMI S ystem for the la test engine performance performance info informa rma tion on on a ll Engine Division products.

Foreword P roper roper sele selecction a nd inst a llation of engines for for m a rine a pplic pplicaa tion is vita l for for dependable performance and long, tr ouble-free ouble-free life. The The pur pose of of t his guide is t o help: help:

general exam ples ples only only,, an d a re in no wa y intended to cover every possible hazard in all installations. U se the t able of contents contents a s a check checklist list of subjec subj ects ts affecting engine insta llat ions. ions. Using the indexed material during prelimina preli mina ry proj project ect planning can avoid the effort effort a nd expense expense of afterinstallation changes.

• Make knowledgeable knowledgeable choi choice cess of of po power wer equipment. • Design Design and build build ma rine installations installations tha t perform perform reliably at an optimum price/va lue rela t ionship to the customer.

5

 

 ® 

General Info Information rmation Model Identification Basic Engine Consists Engine Descri Description ption Engine Testing and Certificates  To  T orsio rsion na l Vibra ibrattio ion n Aand naly lysi sis s Engine Preservation Packaging Shipbuilder’s Responsibility Customerr Application Informa Custome I nformation tion

 

Model Identification

Serial Number

The ba sic model number is representa tive of both both th e series of of part icular icular engine an d the number of of cylinders. Typically Typically a n a ddit io iona na l suffix refers t o the t ype of fuel injec injection tion met hod and char ge air a spiration. spiration.

Ea ch engine is is assigned a uniq ue seria seria l num ber. ber. T The he nu mber ty pic picaa lly co consist nsist s of alpha numeric chara cters; the first three represent t he engine model, i.e.: i.e.:

E xample: 3612 DITA DI TA C a te t er pi pi l l a r 3600 F a mi m ily 12 Cy lind er Vee E ng ine D i r ect F u el I n ject ed Turboc urbocharged Afte Afterc rco ooled led

- 36 - 12 - DI - TA

Model 36 0 6 36 0 8

Serial Number 8R B X X X X X 6M C X X X X X

36 1 2 36 1 6

9R C X X X X X 1P D X X X X X

The number is found on both both the S erial Number Numb er Pla te and the Informat Informat ion ion P late.

All Ca terpillar terpillar engines have three numbers wh ich ich furth er define define the engine. They They a re:

Performance Specification Number A number describing th e engine’s engine’s fuel system, air induction induction system, an d performa perfo rma nce sett sett ings. T The he number is

Arrangement Number Used to establish the specific part a ssemblies ssemblies representing representing th e basic engine. Components such as cylinder hea ds, pistons, cylinder cylinder blocks blocks a nd cranksha fts can be determined determined from from the a rra ngement number. It is found found on both both the Serial Number Number Pla te and E ngine Informa tion P lat e, Figures 1 & 2. Both plates a re located located on th e engine. engine.

unique to the power power r a ting of each engine. It is found found on the E ngine Informa tion Pla te, Figure 2. The th ree numbers a re used to reference a spec specific ific engine model, applica applica tion a nd rat ing and should should a lwa ys be refe referred rred to in correspondence relative to a particular engine or or w hen spare part s ar e ordered. ordered.

ENGINE MODEL SERIAL NUMBER

DATE DELIVERED DLR CODE

SER.NO. MODIFICATION MODIFICATIO N NO. AR NO. OEM NO. FULL LOAD STATIC FUEL POWER

ARRANGEMENT NUMBER

(ALWAYS GIVE ALL NUMBERS) MADE IN U.S.A.

BARE ENG. HI IDLE RPM

3N3790 11

Located on the left side of the engine block above one of the crankshaft inspection covers.

PERF SPEC

FULL LOAD RPM

MAX ALT FULL TORQ. STATIC FUEL A/F RATIO DYNAMIC FUEL TIMING 9L8531 13

Located on the right side of the engine block above one of the crankshaft inspection covers.

Fi Fig gure 2

Fig Fi gure 1

9

 

Basic Engine Consists

The lists specify functional r equirem ents of a n engine result ing in a series of of code code numbers uniquely describing describing t he complete complete engine pa ckage.

The Caterpillar 3600 Family is configur configur ed in a positivepositive-build build ma nner for optimum flexibility in meeting customer requirements an d ensures the ability to assemblee and t est assembl est a runnable engine engine at the factory.

It should should be empha empha sized that each specific spec ific engine is op optim tim ized in configura onfigura tion hardw a re for for th e intended intended applicaa tion, including applic including core core ha rdw ar e such a s cylinder liners, fu el injec injectors, tors,

Eng ine options, options, from from Ca terpilla terpilla r ’s Selection Guide LEBQ5043, are listed in general code categories. The Selection G uide is inc included luded in th e 360 3600 0 Sa les Man ua l, LEKQ6141 LEKQ6141,, and is ava ilable from Cat erpillar erpillar D ealers or or thr ough the Ca terpillar terpillar C orporat rporat e Literature distribution system.

ca msha fts, t urbochargers, urbochargers, et c. The The ha rdw a re differenc differences es to obta in ma ximum engine durability a nd performa performa nce efficiency effic iency,, even for va rious fuel t ypes, a re a ll defined by the engine ordering code system.

Reference Material LEKQ6141 3600 Sales Manual LEBQ5043 3600 Attachment Selection Selec tion G uide

10

 

Engine Description

Valves

The 3600 3600 En gine Fa mily is a modern, highly efficient engine family consisting of inline 6 and 8 cylinder engines a nd vee engines of 12 and 16 cylinders. They a re 4 stroke nonnon-reversible reversible engines ra ted a t speeds from 720 to 100 1000 0 rpm a nd intended for for use a s ma in propulsio propulsion n a nd ma rine a uxiliar uxiliar y engines for ship service service

The va lves seat on replaceable induction-hardened inserts. Positive ro rota ta tors on on a ll valves valves ma intain a unifo unif orm tempera tempera ture and w ear pat tern a cross the valve face an d se seaa t. Exha ust valves used in heavy fuel engines are given required spec special ial a tt entio ention. n. B y using a Nimonic Nimonic 80A 80A ma teria l in t he

generat ors. They They a re turbocha turbocha rged a nd a ftercooled ftercooled wit h a direct injection injection fuel syst em using un it fuel injectors. injectors. For For specification sheet information see the E ngi ngine ne D ata sec section tion of this g uide.

valves and reducing reduci ng the induced exhaust ga s temperature, vanadium corrosion corrosion is si significan gnifican tly m inimized. Increased va lve overlap, overlap, w a ter co coo oling the insert seats, an d applying a ce cera ra mic coa coa ting t o the va lves lves ma inta ins low  low  valve head temperature.

Cylinder Block The cylinder block is a one piece casting of hea vily ribbed, weldable, gray iron iron a llo lloyy. It is ca ca st a nd ma chined chined at Ca terpilla terpilla r’s facilities facilities.. Air Air int ake plenums ple nums run the full length of the engine providing providing even even a ir distribution to th e cylinders. I nspection nspection covers covers provide easy inspection inspection a nd service access access to interna l engine compo components, nents, such a s th e camsha ft, rod rod a nd ma in bearings, bearings, valve train, etc. The crankcase covers are equipped wit h explosio explosion n r elief valves. The cylin der b lock lock is desig ned f or four, six, or eight point mounting.

Unit Fuel Injectors he he  T 

fuel injectors injectors combine th e pumping, metering a nd injecting injecting ele elements ments into a single unit mounted directly in ea ch cylinder head. This system has proven ideal not not only when distillate a nd ma rine diesel oils oils ar e used, but a lso on heavy fuel; high injection pressure and precise preci se inje injectio ction n t iming, even a t ligh t loaa ds, a ssure efficient lo efficient combust combust ion. In jection ection pressur es of 1620 1620 bar (23,500 23,500 psi) co complet mplet ely a tomi zes even th e hea viest of fuels for for m ore comple complete te combustion combustion a nd a ccelerat celerat ed engine response. External manifolds supply fuel a t low pressure pressure from from the tr a nsfer pump pump to drilled drilled passa ges in the cylinder cylinder hea d. High pressure lines lines a nd double double wa ll

Cylinder Head The unit cylinder hea d is poured in compacted compacted gra phite iron iron a t C a terpillar terpillar ’s foundry. The material approaches the strength of nodular nodular iron, yet reta ins the heat t ransfer and sound damping damping properties of gray iron. It is a four valve, quiescent, uniflow port design with a cent cent ra l ca ca st port for th e unit fuel injector. injector. The top deck deck is th ic ick k to carr y ga s loading while the buttressed bottom deck is th inner for good good hea t t ra nsfer. The replaceable repl aceable valve guides guides a re threa ded to provide close close tolera tolera nce with th e valves a nd st ill have good good lubricat io ion n cont cont rol. All valves are fitted with positive

high pr essure fuel injection injection lines are n ot needed. A 100 micron (.004 in.) edge type filter w ithin each injecto injectorr prevents prevents conta conta mina nts from from ent ering th e injec injector tor durin g ma int ena nce p proc rocedures. edures. The The hot wa ter surrounding th e injecto injectorr lo location cation in the head a ids in in sta rting a nd stoppi stopping ng on heavy fuel. Individual control racks for ea ch cylinder perm its precise precise injec injector tor timing a nd minimizes fuel fuel wa ste. Field Field calibrat io ion n is eliminat eliminat ed and fa cto ctory ry rebuiltt injec rebuil injectors tors a re a vaila ble fo forr engine overhaul.

rotat rsnnections a nd seat ar onereplacea replace inserts. Fuel oconnections co ma de on oanble th einserts. outside of of the hea d w ith drillings to the unit fuel injecto injectors. rs. The The hea d is ret a ined by four hydra ulically ulically tensioned tensioned studs.

An injector tip cooling system is used for heavy fuel operation. operation.

11

 

Crankshaft

heavy fuel. fuel. The The tw o middle middle rings a re ta per fa ced ced a nd chrome co coaa ted. The The oil ring is chrome chrome faced and uses a spring expand er er.. Cooling Cooling oil for for t he crow crow n a nd ring belt ar eas is sprayed from a cylinder block block mount ed jet jet th rough passageways in the piston.

The cranksha ft is a continuous continuous gra in flo flow w fo forging, rging, induction induction ha rdened, an d regrindable. Counterweights at each cylinder cyl inder ar e welded to the cranksha ft a nd ultr asonica asonica lly inspec inspected ted to a ssure weld int egrity. egrity. The The cranksha ft end flanges a re identica identica l, allowing full power power to be ta ken from either end. A visconic visconic

Cylinder Liners

cranksha ft da mper is fitted outside outside the engine housing housing a t t he free end of of the engine.

Cylinder liners ar e high a llo lloyy iron castings, induction induction ha rdened on on t he wearing surface, plateau honed and wa ter jacketed over over their full length.

Connecting Rods Connecting rods ar e forged, Connecting forged, heat t reat ed, a nd sh otpeened otpeened before before ma chining. The The special four bolt design and elimination of bearing grooves allows for an extra lar ge bea bea ring wit h reduced reduced load load s, and ma ximum oil oil film t hickness. These These factors extend bearing life and improve improve

Camshaft

cranksha ft strengt h areduces nd stiffness. The four bolt design bolt a lso bolt bolt t orque needed to a chieve proper proper clamping load, and allows allows t he rods rods to be withdra wn th rough t he liner for service. Oil hole drilling in the critical critical rod shank a rea is elimina ted by th e use of piston piston cool cooling ing jets.

between o inductio induction n ha journa ls. tw Only four four uniq uerdened ca ca msha ft segments a re used for for t he entire engine family: (1) inline and vee right bank, (2) vee left ba nk, (3 (3)) sta nda rd overla p, a nd (4) (4) high overla p for for hea vy fuel. Reverse rota tion is accomplished accomplished by rearra nging the segments. segments.

Bearings

Turbocharger

All main, rod, rod, and camsha ft bearings a re steel ba ba cked aluminum w ith a lead-tin lead-tin

High eff effic icienc iencyy t urboc urbocha ha rgers a re used, one on the inline engines engines a nd t wo on the

overlay copper bonded to the aluminum. P iston cool cooling ing jets elimina te oil grooves grooves in th e highly loaded portion of th e rod bearings.

vee engines. turbochargers have ra dial flow compresso coThe mpressors rs a nd a xial flow  flow  turbines. They They a re exhaust ga s driven so tha t gea r drives are not required. T The he tur bocha bocha rger, combined combined wit h good good “breat hing” a nd efficient efficient a ftercoo ftercooling, produces produc es a high a ir/fuel ra tio, providing more complete burning for maximum efficiency effic iency a nd improved cool cooling ing of the combustion chamber and valves. The turbocha turboc ha rgers ar e wa ter coo cooled and th e bearings a re pressure pressure lubric lubricaa ted wit h engine oil.T oil.The he tur bocha bocha rgers a re mounted at the flywh ee eell end of of the engine. If a front front m ounted exhaust system is required, the engine can can be turn ed end for for end w ith full power power t a ken from fro m t he front.

The cam sha ft is segm ented (one per per cylinder) cyl inder) to permit permit easy removal removal a nd reduce service time. Each segment is ma de from from case hardened, unique cleaa nliness co cle cont nt rolled rolled st eel and bolted bolted

Pistons P istons have a steel crown crown bolted to a light w eight forged forged aluminum skirt for for excell exc ellent ent str ength a nd dura bility. bility. Ea ch piston pisto n ha s four four rings, tw o in in ha rdened grooves groo ves in the crown crown a nd t wo in the skirt . The The t op compressio compression n r ing is ba rrel faced and plasma coa coa ted for for grea ter ha rdn ess. The The coa coa tin g, in conjunctio conjunction n wit h t he induction induction h a rdened liner, liner, gives excellent exc ellent oil control control a nd life even w ith 12

 

Exhaust System

Lube Oil System

The 3606 and 3612 Engines use a pulse exhaust ma nifold nifold system. The ma nifold nifold piping pip ing a rra ngement for t he inline 3606 3606 a nd ea ch ban k of the vee 361 3612 2 is identicaa l. The identic The fro front nt an d rea r t hree cylinders cyl inders a re connec connected ted t o separa separa te tur bine inlet housing ent ries. T The he inline 3608 3608 a nd t he vee 3616 3616 En gines use

The lube oil system, stan da rd w ith t he engine, feat feat ures a prelube prelube pump and a priority prio rity valve regulat ing oil oil pressure at the oil oil manifold manifold rat her tha n a t t he pump. pump. This allows the engine to have cont cont inuous lubricat io ion n independent of pressure dr op a cross cross th e oil oil filters.

consta consta nt pressure pressure exhaust systems. The The 3608 3608 ha s one ma nifold and t he 3616 3616 ha s one ma nifold nifold for for ea ch ba nk.

Oil Oi C Co o oler and and Fi Filte lters Thel oil coo cooler ler a nd filt ers a re rs fa ctory installed, tested installed, tested and wa rra nted, thus a voiding mixed responsibility responsibility for piping a nd compo components nents a nd significan significan tly lowering lowering insta llation costs. costs. D uplex uplex filters ha ve repla repla ceable ceable elements elements a llo llowing wing service without engine shutdown. The primary filter is 178 micron (.007 in.), wh ile the fina l seco seconda nda ry filters a re a med ia ty pe of 5 micron (.0002 (.0002 in.) size.

Dry shielding shielding assures surfa ce temperat ures meet Cla ssific ssifica tion Society Society requirements.

Air Intake System All engines engines a re tur bo bocharged charged a nd freshwa ter aft erco ercooled. A var var iety of a ir cleaners ca n be supplied. The The

Oill Sum Oi Sump p The oil sump is of a ligh t mild st eel w eldment bolted bolted t o the cylinder bloc block. k. A wet type sump is norma norma lly used; a dry ty pe ca ca n be provided to fit specific applications.

a ftercool ftercoolers ers a re mounted in a ir plenums cast directly in t he cylinder blocks. blocks. Depending on on t he a pplic pplicaa tion, air shutoffs ma y be lo located in the air st ream between the turbocharger and aftercooler.

Bypass Oil Centrifuges B ypass oil centrifuges, centrifuges, driven driven by m ain engine oil pump bypa ss flow, flow, can be mount ed on on th e side of of the engin e to remove very sma ll, solid, solid, micron micron size particles, and in some cases can be used to extend oil filter filter chan ge periods. T They hey can be cleaned cleaned a nd serviced serviced with t he

Gear Trains G ear tra ins are used used at both both t he front front a nd rea r of the engines. engines. A. The The rear gear group has 5 base H CR (Hig h Conta ct Ra tio) spur gea rs. The The idler gear sha fts a re mounted idler mounted to the rear of the block. The entire gear train can be removed removed with t he rear h ousing in pla ce. ce. The The vee gear tr a in consist consist s of seven gear s wit h 5 being being un ique. The The inline gea gea r t ra in consists consists of 4 unique gears.

engine run ning. They They do not not r eplace the need for separa te lube oil centr centr ifuges on heavy fuel burning engines. engines.

Cooling System Tw o ba sic cool cooling ing syst em configura tions a re ava ilable, single circui circuitt a nd sep separ ar a te circuit. circ uit. B oth a re designed for coo coola la nt supply temperatures of 90°C (194°F) (inlet cont cont rol) to th e wa ter ja cket, cket, 32°C (90°F) to the aftercooler and 83° 83° C (181°F 181°F ) regulat regulat ed temperat ure for the oil supply supply to the bearings. B oth circuits include an engine mounted platefin a ftercooler ftercooler suit a ble for for corrosive (sa (sa lt air) environment. Both circuits include tw o wat er pumps pumps tha t a re engine engine driven driven

B. The front gear group, identical for all four engines, is helical. The The righ t id ler drives the jacket jacket wa ter pump and t he sea water pump. The left idler drives the w a ter pump for the oil coo cooler ler an d a ftercooler ftercooler.. The The gea r t ra in can be removed remov ed wit h t he front housing housing in place.

13

 

Accessory Module

from the front from front gear t rain a nd connections connections for vent lin es to th e high points in the system. The right-hand pump supplies coo coola la nt to th e cylinder block, heads, and turbochargers. The left-ha leftha nd pum p supplies supplies coo coola la nt to th e aftercooler and oil cooler. An optional front fro nt gear tr ain driven driven ra w w at er pump pump fo forr use with a remote heat heat excha excha nger is also available. Weld flanges are provided

The a ccesso ccessory ry module shown in Figu re 2 in the Drawings section provides sta nda rd lo locca tions for for a ccesso cessory ry mountin g. The The a ccesso ccessories ries a re fa ctory premounted premo unted on th e module, module, with the complete complete m odule insta lled in one piece piece.. This concept concept reduces insta llat io ion n t ime and cost. On diesel generator set a pplica pplica tions t he module w ill be floor floor mounted. It is used to mount th e expan exp an sion sion ta nk, heat exc excha ha ngers, instrument panel, engine contr contr ols, annunciator panel, alarm contactors, shutdown conta conta cto ctors rs a nd fuel stra iners. On diesel genera genera tor set a pplic pplicaa tions it is compa compa tible w ith th e 450 450 mm (17.72 17.72 iin.) n.) engine mounting feet dimension; connection connection lines t o the a ccesso ccessories ries can be factory inst a lle lled. d. C ustom a ccesso cessories ries can a lso be be mounted on th e accessory accessory module on a space ava ilable basis.

a t a ll cust cust omer connec connection tion point point s.

Single Circuit Single Circuit is typically typically used w ith a single heat excha excha nger and a lso wit h hea vy fuel a pplica pplica tions. The The cylinder block/hea d/t ur bocha rg er coolin coolin g circuit is in s eries w ith th e a ft ercooler/ ercooler/oil coo cooler ler circuit. circuit. It requires t wo ma in connec connections tions to the engine and includes 90°C (194°F) jacket wa ter a nd 83° 83° C (18 (181°F 1°F ) lubricat lubric at ing oil oil tempera tempera ture regula tors and two external circuit connections. The single circuit circuit uses a n extern a l circuit circuit temperatur e regulator an d one one external hea t excha excha nger. nger.

Norma lly, lly,on th th e aeccesso cc essory ryunda module mounted floor flo or founda fo tion is directly in front of th e engine. Flexible Flexible connections connections must be provided provided for th e lines co connecting nnecting the engine a nd t he a uxiliar uxiliar ies lo located on the separa tely mounted module.

Separate Circuit Separ at e Circuit Circuit is t ypica ypica lly used for for a pplic pplicaa tions requiring small heat excha exc ha ngers a nd/or hea t recovery recovery sys tem s. The The cylin der block/ block/hea d/ turbocharger cooling circuit is separate from th e a ft ercooler/ ercooler/oil co cooler oler circuit , a nd requires four ma in co connectio nnections ns t o th e engine. This This circuit includes a lubricaa tion oil lubric oil temperat ure regulat or

When t he module is mounted t o o oth th er structures, struc tures, and par ticularly ticularly w hen the engine is resiliently mounted, connections connections wit h increa sed flexibility flexibility ma y be necessary necessary t o acco accommodat e engine m otion. otion. F lexible connec connections tions a re provided pro vided by Ca terpill terpillaa r for the lines connecting the engine and the accessory module. Tempera tur e cconta onta ctors ar e a vaila ble wit h 8 meter meter capilla capilla ry tubes if th e a ccesso ccessory ry module is to be remotely mounted. All other connections connections req uire custom modification to accommodate remote loca loca tions of the m odule.

and external connections for both circuits. circuits. It r equires a 90° 90° C (194 (194°° F) and a 32° 32° C (90° 90° F) eexterna xterna l circuit circuit temperat ure regulat regul at or a nd tw o external external heat exchangers.

Water Pumps Wa ter pumps are gea r driven an d located at the front of the engine. A special housing and impeller allow  reverse rotat ion ion with out changing th e pumps. A gear driven ra w w a ter pump is also ava ilable to provide provide ssea ea w a ter to the hea t excha excha nger. nger.

14

 

Auxiliary Pumps

Engine Testing

The oil oil and wa ter pumps a re gear driven a nd loca loca ted a t t he front front of the engine. A special housing and impeller allow  reverse rotat ion ion with out changing th e wa ter pumps. A gear dr iven iven sea (ra (ra w) wa ter pump is ava ilable to supply supply coo cooling wa ter to the fresh wa ter heat exchanger.

Standard dynamometer production test ing of 3600 3600 Engines in cludes a comprehensive analysis of all engine systems. The The follo following wing ar e sta nda rd points points m onitored during th e test: Eng ine Speed Speed Observed Obse rved P ower Obser ved T orquRat e e Observed Obse rved Fuel Corr ected Torqu Torqu e Corrected Correc ted P ower Corrected Correc ted Fuel Rat e Corrected S pecific pecific Fuel Consumpt io ion n Full Load Correction Factor Full Load Static Fuel Setting High I dle Engine Speed Speed High Idle Sta bility bility Low Idle E ngine Speed Low Idle Stability Torqu e C heck S peed Inlet Air Air P ressure Dry B arometric P ressure ressure Dew P oint Ambien t Air Tempera tu re In let Air Tempera tur e Compressor Air Air Ou tlet Tempera tu re In let Air Air Ma nifold Tempera tu re Adj djusted usted B oo oost st P ressure Oil P ressure Oil P ressure at Low Idle B earing Oil Tempera empera ture Fuel Pressure Supply Fuel P ressure Fuel Tempera Tempera tu re

Fuel Transfer Pump Engines built for distillate fuel or ma rine diesel diesel oils oils are equipped equipped w ith a n engine driven driven gear type tra nsfer pump. pump. For high viscosity viscosity fu els, an off engine mounted electrically driven pump is used to circula circula te fuel prior to engine start up up..

Coupling Mar ine torsiona torsiona l coupli couplings ngs a re norma lly specified spec ified by t he customer. They They a re available from Caterpillar. The selection for each marine application is dependent upon th e Torsio Torsiona na l Vibra Vibra tion Ana lysis. Cus tomer specified specified couplings couplings req uire Ca terpillar terpillar approval. approval.

Crankshaft Damper Visco isconic cra cra nksha ft da mpers a re mount ed out out side the engine housing for op optim tim um cool cooling ing nd a cc ccessibility essibility. . Bolted covers anda replaceable nylon bearings permit rebuilding rebuilding in t he field. field.

Retu rn Fu el Tempera tur e Fuel Density J acket Wa Wa ter Inlet Tempera empera ture J acket Wa Wa ter Outlet Tempe Tempera ra ture Delta T J a cket Wa Wa ter AC/OC In let Wa Wa ter Tempera tu re AC/OC Out let Wa ter Tempera t ure D elt a T AC/OC Wa t er Exha ust Man ifold ifold Tempe Tempera ra tur e Exha ust S ta ck Tempera empera ture

Flywheel The flywheel is mounted at the rea r of the engine an d includes includes a r ing gear for for sta rting or bar ring. The The high inertia flywheel is usually used for for ma rine propulsion prop ulsion applica applica tions to permit t he use of a single element flexible flexible coupling. coupling.

Manual Turning Provision

B a rring devices devices ar e provided provided to permit permit manual engine crankshaft rotation for service.

15

 

Marine Classification Soci So cie ety Certi Certification fication

Depending on customer requirements, a va riety of other engine tests are a vaila ble including including t he follo following: wing:

Ca terpillar terpillar ha s a ppro pprovals vals for 3600 3600 engines from from the ma jor ma rine Classification Societies listed below:

 M  Mar ar i n e L i mi t L i n e Test provides fuel ra te, t urbocha urbocha rger boost boost pressure, pressure, specific spec ific fuel consum consum ption, exha ust ma nifold nifold gas temperat ure, turbocharger turbocharger speed spe ed an d fuel ra ck po position sition a t the engine’s a dvertised ra ting limit line.

Approvals Type Works American merican B ureau of Sh hii ppi n g (U ni n i t ed ed S ta t a t es es ) x x

Da ta is p provi rovided ded at 50 or 100 rpm increments from rated speed to 400 400 rpm. T The he t est is int ended for cont cont rollable pitch propelle propellerr a pplica pplica tions.

Lloyd’ Lloyd’s (G r ea ts BRegist r i t a i ner ) of Sh ipping B urea u Verita s (Fra nce) Det Norske Verita Verita s (N or w a y ) G erma nisc nischer her Lloyd Lloyd (G e r m a n y ) Nippon Kaiji Kyokai (J a pa n ) Registro Italiano Navale (I t a l y ) U SS R Register o off Shipping Shipping (Soviet U nion) Cana dian dian Coast Coast Gua rd (formerly formerly CB SI ) Zhong Chuan (China (Chi na ) —3606 —3606 & 3608 only

P r ope peller ller D emand C ur ve Te Test  st  provides fuel rate, turbocharger boost pressure, specific fuel consumption, ex exhaust haust ma nifold nifold gas tempera tempera ture, turbocha turboc ha rger speed speed a nd fuel ra ck position position a t t he engine’s engine’s a dvert ised fixed fixed pitch pitc h propell propeller er deman d curve. Dat a is provided at 50 or or 100 rpm increment s from ra ted speed to 400 400 rpm.

Over load Test Test provides fuel rate, tur bocha bocha rger bo boost ost pressur e, specific specific fuel consumption and fuel rack position at a customer specified specified temporar ily increased power setting (overload). The engine fuel ra ck stop is reset t o the proper proper power level upon upon test completion. completion. A full desc descriptio ription n of sta nda rd a vaila ble tests is fo found und in the S electio election n G uide, LEBQ5043-01.

x x

x x

x

x

x

x

x

x

x

x

x

x x x

Certifications from other S ocieties ieties a re a vaila ble on request.

16

 

Torsional Vibration Analysis

5. Ident ifica ifica tion of a ll couplings couplings by make a nd mode modell along with rotat ing inertia (WR 2) an d torsio torsiona na l rigidity values.

To ensure th e compa compa tibility of an engine a nd driven equipment, equipment, a t heoretical heoretical torsiona torsio na l vibra vibra tion ana lysis is required. Disrega rding th e cco ompat ibility ibility of the engine and driven equipment ca ca n result in extensive extensive and costly costly da ma ge to drive tr ain compo components. nents.

6. Rota ting inert ia (WR 2) or principal dimensions dimensio ns of each rotat ing ma ss and the locat locat ion ion of the ma ss on on t he attached shaft. 7. Weight or prin cipal dim ensions of driven recipro reciprocating cating ma ss.

Conducted during the design sta ge of Conducted of a projject, pro ect, t he torsiona torsiona l a na lysis ca ca n a vo void id torsiona torsio na l vibra tion problems problems th rough modific modi ficaa tion of driven driven equ ipment ipment sha fts, ma sses or couplings. couplings. The The t orsiona orsiona l report will show na tura l frequencies frequencies,, significant significant resona reso na nt speeds, relat ive amplitudes and a determina tion of of stress levels levels,, an d the a pprox pproxima ima te nodal loca loca tions in the ma ss elastic system for each significan significan t na tura l frequency frequency.

8. Torsiona orsiona l rigidit y a nd minim um sha ft diam eter or deta ile iled d dimensions dimensions of all sha fting in the driven driven system, wh ether sepa sepa ra tely mounted or or insta lled lled in a housing. housing. 9. The num ber of propeller bla des in addition to the rotating inertia (WR (W R 2) in w at er er.. 10. The ratio of the speed reducer or increaser. The rotating inertia (WR (W R 2) a nd rigidity submit ted for a speed reducer reducer or increa ser should sta te whet her or or not they ha ve bee been n a djusted djusted by the spee speed d ra tio squar ed.

The following data is required to perform perform a t otechnical rsiona rsiona l ana lysis: 1. Is the a pplic pplicat at ion ion a varia ble or a constant speed operation? If var iable, wha t is the ope opera ra ting speed speed range?

Since co compat ibil ibility ity of th e insta llation is th e customer’s customer’s responsibility, responsibility, it is a lso his responsibility to obtain the th eo eoretica retica l Torsio Torsiona na l Vibra Vibra tion Ana lysis. Da ta on mass elastic systems o off items furnished by Cat erpillar erpillar is sho shown wn in t he fol follo low w ing t a bles. Da mper selection selection for ma rine propulsion propulsion engines is shown in Figur e 3. Alwa Alwa ys consult consult TMI for curr ent

2. Load curve curve on inst a llat ions for applications using load dependent variable stiffness couplings. 3. Horsepow Horsepow er requ irement s of each set of equipment is required w hen driving equipment from both ends of the engine. Are Are front front a nd rea r loading occurring simultaneously?

da ta . The The customer customer can calculate theoretical t orsiona theoretical rsiona l vibrat io ion n a na lysis or or hire Ca terpilla terpilla r I nc. to co complete mplete t he an alysis. A 3600 Tor Tor sio si onal Vi br ati ati on  Analysis  A nalysis R eque quest  st form is provided provided a s a guide to the t ype of of informat io ion n r equired to complete complete t he a na lysis (see (see Figur e 4). 4).

4. A genera l sketch sketch of of the comple complete te system showing t he relat ive location location of each piece piece of of equipment a nd t ype of conn conn ection.

17

 

Marine Auxiliary Damper Criteria

Marine Propulsion Damper Criteria rpm 750 800 900 1000

36 0 6 A1 A1 A1 A1

3 60 8 A2 A2 C1 C1

3 6 12 C2 C2 C2

rpm 720 750 900 1000

3 6 16 B3 B3 B3 B3

3 6 06 A1 A1 A1 A1

3 6 08 A2 A2 C1 C1

36 1 2 B1 B1 C2 C2

3 61 6 B3 B3 A3 A3

Two bearing generators only

Damper Data

A1

A2

A3

B1

B2

B3

C1

C2

  6.1

6.1

6.1

23.1

23.1

23.1

26.2

26.2

Damper Housing J*

3.2

3.2

3.2

8.6

8.6

8.6

11.6

11.6

Damper Flywheel J

5.8

5.8

5.8

28.9

28.9

28.9

29.2

29.2 29.2

Damper Constant C

1243

1000

1550

5100

6600

8100

14123

7000

Damper Rigidity K

0.73

0.41

0.60

1.80

1.60

1.35

4.52

2.85

Lumped mass J*

  Separated Damper Data

Empirical Damping

* Add to Front of Crank J (N-m -sec2)

For torsional calculations involving empirical empi rical da mping the empiric empiricaa l damping values are:

K (N-m x 106 /radi  /radian) an) C (N-m-sec sec/radian)

  Torsional Calculation Values

Reciprocating Recipro cating Ma ss per per C ylinder = 68.36 kg Rotat ing Mass per Cy linder linder = 39.6 39.61 1 kg Connecting Connec ting Rod Length (betw een pin cent cent ers) = 600 600 mm

The calcula ted cyclic cyclic irregula rit ies for 3600 are:

3606 3608 3612 3616

384 38 4 441 44 1 531 53 1 531 53 1

Flywheel Inertia Data

Speed-rpm 9 00 1 00 0 1:152 1:145 1:254 1:450

3606 3608 3612 3616

N ote: ote: T he damp dampii ng values fo forr the i nli ne engi ng i nes nes ar are e for e eac ach h cyli nde nderr ; the 3612 and 3616 damping dampin g value valuess ar are e fo forr a pa paii r  of cyli nde nderr s si nce the ve vee e engi ng i nes nes h have ave two cylinders on each crankshaft throw.

C yc ycli lic c IIrr rre egularity

E ng in e

Engine

N-m-sec per radian

 

Most marine propulsion applications use the high inertia flywheel to a llow llow t he use of a single element t orsiona orsiona l coupling. coupling. A li lighter ghter w eight eight sta ndard flywheel flywheel is also a vaila ble ble.. Inertia valves include include the ring gear a nd should should be added to the rear crank inertia.

1:188 1:179 1:314 1:556

Fi Fig gure 3

Sta ndard flywheel flywheel inertia: inertia: 74.90 N-m-sec 2 High inert ia flyw heel: 140.2 140.29 9 NN-mm- sec sec 2

18

 

Torsional Vibration Data - Model 3606 Visconic Damper _ See pa ge 18

Fron Fr ontt Dr Drive iven nE Equ quipme ipment nt

3606 Mass Elastic System Degrees to Firing After #1 Fires

Engine

J

Front Crank

7.50

0

Cyl #1

9.743

480

Cyl #2

8.685

240 600

Cyl #3 Cyl #4

8.685 8.685

120

Cyl #5

8.685

360

Cyl #6

9.743

Rear Crank

7.42

K

Units J = N-m-sec2

72.53 42.85

K =

N-m x 106 Radian

C =

N-m-sec Radian

42.85 42.85 42.85 42.85

Diameter in Millimeters

72.53

For Ha rmonic Component Component of Ta ngent ia l P ressure S ee TD3310 TD3310 Tota l Inert ia Without Without F lyw heel and D a mper: J = 69.15 69.15 N-mN-m-sec sec2

Torsional Vibration Data - Model 3608 Visconic Damper _ See pa ge 18

Fron Fr ontt Dr Drive iven nE Equ quipme ipment nt

3608 Mass Elastic System Degrees to Firing After #1 Fires

Engine

J

Front Crank

7.50

0

Cyl #1

12.95

180

Cyl #2

4.79

450

Cyl #3

4.79

630

Cyl #4

12.21

270

Cyl #5

12.21

90

Cyl #6

4.79

540

Cyl #7

4.79

360

Cyl #8 Rear Crank

12.95 7.42

K

Min. Dia.

69.28

216

41.50

216

41.50

216

41.50

216

41.50

216

41.50

216

41.50

216

41.50

216

69.28

216

For Ha rmonic Component Component of Ta ngent ia l P ressure S ee TD3310 TD3310 Tota l Inert ia Without Without Fly w heel a nd Da mper: J = 84.40 84.40 N-mN-m-sec sec2

19

Units J = N-m-sec2 K =

N-m x 106 Radian

C =

N-m-sec Radian

Diameter in Millimeters

 

Torsional Vibration Data - Model 3612 Visconic Damper _ See pa ge 18

Fron Fr ontt Dr Drive iven nE Equ quipme ipment nt

3612 Mass Elastic System Degrees to Firing After #1 Fires

Engine

J

Front Crank

7.50

K Min. Dia.

1R-0

1L-410

Throw #1

17.00

2R-480

2L-170

Throw #2

16.31

3R-240 4R-600

3L-650 4L-290

Throw #3 Throw #4

16.31 16.31

5R-120

5L-530

Throw #5

16.31

6R-360

6L-50

Throw #6

17.00

Rear Crank

7.42

Units J = N-m-sec2

67.79 40.11

216

40.11

216

40.11

216

40.11

216

40.11

216

67.79

216

K =

N-m x 106 Radian

C =

N-m-sec Radian

Diameter in Millimeters

216

For Ha rmonic Component Component of Ta ngent ia l P ressure S ee TD3310 TD3310 Tota l Iner tia Without F lyw heel an d Da mper: J = 114.16 14.16 N-mN-m-sec sec2

Torsional Vibration Data - Model 3616 Visconic Damper _ See pa ge 18

Fron Fr ontt Dr Drive iven nE Equ quipme ipment nt

3616 Mass Elastic System Degrees to Firing After #1 Fires

Engine

J

Front Crank

7.50

1R-0

1L-50

Throw #1

17.17

2R-180

2L-230

Throw #2

16.5

3R-90

3L-140

Throw #3

16.5

4R-630

4L-680

Throw #4

16.5

5R-270

5L-320

Throw #5

16.5

6R-450

6L-500

Throw #6

16.5

7R-540

7L-590

Throw #7

16.5

8R-360

8L-410

Throw #8 Rear Crank

17.17 7.42

K

Min. Dia.

67.79

216

40.11

216

40.11

216

40.11

216

40.11

216

40.11

216

40.11

216

40.11

216

67.79

216

For Ha rmonic Component Component of Ta ngent ia l P ressure S ee TD3310 TD3310 Tota l Iner tia Without F lyw heel an d Da mper: J = 148.2 148.26 6 NN-mm-sec sec2

20

Units J = N-m-sec2 K =

N-m x 106 Radian

C =

N-m-sec Radian

Diameter in Millimeters

 

3600 Torsional Vibration Analysis Request Project Number

___________________________________________ ___________________________________________________  ________ 

Project/Customer Project/Cus tomer Name _____________________________________________ ___________________________________________________  ______  Dealer Name

___________________________________________________ 

The information on this form is to be used for a specific request for a torsional vibration analysis on the above 3600 Diesel Engine application. Please provide a timely verbal response followed by a written report to the responsible project engineer engineer.. The following information describes the major components and performance data for this application: Engine Model and Rating: E29 ________ (36 ________); ________ kW (________ bhp) Low Idle rpm ________ Rated Speed rpm ________  Engine Regulation: Isochronous (Y/N) ________, or Percent Droop ________ % Application Applicati on Specifics:_____________________________________________________  Specifics:_____________________________________________________   __________  _____ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ _______  __   __________  _____ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ _______ __ (quantity engines -- custom base -- front driven equipment, etc.)

Engine Room Maximum Ambient Temperature ________________________________  Generator ( ____ ); and/or Marine Gear ( ____ ); plus Other Driven Equipment ( ____ ) Supplier Name and Model Number __________________________________________  __________________________________________  Rota Ro tati ting ng In Iner erti tia/ a/Dr Draw awin ing( g(s) s)

____ ______ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____  __ 

Rotating Stiffness/Shaft Stiffness/Shaft Drawing(s) ___________________________________________  ___________________________________________  Gearbox Drawing _____________________ Propeller Inertia____________________ Inertia _______________________  ___  Description (e.g. two bearing or single bearing) _________________________________ _________________________________  __________  _____ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________ __________  _____  (attached are supplier data sheets)

Part Numbers of Components: Engine Ship Date (RTS)

 __________  _____ __________ __________ __________ __________ __________ __________  _____ 

Flywheel Group

__________ 

Coupling Group

__________  

Drive Group

__________ 

Damper Group

__________ 

Ring Gear Group

__________ 

Other Groups

__________

3161 Governor Group __________ 

Heinzmann Governor

__________ 

EGB29P Actuator Assembly

Electronic Control Group __________  __________ 

Torsional Completion Date Required  _____  __________ __________ __________ __________ __________ __________ __________  _____  Caterpillar Project Engineer Engineer ____________________________________________ _________________________________________________  _____  (Revised 4-25-97)

Fi Fig gure 4

21

 

Engine Preservation and Packaging

va por por corrosion corrosion in hibitor (VCI (VCI ) in in a ll interna l co compar tment s and glycol glycol solution in t he cooli cooling ng syst em. The The shipper shipp er must provide provide ta rpaulin co coverage verage during tr a nsporta nsporta tion to prevent the plastic from being destroyed.

The Ca terpilla terpilla r fa ctory ctory h a s four four sta nda rd levels of of engine preserva preserva tion a nd sh ipment ipment protectio protection. n. • P lastic S hri hr i nk Wrap Pr ote teccti tio on provides approximately one year of external protection from moisture,

• E xp xpo or t B oxing xi ng – P rotects rotects engine and a ccesso ccessories ries from fun ctiona ctiona l deteriora deterio ra tion for for a minimum of one year un der outside outside stora stora ge co conditions. nditions. Includes Includes sta nda rd protective measures plus vapor corrosion inhibitor in all internal co compar mpar tment s, a nd a glyco glycol solution solution in the cooling system. The exterior box provides provides protection protection a ga inst mecha mec ha nica nica l dama ge during shi shipment pment a nd stora ge. All All marine engines are placed upon wooden wooden skids pr io iorr t o shipment . All All ship loose loose par ts a re prepa prepa inted, oiled oiled and place placed d in VCI paper lined boxes, with desiccant

sun and w ind under under storage condit condit ions. If th e engine is to be stored for longer periods of time, consider specifying Storage Preservation as described below. • Tarpauli Tarpaulin na and nd Plast Plastii c S hr hrii nk Wrap – Sa me a s previous previous point point a bove except except this pa ckage includes includes a factory supplie supp lied d t ar paulin on t he engine, wh ich ich rema ins on on th e engine engine aft er arrival. •  S tor tor age P r ese serr vat vatii on – Pr otects the engine a nd a cc ccesso essories ries from functional deterioration for a minimum of one one year under outside storage conditions. It includes sta nda rd protective protective measures plus

packa ges placed in the box. On a rriva l, open open all boxes boxes and r eview eview their co content ntent s a ga inst t he packing list. The The part s sho should uld then be repackaged repackaged and preserved for protection. protection.

22

 

Shipbuilder's Responsibility Unless otherwise specified, the engine buyer sh a ll be responsible responsible for the following: • P ro rovid videe ele elecctrical trical w iring and the necessa nece ssa ry piping t o the engine, i.e., exha ust piping, fuel oil oil pip piping ing t o a nd from fro m t he engine, air piping to the sta rting motor( motor(s) s),, a ir filter duct ing/piping, cra cra nkca se fum es disposa dispo sa l ducting, etc. All of the a bove noted noted inter connections connections need t o be designed designed in such such a wa y so as to comp comply ly wit h a ccepta ccepta ble vibrat ory levels levels of excita exc ita tion throughout the ent ire ra nge of engine engine opera opera tion. No primar y resona resona nces nces in th e interface hardw ar e are a ccep epta ta ble. ble. See ISO 4868 486 8 a nd 4867. 4867. • Furnish Furnish and install standby pump pumpss as required by Classification Societies. • Furnish acc accurat e dat dat a for for a torsio torsional vibrat vib rat ion ion ana lysis. lysis. • Insta ll adequat e engine engine foundat foundat ion ion and provide proper proper chocking chocking an d a lignment between the engine a nd ma rine gear.

• See IS O 108 10816 16--6 and I SO 6954. 6954. Typically, ypically, vibr a tory veloci velocities ties under 10 mm /s w ith no stru ctura l resonan ces ces are required. • Ensur e all lube oil oil piping, piping, fuel fuel oil oil piping, pip ing, exha exha ust piping piping a nd inta ke air ducting a re free of of rust , scale, weld spatt er and foreign foreign mat erial prior prior to sta rtup of the engines engines.. • P ro rovid videe all labo laborr, equipme equipment nt a nd hardw are t o iinstall nstall the equipment. equipment. • P ro rovid videe all coolants, wa ter treatment chemicaa ls (if chemic (if used), lubricat ing oil, an d fuel oils oils necessary necessary to operat operat e the engine. • Wa rehouse rehouse and protect protect engines, engines, a ccesso ccessories ries a nd m iscellan iscellan eo eous us shiploose equipment until their installation. Caterpillar engines are protected protec ted a ga inst corrosio corrosion n for inside dry st orag e for forsions a ns period perio to six months. P rovisio rovi fordaup dditiona dditio na l storage periods periods ar e ava ilable fro from m th e factory.

23  

Customer Application Information C u s t om er : __ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ ___ _ Add Ad d r es s : _____ _______ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ ____ __ C on t a ct : _______ ___________ ________ ________ _______ _______ ________ ______ __ Tel ep h on e: _______ ___________ ________ _______ _______ ________ _______ ___ S h i py a r d : __ ____ _____ _____ _____ _____ _____ _____ _____ ______ _____ _____ ____ _ Con C on t a ct : _____ ________ _____ _____ _____ _____ _____ _____ _____ _____ _____ ___ _ Ad d r e s s : _______ __________ _______ ________ ________ _______ _______ _______ ___ Tel eph on e: _______ ___________ ________ _______ _______ ________ _______ ___ 1. M a i n E n g i n e: _____ ________ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ __ E n g i n e out ou t pu t : ____ ______ ____ ____ ____ ____ ____ ____ ____ ____ __ k W (h (hp p ) S p eed ee d : ____ ______ ____ ____ ____ ____ ____ ____ ____ ____ __rr pm D ir ect ion of r ot otaa t ion (fly w h eel vi view ew ed fr om r ea r ): ________________________________ F u el Ty pe: _______________ ______________________ _______________ _______________ _______________ _______________ _______________ _______________ ________ _ B u i l d er : _______________ _______________________ _______________ _______________ _______________ _______________ _______________ _______________ __________ __ S pecia ci a l t es t i n g Yes/ Yes /N o: __ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ __ 2. P ropulsion ropulsion cont cont rols: Ty p e (pn (p n eu m a t i c/el ect r on i c): __ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ ____ _ M a n u f a ct u r er : ________ ____________ _______ _______ ________ ________ ________ _______ _______ ________ ________ _______ _______ ________ ________ _______ ___ 3. C omb om b in ed clu cl u t ch /f lex le x ib l e cou pl plii n g (t y pe): pe ): __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ F l ex i b l e co cou u pl i n g : _______ ___________ ________ ________ _______ _______ ________ ________ _______ _______ ________ ________ _______ _______ ________ _____ _ 4. Red R ed u ct ion g ea r b box, ox, m a n u fa ct u r er a n d t y pe pe:: ___ ________ ________ ________ ________ ________ ________ _______ R ed u ct i on r a t i o: __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ___ _ In teg ra l disc clut clut ch? Yes__ es____ No__ No____ C lut ch ty pe: pneuma tic/hy dr a ulic P TO?

Yes__ Yes ____ __ N o____ o____ M a n u f a ct u r er __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __

S h a ft B ra ke?

Yes___ es____ No__ No____

5. P r opel op elll er m a n u f a ct u r er : __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ___ _ Ty p e: Fi F i x e d pit pi t ch __ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ C ont on t r olla oll a bl blee pit pi t ch _____ ___ _____ ___ _____ ___ ____ N u m be berr of bla b la d es ____ ___ _____ ___ _____ ___ _____ P r opell ope ller er D ia m et er :___ :________ ___m m ______ ______in _in.. P /D R a t i o: __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ B l a d e Ar ea R a t i o: __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ P r opell ope ller er sp eed ee d a t MC R r a t in g ___ _____ ___ _____ ___ _____ ___ ______ ________ ___r pm D i r e ct i on of o f pr p r ope op e l l er r ot a t i on __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ D e s i g n e d f or con s t a n t r pm ? Yes__ Yes ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __N N o_____ o_______ ____ ____ ____ ____ ____ ____ ____ ___ _

24  

J6

J4

J5 k4

J1 J2 k1

d1

J3 k2

Fi Fig gure 5

6. Da ta For Torsiona orsiona l Vibra Vibra tion Ca lculat ions J 1 P r op e l l e r

J 2 G ea r b ox f l a n g e

J 3 Gear wheel

J 4 G ear wheel

J 5 C l u t ch

J 6 Clutch

P ropell ropeller er Inertia J (N -m-sec2) w it h out en t r a in ed w a t er ____________________N -m-sec2

7. Ves Ves s e l h u l l t y p e_______ ___________ ________ ________ _______ _______ ________ ________ _______ _______ ________ ________ _______ _______ ________ ________ ____

L en g t h :___ :_____ ___ _m m ______ __in in .

B ea m : ______ __m m m ___ ______in _in..

D r a ft :___ :_____m m ______ ___in

D is pla pl a ce cem m en t __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __m m .t .

C la s s of s er v ice: ic e: ____ ______ ____ ____ ____ ____ ____ ____ ____ ____ __

H u l l s pe peee d __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ___kt _kt s .

C l a s s ed b y : __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ___ _

25  

 ® 

3600 Marine Engine Application and Installation Guide  Engine

D Data ata

 Engine

Performa Performanc ncee

LEKM8461

8-98

 

 ® 

Engine Data Dimensions and Weights Center of Gravity  Te  Tech chn nica ical Data Noise Vibration

 

included in the Drawings sec section tion of th is guide. Marine a uxiliar uxiliar y dimensio dimensions, ns, weights and outline draw ings are Technical D ata section of included in the Technical the EPG A&I guide (LEKX6559).

Dimensions and Weights The dimensions a nd weight s of 3600 3600 Mar ine Pr opulsio pulsion n E ngines are shown belo bel ow. Engine outline outline dra wings a re

3600 Marine Propulsion

H

G

H

G

F

F

D

D J

B

C

I

E

J

L

A

B

E

C

I

K

L

A K

In-Line

Vee

Dimensions A

B

C

D

E

F1

F F2 2

G

H

I

J

K

L

w

3606 In-Line mm

3261

265

2050

841

1120

405

450

2035

1785

727

360

3988

1748

kg

15,680

in

128.39

10.43

80.71

33.11

44.09

15.95

17.72

80.12

70.28

28.62

14.17

157.01

68.82

lb

34,500

3608 In-Line mm

4081

265

2870

841

1120

405

450

2035

1785

727

360

4808

1748

kg

19,000

in

160.67

10.43

112.99

33.11

44.09

15.95

17.72

80.12

70.28

28.62

14.17

189.29

68.82

lb

41,800

3612 VEE mm

3657

300

2300

976

1120

405

450

1850

2255

905

360

4562

1714

kg

25,740

in

143.98

11.81

90.55

38.43

44.09

15.95

17.72

72.84

88.78

35.63

14.17

179.61

67.48

lb

56,630

3616 VEE mm

4577

300

3220

976

1120

405

450

1850

2255

905

360

5482

1714

kg

30,750

in

180.2

11.81

126.77

38.43

44.09

15.95

17.72

72.84

88.78

35.63

14.17

215.83

67.48

lb

67,650

C

centerline distance between mounting feet

F1 and F2 G J W

dimensions roptional emoval mounting distance fo r piston distance from flywheel mounting face to cylinder block rear face appr pproxim oximat ate e dr dry w wei eigh ghtt of of engi engine ne wi witth at attach achment ents suc such ha as s ffil iltters ers, o oil il cool cooler er,, ffly lyw wheel heel,, pum pumps, etc. etc.

5  

C enter nter of Gravi Gravity ty Center of gra vity locat locat ions ions a pply pply to dry r una ble engines: engines: Transverse Distance from Crankshaft Centerline

Distance From Cylinder Block Rear Face

Vertical Distance Above Crankshaft Centerline

3606

1290 mm 50.8 in.

350 mm 13.8 in.

On Crank Center

3608

1700 mm

350 mm

On Crank Center

3612

66.9 in. 1411 mm 55.6 in.

13.8 in. 380 mm 14.9 in.

On Crank Center

1858 mm 73.1 in.

380 mm 14.9 in.

Model

3616

On Crank Center

Technical Data Distillate Fuel

Heavy F Fue uell

P a ges 7 thr ough 23 a re Marine P ropulsio ropulsion n t echnical echnical da ta sheets sheets for distilla te fuel engines. The da ta is given a t 750, 800, 800, 900, 900, a nd 1000 rpm.

P ag es 24 24 through 43 43 are Marine P ropulsio ropulsion n t echnical echnical da ta shee sheets ts for heavy fuel engines. engines. See the Engine Performance sec section tion of of this guide fo forr a

Tec echnica hnica l dat a for distilla te fuel Marin e Auxiliary generator sets is in the 3600 EP G A&I g uide (LE (LE KX655 KX6559) 9).. See t he E ngi ne Pe Perr for for ma manc nce e sec section tion of this g uide for a complete description of ratings and limitations.

complete description of ratings and limitations.

6  

TECHNICAL DATA

Engine: 3606 In-Line Rating: CSR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (psi)

cmm °C °C °C °C kPa

750 1490 280 300 18.5

(2000) (11.0) (11.8) (1127)

Engine Speed Ratings 800 900 1560 280 300 18.5

(2090) (11.0) (11.8) (1127)

1730 280 300 18.5

(2320) (11.0) (11.8) (1127)

1000 1850 280 300 18.5

(2480) (11.0) (11.8) (1127)

13:1 13:1 16200 (2350) 16200 (2350) 2152 (312) 2111 (306) 7.5 (24.6) 8.0 (26.2) 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

13:1 13:1 1 16 6200 (2350) 16200 (2350) 2081 (302) 2003 (291) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

145.2 45 52.9 75 201

(5128) (113) (127) (167) (29.2)

160.9 45 51 75 242

(5682) (113) (124) (167) (35.1)

164.3 45 52.9 75 220

(5802) (113) (127) (167) (31.9)

181.4 45 53.5 75 232

(6406) (113) (128) (167) (33.6)

(cfm) (°F) (°F) (°F) (°F) (in H2O)

309 530 362 630 550 2.5

(10912) (986) (684) (1166) (1022) (10)

334.3 514 347 630 550 2.5

(11806) (957) (657) (1166) (1022) (10)

372.1 563 403 630 550 2.5

(13141) (1045) (757) (1166) (1022) (10)

412.6 564 406 630 550 2.5

(14571) (1047) (763) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

160 307 396 863 974 67

(9099) (17459) (22535) (49093) (55428) (3813)

168 323 430 921 1007 68

(9554) (18369) (24470) (52393) (57305) (3870)

185 373 402 960 1256 73

(10521) (21212) (22877) (54610) (71475) (4154)

205 381 496 1082 1360 74

(11658) (21667) (28226) (61551) (77394) (4211)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (psi) psi) (gpm) (gpm) (lb/hp-hr)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 31.5 (8.3) 24.5 (6.5) 191.7 (.315)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 33.6 (8.85) 26.2 (6.9) 191.8 (.315)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 38 (10) 30 (7.9) 195.5 (.321)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (184) (0.0008)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 41.5 (11) 32.4 (8.6) 198.6 (.326)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

7  

TECHNICAL DATA

Engine: 3606 In-Line Rating: CSR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 1095 30 100 104

(194) (203) (181) (210) (24.3) (289) (4.3) (212) (219)

90 95 83 99 190 1168 30 100 104

(194) (203) (181) (210) (27.1) (308.5) (4.3) (212) (219)

90 95 83 99 240 1315 30 100 104

(194) (203) (181) (210) (34.3) (347) (4.3) (212) (219)

90 95 83 99 295 1460 30 100 104

(194) (203) (181) (210) (42.1) (386) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard

conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit 4Measured at starter inlet

8  

TECHNICAL DATA

Engine: 3606 In-Line Rating: MCR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

750

Engine Speed Ratings 800 900

1640 (2200) 1720 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 16200 (2350) 16200 2368 (343) 2328 7.5 (24.6) 8.0 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

(2310) (11.0) (11.8) (1127)

(cfm) (°F) (°F) (°F) (psi)

159.7 45 53.1 75 232

(5640) (113) (128) (167) (33.6)

172 45 52.7 75 268

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

339.6 540 362 630 550 2.5

(11993) (1004) (684) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

169 327 473 969 1039 70

(9611) (18596) (26917) (55124) (59126) (3983)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 31.5 (8.3) 22.1 (5.8) 190.8 (.314)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

1000

1900 280 300 18.5 13:1 1 16 6200 2286 9.0 350 300

(2550) (11.0) (11.8) (1127)

2030 280 300 18.5 13:1 (2350) 16200 (332) 2198 (29.5) 10.0 350 300 1-5-3-6-2-4 1-4-2-6-3-5

(2720) (11.0) (11.8) (1127)

(6074) (113) (127) (167) (38.9)

179.9 45 54.6 75 254

(6353) (113) (130) (167) (36.8)

196.4 45 55 75 261

(6936) (113) (127) (167) (37.9)

363.7 540 358 630 550 2.5

(12844) (1004) (676) (1166) (1022) (10)

407.5 574 403 630 550 2.5

(14391) (1065) (757) (1166) (1022) (10)

450.1 580 411 630 550 2.5

(15895) (1076) (772) (1166) (1022) (10)

175 340 507 1022 1136 71

(9952) (19336) (28852) (58140) (64646) (4040)

196 397 511 1104 1332 74

(11146) (22577) (29080) (62803) (75800) (4211)

215 411 624 1250 1464 76

(12227) (23374) (35510) (71111) (83312) (4325)

(2350) (338) (26.2)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 33.6 (8.85) 23.6 (6.2) 193.2 (.318)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 38 (10) 27 (7.1) 195.3 (.321)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (184) (0.0008)

(2350) (319) (32.8)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 41.5 (11) 29.2 (7.7) 199.8 (.328)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

9  

TECHNICAL DATA

Engine: 3606 In-Line* Rating: MCR Fuel: MDO Units

Engine Speed Ratings 1000

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

bkW mm mm L

(bhp) (in) (in) (in3)

2030 280 300 18.5

(2720) (11.0) (11.8) (1127) 13:1

kPa kPa m/s rpm rpm

(psi) (psi) (f/s) rpm rpm

16200 2198 10.0

(2350) (319) (32.8) 350 300 1-5-3-6-2-4 1-4-2-6-3-5

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (psi)

200.7 45 48.0 75 261

(7088) (113) (118) (167) (37.9)

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

459.2 573 410 630 550 2.5

(16216) (1063) (770) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

215 411 662 1288 1450 76

(12227) (23374) (37673) (73274) (82515) (4325)

kPa kPa kPa Lpm Lpm g/kW-hr

(psi) (psi) (psi) (gpm) (gpm) (lb/hp-hr)

-39 350 430-676 41.5 29.2 200.8

(-5.7) (51) (62.4-98) (11) (7.7) (.330)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 697 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

* Data for 3606 engine with 3608 aftercooler installed

10  

TECHNICAL DATA

Engine: 3606 In-Line Rating: MCR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 1095 30 100 104

(194) (203) (181) (210) (24.3) (289) (4.3) (212) (219)

90 95 83 99 190 1168 30 100 104

(194) (203) (181) (210) (27.1) (308.5) (4.3) (212) (219)

90 95 83 99 240 1315 30 100 104

(194) (203) (181) (210) (34.3) (347) (4.3) (212) (219)

90 95 83 99 295 1460 30 100 104

(194) (203) (181) (210) (42.1) (386) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel fuel LHV although TMI values are based on fuel HHV. HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit

4Measured at starter inlet

11  

TECHNICAL DATA

Engine: 3608 In-Line Rating: CSR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

750

Engine Speed Ratings 800 900

1980 (2660) 2080 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 16200 (2350) 16200 2144 (311) 2111 7.5 (24.6) 8.0 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

(2790) (11.0) (11.8) (1127)

(cfm) (°F) (°F) (°F) (psi)

193.3 45 53.4 75 238

(6826) (113) (128) (167) (34.5)

205.4 45 54.9 75 247

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

410.7 519 361 630 550 2.5

(14504) (966) (682) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

222 414 681 1317 1036 74

(12625) (23544) (38754) (74923) (58956) (4211)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 31.5 (8.3) 22.6 (6) 187.3 (.308)

380 320 120 260 105 92 98 85 76 23 760 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (200) (0.0008)

1000

2300 280 300 18.5 13:1 1 16 6200 2075 9.0 350 300

(3080) (11.0) (11.8) (1127)

2460 280 300 18.5 13:1 (2350) 16200 (301) 1998 (29.5) 10.0 350 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

(3300) (11.0) (11.8) (1127)

(7254) (113) (131) (167) (35.8)

213.8 45 55.4 75 219

(7550) (113) (132) (167) (31.8)

225.3 45 53.8 75 209

(7956) (113) (129) (167) (30.3)

437.6 524 363 630 550 2.5

(15454) (975) (685) (1166) (1022) (10)

482.8 559 401 630 550 2.5

(17050) (1038) (754) (1166) (1022) (10)

520.1 564 416 630 550 2.5

(18367) (1047) (781) (1166) (1022) (10)

218 420 638 1276 1231 77

(12398) (23885) (36307) (72590) (70053) (4382)

247 494 595 1336 1643 81

(14047) (28094) (33860) (76001) (93498) (4609)

273 504 745 1522 1709 85

(15525) (28662) (42396) (86583) (97254) (4837)

(2350) (306) (26.2)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 33.8 (8.9) 24.5 (6.5) 188.7 (.310)

380 320 120 260 105 92 98 85 76 23 760 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (200) (0.0008)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 38 (10) 27.6 (7.3) 196.1 (.322)

380 320 120 260 105 92 98 85 76 23 760 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (200) (0.0008)

(2350) (290) (32.8)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 41.5 (11) 30 (7.9) 197.6 (.325)

380 320 120 260 105 92 98 85 76 23 760 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (200) (0.0008)

12  

TECHNICAL DATA

Engine: 3608 In-Line Rating: CSR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 1095 30 100 104

(194) (203) (181) (210) (24.3) (289) (4.3) (212) (219)

90 95 83 99 190 1168 30 100 104

(194) (203) (181) (210) (27.1) (308.5) (4.3) (212) (219)

90 95 83 99 240 1315 30 100 104

(194) (203) (181) (210) (34.3) (347) (4.3) (212) (219)

90 95 83 99 295 1460 30 100 104

(194) (203) (181) (210) (42.1) (386) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit

4Measured at starter inlet

13  

TECHNICAL DATA

Engine: 3608 In-Line Rating: MCR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

750

Engine Speed Ratings 800 900

2180 (2920) 2290 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 16200 (2350) 16200 2360 (342) 2324 7.5 (24.6) 8.0 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

(3070) (11.0) (11.8) (1127)

(cfm) (°F) (°F) (°F) (psi)

209.3 45 55.6 75 270

(7391) (113) (132) (167) (39.2)

220.1 45 56.9 75 275

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

449.4 537 368 630 550 2.5

(15870) (999) (694) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

236 446 788 1470 1145 80

(13421) (25364) (44843) (83628) (65159) (4553)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 31.5 (8.3) 20.3 (5.4) 188.2 (.309)

380 320 120 260 105 92 98 85 76 23 760 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (200) (0.0008)

1000

2530 280 300 18.5 13:1 1 16 6200 2283 9.0 350 300

(3390) (11.0) (11.8) (1127)

2710 280 300 18.5 13:1 (2350) 16200 (331) 2201 (29.5) 10.0 350 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

(3630) (11.0) (11.8) (1127)

(7773) (113) (134) (167) (39.9)

230.8 45 59.2 75 244

(8151) (113) (139) (167) (35.4)

240.8 45 57.7 75 233

(8504) (113) (136) (167) (33.8)

477.0 547 374 630 550 2.5

(16845) (1017) (705) (1166) (1022) (10)

529.0 582 411 630 550 2.5

(18681) (1080) (772) (1166) (1022) (10)

567.1 590 430 630 550 2.5

(20027) (1094) (806) (1166) (1022) (10)

253 460 636 1349 1451 80

(14388) (26160) (36193) (76741) (82572) (4553)

262 (14900) 528 (30027) 720 (40973) 1510 (85900) 1813 (103173) 85 (4837)

288 (16379) 547 (31108) 884 (50306) 1719 (97793) 1869 (106359) 88 (5008)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 33.8 (8.9) 22.1 (5.8) 190 (.312)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 38 (10) 24.5 (6.5) 197.5 (.325)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 41.5 (11) 27 (7.1) 198.3 (.326)

380 320 120 260 105 92 98 85 76 23 760 0.486

(2350) (337) (26.2)

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (200) (0.0008)

380 320 120 260 105 92 98 85 76 23 760 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (200) (0.0008)

380 320 120 260 105 92 98 85 76 23 760 0.486

(2350) (319( (32.8)

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (200) (0.0008)

14  

TECHNICAL DATA

Engine: 3608 In-Line Rating: MCR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 1095 30 100 104

(194) (203) (181) (210) (24.3) (289) (4.3) (212) (219)

90 95 83 99 190 1168 30 100 104

(194) (203) (181) (210) (27.1) (308.5) (4.3) (212) (219)

90 95 83 99 240 1315 30 100 104

(194) (203) (181) (210) (34.3) (347) (4.3) (212) (219)

90 95 83 99 295 1460 30 100 104

(194) (203) (181) (210) (42.1) (386) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm 1

Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2

Exhaust heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3

Separate circuit

4Measured at

starter inlet

15  

TECHNICAL DATA

Engine: 3612 Vee Rating: CSR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

750

Engine Speed Ratings 800 900

2980 (4000) 3120 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 16200 (2350) 16200 2152 (312) 2111 7.5 (24.6) 8.0 350 350 300 300 1-12-9-4-5-8-11-2-3-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (psi)

290.4 45 52.9 75 190

(10255) (113) (127) (167) (27.6)

321.7 45 51 75 233

(11361) (113) (124) (167) (33.8)

328.6 45 52.9 75 226

(11604) (113) (127) (167) (32.8)

362.8 45 53.5 75 219

(12812) (113) (128) (167) (31.8)

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

617.9 530 362 630 550 2.5

(21821) (986) (684) (1166) (1022) (10)

668.3 514 347 630 550 2.5

(23601) (957) (657) (1166) (1022) (10)

744.2 563 403 630 550 2.5

(26281) (1045) (757) (1166) (1022) (10)

825.3 564 406 630 550 2.5

(29145) (1047) (763) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

320 (18198) 612 (34804) 702 (39949) 1634 (92951) 2015 (114668) 92 (5235)

335 (19051) 644 (36624) 760 (43249) 1739 (98924) 2143 (121952) 94 (5349)

371 (21099) 746 (42425) 713 (40575) 1830 (104099) 2605 (148243) 102 (5805)

398 (22634) 721 (41003) 733 (41713) 1852 (105350) 2984 (169811) 104 (5918)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (l(lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 61.2 (16.2) 47.3 (12.5) 189.8 (.312)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 68.8 (18.1) 53.2 (14) 191.4 (.315)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 72 (19) 55.4 (14.6) 194.5 (.320)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 78.5 (20.7) 60.1 (15.9) 196.5 (.323)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 910 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (240) (0.0008)

380 320 120 260 105 92 98 85 76 23 910 0.486

(4180) (11.0) (11.8) (1127)

1000

(2350) (306) (26.2)

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (240) (0.0008)

3460 (4640) 3700 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 1 16 6200 (2350) 16200 2081 (302) 2003 9.0 (29.5) 10.0 350 350 300 300 1-12-9-4-5-8-11-2-3-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

380 320 120 260 105 92 98 85 76 23 910 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (240) (0.0008)

380 320 120 260 105 92 98 85 76 23 910 0.486

(4960) (11.0) (11.8) (1127) (2350) (291) (32.8)

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (240) (0.0008)

16  

TECHNICAL DATA

Engine: 3612 Vee Rating: CSR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 2190 30 100 104

(194) (203) (181) (210) (24.3) (579) (4.3) (212) (219)

90 95 83 99 190 2338 30 100 104

(194) (203) (181) (210) (27.1) (618) (4.3) (212) (219)

90 95 83 99 240 2630 30 100 104

(194) (203) (181) (210) (34.3) (695) (4.3) (212) (219)

90 95 83 99 295 2920 30 100 104

(194) (203) (181) (210) (41.4) (771) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit

4Measured at starter inlet

17  

TECHNICAL DATA

Engine: 3612 Vee Rating: MCR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

750

Engine Speed Ratings 800 900

3280 (4400) 3440 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 16200 (2350) 16200 2368 (343) 2328 7.5 (24.6) 8.0 350 350 300 300 1-12-9-4-5-8-11-2-3-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (psi)

319.4 45 53.1 75 218

(11280) (113) (128) (167) (31.6)

343.9 45 52.7 75 258

(12145) (113) (127) (167) (37.4)

360.0 45 54.6 75 261

(12713) (113) (130) (167) (37.9)

392.9 45 55 75 246

(13875) (113) (131) (167) (35.7)

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

679.5 540 362 630 550 2.5

(23996) (1004) (684) (1166) (1022) (10)

727.1 540 358 630 550 2.5

(25677) (1004) (676) (1166) (1022) (10)

815.3 574 403 630 550 2.5

(28792) (1065) (757) (1166) (1022) (10)

900.4 580 411 630 550 2.5

(31797) (1076) (772) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

338 (19222) 652 (37079) 838 (47688) 1828 (103989) 2157 (122749) 98 (5577)

350 (19904) 678 (38558) 899 (51159) 1927 (109621) 2413 (137317) 101 (5748)

392 (22293) 793 (45098) 906 (51558) 2091 (118949) 2778 (158088) 105 (5975)

416 (23658) 774 (44017) 927 (52753) 2117 (120428) 3208 (182558) 110 (6260)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (l(lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 61.2 (16.2) 42.6 (11.3) 188.9 (.311)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 68.8 (18.1) 47.9 (12.7) 192.8 (.317)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 72 (19) 49.9 (13.2) 194.3 (.319)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 78.5 (20.7) 54.1 (14.3) 196.8 (.324)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 910 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (240) (0.0008)

380 320 120 260 105 92 98 85 76 23 910 0.486

(4610) (11.0) (11.8) (1127)

1000

(2350) (338) (26.2)

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (240) (0.0008)

3800 (5100) 4060 280 (11.0) 280 300 (11.8) 300 18.5 (1127) 18.5 13:1 13:1 1 16 6200 (2350) 16200 2286 (332) 2198 9.0 (29.5) 10.0 350 350 300 300 1-12-9-4-5-8-11-2-3-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

380 320 120 260 105 92 98 85 76 23 910 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (240) (0.0008)

380 320 120 260 105 92 98 85 76 23 910 0.486

(5440) (11.0) (11.8) (1127) (2350) (319) (32.8)

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (240) (0.0008)

18  

TECHNICAL DATA

Engine: 3612 Vee Rating: MCR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 2190 30 100 104

(194) (203) (181) (210) (24.3) (579) (4.3) (212) (219)

90 95 83 99 190 2338 30 100 104

(194) (203) (181) (210) (27.1) (618) (4.3) (212) (219)

90 95 83 99 240 2630 30 100 104

(194) (203) (181) (210) (34.3) (695) (4.3) (212) (219)

90 95 83 99 295 2920 30 100 104

(194) (203) (181) (210) (41.4) (771) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit

4Measured at starter inlet

19  

TECHNICAL DATA

Engine: 3616 Vee Rating: CSR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust FlowTemperature @ 100% load@ 100% load Exhaust Gas Manifold Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure Flow Rate, supply @ 100% load Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

750

Engine Speed Ratings 800 900

3960 (5310) 4160 (5580) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 13:1 13:1 16200 (2350) 16200 (2350) 2144 (311) 2111 (306) 7.5 (24.6) 8.0 (26.2) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

1000

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (psi)

398.9 45 43.4 61 230

(14087) (113) (110) (142) (33.4)

423.7 45 44.9 61 227

(14963) (113) (113) (142) (32.9)

441.1 45 45.4 61 210

(15577) (113) (114) (142) (30.5)

464.7 45 43.8 61 195

(16411) (113) (111) (142) (28.3)

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

839.3 509 355 630 550 2.5

(29640) (948) (671) (1166) (1022) (10)

894.3 514 357 630 550 2.5

(31582) (957) (675) (1166) (1022) (10)

987.1 549 395 630 550 2.5

(34859) (1020) (743) (1166) (1022) (10)

1063.4 554 410 630 550 2.5

(37554) (1029) (770) (1166) (1022) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

410 (23317) 757 (43050) 977 (55598) 2144 (121965) 2813 (160080) 109 (6203)

429 (24397) 840 (47771) 1212 (68971) 2481 (141139) 3005 (171006) 112 (6374)

463 (26331) 918 (52207) 1075 (61175) 2456 (139713) 3746 (213174) 120 (6829)

532 (30255) 968 (55050) 1265 (71987) 2765 (157292) 3778 (214995) 125 (7113)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (l(lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 61.2 (16.2) 43.2 (11.4) 191.8 (.315)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 68.8 (18.1) 48.6 (12.8) 197.4 (.325)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 72 (19) 51.1 (13.5) 199.8 (.328)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 78.5 (20.7) 55.2 (14.6) 198.2 (.326)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

4600 (6170) 4920 (6600) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 13:1 13:1 1 16 6200 (2350) 16200 (2350) 2075 (301) 1998 (290) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (280) (0.0008)

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

20  

TECHNICAL DATA

Engine: 3616 Vee Rating: CSR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

°C °C °C °C kPa Lpm kPa °C °C

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

90 95 83 99 170 2190 30 100 104

(194) (203) (181) (210) (24.3) (579) (4.3) (212) (219)

90 95 83 99 190 2338 30 100 104

(194) (203) (181) (210) (27.1) (618) (4.3) (212) (219)

90 95 83 99 240 2630 30 100 104

(194) (203) (181) (210) (34.3) (695) (4.3) (212) (219)

90 95 83 99 295 2920 30 100 104

(194) (203) (181) (210) (41.4) (771) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit

4Measured at starter inlet 5All 3616 engines come

equipped with a High Performance Aftercooler (HPAC) (HPAC) to reduce

the air inlet manifold temperature.

21  

TECHNICAL DATA

Engine: 3616 Vee Rating: MCR Fuel: MDO Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Manifold Temperature @ 100% load Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow Rate, return BSFC (with pumps)1

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

750

Engine Speed Ratings 800 900

4360 (5850) 4580 (6140) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 13:1 13:1 16200 (2350) 16200 (2350) 2360 (342) 2324 (337) 7.5 (24.6) 8.0 (26.2) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

1000

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (psi)

431.7 45 45.6 61 259

(15245) (113) (114) (142) (37.6)

453.9 45 46.9 61 253

(16029) (113) (116) (142) (36.7)

475.9 45 49.2 61 235

(16806) (113) (121) (142) (34.1)

496.5 45 47.7 61 218

(17534) (113) (118) (142) (31.6)

cmm °C °C °C °C kPa

(cfm) (°F) (°F) (°F) (°F) (in H2O)

918.4 527 362 630 550 2.5

(32433) (981) (684) (1166) (1022) (10)

974.8 537 368 630 550 2.5

(34425) (999) (694) (1166) (1022) (10)

1081.1 572 405 630 550 2.5

(38179) (1062) (761) (1166) (1022) (10)

1159.5 580 424 630 550 2.5

(40947) (1076) (795) (1166) (1022) (10)

kW kW kW kW kW kw

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

435 (24738) 812 (46178) 1188 (67607) 2435 (138523) 3068 (174591) 116 (6601)

455 (25876) 896 (50955) 1423 (80979) 2774 (157810) 3347 (190468) 119 (6772)

488 (27753) 979 (55676) 1285 (73126) 2752 (156555) 4111 (233945) 127 (7227)

558 (31733) 1046 (59486) 1494 (85019) 3098 (176238) 4157 (236563) 136 (7739)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) ((llb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 61.2 (16.2) 38.9 (10.3) 192.6 (.317)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 68.8 (18.1) 43.7 (11.5) 198.8 (.327)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 72 (19) 46 (12.2) 200.4 (.329)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 78.5 (20.7) 49.7 (13.1) 198.9 (.327)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

5060 (6790) 5420 (7270) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 13:1 13:1 1 16 6200 (2350) 16200 (2350) 2283 (331) 2201 (319) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (280) (0.0008)

380 320 120 260 105 92 98 85 76 23 1060 0.486

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

22  

TECHNICAL DATA

Engine: 3616 Vee Rating: MCR Fuel: MDO Units

Engine Speed Ratings 800 900

750

1000

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum

°C °C °C

(°F) (°F) (°F)

90 95 83

(194) (203) (181)

90 95 83

(194) (203) (181)

90 95 83

(194) (203) (181)

90 95 83

(194) (203) (181)

Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum3 Outlet Temperature, alarm Outlet Temperature, stop

° kC Pa Lpm kPa °C °C

°Fs)i) ((p (gpm) (psi) (°F) (°F)

9 19 70 2190 30 100 104

0)) ((2241.3 (579) (4.3) (212) (219)

19 99 0 2338 30 100 104

0)) ((2271.1 (618) (4.3) (212) (219)

90 9 24 2630 30 100 104

0)) ((3241.3 (695) (4.3) (212) (219)

9 29 95 2920 30 100 104

0)) ((4211.4 (771) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa

(psi) (psi) (psi)

1225 620 1575

(175) (90) (225)

1225 620 1575

(175) (90) (225)

1225 620 1575

(175) (90) (225)

1225 620 1575

(175) (90) (225)

kPa

(psi)

850

(125)

850

(125)

850

(125)

850

(125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal4 Air Pressure, minimum4 Air Pressure, maximum4 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Separate circuit 4Measured at starter inlet 5All 3616 engines come

equipped with a High Performance Aftercooler Aftercooler (HPAC) to reduce

the air inlet manifold temperature.

23  

TECHNICAL DATA

Engine: 3606 In-Line Rating: CSR Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Stack Temperature @ 100% Exhaust Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow BSFCRate, (withreturn pumps)1

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

750

Engine Speed Ratings 825 900

1350 (1810) 1355 (1820) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 16200 (2350) 16200 (2350) 1949 (283) 1778 (258) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

1000

bkW mm mm L

(bhp) (in) (in) (in3)

1570 (2110) 1680 (2260) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 1 16 6200 (2350) 16200 (2350) 1889 (274) 1819 (264) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

150 45 75 263

(5298) (113) (167) (38)

164 45 75 265

(5792) (113) (167) (38)

202 45 75 250

(7135) (113) (167) (36)

214 45 175 241

(7558) (113) (167) (35)

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (in H2O)

288 320 550 450 2.5

(10172) (608) (1022) (842) (10)

303 297 550 450 2.5

(10702) (567) (1022) (842) (10)

373 299 550 450 2.5

(13174) (570) (1022) (842) (10)

403 308 550 450 2.5

(14234) (586) (1022) (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

158 318 430 906 922 63

(8993) (18099) (24474) (51566) (52468) (3585)

163 337 478 978 889 63

(9277) (19180) (27205) (55662) (50590) (3585)

177 330 530 1037 1112 68

(10074) (18782) (30165) (59021) (63281) (3870)

194 387 571 1152 1250 71

(11042) (22026) (32500) (65568) (71134) (4040)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 15.2 (4.0) 10.2 (2.7) 202 (.332)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 15.5 (4.1) 10.4 (2.8) 204 (.336)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 18 (4.8) 12.1 (3.2) 203 (.334)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 19.4 (5.1) 12.9 (3.4) 208 (.342)

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

24  

TECHNICAL DATA

Engine: 3606 In-Line Rating: CSR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Manifold Pressure, Pressure, stop stop (650-1000 (0-650 rpm)rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 697 0.45

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0007)

380 320 120 260 105 92 98 85 76 23 697 0.50

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

380 320 120 260 105 92 98 85 76 23 697 0.50

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (184) (0.0008)

380 320 120 260 105 92 98 85 76 23 697 0.5

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0009)

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

93 96 85 99 170 1095 30 100 104

(199) (205) (185) (210) (24.3) (289) (4.3) (212) (219)

93 96 85 99 190 1168 30 100 104

(199) (205) (185) (210) (27.1) (308.5) (4.3) (212) (219)

93 96 85 99 240 1315 30 100 104

(199) (205) (185) (210) (34.3) (347) (4.3) (212) (219)

93 96 85 99 295 1460 30 100 104

(199) (205) (185) (210) (42.1) (386) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4 Outlet Outlet Temperature, Temperature, alarm stop

°C °C °C °C kPa Lpm kPa °C °C

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nomina5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

25  

TECHNICAL DATA

Engine: 3606 In-Line Rating: MCR Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Temperature @ 100% Exhaust Stack Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow BSFCRate, (withreturn pumps)1

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

750

Engine Speed Ratings 825 900

1485 (1995) 1490 (2000) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 16200 (2350) 16200 (2350) 2144 (311) 1955 (282) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

1000

bkW mm mm L

(bhp) (in) (in) (in3)

1730 (2320) 1850 (2485) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 1 16 6200 (2350) 16200 (2350) 2081 (302) 2003 (290) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-5-3-6-2-4 1-4-2-6-3-5

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

159 45 75 290

(5616) (113) (167) (42)

172 45 75 284

(6075) (113) (167) (41)

213 45 75 273

(7523) (113) (167) (40)

229 45 175 266

(8088) (113) (167) (39)

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (in H2O)

307 320 550 450 2.5

(10843) (608) (1022) (842) (10)

320 302 550 450 2.5

(11302) (576) (1022) (842) (10)

399 306 550 450 2.5

(14093) (583) (1022) (842) (10)

433 313 550 450 2.5

(15294) (595) (1022) (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

171 335 477 983 977 67

(9732) (19067) (27149) (55948) (55598) (3813)

176 347 526 1049 935 67

(10017) (19750) (29937) (59704) (53208) (3813)

194 355 592 1141 1188 73

(11042) (20205) (33694) (64941) (67606) (4154)

212 385 653 1250 1377 74

(12066) (21912) (37166) (71144) (78361) (4211)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 16.5 (4.4) 11.0 (2.9) 199 (.327)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 17 (4.5) 11.4 (3) 200 (.329)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 20 (5.3) 13.5 (3.6) 201 (.330)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 22 (5.8) 15 (4.0) 207 (.340)

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 36 (9.5) 260 (38)

26  

TECHNICAL DATA

Engine: 3606 In-Line Rating: MCR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm) Manifold Manifold Pressure, Pressure, stop stop (650-1000 (0-650 rpm)rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kPa kPa kPa kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (psi) (psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

380 320 120 260 105 92 98 85 76 23 697 0.45

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0007)

380 320 120 260 105 92 98 85 76 23 697 0.50

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0008)

380 320 120 260 105 92 98 85 76 23 697 0.50

(55) (46) (17) (38) (15) (198) (208) (1985) (20) (6) (184) (0.0008)

380 320 120 260 105 92 98 85 76 23 697 0.5

(55) (46) (17) (38) (15) (198) (208) (185) (20) (6) (184) (0.0009)

(°F) (°F) (°F) (°F) (psi) (gpm) (psi) (°F) (°F)

93 96 85 99 170 1095 30 100 104

(199) (205) (185) (210) (24.3) (289) (4.3) (212) (219)

93 96 85 99 190 1168 30 100 104

(199) (205) (185) (210) (27.1) (308.5) (4.3) (212) (219)

93 96 85 99 240 1315 30 100 104

(199) (205) (185) (210) (34.3) (347) (4.3) (212) (219)

93 96 85 99 295 1460 30 100 104

(199) (205) (185) (210) (42.1) (386) (4.3) (212) (219)

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4 Outlet Outlet Temperature, Temperature, alarm stop

°C °C °C °C kPa Lpm kPa °C °C

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown

with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications.

3Injector tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

27  

TECHNICAL DATA

Engine: 3608 In-Line Rating: CSR Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Temperature @ 100% Exhaust Stack Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow BSFCRate, (withreturn pumps)1

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

750

Engine Speed Ratings 825 900

1800 (2415) 1800 (2415) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 16200 (2350) 16200 (2350) 1949 (283) 1772 (257) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

1000

bkW mm mm L

(bhp) (in) (in) (in3)

2090 (2805) 2110 (2830) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 1 16 6200 (2350) 16200 (2350) 1886 (273) 1713 (264) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

197 45 75 261

(6958) (113) (167) (37.8)

205 45 75 243

(7241) (113) (167) (35)

244 45 75 240

(8619) (113) (167) (34.8)

255 45 175 246

(9007) (113) (167) (35.7)

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (in H2O)

380 322 550 450 2.5

(13422) (612) (1022) (842) (10)

387 310 550 450 2.5

(13669) (590) (1022) (842) (10)

467 318 550 450 2.5

(16495) (604) (1022) (842) (10)

489 319 550 450 2.5

(17272) (606) (1022) (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

207 447 525 1179 1206 72

(11781) (25441) (29880) (67102) (68630) (4097)

213 485 567 1265 1184 72

(12123) (27604) (32271) (71998) (67378) (4097)

236 527 641 1404 1496 77

(13432) (29994) (36483) (79909) (85133) (4382)

245 563 701 1509 1569 78

(13944) (32043) (39898) (85885) (89287) (4439)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 20 (5.3) 13.4 (3.5) 199 (.327)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 21 (5.5) 14.3 (3.8) 202 (.332)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 24 (6.3) 16 (4.2) 204 (.336)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 25 (6.6) 16.8 (4.4) 210 (.345)

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

28  

TECHNICAL DATA

Engine: 3608 In-Line Rating: CSR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Manifold Pressure, Pressure, stop stop (650-1000 (0-650 rpm)rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

Pa a kkP °C °C °C Lpm Lpm L g/kW-hr

pssii)) ((p (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

20 65 0 1 92 98 85 76 23 760 0.45

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0007)

20 65 0 1 92 98 85 76 23 760 0.50

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0008)

20 65 0 1 92 98 85 76 23 760 0.50

((3 18 5)) (198) (208) (1985) (20) (6) (200) (0.0008)

20 65 0 1 92 98 85 76 23 760 0.5

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0009)

93 96 85 99 170 1095 30

(199) (205) (185) (210) (24.3) (289) (4.3)

93 96 85 99 190 1168 30

(199) (205) (185) (210) (27.1) (308.5) (4.3)

93 96 85 99 240 1315 30

(199) (205) (185) (210) (34.3) (347) (4.3)

93 96 85 99 295 1460 30

(199) (205) (185) (210) (42.1) (386) (4.3)

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Outlet Temperature, Temperature, alarm stop

°C C °

°F F)) ((°

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

29  

TECHNICAL DATA

Engine: 3608 In-Line Rating: MCR Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Temperature @ 100% Exhaust Stack Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow BSFCRate, (withreturn pumps)1

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

750

Engine Speed Ratings 825 900

1980 (2660) 1980 (2660) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 16200 (2350) 16200 (2350) 2144 (311) 1949 (283) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

1000

bkW mm mm L

(bhp) (in) (in) (in3)

2300 (3090) 2320 (3115) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 1 16 6200 (2350) 16200 (2350) 2075 (301) 1884 (273) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

209 45 75 286

(7382) (113) (167) (41.5)

217 45 75 268

(7664) (113) (167) (38.9)

257 45 75 261

(9077) (113) (167) (37.8)

266 45 175 264

(9395) (113) (167) (38.3)

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (in H2O)

408 328 550 450 2.5

(14410) (622) (1022) (842) (10)

417 319 550 450 2.5

(14728) (606) (1022) (842) (10)

500 327 550 450 2.5

(17660) (621) (1022) (842) (10)

519 330 550 450 2.5

(18331) (626) (1022) (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

228 470 606 1304 1301 74

(12977) (26750) (34491) (74218) (74036) (4211)

234 497 649 1380 1295 74

(13318) (27262) (36938) (77518) (73695) (4211)

258 541 721 1520 1647 81

(14684) (30791) (41036) (86511) (93726) (4609)

267 618 740 1625 1708 81

(15196) (35174) (42117) (92487) (97197) (4609)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 22 (5.8) 14.7 (3.9) 198 (.326)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 22 (5.8) 14.6 (3.8) 201 (.331)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 26 (6.9) 17.4 (4.6) 203 (.334)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 27 (7.1) 18 (4.7) 208 (.342)

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

30  

TECHNICAL DATA

Engine: 3608 In-Line Rating: MCR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Manifold Pressure, Pressure, stop stop (650-1000 (0-650 rpm)rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kkP Pa a °C °C °C Lpm Lpm L g/kW-hr

((p pssii)) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

2 16 00 5 92 98 85 76 23 760 0.45

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0007)

2 16 00 5 92 98 85 76 23 760 0.50

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0008)

2 16 00 5 92 98 85 76 23 760 0.50

((3 18 5)) (198) (208) (1985) (20) (6) (200) (0.0008)

2 16 00 5 92 98 85 76 23 760 0.5

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0009)

93 96 85 99 170 1095 30

(199) (205) (185) (210) (24.3) (289) (4.3)

93 96 85 99 190 1168 30

(199) (205) (185) (210) (27.1) (308.5) (4.3)

93 96 85 99 240 1315 30

(199) (205) (185) (210) (34.3) (347) (4.3)

93 96 85 99 295 1460 30

(199) (205) (185) (210) (42.1) (386) (4.3)

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Outlet Temperature, Temperature, alarm stop

°C C °

°F F)) ((°

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 900 -5

(90) (100) (24.3) (238) (-1.48)

32 38 190 960 -5

(90) (100) (27.1) (254) (-1.48)

32 38 240 1080 -5

(90) (100) (34.3) (285) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

31  

TECHNICAL DATA

Engine: 3608 In-Line Rating: CSR & MCR** Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Temperature @ 100% Exhaust Stack Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow BSFCRate, (withreturn pumps)1

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

Engine Speed Ratings 1000 (CSR) 1000 (MCR)

bkW mm mm L

(bhp) (in) (in) (in3)

2240 280 300 18.5

(3005) (11.0) (11.8) (1127) 12.4:1 (2350) (264) (32.8)

2460 280 20 18.5 12.4:1 16200 16200 1819 1998 10.0 10.0 350 350 300 300 1-6-2-5-8-3-7-4 1-4-7-3-8-5-2-6

(3300) (11.0) (11.8) (1127)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

246 45 75 248

(8689) (113) (167) (36)

259 45 75 271

(9148) (113) (167) (39.3)

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (in H2O)

494 347 550 450 2.5

(17448) (657) (1022) (842) (10)

533 361 550 450 2.5

(18826) (682) (1022) (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

258 647 658 1563 1654 80

(14684) (36824) (37450) (88958) (94124) (4553)

280 (15936) 632 (35970) 738 (42003) 1650 (93909) 1798 (102319) 85 (4837)

kPa kPa kPa Lpm Lpm g/kW-hr

(psi) (psi) (psi) (gpm) (gpm) (lb/hp-hr)

-39 (-5.7) 350 (51) 430-676 (62.4-98) 26 (6.9) 17.4 (4.6) 208 (.342)

-39 (-5.7) 350 (51) 430-676 (62.4-98) 28 (7.4) 18.7 (4.9) 205 (.337)

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 48 (12.7) 260 (38)

(2350) (290) (32.8)

32  

TECHNICAL DATA

Engine: 3608 In-Line Rating: CSR & MCR** Fuel: HEAVY Units

Engine Speed Ratings 1000 (CSR) 1000 (MCR)

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Manifold Pressure, Pressure, stop stop (650-1000 (0-650 rpm)rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kkP Pa a °C °C °C Lpm Lpm L g/kW-hr

((p pssii)) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

2 16 00 5 92 98 85 76 23 760 0.55

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0009)

2 16 00 5 92 98 85 76 23 760 0.55

((3 18 5)) (198) (208) (185) (20) (6) (200) (0.0009)

93 96 85 99 295 1460 30

(199) (205) (185) (210) (42.1) (386) (4.3)

93 96 85 99 295 1460 30

(199) (205) (185) (210) (42.1) (386) (4.3)

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Outlet Temperature, Temperature, alarm stop

° °C C

((° °F F))

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

32 38 295 1200 -5

(90) (100) (42.1) (317) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown

with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values have been corrected to an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications.

3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system.

4Separate circuit 5Measured at starter inlet

**Always requires CP propeller. See guide section on Engine Performance.

33  

TECHNICAL DATA

Engine: 3612 Vee Rating: CSR Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System Exhaust Gas Flow @ 100% load Exhaust Temperature @ 100% Exhaust Stack Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply Flow BSFCRate, (withreturn pumps)1

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

750

Engine Speed Ratings 825 900

2700 (3625) 2710 (3640) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 16200 (2350) 16200 (2350) 1949 (283) 17778 (258) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-12-9-4-5-8-2-3-4-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

1000

bkW mm mm L

(bhp) (in) (in) (in3)

3140 (4215) 3360 (4510) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 1 16 6200 (2350) 16200 (2350) 1889 (274) 1819 (264) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-12-9-4-5-8-11-2-3-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

299 45 75 263

(10560) (113) (167) (38)

329 45 75 265

(11620) (113) (167) (38.4)

403 45 75 250

(14234) (113) (167) (36)

429 45 175 250

(15152) (113) (167) (36)

cmm °C °C °C kPa

(cfm) (°F) (°F) (°F) (in H2O)

575 320 550 450 2.5

(20309) (608) (1022) (842) (10)

606 297 550 450 2.5

(21404) (567) (1022) (842) (10)

745 299 550 450 2.5

(26313) (570) (1022) (842) (10)

794 299 550 450 2.5

(28045) (570) (1022) (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

315 (17428) 636 (36198) 709 (S40353) 1660 (94479) 2001 (113871) 88 (5008)

326 (18554) 674 (38361) 788 (44849) 1788 (101764) 1951 (111026) 88 (5008)

355 (20205) 659 (37507) 874 (49744) 1888 (107456) 2415 (137431) 94 (5349)

388 (22083) 773 (43995) 943 (53671) 2104 (119749) 2742 (156039) 99 (5634)

kPa kPa kP kPa a Lpm Lpm g/kW-hr

(psi) (psi) (p (psi si)) (gpm) (gpm) (lb/hp-hr)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 30.5 (8.1) 20.4 (5.4) 201 (.330)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 31 (7.8) 21 (5.3) 203 (.334)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 35.5 (9.4) 23.7 (6.3) 202 (.332)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 39 (10.3) 26 (6.9) 208 (.342)

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

34  

TECHNICAL DATA

Engine: 3612 Vee Rating: CSR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Manifold Pressure, Pressure, stop stop (650-1000 (0-650 rpm)rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kkP Pa a °C °C °C Lpm Lpm L g/kW-hr

((p pssii)) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

2 16 00 5 92 98 85 76 23 910 0.45

((3 18 5)) (198) (208) (185) (20) (6) (240) (0.0007)

2 16 00 5 92 98 85 76 23 910 0.50

((3 18 5)) (198) (208) (185) (20) (6) (240) (0.0008)

2 16 00 5 92 98 85 76 23 910 0.50

((3 18 5)) (198) (208) (1985) (20) (6) (240) (0.0008)

2 16 00 5 92 98 85 76 23 910 0.5

((3 18 5)) (198) (208) (185) (20) (6) (240) (0.0009)

93 96 85 99 170 2190 30

(199) (205) (185) (210) (24.3) (579) (4.3)

93 96 85 99 190 2338 30

(199) (205) (185) (210) (27.1) (6`8) (4.3)

93 96 85 99 240 2630 30

(199) (205) (185) (210) (34.3) (695) (4.3)

93 96 85 99 290 2920 30

(199) (205) (185) (210) (41.4) (711) (4.3)

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Outlet Temperature, Temperature, alarm stop

°C C °

°F F)) ((°

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 104 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

35  

TECHNICAL DATA

Engine: 3612 Vee Rating: MCR Fuel: HEAVY Units

General Data

Engine Speed Ratings 825 900

750

bkW mm mm L

(bhp) (in) (in) (in3)

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

320 45 75 289

(11302) (113) (167) (42)

343 45 75 284

(12115) (113) (167) (41)

426 45 75 273

(15046) (113) (167) (40)

457 45 175 273

(16141) (113) (167) (40)

Exhaust Gas Flow @ 100% load

cmm

(cfm)

614

(21686)

640

(22605)

798

(28185)

857

(30270)

Exhaust Temperature @ 100% Exhaust Stack Manifold Temperature, alarm load Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

°C C ° °C kPa

°F F)) ((° (°F) (in H2O)

35 20 0 5 450 2.5

62 02 8)) (1(0 (842) (10)

35 00 2 5 450 2.5

52 72 6)) (1(0 (842) (10)

30 5 56 0 450 2.5

52 82 2)) (1(0 (842) (10)

35 00 6 5 450 2.5

52 82 3)) (1(0 (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply

kPa kPa kP kPa a Lpm

(psi) (psi) (psi) psi) (gpm)

Flow BSFCRate, (withreturn pumps)1

L gp /km W-hr ((g lbp/hmp)-hr)

Engine Output1 Cylinder Bore Stroke Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

°C °C kW Lpm kPa

(°F) (°F) (Btu/min.) (gpm) (psi)

2970 (3985) 2980 (4000) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 16200 (2350) 16200 (2350) 2144 (311) 1955 (284) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-12-9-4-5-8-11-2-3-4-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

1000

3460 (4645) 3700 (4965) 280 (11.0) 280 (11.0) 300 (11.8) 300 (11.8) 18.5 (1127) 18.5 (1127) 12.4:1 12.4:1 1 16 6200 (2350) 16200 (2350) 2081 (302) 2003 (290) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-12-9-4-5-8-11-2-3-10-7-6 1-6-7-10-3-2-11-8-5-4-9-12

341 (19408) 670 (38133) 849 (48321) 1860 (105862) 2066 (117570) 92 (5235)

352 (20034) 695 (39556) 936 (53273) 1983 (112863) 1992 (113359) 92 (5235)

387 (22076) 711 (40467) 1054 (59987) 2152 (122480) 2509 (142780) 102 (5805)

424 (24132) 770 (43825) 1162 (66135) 2356 (134092) 2941 (167364) 104 (5918)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.44-98 98)) 33 (8.7)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 33 (8.7)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 39 (10.3)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 43 (11.4)

12 92 8

(.(352.8 6))

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

12 92 9

(.(352.8 7))

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

22 06 0

(.(362.9 9))

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

2280.8 7

(.(374.6 0))

50-65 (122-149) 56-71 (133-160) 1.0 (57) 72 (19) 260 (38)

36  

TECHNICAL DATA

Engine: 3612 Vee Rating: MCR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kkP Pa a °C °C °C Lpm Lpm L g/kW-hr

((p pssii)) (°F) (°F) (°F) (gpm) (gpm) (gal) (l (lb/hp-hr)

2 16 00 5 92 98 85 76 23 910 0.45

((3 18 5)) (198) (208) (185) (20) (6) (240) (0.0007)

2 16 00 5 92 98 85 76 23 910 0.50

((3 18 5)) (198) (208) (185) (20) (6) (240) (0.0008)

2 16 00 5 92 98 85 76 23 910 0.50

((3 18 5)) (198) (208) (1985) (20) (6) (240) (0.0008)

2 16 00 5 92 98 85 76 23 910 0.55

((3 18 5)) (198) (208) (185) (20) (6) (240) (0.0009)

93 96 85 99 170 2190 30

(199) (205) (185) (210) (24.3) (579) (4.3)

93 96 85 99 190 2338 30

(199) (205) (185) (210) (27.1) (6`8) (4.3)

93 96 85 99 240 2630 30

(199) (205) (185) (210) (34.3) (695) (4.3)

93 96 85 99 290 2920 30

(199) (205) (185) (210) (41.4) (711) (4.3)

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Temperature, alarm Outlet Temperature, stop

°C C °

°F F)) ((°

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown

with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

37  

TECHNICAL DATA

Engine: 3616 Vee Rating: CSR Fuel: HEAVY Units

General Data

Engine Speed Ratings 825 900

750 3600 280 300

(4830) (11.0) (11.8)

3600 280 300

(4830) (11.0) (11.8)

4180 280 300

(5610) (11.0) (11.8)

1000

Engine Output1 Cylinder Bore Stroke

bkW mm mm

(bhp) (in) (in)

4220 280 300

(5665) (11.0) (11.8)

Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

L

(in )

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

411.5 45 61 248

(14532) (113) (142) (36.0)

429.3 45 61 231

(15161) (113) (142) (33.5)

511.0 45 61 223

(18046) (113) (142) (32.3)

534.1 45 61 234

(18862) (113) (142) (33.9)

Exhaust Gas Flow @ 100% load

cmm

(cfm)

812.0

(28676)

829.9

(29308)

1001.5

(35368)

1048.6

(37031)

Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

° C °C °C kPa

((° °F F)) (°F) (in H2O)

3 51 56 0 450 2.5

62 02 1)) (1(0 (842) (10)

35 00 4 5 450 2.5

52 72 9)) (1(0 (842) (10)

35 10 2 5 450 2.5

52 92 4)) (1(0 (842) (10)

35 10 3 5 450 2.5

52 92 5)) (1(0 (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply

kPa kPa kP kPa a Lpm

(psi) (psi) (p (psi si)) (gpm)

Flow Rate, return 1 BSFC (with pumps)

Lp g /km W-hr ((l(lgbp/hmp)-hr)

25 6..0 8 19

°C °C kW Lpm kPa

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

3

Combustion Air System Flow of air Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System

Unit Injector Tip Cooling System3 Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

(°F) (°F) (Btu/min.) (gpm) (psi)

18.152.4:1(1127)

18.152.4:1(1127)

16200 (2350) 16200 (2350) 1949 (283) 1772 (257) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

18.152.4:1(1127)

18.152.4:1(1127)

1 16 6200 (2350) 16200 (2350) 1886 (273) 1713 (248) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

415 (23620) 895 (50939) 1069 (60834) 2379 (135393) 2262 (128724) 101 (5748)

426 (24246) 970 (55208) 1194 (67947) 2590 (147401) 2308 (131342) 101 (5748)

472 (26864) 1054 (59989) 1358 (77280) 2884 (164133) 2584 (147048) 113 (6431)

491 (27945) 1125 (64030) 1480 (84221) 3096 (176196) 2890 (164462) 114 (6487)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 40 (10.6)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 41 (10.8)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 47.5 (12.5)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 49 (12.9)

1)) (.(372.1

21 7..0 6 20

3)) (.(373.0

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

36 1..5 8 19

4)) (.(382.3

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

23 02 5..7 8

(.(383.6 8))

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

38  

TECHNICAL DATA

Engine: 3616 Vee Rating: CSR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kkP Pa a °C °C °C Lpm Lpm L g/kW-hr

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

((p pssii)) (°F) (°F) (°F) (gpm) (gpm) (gal) (l (lb/hp-hr)

2 ((3 16 00 5 18 5)) 92 (198) 98 (208) 85 (185) 76 (20) 23 (6) 1060 (280) 0.45 (0.0007)

2 16 00 5 92 98 85 76 23 1060 0.50

((3 18 5)) (198) (208) (185) (20) (6) (280) (0.0008)

2 16 00 5 92 98 85 76 23 1060 0.50

((3 18 5)) (198) (208) (1985) (20) (6) (280) (0.0008)

2 16 00 5 92 98 85 76 23 1060 0.55

((3 18 5)) (198) (208) (185) (20) (6) (280) (0.0009)

93 96 85 99 170 2190 30

(199) (205) (185) (210) (24.3) (579) (4.3)

93 96 85 99 190 2338 30

(199) (205) (185) (210) (27.1) (6`8) (4.3)

93 96 85 99 240 2630 30

(199) (205) (185) (210) (34.3) (695) (4.3)

93 96 85 99 290 2920 30

(199) (205) (185) (210) (41.4) (711) (4.3)

8 19 04

21 09 8)) ((2

19 08 4

21 09 8)) ((2

8 19 04

21 09 8)) ((2

8 19 04

21 09 8)) ((2

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Temperature, alarm Outlet Temperature, stop

° °C C

((° °F F))

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications.

3Injector tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

6All 3616 engines come equipped with a High Performance Aftercooler (HPAC) (HPAC) to reduce the air inlet manifold temperature.

39  

TECHNICAL DATA

Engine: 3616 Vee Rating: MCR Fuel: HEAVY Units

General Data

Engine Speed Ratings 825 900

750 3960 280 300

(5315) (11.0) (11.8)

3960 280 300

(5315) (11.0) (11.8)

4600 280 300

(6175) (11.0) (11.8)

1000

Engine Output1 Cylinder Bore Stroke

bkW mm mm

(bhp) (in) (in)

4640 280 300

(6230) (11.0) (11.8)

Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

L

(in )

kPa kPa m/s rpm rpm

((p psi) (psi) (f/s) rpm rpm

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

437.7 45 61 272

(15457) (113) (142) (39.5)

454.5 45 61 255

(16051) (113) (142) (37.0)

538.2 45 61 243

(19006) (113) (142) (35.2)

556.0 45 61 251

(19635) (113) (142) (36.4)

Exhaust Gas Flow @ 100% load

cmm

(cfm)

872.5

(30812)

892.3

(31511)

1071.1

(37826)

1112.1

(39273)

Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

° °C C °C kPa

°F F)) ((° (°F) (in H2O)

35 20 2 5 450 2.5

62 12 2)) (1(0 (842) (10)

35 10 3 5 450 2.5

52 92 5)) (1(0 (842) (10)

35 21 5 0 450 2.5

(1(6 01 20 2)) (842) (10)

3 52 54 0 450 2.5

62 12 5)) (1(0 (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply

kPa kPa kP kPa a Lpm

(psi) (psi) (p (psi si)) (gpm)

Flow Rate, return 1 BSFC (with pumps)

L gp /km W-hr ((l(lgbp/hmp)-hr)

25 9..1 5 19

Unit Injector Tip Cooling System3

°C °C kW Lpm kPa

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

3

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System

Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

(°F) (°F) (Btu/min.) (gpm) (psi)

18.152.4:1(1127)

18.152.4:1(1127)

16200 (2350) 16200 (2350) 2144 (311) 1949 (283) 7.5 (24.6) 8.25 (27.1) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

18.152.4:1(1127)

18.152.4:1(1127)

1 16 6200 (2350) 16200 (2350) 2076 (301) 1884 (273) 9.0 (29.5) 10.0 (32.8) 350 350 300 300 1-2 1-2-5-5-6-3 6-3-4-4-9-1 9-10-1 0-15-1 5-16-1 6-11-1 1-12-1 2-13-1 3-14-7 4-7-8 -8 1-8 1-8-7-7-1414-1313-1212-1111-1616-1515-1010-9-4 9-4-3-3-6-5 6-5-2 -2

457 (26010) 941 (53557) 1260 (71703) 2658 (151270) 2454 (139650) 109 (6203)

467 (26580) 993 (56517) 1370 (77963) 2830 (161060) 2513 (143008) 109 (6203)

515 (29311) 1083 (63639) 1430 (81377) 3028 (174327) 2993 (170323) 120 (6829)

534 (30393) 1235 (70290) 1540 (87637) 3309 (188320) 3173 (180566) 121 (6886)

-39 (-5.7) 350 (51) 430430-67 676 6 (6 (62. 2.44-98 98)) 44 (11.6)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 44 (11.6)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. (62.44-98 98)) 52 (13.7)

-39 (-5.7) 350 (51) 430430-67 676 6 (62. 62.4-98 4-98)) 54 (14.2)

8)) (.(372.1

20 9..0 3 20

7)) (.(372.9

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

36 4..5 8 19

2)) (.(392.3

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

23 06 3..2 9

(.(393.6 5))

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

40  

TECHNICAL DATA

Engine: 3616 Vee Rating: MCR Fuel: HEAVY Units

Engine Speed Ratings 825 900

750

1000

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (l (lb/hp-hr)

260 105 92 98 85 76 23 1060 0.45

(38) (15) (198) (208) (185) (20) (6) (280) (0.0007)

260 105 92 98 85 76 23 1060 0.50

(38) (15) (198) (208) (185) (20) (6) (280) (0.0008)

260 105 92 98 85 76 23 1060 0.50

(38) (15) (198) (208) (1985) (20) (6) (280) (0.0008)

260 105 92 98 85 76 23 1060 0.55

(38) (15) (198) (208) (185) (20) (6) (280) (0.0009)

93 96 85 99 170 2190 30

(199) (205) (185) (210) (24.3) (579) (4.3)

93 96 85 99 190 2338 30

(199) (205) (185) (210) (27.1) (6`8) (4.3)

93 96 85 99 240 2630 30

(199) (205) (185) (210) (34.3) (695) (4.3)

93 96 85 99 290 2920 30

(199) (205) (185) (210) (41.4) (711) (4.3)

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

1 10 00 4

((2 21 12 9))

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Temperature, alarm Outlet Temperature, stop

°C C °

°F F)) ((°

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 170 1300 -5

(90) (100) (24.3) (343) (-1.48)

32 38 194 1387 -5

(90) (100) (27.7) (366) (-1.48)

32 38 245 1560 -5

(90) (100) (35) (412) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Starting Air System Air Pressure, nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1

standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values are based on an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications. 3Injector

tip cooling is required with heavy fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system. 4Separate circuit 5Measured at starter inlet

6All 3616 engines come equipped with a High Performance Aftercooler (HPAC) (HPAC) to reduce the air inlet manifold temperature.

41  

TECHNICAL DATA

Engine: 3616 Vee Rating: CSR & MCR** Fuel: HEAVY Units

General Data Engine Output1 Cylinder Bore Stroke

bkW mm mm

(bhp) (in) (in)

Displacement/Cylinder Compression Ratio Firing Pressure, maximum BMEP Mean Piston Speed Idle Speed Crash Reversal Speed, minimum Firing Order - CCW Firing Order - CW

L

(in )

Engine Speed Ratings 1000 (CSR) 1000 (MCR) 4480 280 300

(6015) (11.0) (11.8)

4920 280 20

(6600) (11.0) (11.8)

3

kPa kPa m/s rpm rpm

18.5 (1121.247:1) 8:.1 5 121.4 ((p psi) 16200 (2350) 16200 (psi) 1819 (264) 1998 (f/s) 10.0 (32.8) 10.0 rpm 350 350 rpm 300 300 1-2-5-6-3-4-9-10-15-16-11-12-13-14-7-8 1-8-7-14-13-12-11-16-15-10-9-4-3-6-5-2

cmm °C °C kPa

(cfm) (°F) (°F) (psi)

514.2 45 75 236

(18159) (113) (167) (34.2)

541.4 45 75 257

(19119) (113) (167) (37.3)

Exhaust Gas Flow @ 100% load

cmm

(cfm)

1057.8

(37356)

1139.1

(40227)

Exhaust Stack Temperature @ 100% load Exhaust Manifold Temperature, alarm Exhaust Stack Temperature, alarm Exhaust System Backpressure, maximum

° °C C °C kPa

((° °F F)) (°F) (in H2O)

3 54 51 0 450 2.5

62 42 6)) (1(0 (842) (10)

35 50 5 5 450 2.5

62 72 1)) (1(0 (842) (10)

kW kW kW kW kW kW

(Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.) (Btu/min.)

Pump Suction Restriction, maximum Return Line Backpressure, maximum Manifold Pressure @ 100% load Flow Rate, supply

kPa kPa kPa Lpm

(psi) (psi) (psi) (gpm)

Flow Rate, return 1 BSFC (with pumps)

L gp /km W-hr (((llgbp/hmp)-hr)

38 4..7 8 19

Unit Injector Tip Cooling System3

°C °C kW Lpm kPa

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

Combustion Air System Flow of air @ 100% load Air Temperature @ Air Cleaner, maximum Air Temperature after Aftercooler, alarm Intake Manifold Pressure @ 100% load

Exhaust Gas System

Heat Balance @ 100% Load Lube Oil Cooler Jacket Water Circuit Aftercooler Total Heat rejected to Raw Water Exhaust Gas2 Radiation

Fuel System

Coolant Temp. Before Engine, nominal Coolant Temp. After Engine, nominal Heat rejection/Unit injector Coolant Flow (SAE 10W oil) Coolant Pressure Low, alarm

(°F) (°F) (Btu/min.) (gpm) (psi)

(1127) (2350) (290) (32.8)

517 (29425) 1293 (73591) 1387 (78930) 3197 (181946) 2785 (158486) 116 (6601)

559 (31816) 1264 (71941) 1460 (83084) 3283 (186841) 3336 (189842) 125 (7113)

-39 (-5.7) 350 (51) 430-676 (62.4-98) 52 (13.7)

-39 (-5.7) 350 (51) 430-676 (62.4-98) 56 (14.8)

2)) (.(392.7

39 7..5 4 19

9)) (.(392.8

50-65 (122-149) 56-71 (133-160) 1.0 (57) 96 (25.4) 260 (38)

42  

TECHNICAL DATA

Engine: 3616 Vee Rating: CSR & MCR** Fuel: HEAVY Units

Engine Speed Ratings 1000 (CSR) 1000 (MCR)

Lubricating Oil System Manifold Pressure, minimum Manifold Pressure, alarm (650-1000 rpm) Manifold Pressure, alarm (0-650 rpm)

kPa kPa kPa

(psi) (psi) (psi)

380 320 120

(55) (46) (17)

380 320 120

(55) (46) (17)

Manifold Pressure, stop (650-1000 rpm) Manifold Pressure, stop (0-650 rpm) Manifold Temperature, alarm Manifold Temperature, stop Manifold Temperature, nominal Prelube Pump Capacity - intermittent Prelube Pump Capacity - continuous Sump Capacity (marine) BSOC @ 100% load (nominal)

kPa kPa °C °C °C Lpm Lpm L g/kW-hr

(psi) (psi) (°F) (°F) (°F) (gpm) (gpm) (gal) (lb/hp-hr)

260 105 92 98 85 76 23 1060 0.55

(38) (15) (198) (208) (185) (20) (6) (280) (0.0009)

260 105 92 98 85 76 23 1060 0.55

(38) (15) (198) (208) (185) (20) (6) (280) (0.0009)

93 96 85 99 290 2920 30

(199) (205) (185) (210) (41.4) (771) (4.3)

93 96 85 99 290 2920 30

(199) (205) (185) (210) (41.4) (771) (4.3)

100 104

(212) (219)

100 104

(212) (219)

Cooling Water System - Block Cooling Inlet Temperature, nominal Inlet Temperature, maximum Inlet Temperature, minimum Outlet Temp., before Regulator, maximum Pump Rise (Delta P) @ 90°C (194°) Pump capacity Pump Inlet Pressure, minimum4

°C °C °C °C kPa Lpm kPa

(°F) (°F) (°F) (°F) (psi) (gpm) (psi)

Outlet Temperature, alarm Outlet Temperature, stop

°C °C

(°F) (°F)

Cooling Water System - AC/OC Cooling Inlet Temperature, nominal Inlet Temperature, maximum Pump Rise (Delta P) @ 32°C (90°F) Pump capacity Pump Inlet Pressure, minimum

°C °C kPa Lpm kPa

(°F) (°F) (psi) (gpm) (in-Hg)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

32 38 305 1730 -5

(90) (100) (43.6) (457) (-1.48)

kPa kPa kPa kPa

(psi) (psi) (psi) (psi)

1225 620 1575 850

(175) (90) (225) (125)

1225 620 1575 850

(175) (90) (225) (125)

Starting Air System Air Pressure, nominal nominal5 Air Pressure, minimum5 Air Pressure, maximum5 Low Air Pressure, alarm

1Performance based on SAE J1995 and ISO 3046/1 standard conditions of 100 kPa (29.61 in-Hg) and 25°C (77°F). BSFC values are shown

with a Caterpillar tolerance of ±6 g/kW-hr (.010 lbs/hp-hr). For an ISO fuel consumption, subtract 4 g/kW-hr (.007 lbs/hp-hr) from the values shown. This takes into account the ±5% tolerance allowed by ISO. BSFC values have been corrected to an LHV of 42780 kJ/kg (18390 Btu/lb.) 2Exhaust

heat rejection is based on fuel LHV although TMI values are based on fuel HHV. The fuel HHV includes the latent heat of vaporization of water in the exhaust gas which is not recoverable in diesel engine applications.

3Injector

tip cooling is not required with MDO fuel. A separate external injector tip cooling module is required when heavy fuels above 40 cSt @ 50°C (122°F) are used. The coolant flow is based upon a separate circuit system.

4Separate circuit 5Measured at starter inlet

6All 3616 engines come

temperature.

equipped with a High Performance (HPAC) (HPAC) to reduce the air inlet manifold

**Always requires CP propeller. See guide section on Engine Performance.

43  

Noise Sound Waves — Behavior and Measurement As sound sound wa ves ra diat e their strengt strengt h diminishes. As distance traveled doubles, the w ave a mplitude is is reduced reduced by one-ha oneha lf. This This r ule a pplies pplies if t he first measur point point is at leastnt wo or or thr ee times thing e largest dimension dimensio of the noise source, usually about three feet. Distance X 2X 4X

Sound Strength 100% 50% 25%

Sound pressure in decibels (dB)

Sound pressure in pounds per square inch (psi) Common Sounds  _   1

160

3x10

140

3x10

Medium jet engine

 _ 2 Large propeller aircraft

 _ 3

120

3x10

100

3x10

80

3x10

60

3x10

Air raid siren Riveting and chipping Discotheque Punch press

 _ 4 Canning plant

 _ 5

 _ 6

Heavy city traffic;   subway Busy office

Normal speech

100,000:1 Pressure Range

Private office

Sound w a ves impinging impinging on a micropho microphone ne producee volta ges proport produc proport io iona na l t o so sound und pressures. The signals measure a mplitude or or str ength of the so  sound  und  Amplitude and frequency frequency  pressur  pre ssure e wa ves. Amplitude

a re the only sound prope properties rties mea sura ble using ordina ordina ry t ec echniques. hniques.

 _ 7 Quiet residential

40

3x10

20

3x10

0

3x10

 _ 8

 _ 9

neighborhood

Whisper

Threshold of hearing

Fi Fig gure 1

The extensive a udible ra nge of sound complicates noise ratings. The human ear hea rs pressure levels 100,00 100,000 0 tim es stronger tha n th e lowest lowest detecta detecta ble leve levell wit hout dama ge. Noise Noise measur ing instruments have extraordinary extraordinary ra nge a nd a re scaled in decibels decibels (dB (dB ).

Sound Terms

Sound strength, or sound pressure level (SP L) L),, is ra ted in the logarit hmic decibel decibel scale. The scale allows rating over the entire sound pressure pressure ra nge of interest wit h tw o to three digit digit numbers (e.g., 90 dB or 100 100 dB ). For illustr a tion, 80 dB is a sound pressure of only only 0.000 0.00003 03 psi as shown in Figure 38.

The system provides a meaningful huma n reference reference a s the avera ge ear ear first detects detec ts noise at 0 dB . Hum an s ca ca n co comforta mforta bly tolerat tolerat e sound sound levels of 80 dB (10,000 times the sound pressure a t 0 dB). B etween 80 dB a nd 90 dB they show so some me intolera intolera nce to the noise, and a bove 90 dB th e level beco becomes mes intense. Sound pressure levels of common common exposures expo sures t o noise noise ar e shown in Figure 1. B eca eca use o off the loga loga rithm ic na ture, differences in two decibel ratings indicate the wa ve strength strength ra tio between between the two mea sured levels. T The he follow follow ing r elat ions a re noted from from t he sc scaa le.

44  

Difference In  Two Signal Levels In Decibels 1 3 6 10 12* 20 40

Pressure Level Ratio 1.12 1.41 2.00 3.1 4.00 10.00 100.00

to to to to to to to

1 1 1 1 1 1 1

It considers considers t hree single-frequ single-frequ ency sounds a t 50 Hz, 500 500 Hz, a nd 5000 5000 Hz. When their st rength is adjusted until they sound equally loud, the 50 Hz sound must be 19 19 dB str onger tha n the 5000 5000 Hz sound an d 8 dB st ronger tha n th e 500 500 Hz sound.

Sounds OfOF Equal Loudness SOUNDS EQUAL LOUDNESS 10 0

*See example in Figure 2.

X 95

Y 87

LINEAR RATIO 4A =4 A LOGARITHMIC RATIO 82-70=12dB

8d b

80

90 D E C I B E L S

Z 19db 76

60

40 4A

82dB

80

20 70 dB

A

70 60

0

50

Fig Fi gure 2

Loudness The hum a n ea r does not not use sound pressure d ecibels ecibels to judge loudness. Ra tin g noise loudness is a complex complex operation becau becau se human hear ing is also frequency sensitive. Sounds w ith fr equencies in the 5,000 5,000-10,0 10,000 00 Hz r a nge ar e the easiest to hear ; sounds sounds w ith very low frequencies frequencies are t he ha rdest. H earing loss loss from expo exposure sure to noise is similarly frequency sensitive. An exa mple of of th e frequency selectivit selectivit y of the huma n ear is shown shown in Figure 3.

500

5000

Frequency-Hz

Fi Fig gure 3

A-Weighted, dB(A) Measurements Loudness can be mea sured by filtering Loudness th e microphone microphone signa signa l to reduce th e strengt h of the low low frequency signals a nd give more weight to frequencies in the 5,0005,00 0-10,0 10,000 00 Hz ra nge. (These a re t he frequencies frequenc ies to which the ear is most sensitive). This sensitive). This is done wit h a sta nda rdized (interna (interna tional) “A” “A” filter netw ork to ma ke a djustments djustments thr oughout the frequency frequency ra nge a cc ccording ording t o Figure 4. The The result is a tota l decibel decibel rat ing w ith a correc orrection tion approximating the ear’s sensitivity. The mea suremen ts a re AA-scale, scale, AA-w eighted or dB (A) levels.

45  

SIGNALS ENTERING FILTER

"A" WEIGHTED FILTERING

SIGNALS LEAVING FILTER

HIGH FREQUENCIES LOW FREQUENCIES dB(A) TOTAL dB TOTAL

RELATIVE RESPONSE -DECIBELS

+5  0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50

A

permitting the pressure levels of only the sound within each subdivision to be measur ed. Each filter span span s an octa octa ve; tha t is, the upper frequency frequency limit is tw ice ice the lower limit a s shown in Figure 5. Sound levels levels in each octa octa ve ar e measur ed in decibel decibelss a nd a re referred to a s octa octa ve band levels. levels. STANDARD OCTAVE BANDS ANSI STD.S1.11 IEC 225

A

BAND DESIGNATION (CENTER FREQUENCY)

RESPONSE CHARACTERISTICS OF STANDARD A FILTER

BAND LIMITS

11300 Hz

8000 Hz 5650

20

50 100 200

4000

500 1000 2 20 000 5000 10,000

FREQUENCY-HERTZ (CYCLES PER SEC.)

2830

2000

Fig Fi gure 4

1415 1000 707

The previously discussed equ a l loudness sounds sounds ha ve the follo following wing dB a nd dB (A) ratings:

500 353 250 176 125

(X) (Y) (Z )

Frequency

dB

dB(A)

50 Hz 500 Hz 5000 Hz

95 87 76

65 84 76

Note th e ANote A-weighted ra tings a re overco ove rcorrected rrected for sound X, wh ile slight or no correctio corrections ns w ere ma de in Y and Z. Sin ce differences in sound sound pr essure levels a re sma ll for for noises of of pra ctical int erest, t he dB (A) scale is widely used thr oughout the w orld.

Octave Band Levels More detail is required of the frequency distribution of a noise than provided by a A-weighted measurement. Measurements Me asurements ar e made w ith filters filters subdividing sounds over the entire audible range into sta ndardized frequencyy ba nds, frequenc

88 63 Hz 44 Hz

Fi Fig gure 5

Loudness Calculations Loudness ca ca n be calculated from octa octa ve ba nd da ta by a nu mber of of methods. The mostt popul mos popular ar in the United St a tes wa s develo deve lope ped d by S.S. S tevens tevens at Ha rvar d U niversity a nd is documented documented in ANSI ANSI St an dard S 3.4 3.4 and in ISO R532, R532, Meth od A. A. The method uses the unit SONE calculat calc ulat ed by adjusting each o occta ve band levell a cco leve ccording t o human ear sensitivity sensitivity in tha t ba nd and then adding the effe effecct of a ll of of the ba nds. Once a sones value is obtained, loudness comparisons with other noises can be made linearly. A noise noise judged judged t o be twice a s loud a s a nother will prob probaa bly have a sones rating tw ice ice tha t of the other noise. noise.

46  

With sound power, 80 80 dB expresses an a co coustic ustic radia tion of of 0.000 0.0003 3 wa tt s. In this scale, a difference of of 3 dB is a ra tio of of 2:1; 2:1; 10 dB a ra tio o off 10:1. 10:1.

Sones-Loudness Comparison Loudness Category

Sones

Very Quiet Quiet Medium Quiet Medium Loud Loud Very Loud

Below 30 30-40 40-45 45-50 50-60 Above 60

Sones a nd dB (A) a re both loudness ra tings, a nd care must be used used to conve convert rt from one to the other. When one is plott plo tt ed aga inst the other other for a ctual noises, their relationship is evident. However, the scatter on the plot in Figure 6 is is so great tha t it is not practical to calculate one from the other. If t his conversion conversion must be used, errors of ± 10%sones or ± 1.5 dB (A) mu st be accepted.

Comparison Of Sones vs. db(A)

COMPARISON OF SONES LOUDNESS -SONES

vs. db(A)

The chart in Figure 7 illustra tes differences in in decibels decibels a nd ra tios in sound pressure a nd power. Sound power in decibe decibels ls is a measur e of of the t otal sound sound ra diat ion ion from a unit , while sound sound pressure, also in decibels, is the strength of a sound wa ve after it tra vels a specified distance from the unit. The tw o decibe decibell scales a re rela ted despite th e discussed differences. differences. The The cha nge in one will produce the same numerical change in the other. For exam ple: If t he sound pow pow er of a engine wa s increased increased by 10 dB , the sound sound pressure o off tha t n oise at a ny given point would also increase 10 dB. dB INCREASE SOUND PRESSURE

100 90 80 70 60

20

50 SCATTER BAND IS 3db(A) WIDE

40 30

X10

dB INCREASE SOUND POWER

X100

20

15

15

X4

X16 10

10

20 SCATTER BAND IS

5

ABOUT 20% WIDE

10

60

70

80

90

X2

X4

X1.4

X2

5

100

LOUDNESS-dB(A)

Fi Fig gure 7 Fig Fi gure 6

Noise Addition

Sound Power

When sta nding by a n engine, the noise noise hear d from other engines operating operating in the sa me ar ea w ill depend depend on the spacing spacing of the engines engines a nd w here the person person is in relat io ion n t o the spacing.

When combining t he effect effect of severa severa l noise sources at a given distance from ma chinery, hinery, sound sound power being ra diat ed is of more more concern concern th a n sound pressur e at tha t dista dista nce. nce. Confusi Confusio on a rises rises a s a decibel deci bel sca sca le is also used to ra te sound power.

47  

Exa mple: At a point point equidista nt a mong fo four ur identical engines w ith one operat operat ing a t a measur ed 80 80 dB(A) dB(A) a t t he referenc referencee point, point, wha t w ill the measur ement be wh en a seco second engine is running? As doubling sound sound pressur e increases th e decibe dec ibell level level by 6 dB , a meter w ill read 83 dB(A) dB(A) after th e second second engine is sta rt ed. The The second second ma chine doubles doubles sound power, not sound pressur e. Noi Noise se a ddition ddition is ma de on on t he basis of sound sound power. St a rting t he seco second pa ir of engines engines would double double the sound sound power a ga in a nd th e level level would rise another 3 dB to 86 dB (A). A). The The soun d pr essur e is n ow  tw ice ice tha t of a single engine. engine.

Addition OfEQUAL EqualSOUNDS Sounds ADDITION OF 10

INCREASE IN SOUND PRESSURE   dB or dB(A) 8    )    A    (    B    d6   r   o    B    d   n4    i   e   s   a   e   r   c   n2    I

0 2

3

4

5

6

7

8 9 10

7

8 9 10

Number of sources x2

RELATIVE LOUDNESS IN SONES

A char t sh owing t he combined combined effect of of up to ten equa l sound sound sources is show show n in Figure 8. Note Note th a t loudness loudness is cha cha nged less tha n sound sound pressure a s addit iona iona l unit s a re considered. considered. Tw Tw o sources sources a re 20%a 20%a nd four sources sources a re 40%louder 40%louder than a single source when considered in sones.

x1.5   r   e    i    l    i    t   p    l   u x1    M

1

2

3

4

5

6

Number of sources based on experimental data given in figure 43

Fi Fig gure 8

The exa mple selected selected is ea sy t o visualize. H owever, owever, it is no more difficult difficult w hen considering engines with different sound pow pow er levels or if the mea surement point point is not not a n equa l distance from from a ll ma chines. chines. In such cases, the chart of Figur e 9 can be used.

48  

Addition of Sounds ADDITION OFUnequal UNEQUAL SOUNDS 3 Decibels added to 2.5 higher of two 2 noises to obtain 1.5 total in dB 1 .5 0 0

2

4

6

8

10

12

14

Difference between two noises in dB

a t a specified specified sound sound level an d Tn Tn is th e tota l time of ex expo posure sure permitted a t a specified spec ified sound le level vel a s sho show w n in Figur e 10. The The n oise exposur exposur e is a ccepta ccepta ble wh en equal t o or or less tha n 1. Duration of Daily Exposure Hours 8 6 4 3 2 11/2 1 1/2

Fig Fi gure 9

Figure 9 shows shows t he versat ility of of the decibel system. Although calculations are ma de on on t he ba sis of of sound sound power, the system uses mea sured or or calculated sound pressures. U se theo difference innd th e pressure levels of of tw sounds sounds t o find fi how t heir combined combined level exceeds exceeds the higher of the tw o. First a dj djust ust t he levels levels for the distances from the source to the spott w here the noises spo noises are being a dded, as explained on pa ge 46. 46. To add a th ird level, use the sa me process process t o ccombine ombine it wit h the tota l of of the first tw o. Figure 9 can be used to chec check k the da ta in Figure 8.

Noise Exposure Exposure t o excessive excessive noise causes perma perma nent hearing hearing dama ge and adversely affects working efficiency and comfort. Recognizing this, the U.S. G overnment creat ed the Occupat Occupat iona iona l Sa fety a nd H ealth Act (OSH (OSH A) wh ic ich h established limits for for industr ial environments. When a n individua l’ l’ss da ily noise exposure, designated D(8), is composed of tw o or or more periods of of noise at different levels, the combined combined effect is calcula ted by : D (8) = (C1/T1) + (C2/T2) + ... + (Cn /Tn). Cn is t he du ra tion of exposure

1/4 or less

Allowable level dB(A) 90 92 95 97 100 102 105 110 115

Fi Figure gure 10 10

Noise Control Noise can be eith er a irborne or structureborne transmitted. St ructureborne ructureborne n oise oise is vibra tion tra nsmitted through through a structure, structure, typically tha t supporting supporting t he engine engine.. Noise cont cont rol methods a re different for th e tw o sources. sources.

Mechanical Noise Control St ructureborne noise ca ca n be cont cont rolled rolled by isolat iso lat ing th e engine from from t he suppo support rt ing structure using Caterpillar’s resilient mounts for propulsio propulsion engines a nd spring isolat iso lat ors for for ship set genera tor engines. See t he Mounting section of of th is guide for for details. Airborne noise can be controlled th rough ba ffles, ffles, sound enclo enclosures, sures, a bsorptio bsorption n m at erials, o orr a ny combinat io ion n of the above methods. An An a pproxima pproxima te guide compa compa ring va rious iso isolat lat io ion n methods is illustrat illustrat ed in Figu re 11. 11. Fr ee-field ee-field mecha mecha nical a irborne noise plots plo ts for va rious 3600 3600 En gines a nd ra tings a re plott plott ed on on pa ges 51 51 through 54.

49  

The t op curve curve in dicat es sound po  powe wer  r  level in dB . The The th ree low low er curves ar e the sound pre  pressur ssure e levels in dB a t dista nces of of 1, 7, 7, a nd 15 meters (a rr a nged t op to bott bott om). om). The The dB levels a re plo plott ed at oc octa ta ve band center frequencies of 63, 125, 250, 500, 1000, 2000 2000,, 400 4000, 0, an d 8000 8000 Hz. B elow elow th e chart s the number in parentheses is the overall level lev el at the indicated dista nce. ncedB(A) . The The abbreviat ion ion S P sta nds for Sound P ower. ower. The mecha nical n oise plots plots a re va lid for a ll po power settings a t a given engine engine speed. Approximate Sound Level Reduction dB(A) Original Machine

0

Vibration Isolators

2

Baffle

5

Absorption Material Only

5

Rigid Sealed Enclosure

15-20

Enclosure, and

25-30

Isolators

Figure 11

Enclosure, Absorption and Isolators

35-40

Double Walled Enclosure, Absorption and Isolators

60-80

Exhaust Noise Control Exha ust noise is is typically airborne. Exha ust noise att enuat io ion n is commonly commonly a chieve chieved d w ith a sile silence ncerr t ypically ypically ca pable of reducing exha ust noise 15 15 dB (A) when mea sured 3.3 m (1 (10 0 ft) perpendicular perpendicular to the exhaust outlet. See guide section on E xha xhaust ust for exha exha ust silencer information. Free-field exhaust noise plots for 3600 Enginess with MCR and CS R rat ing Engine ingss are shown on pages 55 and 56. 56. T The he exha ust noise noi se plo plots a re valid only at the indicated power power a nd speed. Only plots for the 3606 3606 a re shown w ith d B (A) modifica modifica tions for th e oth oth er engines listed on ea ch 3606 3606 chart . The The forma forma t is identic identicaa l to the mechanical noise curves except that sound sound pressure lev levels els are shown a t dista nces of of 1.5, 1.5, 7, and 15 meters .

50  

150

Free-Field Mechanical Noise 140

All Ratings for 3606 Engines @ 1000 rpm

130 120 110

   B    d 100 90 80 70 60 63

250

125

500

1000

2000

4000

8000

Frequency (Hz) SP (122 dB(A))

1M (108 dB(A))

7M (97 dB(A))

15M (91 dB(A))

150

Free-Field Mechanical Noise 140

All Ratings for 3606 Engines @ 900 rpm

130 120 110    B    d100 90 80 70 60 63

125

250

500

1000

2000

4000

Frequency (Hz) SP (120 dB(A))

1M (106 dB(A))

7M (95 dB(A))

15M (89 dB(A))

8000

51  

150

Free-Field Mechanical Noise 140

All Ratings for 3608 Engines @ 1000 rpm

130 120 110

   B    d 100 90 80 70 60 63

125

250

500

1000

2000

4000

8000

Frequency (Hz) SP (125 dB(A))

1M (111 dB(A))

7M (100 dB(A))

15M (94 dB(A))

150

Free-Field Mechanical Noise 140

All Ratings for 3608 Engines @ 900 rpm

130 120 110    B    d100 90 80 70 60 63

125

250

500

1000

2000

4000

8000

Frequency (Hz) SP (122 dB(A))

1M (108 dB(A))

7M (97 dB(A))

15M (92 dB(A))

52  

150

Free-Field Mechanical Noise 140

All Ratings for 3612 Engines @ 1000 rpm

130 120 110

   B    d 100 90 80 70 60 63

125

250

SP (123 dB(A))

500 1000 Frequency (Hz) 1M (109 dB(A))

2000

7M (98 dB(A))

4000

8000

15M (92 dB(A))

150

Free-Field Mechanical Noise 140

All Ratings for 3612 Engines @ 900 rpm

130 120 110    B    d100 90 80 70 SP (119 dB(A))

1M (107 dB(A))

7M (95 dB(A))

15M (90 dB(A))

60 63

125

250

500

1000

Frequency (Hz)

2000

4000

8000

53  

150

Free-Field Mechanical Noise 140

All Ratings for 3616 Engines @ 1000 rpm

130 120 110    B    d 100 90 80 70 60 63

125

250

SP (126 dB(A))

500 1000 Frequency (Hz) 1M (112 dB(A))

2000

7M (101 dB(A))

4000

8000

15M (95 dB(A))

150

Free-Field Mechanical Noise 140

All Ratings for 3616 Engines @ 900 rpm

130 120 110

   B    d 100 90 80 70 SP (123 dB(A))

1M (109 dB(A))

7M (98 dB(A))

15M (93 dB(A))

60 63

125

250

500

1000

Frequency (Hz)

2000

4000

8000

54  

150

FREE-FIELD EXHAUST NOISE

140

Continuous 3606 Engine @ 1000 rpm 1850 bkW (CSR)

130 120 110

   B    d 100 90 80 For continuous 3608 1000 rpm 24 60 bkW, add 1 dB(dB(A)) at each level

70

For continuous 3612 1000 rpm 37 00 bkW, add 2 dB(dB(A)) at each level For continuous 3616 1000 rpm 4920 bkW, add 3 dB(dB(A)) at each level

60 63

125

250

500

1000

2000

4000

8000

Frequency (Hz) S P ( 12 7 dB ( A ) )

1 . 5 M ( 1 15 d b( A ) )

7 M ( 1 02 d B ( A ) )

1 5M ( 9 5 dB ( A ) )

150

FREE-FIELD EXHAUST NOISE

140

Continuous 3606 Engine @ 900 rpm 1730 bkW (CSR)

130 120

   B    d

110 100 90 80 For continuous 3608 900 rpm 23 00 bkW, add 1 dB(dB(A)) at each level

70

For continuous 3612 900 rpm 34 60 bkW, add 2 dB(dB(A)) at each level For continuous 3616 900 rpm 4600 bkW, add 3 dB(dB(A)) at each level

60 63

125

250

500

1000

2000

4000

Frequency (Hz) S P ( 1 27 dB ( A ) )

1 . 5 M ( 1 1 5 d b( A ) )

7 M (1 0 2 d B(A) )

1 5M ( 9 5 dB ( A ) )

8000

55  

150

FREE-FIELD EXHAUST NOISE

140

3606 Eng ine @ 1000 rpm 2030 bkW (MCR)

130 120 110

   B    d 100 90 80 For 3608 1000 rpm 2710 bkW, add 1 dB(dB(A)) at each level

70

For 3612 1000 rpm 4060 bkW, add 2 dB(dB(A)) at each level For 3616 1000 rpm 54 20 bkW, add 3 d B(dB(A)) at each level

60 63

125

250

500

1000

2000

4000

8000

Freqency (Hz) S P (1 2 7 d B(A) )

1. 5 M ( 11 6 db ( A ) )

7 M ( 10 3 dB ( A ) )

15 M ( 9 6 d B ( A ) )

150

FREE-FIELD EXHAUST NOISE

140

3606 Engine @ 900 rpm 1900 bkW (MCR)

130 120

   B    d

110 100 90 80 For 3608 900 rpm 2530 bkW, add 1 dB(dB(A)) at each level

70

For 3612 900 rpm 3800 bkW, add 2 dB(dB(A)) at each level For 3616 900 rpm 50 60 bkW, add 3 d B(dB(A)) at each level

60 63

125

250

500

1000

2000

4000

8000

Freqency (Hz) S P ( 12 7 dB ( A ) )

1 . 5 M ( 11 6 db ( A ) )

7 M ( 10 2 dB ( A ) )

15 M ( 9 6 dB ( A ) )

56  

Intake Noise Control Int a ke no noise ise is is typica typica lly airborne. Inta ke noise noi se at tenua tion is achieved achieved through either a ir cleaner cleaner elements or or int ake silence sile ncers. rs. Noise Noise a tt enuat ion ion due t o var ious ious a ir cleaners cleaners a nd silencers silencers ca ca n be supplied by th e compo mpone nent nt manufactu manufacture rerr.

The equation for determining the sound pressure level of of exha ust noise is: Sound P ressur e Level, dB(A) = Sound P OWER OWER Level, dB(A) - 10 2 X Log 10 (C πD ) Where C = 2 For exhaust source adjacent to a flat sur face. such such as a horizonta horizonta l exhaust pipe adjacent adjacent t o a flat r oo oof. f. or C = 4 For exhaust source some some distance from surrounding surfaces. D = Dista nce from exhaust noise source, source, (m). (m).

Sound Level Conversion

3600 3600 so sound und level informa tion is presented both in t erms of sound sound power level dB (A) a nd sound pressure level dB (A) at a given dista nce from from t he noise noise source.

If t he sound pressure level o off a point point source source at so some me dista nce iiss known, th e sound sound pressure leve levell a t a seco second dist an ce can be ca ca lculat lculat ed using this formula: S P L 2 = S P L 1 - 20 X Log 10 (D2 ÷ D 1) Where SP L 1 = known sound pressu re level, dB (A (A)) S P L 2 = desired sound pressur e level, dB(A) dB(A)

Sound power level is the total sound power power being ra diat ed from from a source source a nd its ma gnitude is independent independent of the distance from the source. Relative lo loudness udness co compa mpa risons betw een engines is simply a compa compa rison of of their sound power power levels at equivalent opera opera ting condit condit io ions. ns. When th e sound power level is known known , the sound pre pressure ssure level level at a ny dista nce from from a point point source (such (such as exhaust noise) can be easily calculated. A disadvanta ge of of this system is tha t sound pressure level conversion conversion is va lid for a point point source only only.. It cann ot be used for mecha nical n oise oise since the source (overa overa ll engine) is quit e lar ge.

D 1 = known distan ce, ce, m (ft) (ft) D 2 = desired distance, m (ft) (ft)

57  

Vibration

Linear Vibration

All engines produce vibra tion due t o combust combust io ion n forces, forces, torqu e reactions, a nd fo founda unda tion designs. Vibrat Vibrat ions ions can crea crea te conditions conditions ranging from unwa nted noise to excessive stress levels.

Linear vibrat io ion n is d ifficul ifficultt to define without instrumentat ion. ion. Huma n senses senses cannot detect relat ionships ionships betw betw een the ma gnitude of vibra vibra tion an d period period of occurrence. A first order (1 x rpm) vibr a tion of 0.254 mm (0.01 0.010 0 in.) displaa cement displ cement ma y fee feell the same a s third order (3 (3 x rpm) measur ement of 0.051 mm (0.002 in.).

Vibrat ing str esses esses can r each destructive levels at engine speeds which cause resonan ce. ce. Resonan ce occ occurs urs w hen na tura l system frequencies frequencies co coincide incide with engine excitation frequencies. E ach ach 3600

appli cati applica tio on mus mustt be analyze analyzed d ffo or cr i tic ti cal liline near ar and to torr si sio onal vi vibratio bration. n.

Vibrat io ion n occurs occurs when a ma ss is defleccted a nd return ed along defle along the sa me pat h, a s illustra ted in F igure 12. 12. T The he ma ss tra vels through its original original position position unt il stopped by frictiona l forc forces. es. When When external forces, such as the engine, continue continue t o affect affect t he vibrat ing system, “for for ce ced d vi br brati atio on” occurs.

POSITION OF OF WE WEIGHT ((X) X) W

AMP MPL LITUDE

X

SPRING AT REST (MEAN POSITION)

TIME

W

SPRING EXTENDED

1 CYCLE

Mass-Spring System MASS-SPRING SYSTEM Figure Fi gure 1 12 2

The time required for the w eight t o complete complete one movement is a  pe  perr i od (see

If t he weigh t completes completes a cycle cycle in o one ne second, sec ond, t he fr  fre eque quenc ncy  y is one cycle per

Figure 13).

second seco nd or one Hertz .

 Amp  A mplili tude is the ma ximum displa displa ce cement ment from th e mea n position. position. A cycle is the interva l for for t he motion motion t o repeat repeat .

A system completing completing full motion 20 times a minu te ha s a fr equency of 20 cyc cycles les pe perr min ut e (20 (20 cpm) o orr .33 cycles cycles per second (.33 (.33 Her tz ).

58  

   E    C    N    A    T    S    I    D UPPER

PERIOD PEAK ACCELERATION

LIMIT

PEAK VELOCITY NEUTRAL POS. PEAK-TO-PEAK DISPLACEMENT LOWER LIMIT TIME

Fig Fi gure 13

Tota l dista nce tra veled is pe  peak-to ak-to-pe -peak  ak  di spl splace aceme ment  nt , usually expressed in mm or mils. (One mil equa ls 0.00l 0.00l in. (.025 .025 mm)). mm)). It is a guide t o vibrat ion severity. Average and root-mean-square (rms) a mplitudes a re used used to measure vibrat ion ion (rms = 0. 0.70 707 7 times peak amplitudes.) Mass veloci velocity ty measurement is another method of of an alyzing vibra tion. Note Note the example is cha cha nging direction direction a s it moves. The The ma ss speed is also consta consta nt ly changing. At At t he displacement displacement limit the speed is “0.” The velocity is greatest while passing through the neutral position. Velocity elocity is importa nt but becau se of of its changing na ture, peak veloci velocity ty is t he point selected for measurement. It is norma lly expressed in mm per second second or inches per second. second. The r elat ionship betw een peak velocity velocity a nd pea k-tok-to-peak peak displacement is: Metric Units: V P eak = 3.1 3.138 38 D F

English Units: V Pea k = 52.3 52.3 D F x 10-6 Where: V P eak = Vi Vibrat brat io ion n velo velocity city in in. per sec sec,, (peak) peak).. D = P eak-to-peak eak-to-peak displacement, in mils. F = Frequ ency in cycl cycles es per minute (c (cpm). pm).

Acceleration is another characteristic of vibrat ion. ion. In the example, pea pea k a ccele ccelera ra tion is at the extreme limit of tr a vel wh ere velocity velocity is “0.” As As velocity velocity increases, acceleration decreases until it reaches “0” “0” at the neutra l point. point. Accelerat ccelerat io ion n is dimensioned in unit s of “g” (pe (peaa k) k),, where “g” equals gra vita tional a ccelera t ion 9.8 m/s 2 = 32.2 ft /s2. Accelerat ccelerat io ion n mea suremen ts, or “g’s,” “g’s,” a re used to express lar ge forces. forces. At At very high freq uencies, e.g., 1000 Hz (60,000 60,000 cp cpm), m), it is perha ps the best indicator of vibration. Vibration acceleration can be calculated from peak displacement as follows: Metric Units:

Where:

Number of g’s g’s ((P P eak) = 2.01 DF x 10-3

V Pea k = Vibration veloc velocity ity in mm per sec, (pe (peak). ak).

Where:

D = P eak-to eak-to--peak displacement, in mm.

D = Pea k to pe peak ak displace displacement ment in mm

F

F = Frequ ency in hertz, ((cps) cps)..

Frequ ency in H ertz (cycle cycles/ s/sec)

59  

English Units: Number of gs (Peak) = 1.42 1.42 D F 2 x 10 -8

A

A

A

A

POOR

Where: D = P eak-to eak-to--peak displacement, in mils F = Frequ ency in cycles cycles per minute (c (cpm). pm).

Machinery vibra tion is complex complex and consist consist s of ma ny fr equencies. Displa cement cement , velocity velocity,, a nd a cc ccelerat elerat ion a re all used to dia dia gnose part ic icular ular proble pro blems. ms. D ispla ispla cement measur ements are commonly used as indicators of dyna mic stresses. stresses.

Isolation Isolat ion is requir ed if (1) (1) engine vibrat ion ion must be separa separa ted from vessel vessel structures, or (2) vibrations from nearby equipme equi pment nt a re tran smitted to inoperative engines. Running units a re rar ely a ffected ffected by exterior vibra tions. Methods of isola isola tion a re the sa me for for externa l o orr selfgenerated vibrations. Piping connected to engines requires isolat iso lat ion, ion, pa rticularly wh en resilient resilient mounting is used. Fuel and w at er lines, lines, exhaust pipes, pipes, and conduit conduit can t ra nsmit vibrat ions ions long long dista nces. nces. I solat solat or pipe pipe ha ngers should should have springs to a tt enuat e low low frequencies, frequencies, and r ubber or or cork cork t o minim ize high freq uency tr a nsmissions. To To prevent buildup of resonant pipe vibrations, long piping runs must be suppo supported rted a t unequa l dista nces (see (see Figur e 14). 14).

A

B

C

D

GOOD

A  /= B =/ C =/ D . . .etc.

Fi Figure gure 14 14

I solation-Propulsion solation-Propulsion Eng E ngines ines Ca terpilla terpilla r offe offers rs t wo ty pes of of isolat isolat io ion n mounting systems for marine propulsion engines. 1. Silicon Silicon shea r pad s loca loca ted betw een the engine mounting feet feet an d the ship foundat io ion. n. 2. Chr istie a nd G rey spring a nd rubber mounts a lso lo located cated betw ee een n t he engine mounting mounting feet a nd th e ship foundation. These syst ems a re covered covered in det a il in the M  Mo ounting unti ng and A li gnme gnment  nt section of this guide.

L inear inear Vi Vibrat bratiion Measurement Eq uipment measurements should be be made using the Caterpillar vibration a na lyzer (P (P ar t No 4C3 4C303 030) 0).. If Ca terpillar terpillar measur ing equipment equipment is not not a vaila ble ble,, a n equiva lent devic devicee capable of measuring peak-to-peak displacement at selected selec ted frequencies, overall velocity velocity,, a nd overa ove ra ll displacement should be used.

60  

Point 4 Horizonta Horizo nta l direction direction at the rea r of the engine; loca loca te probe on on t he side of the blocck a t the cra nk centerline. blo centerline.

Measur Meas ure eme ment nt L Location ocation Vibrat ion ion should be measured a t eight point point s on propulsion propulsion engine a nd sh ip set generator packages. The points are illustr a ted in F igure 15 for for propulsion propulsion engines a nd F igure 16 for ship set set generat or packages. packages.

Point 5 Vertical direction direction at the r ear of the ma rine gear gear (or a t t he rear of the genera tor); tor); loca loca te probe on on t he t op of the

Point Poi nt 1

output shaft bea ring (o (or generat or fra me) at the shaft centerline.

Vertical direction at the front of the engine; locate probe on the top deck of th e block block in in th e pla pla ne of th e ccra ra nk centerline centerline fo forr inline engines, and a t t he base of the a ftercoo ftercooler housing housing a t t he cran k cent cent erline on vee engines.

Point 6 Horizonta Horizo nta l direction direction at the rea r of the ma rine gea r (genera (genera tor); loca loca te probe o on n the side of of the ma rine gear (generat or fra me) a t t he shaft centerline centerline..

Point 2 Horizonta Horizo nta l direction direction at the front of the engine; loca loca te probe on on t he side of the block blo ck at the cra nk centerline. centerline.

Point 7 Vertical direction direction at the right rear engine foot.

Point 3 Vertical direction direction at the rea r of the engine; locate probe on the top deck of th e block block in in th e pla pla ne of th e ccra ra nk centerline centerline fo forr inline engines, and a t t he top of of the rear housing housing a t t he cra cra nk cent cent erline on vee engines.

Point 8 tion at the rea r of the mar ine Axial direction direc gea r ((genera genera tor); loca loca te t he probe on the rear of the ma rine gear housing housing (generat or fram e) on a rigid member — not sheet sheet meta l — at the sha ft centerline.

33

55

11

44

88

66

77 1,3,5 1, 3, 5

 4, 4,66

77

22

Figure 15 61  

Vibration Measurement Locations VIBRATION MEASUREMENT LOCATIONS 3 3

1 1

55

• Overa ll velocity velocity = 34.3 34.3 mm/sec (1.35 in i n ./se sec) c)

77 4 4

22

66

8 8

I f the me measur asur ed vi br brati atio on le leve vels ls exce xcee ed  the li mits, mi ts, contac ntactt yo your ur C ate aterr pi pill llar ar de deale aler  r  r epre pr ese sentative ntative o orr C ate aterr pi pill llar ar fac facto torr y  r epre pr ese sentati ntative ve fo forr assi stance stance..

1,3,5 1,3,5

77

• Overa Overa ll di disp splace lacement ment = .22 .22 mm (8.5 mils)

2,4,6 2,4,6

Figure 16

Operating Conditions and Data Forma Formatt Vibrat ion ion measur ements must be made a t t he a dvertised engine engine ra ting (100 (100% % loa loa d). d). If a dditiona dditiona l dat a is desired, desired, it it is reco rec ommended tha t mea surements be ma de at 0%lo 0%loa d, 50%lo 50%loaa d, a nd 75% load. Da ta must be rep reported orted in in terms of peakpeakto-pea topea k di spla cement (mils) a t 1/2 order frequ ency, ency, 1st order fr equency, equency, overall velocity level (inches per second) and

En gines which a re mounted on resilient resilient mounts (rubber (rubber or spring a nd r ubber isolators) may exhibit first order vibration levels between 6 and 15 mils peak-to-peak depending on the natural frequency of the resilient mounts. A contr contr ibuting fa ctor t o this first order order vibrat io ion n is tha t th e engine engine is intentionally misaligned to the ma rine gear a t low load conditions conditions to ensure ensure tha t the t orque reaction reaction of the engine under loa lohe a d resilient w ill result result in a ccepta ce ptaem blesupplier alignment. T m ount syst must perform extensive calculations. This ensures tha t t he nat ura l frequency frequency of th e isola isola tors w ill not not be excited excited a t normal opera opera ting engine speed speed a nd load condit condit io ions. ns. Vibra Vibra tions occuring occuring n ear low  idle ar e norma lly not objec objectiona tiona ble.

Aliignme Al nment nt and Tri Trim m Balance Engine alignment out of specification can result in excessive first order vibration displacement . If excessive excessive first order displaa cement displ cement is found wh ile other other limits

overa ll displacement (mils) for overa for ea ch of the eight measur ing locations. locations.

ar e met, the alignment alignment must be measur ed an d co corrected. rrected.

L ine inea ar Vib Vibrat ration ion L Limits imits

If a lignment is found to be accep accepta ta ble a nd first order vibrat ion ion displace displacement ment is una ccepta cepta ble ble,, engine trim ba lan cing can reduce engine first order vibration levels by using weights a vaila ble from from Ca terpilla terpilla r In c. A vibrat io ion n ba lancer (P a rt No. No. 4C3020 4C3020)) an d th e Ca terpilla terpilla r 3600 3600 Engine T Trim rim B a lance cha cha rt a re also ava ilable ilable through Ca terpill terpillar ar Inc.

The vibra tion levels for for a ny load condition condition at an y of the eight mea suring lo locat cat io ions ns ca nnot exceed the follow follow ing limits for rigidly mounted engines: • P eak-toeak-to-pe peak ak displace displacement ment limit at 1/2 order fr equ ency = .13 mm (5.0 mils) • P eak-toeak-to-peak peak displacement displacement limit limit a t 1st order frequen cy = .13 mm (5.0 mils)

62  

Torsional Vibrations Torsiona orsiona l vibra tions occur occur a s engin e compo components, nents, such a s a n engine cranksha ft, tw ist a nd reco recover. ver. St anda rd engine co components, mponents, w ithsta nd norma l str esses ca ca used by combust combust io ion n forces forces a nd torque rea ctions. ctions. En gine mounting systems and drive arra ngements ngements must be designed designe d to prevent prevent t he nat ura l frequencyy of the drive tra in from frequenc approaching the unit’s operating speed. Fa ilure of of cranksha ft, coupli couplings, ngs, gear s or bearings ma y result with out up front front careful attention.

Torsionall A Torsiona Analysis nalysis All 3600 3600 engine engine a pplica pplica tions r equire a torsiona torsio na l vibra tion a na lysis. This This includes factory packaged ship set generat or packages packages on Cat erpillar erpillar designed designe d ba ses. The The a na lysis must be performed perfo rmed by eit her t he customer or or by Caterpillar, depending on the customer’s preference.. Cu stomer performed preference a na lyses a re subjec subjectt t o Ca terpilla terpilla r review revie w a nd a pproval pproval and C at erpillar erpillar does not a ssume respo responsibility nsibility for a n a na lysis performed performed by o others thers w ithout the a pproval. pproval. Fo Forr a Ca terpilla terpilla r performed performed a na lysis, one one complete complete set of technical technical dat a must be submitted submitted to Cat erpil erpillar lar before calculations are undertaken (see the G ene nerr al I nfo nforr ma mati tio on sec section tion of th is guide on Torsio Torsiona na l a nd Vibra tion Analysis). The report will include a ma themat ical ical determination detecritical rmination of of the natural frequency, speeds, relat ive a mplitudes of angula r displaa cement, an d a pproximat displ pproximat e noda noda l lo locat cat io ions ns of th e complete complete ela stic syst em (both engine and driven equipment).

N ote: ote: Consult factory on compound  i nstallati nstallatio ons. T her her e may b be e addi additi tio onal charr ges fo cha forr analysi analysiss o off app applili cations whe wherr e morr e than o mo one ne engi ng i ne dr drii ves ves a si ngle ng le load. load. A sepa separr ate to torr si onal analysi analysiss iiss also r equi quirr ed for eac ach he eng ngii ne wi with th di ffe fferr ent  dri dr i ven ven e equi quipme pment nt iin n multi ple engi ng i ne installations.

Engine Torsional Pickup Ea ch 3600 3600 En gine is equipped equipped wit h a ma gnet ic pickup pickup (7C1897 (7C1897)) insta lled inside the front front housing. housing. It generat es a signal from the front crankshaft gear (96 teeth) an d ca n be connec connected ted to a torsiograph. The electrical characteristics of the pickup pickup a re: Internal impedance.................100 Ohms Open circuit vo voltage ltage a t 1000 100 0 rpm ......................Approx. 80V 80V A A.C. .C. Max. current output capa bility ........ ............... ............... .........10 .10 milliam peres The pickup out out put volta ge is a pproximat pproximat ely 5 50 0 volts volts w hen using a test instr ument of approximat approximat ely 10,000 Ohms impedance. The pickup should be used when measuring torsionals on all 3600 engine installations,, particular installations particular ly when a high inertia front front drive is used. used. It can a lso be used t o ccheck heck eventu eventu a l da mper or flexibl flexiblee coupling deterioration.

Reference Material LE H X108 X1086 6

ED S 31.1, 31.1, Linea r Vibration Isolators

LE H X916 X9166 6

ED S 73.1, 73.1, Linea r Vibration

LE KQ 2352 2352

E D S 206.1, 206.1, Torsiona l Vibrat io ion n D am pers pers

SE H S9162 S9162

Special In str uctions Spring Isolators

63  

 ® 

Engine Pe Perfor rform m ance Engine Ratings Distillate Fuel Marine Propulsion Marine Auxiliary Auxiliary Generator Generator Set Setss Heavy Fuel Marine Propulsion Marine Auxiliary Auxiliary Generator Generator Set Setss Performance Criteria Marine Performa P erformance nce Curves Application Guideli Guideline ness Marine Performance Parameters Limit Definitions Conditions Fuel Consumption 3600 Idle Fuel Rates  Tol  Tole eran rances ces

 

Engine Ratings

The opera opera tin g zones ar e:

Distillate Fuel

Zo Zone ne I

Cont inuous op opera era tion w ithout restriction.

Zo Zone ne II

For MCR ra tings, read the co complet mplet e section for ex expl plana ana tion tion of MCR a nd CS R. Opera Ope ra tion above the CS R ra tin g is lim ited t o 1 hr/12 hr

Marine Propulsion Availa ble standa rd ra tings for 3600 3600 Eng ines are shown in Figure 1. Figures 2 through 17 show distillate fuel ma rine propulsion propulsion performa nce curves. curves. The curves ar e shown in both E nglish and metric units units at the dat same rat ings shown on the technical technical a sheets shee ts in the E ngi ngine ne D ata sec section tion of this g uide.

R ead thi s co complete mplete g ui de secti sectio on for  clari fificcati ati on o off r ating condi nditi tio ons and  limits. Mari ne Auxiliary Marine Auxili ary Generator Generator Sets Sets Available sta sta ndard rat ings and performance performance dat a for for distillat e fuel ma rine auxiliary auxiliary generator sets are in the 3600 EPG A&I Guide (LEKX6559).

Heavy Fue Fuel Marine Propulsion Availa ble standa rd ra tings for 3600 3600 Eng ines are shown in F igure 18 18.. Figures 19 thr ough 27 show show heavy fuel marine propulsion prop ulsion performa nce curves. Note tha t some heavy fuel engine engine rat ings ha ve applica applica tion restrictions restrictions as described in t he r espective espective curves. There There a re tw o rat ings given for for t he 1000 1000 rpm 3608 360 8 a nd 3616 3616 engin es. The The h igh er ra ting is a llo llowed wed only wit h contr contr ollable pitch pitc h propelle propellers rs opera opera ting near ra ted speed. It is not a pplica pplica ble for for a fixed pitch propeller propeller or or w a ter jet. Hea vy fuel engines engines must be ca ca refully refully a pplied pplied for ma rine propulsion propulsion a pplica pplica tions. Thorough Thorough knowledge of t he vessel’ss opera vessel’ opera tion is necessary. Pa rt speed spe ed operation operation is importa importa nt a s valve temperat tempe rat ures are usually highest highest a t par t speed. Limit zo  zone ness of ope opera ra tion a re shown on the heavy fuel rat ing sheet sheet a nd t he performa performa nce curves curves tha t follo follow. w.

(8%of time)radue valve t empe empera turto e, exhaust cylinder cylinder pressure press ure a nd t urbocha urbocha rger speed. Continuous opera opera tion (more tha n 1 hr at a given tim e) is a ccepta ccepta ble if cumulative time at h igh load load is limited. Operation in zone II for cumula cumula tive periods more tha n 8%o 8%off the total time w ill require more frequent overhaul. Zo Zone ne II I Operat ion is limited due to valve temperature. Recomm Reco mm ended op opera era tion perio periods ds limited to tr an sient sient condit condit io ions ns (such a s acceleration). Operation in this zone for f or 1 hr /12 hr (8%of t ime) im e) can r educe valve life by a pproxima tely 20%. Zo Zone ne IV Opera tion is limited to 1 hr/ hr /12 hr d ue t o combu combu st ion deposits. depo sits. P eriodic op opera era tion a t high load is n eeded to clear clear deposits. Valve temperatures a re not a co considerat nsiderat io ion. n. Cont rollable pitch pro propell pellers ers a llo llow w ing th e selection selection of speed speed a nd load combinations are very useful in providing long va lve life.

H eavy fue fuell mar marii ne pro propulsion pulsion rrating atingss ope perr ati ati ng i n zo zone ness I I an and d I I I mus mustt b be e appro ap prove ved d i ndi ndivi vidually dually by Cate Caterr pill pillar. ar. The custom na tur e of of the a pplicat pplicat io ions ns require individual individual a tt entio ention. n. Submit a specia spec ia l ra tin g requ est form (LEXQ118 (LEXQ1183) 3) shown in F igure 28. 28. Informa tion on on t he vessel, intended duty, ambient conditions, conditions, fue fuell sodium sodium a nd va na dium, a nd propeller propeller must be provided. provided.

 A  App pplili cati ati ons o ope perr ati ati ng o only nly in Zo Zone ness I  and I V do not not ne nee ed pr prii or app apprr oval. 67  

3600 Distillate Fuel Marine Propulsion Ratings Nominal Nomi nal 32°C 32°C (90°F) (90°F) Coolant Coola nt Temperature Temperat ure To Aftercooler Aftercoo ler Engine Speed Ratings* 750

800

900

1000

3606 MCR POWER

bkW (bhp)

1640 (2200)

1720 (2310)

1900 (2550)

2030 (2720)

BMEP

kPa (psi)

2368 (343)

2328 (338)

2286 (331)

2198 (319)

POWER

bkW (bhp)

1490 (2000)

1560 (2090)

1730 (2320)

1850 (2480)

BMEP

kPa (psi)

2151 (312)

2112 (306)

2082 (302)

2003 (290)

POWER

bkW (bhp)

2180 (2920)

2290 (3070)

2530 (3390)

2710 (3630)

BMEP

kPa (psi)

2361 (342)

2325 (337)

2283 (331)

2201 (319)

POWER

bkW (bhp)

1980 (2660)

2080 (2790)

2300 (3080)

2460 (3300)

BMEP

kPa (psi)

2144 (311)

2112 (306)

2076 (301)

1998 (290)

POWER

bkW (bhp)

3280 (4400)

3440 (4610)

3800 (5100)

4060 (5440)

BMEP

kPa (psi)

2368 (343)

2328 (338)

2286 (331)

2198 (319)

POWER

bkW (bhp)

2980 (4000)

3120 (4180)

3460 (4640)

3700 (4960)

BMEP

kPa (psi)

2151 (312)

2112 (306)

2082 (302)

2003 (290)

POWER

bkW (bhp)

4360 (5850)

4580 (6140)

5060 (6790)

5420 (7270)

BMEP

kPa (psi)

2361 (342)

2325 (337)

2283 (331)

2201 (319)

bkW (bhp)

3960 (5310)

4160 (5580)

4600 (6170)

4920 (6600)

2144 (311)

2112 (306)

2076 (301)

1998 (290)

CSR

3608 MCR

CSR

3612 MCR

CSR

3616 MCR

CSR POWER

kPa (psi) BMEP

* Read this complete section for application restrictions

Figure 1

68  

3600 Heavy Fuel Marine Propulsion Ratings Nominal 32° 3 2°C (90°F) (90°F) Coolant Coola nt Temperature to Aftercooler Afte rcooler Engine Speed Ratings 750

825

900

1000 Application Restrictions

3606 MCR POWER

bkW (bhp)

1485 (1995)

1490 (2000)

1730 (2320)

1850 (2485)

BMEP

kPa (psi)

2144 (311)

1955 (283)

2081 (302)

2003 (290)

POWER

bkW (bhp)

1350 (1810)

1355 (1820)

1570 (2110)

1680 (2260)

BMEP

kPa (psi)

1949 (283)

1778 (258)

1889 (274)

1819 (264)

POWER

bkW (bhp)

1980 (2660)** 1980 (2660)*

2300 (3090)* 2320 (3115)* 2460 (3300)***

BMEP

kPa (psi)

2144 (311)

1949 (283)

2075 (301)

POWER

bkW (bhp)

1800 (2415)** 1800 (2415)*

2090 (2805)*

2110 (2850)* 2240 (3005)***

BMEP

kPa (psi)

1949 (283)

1772 (257)

1886 (273)

1713 (264)

POWER

bkW (bhp)

2970 (3985)

2980 (4000)

3460 (4645)

3700 (4965)

BMEP

kPa (psi)

2144 (311)

1955 (284)

2081 (302)

2003 (290)

POWER

bkW (bhp)

2700 (3625)

2710 (3640)

3140 (4215)

3360 (4510)

BMEP

kPa (psi)

1949 (283)

1778 (258)

1889 (274)

1819 (264)

POWER

bkW (bhp)

3960 (5315)** 3960 (5315)* 4600 (6175)*

4640 (6230)* 4920 (6600)***

BMEP

kPa (psi)

2144 (311)

1949 (283)

2076 (301)

1884 (273)

POWER

bkW (bhp)

3600 (4830)**

3600 (4830)*

4180 (5610)*

4220 (5665)* 4480 (6015)***

BMEP

kPa (psi)

1949 (283)

1772 (257)

1885 (273)

1713 (248)

CSR

*

*

3608 MCR 1884 (273)

1998 (290)

See Footnotes

CSR 1819 (264)

See Footnotes

3612 MCR *

CSR *

3616 MCR 1998 (290)

See Footnotes

CSR See Footnotes

1819 (264)

Application Restrictions: * Limited Time At Part Speed - See Individual Rating Curves For Limit Lines. ** Very Limited Time At Part Speed, Generally Requires CP Propeller. *** Always Requires CP Propeller.

Figure 18

69  

3600 E ngine Rating Rating Req Reques uest/Ratin t/Rating g Information Information Form Form P R OJ E C T/C U S TOM TOME ER N NAM AME E ____ _______ _____ ____ ____ ____ ____ ____ ____ _____ _____ ____ ____ ____ ____ ____ ____ ____ __ P R OJ . NO .______ .________ ____ ____ ____ ____ ____ __ D E AL E R ____ _______ ______ ______ ______ ______ _______ _______ ______ ______ ______ ______ ___ R eq u es t er : ___ ______ ______ ______ _______ _______ ______ ______ ______ ______ ___ P h on e______ e_________ _______ _______ ______ ______ ____D _Daa t e______ e__________ _______ ______ ______ ______ ____ _ Techn Tech n ica l S er v . R ep.___ ep ._____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ N o. of E n gi n es is t h is Or d er __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ __ If a pplicable list Specia l R eques t No. a ssign ed t o project: (SR )_ )__ ___________

MODEL _________________________App Appli lica ca t ion io n D es cr ipt ip t io ion n /D u t y __ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ___ _ After cooler Ci rcu it : S ing le_ le__ ________ or S epa ra te__ te___ _______ T Temper emper a t ur e t o AC _________ ° C (Typica (Typica lly 50° C ) R OT. ((ccw ccw /cw ) L ow I dl e Sp eed ____ ______ ____ ____ __ H ig igh h I dl e S Spd pd or %D r oop___ oop_____ ____ ____ ___ _ G ov over er n or Typ Type__ e____ ____ ____ ____ __ I s t h is E n g in e Cer C er t if ied ie d (Y (Y/ /N ):__ ): ____ ____ ____ ____ __ S ocie oc iett y ____ ______ ____ ____ _____ _____ ____ ____ ____ ____ ____ ____ ____ _____ _____ ____ ____ ____ ____ ____ ____ ____ _____ ____ _ GENERATOR SETS:NOMINAL RATING_________ B KW or or E KW @_________RPM (advertised) (option a l) Fu el S t op pow er r equ est ed:___ ed:_______________________ B KW or E KW [[w w it h S ta nd a rd Tolera nces] 10%BKW overload overload ca pability (±3% (±3%bkw bkw & ±5%ekw) ±5%ekw) is ava ilable w ith C ontinuous and P rime Power Power rat ings ings..

G ener en eraa t or E ff fficien icien cy @ 100%P WR_ WR__ __________________ ___________%(Assu med me d 96%if n ot pr ovid ed) Is La fayett e packaging th e Genera tor Set? (Y (Y/ /N) Are there a ny G enera tor R esponse Requirement s? (Y/ (Y/N) If yes, speci specify fy Regula tor T Type? ype? ((Vo Volts-Hertz lts-Hertz or C onsta nt Volta ge)

NON GEN SETS:NOMINAL SETS:NOMINAL RATING_____________B K W ((±± 3%) @____________RPM (advertised) Load Dema nd a t t he Flywheel by the Propel Propeller, ler, Pump, etc etc.. ________________BK W (at ra ted speed) speed) Ma rine - P ropell ropeller er T Type ype (fix (fixed ed P itch/Ct rl P itch) (Non-Standard) Fuel Stop (overload) Power requested: ____________% [With Standard Tolerances] Lu g Req uirem ent ? (Y/ (Y/N)____________ %@____________ R P M

L oad oad Pr Prof ofil ile e (at rated speed) % L oad

(label peaks & valleys in the profile)

Time Ti me at I dle

_____ ______ _

Total hrs/yr hrs/yr

______

L oad factor factor (%)______ )____ __ Time (specify scale)

SITE CONDITIONS: CONDITIONS: Max. Altitu Altitu de ____________Meters G eo eogg r a ph ic icaa l Ar ea : ___ ______ ______ _______ _______ ______ ______ ______ ______ _______ _______ ______ ______ ______ ______ _______ _______ ___ Am bi bi en t Ai r (t o t u rb rb o) o) R a n ggee: M a x____________°C to Min Min ______________° C ___________ ____________ ________° _°C t o Min Engine Room Room Tempe empera ra ture: Ma x______ Min ______________° C BSFC BS FC GUARANTEED: GUARANTEED: (Y (Y/ /N )__________ If y es, specify t est pr oce ocedur dur e sa les code/3L nu mber (s):__________ LH V(kJ /kg) ______ Gua rant ee eed d Value Value:: ______ g/bkw *hr @ ______ B KW@ ______ RPM with ______ tolerance Special Spe cial Testing Descri Description/Points: ption/Points: (list a ll engine only t ests; in c. sales codes/3L pa rt no.) (eg. Any special t ests to be completed a t site/Dea ler?) EMISSION EMISS ION REGUL REGULATED ATED (Y (Y/ /N )________ If y es, spec specify: ify:

FUEL TYPE: Dist illat e (No (No.. 2) ________; Residual Blend ________ For Residual B lend Spec Specify: ify: Fuel T Tempe empera ra ture t o the E ngine ((°° C) ________ Ma x S ulfu r (%) _________ Max Vana dium (p (ppm) pm) _________ LH V(kJ V(kJ /kg) _________ Sodium (ppm) _________ Den sit y (kg/m^ 3) _________ Viscosity (cst @ 50°C)_________ Ca rbon R esidue (%)_________ Ash (%)________ Wa t er & S edim ent (%)________ Aluminum Aluminum (ppm)________ Silicon (ppm)________ Aspha lten es (%)________ Below for Technical T echnical Services Rep. Only Non-Runnable E ng. Non-Runnable ng. Ar. __________ ________________ ______ E SO (s (s)_________ )_______________ _______ _ Turbo T urbo Select Selecte ed: ______ ____________ __________ ____ Head Group Selected: S TD or P /N ________________ Below For Performance Engr. Only Ap Approved proved Ra ting : (A (Advertised) dvertised) ____________ B KW o orr E KW @____________ RPM Appl ppl Co Code de _____________ (Fuel Stop) ____________ B KW o orr E KW @____________ R P M B oost oost Relief Valve Required: ____________

2T____________ Approved T Turbo urbo P rt No. ____________ Perf Engrg In it. ____________ Date ____________ LEXQ1183 LEXQ11 83 (44-91 91))

_________ Need New Spec

ST STD D or SP L

F igure 28 28

_________ Appe ppend nd Da ta base

70

 

Mari ne Auxiliary Marine Auxili ary Generator Generator Sets Sets Available sta sta ndard rat ings and performa perfo rma nce da ta for for heavy fuel ma rine a uxilia uxilia ry genera tor sets are in t he 360 3600 0 EP G A&I G uide (LE (LE KX655 KX6559) 9)..

Performance Criteria Marine Mari ne Pe Perrfor formance mance Curve Cur ves s Ca terpill terpillar ar uses uses a tw o lev level el rating system for 3600 3600 Engine ma rine propulsion prop ulsion a pplica pplica tions _ Continuous  S er vic vi ce R ati ati ng and  M  Maximum aximum C ontinuo ntinuous us R at atii ng . The Continuous Service Rating (CSR) correspo corresponds nds t o ISO Continuous and Fuel St op Power definitions definitions a nd is similar to the Ma rine Class A Continuous Ra tings used on Ca terpilla r ’s other engines. The The ra ting is suita ble for for continuous continuous duty a pplica pplica tions, including dredges, for operation w ithout int erruption erruption or load cycling. It is identica l to Zone cycling. Zone 1 operation a s defined by E TDS . The Maximum Continuous Rat ing (MCR ) corresponds corresponds to IS O Overload a nd Fuel St op P ower definitions definitions and is 10% 10% higherr tha n the CSR ra ting. It is simil highe similar ar to the Marine Class Class C Intermittent Ra tings used on on Ca terpillar terpillar ’s other other engines. The The engine pow pow er a ctua lly produced under normal operating condit condit io ions ns is limit ed by a pplica pplica tion guidelines, leaving a pow pow er reserve for for vessel fo fouling, uling, non-co non-cont nt inuous norma l opera ti on, an d/or emergen cy reserve for unusu a l opera opera tin g condit condit io ions. ns. This This ra ting is genera lly used for for vessel applications involving varying loads. The establishment of MCR ra tings for 3600 3600 Engines is consistent with practices of most worldwide lar ge engine manufacturers.

Some specific specificaa tions requ ire demonstr a tion of 10%o 10%overload verload capa bility bility a bove bove the CSR or MCR rat ing levels. level s. The The overloa overloa d capa bility ca n be demonstrated at the factory by specifying a special factory performance test . After completion completion of the demonstra demo nstra tion test, th e engine po power is reset to the CSR or MCR power power sett ing as applica applica ble ble.. The performa performa nce curves curves for CS R a nd MCR ra tings are similar similar in forma forma t. Figure 29 29 is a ty pical pical curve on on distillate fuel. See Figur es 19 through 27 for for heavy fuel curves. curves. Both a re plott plott ed in terms of engine power versus engine speed, with operating limit line curves identified identifie d by t he numbers “1” an d “3” in th e ccaa se of of distilla te fuel, an d Zones Zones in the case of heavy fuel. Curves “2” and “4” a re th e ccorrespo orresponding nding fixed pitch propeller prop eller dema nd curves ba sed on 85% 85% of MCR out put or 90%of 90%of CSR out put.. Curve 1 defines defines the MCR limited time opera pera ting capability of the engine. Opera Ope ra tion in the zone between Curves 1 an d 3 is limited limited to a n a verage of 1 hour in 12 (a (a pproxima tely 8%) over th e tota l engine operating life. Curve 3 defines the C SR co continuous ntinuous op opera era tin g limit of the engine. T The he zone below belo w Cur ve 3 is fo forr cont cont inuous opera pera tion wit hout interruption or loa loa d ccombina ycling ycl ing wh ileof opera pe a t speed a ny on or co mbina tion pow pora w ting er a nd under Cu rve 3.

71  

Propeller Design Match Points

  r   e   w   o    P   e   n    i   g   n    E    d   e    t   a    R    f   o    t   n   e   c   r   e    P

75

100

75

Zone of Limited Operation

50

50

25

25

1 3 2

  r   e   w   o    P   e   n    i   g   n    E    d   e    t   a    R    f   o    t   n   e   c   r   e    P

Zone of Continuous Operation

4

10 20 30 40 50 60 70 80 90 100 11 110 Percent of Rated Engine Speed

F igure 29 29

Curve #1 (MCR) Curve #2 Curve #3 (CSR)

(PROP.@ 85% Of MCR)

Curve #4

(PROP.@ 90% Of CSR)

Typical Performance Ratings Typical Performance Ratings

Curves 2 and 4 define the power deman ded by a conventio conventiona na l fixed pitch pitch propeller prop eller applied at th e rec recommended ommended propel pro peller ler design ma tch point. point. S ha ft power may be assumed to be 97%of the engine brake power. Curve 2 is matched to Cur ve 1 (MCR ), an d Cu rve 4 is ma tched to Curve 3 (CSR).

N ote: te: A Addi dditi tio onal appli plica cati tio onfor heavy  considerations areap required  fuel.  fue l. The pri ma marr y conc nce er n is va valve lve tempe temperr atur ature e li mits mi ts fo forr vanadium deg deg r adati adatio on. B ecause cause o off vanadi um leve levell unce unc er tainti es fo found und i n var varii ous bunke bunkerr i ng areas, are as, Cate Caterr pill pillar ar i s pla placci ng addi additiona tionall r estr strii ctio ti ons on e eng ngii ne ap appli pliccations. S ee F i gur es 19 tthr hro ough 27 fo forr i ndivi dua duall r atin atingg r estri str i ct ctii ons. T he ac actual tual allo allowe wed  d  r atin atingg wi ll de depe pend nd o on n many fac facto torr s. C ontac ntactt C Cate aterr pil pillar lar i f the desi desirr ed r ating  falls outsi outside de the pre prese sente nted d gui guide delili ne nes. s.

Application Guidelines The power r equired to develop develop a given vessel speed speed w ill tend to increase over the life of of a vesse vessel, l, part icular icular ly due to hull fouling. fouling. Adverse Adverse ma neuvering neuvering a nd wea ther co conditions nditions ca ca n result in increased inc reased engine power power requirements t o ma inta in vesse vessell control control.. It is essentia essentia l to provide some some engin e pow pow er r eserve w hen selec tin g th e propelle propellerr design ma tchselectin point. point. For 3600 3600 ma rine propulsio propulsion n a pplicat pplicat io ions, ns, th e guidelines for for propeller propeller design ma tch point point a t r at ed engi engine ne speed speed are: Fixed Pitch Propeller

Controllable Pitch Propeller

Continuous Service Rating

90% of CSR 100% CSR

Maximum Continuous Rating

85% of MCR 100% MCR*

Operation abo above ve Curve 3 (CSR) is limited to one hour out of 12

72  

P ropell ropeller er design design ma tch points points a t ra ting perce percenta nta ges other other tha n specifie specified d by the guidelines guidel ines are sa tisfactory pro  provi vide ded  d 

engi ng i ne o ope perr ating ati ng li mi mits ts ar e not not e exce xcee eded. ded. For cont cont rollable pitch propeller propeller a pplic pplicaa tions on on dist ill illaa te fuel, an y combina combina tion of propelle propellerr pitch a nd engine speed is a cc ccepta epta ble for for continuous operation or below Curve 3 or or for 1 hour in 12 inatt he zone betw een Curves 1 and 3. P ropell ropeller er ma tch must a lwa ys be verifi verified ed by sea tria l. The The best measur e of of propeller prop eller ma tch is verificat io ion n of fuel ra te a t r at ed engine engine spee speed. d. River push boat boat s a nd dredge pump drive a pplic pplicaa tions ar e limited to CSR power power levels. 3600 3600 a pplica pplica tion guidelines a re compa compa ra ble to those published by most competitors.

Mari ne Perfo Marine Perforrma mance nce Parameters Limit Definitions CS R Con Con t in in u ou ou s op opera t ion ion , in in cclu lud d iin ng dredge engines, without int errupt io ion n or load cycling cycling on or under Cur ve 3. 3. M CR Oper Operaa t ion ion llim imit it ed ed t o a n a v era era ge of 1 hour in 12 hours of tota l engine ope opera ra ting time. P ower C urves 2 and 4 represent represent the power power dema nd of a typical fixed pitch propeller, propeller, applied a t th e recommen recommen ded propeller propeller design point. point. C urve 2 is ma tched wit h Cur ve 1 (MCR), an d Curve 4 is mat ched to Curve 3 (CS (CS R).

 S ee the per per for for ma manc nce e cur urve vess in FFii gur es 19 thro thr ough 27 fo forr additi onal r estr strii cti tio ons fo for  r  heavy heavy fuel appli applica cati tio ons.

Conditions P erforma erforma nce is is ba sed upon upon S AE J 1995 1995 a nd I SO 3046 3046/ /1 sta nda rd condit condit io ions ns of 100 100 kP a (29.61 29.61 in. H g) barometr ic pressure, 25°C (77°F) ambient temperat ure, and 30%relat 30%relat ive humidity. humidity. For ma rine engine applica applica tions, the nominal aftercooler water temperature is 32° 32° C (90° (90° F) (ma (ma ximum 38° 38° C (100 (100°° F)) f the 25° 25Performan ° C (77°F) (77°F) temperatur ainstead llo llowed wed oby IS O. ce a nd fuele consum consum ption ar e based on 35 AP I, 16°C (60°F ) fuel ha ving a LH V o off 42780 42780 kJ /kg (18,390 18,390 Bt u/lb) used a t 29° C (85° F) wit h a den sit y of 838.9 g/L (7.00 (7.001 1 lb/U S g a l). The performa nce curves curves sh ow t he gr oss output capability of an engine equipped wit h fuel, lube oil, oil, and fresh wa ter co cooling oling pum ps. The The fu el consu consu mpt ion given includes the same engine driven equipment. equipme nt. P ower t o drive a uxili uxiliaa ries must be deducted deducted from gross output to arr ive at the net po power wer a vailable. vailable. Auxilia uxilia ries may include a ma rine transmission, an auxiliary generator, a nd/or a n a uxilia uxilia ry w at er pump. Lug operat io ion n below 85%of 85%of rat ed speed can result in tur bocharger bocharger surge, depending upon aftercooler water temperat ure, inle inlett restr iction iction and ambient conditions. Fo Forr sta ndard rat ings ings,, engine deratio deration n is not required for for a mbient temperat ures up to 45°C (113°F).

Fuel Consumpt onsumption ion 3600 brake specific fuel consumption (B SFC ) is based on on SAE J 1995 1995 a nd IS O 3046 standard ambient conditions of 100 100 kP a (29.61 29.61 in. H g) ba ba rometr ic pressure, 25°C (77°F) ambient temperat ure an d 30%relative 30%relative humidity. The B SF C figures a re also based on typical production engine configurations, including engine driven fuel, oil a nd fresh wa ter coo cooling pumps. pumps. B SFC figures are ba sed on on 35 AP AP I t est fuel w ith LH V of 42,7 42,780 80 kJ /kg (18,390 18,390 B tu /lb) a nd a C a terpill terpillaa r tole tolera ra nce of ± 6 g/kWkW-hr (.010 (.010 lb/hp-hr) a pplies.

73  

A number of 3600 competitors declare fuel consumption consumption a cc ccording ording t o ISO 3046 3046/ /1 Sta nda rd or th e B rit ish (B (B S 5514 5514)) and G erma n (DI N 6271) 6271) versions of th is sta nda rd. The The la test revision revision of of IS O 3046/ 3046/1 a llows a maximum 5% tolera tole ra nce fo forr published published BS FC da ta . Some competit competit ors do not not in clude engine driven oil oil and w at er pumps in their advertised performance data.

The fuel consumption data included in this guide, as well as TMI data, has standard Caterpillar tolerances. When comparing 3600 BSFC to ISO based competitors, it is essential to use ident ical r eference condit condit ions. To do th is it is n ecessa ecessa ry to convert convert 3600 3600 performance performance ccurve urve B SFC from S AE J 1995 1995 to I SO 3046/ 3046/1 refer ence condit condit io ions ns usin g t he follow follow ing modifications: • S ubt ra ct 4 g/kWkW-hr (.007 lb/hp-hr) from fro m th e Ca terpillar terpillar performa performa nce curve SAE J 1995 1995 B SF C figures to compensa compensa te for for th e permissible permissible + 5% tolerance. • Su btr a ct a pproxima pproxima tely 5 g/kWkW-hr (.008 lb/hp-hr) in ca ses w her e th e competitive ompetitive situa tion dicta dicta tes a fuel consumption onsumption decla decla ra tion w ithout engine driven pumps. The r esults of the fuel consum consum ption calculations derived above provides an IS O 3046 3046/ /1 BS FC va lue based on + 5% tolera nce, 42780 42780 kJ /kg LH V fuel an d 32°C (90°F) aftercooler water temperature.

Other co considerat nsiderat ions ions where applica applica ble are: • Compensate Compensate fo for alternat e refere referenc ncee fuel heat values by multiplying the 3600 3600 Engine B SF C by the Ca terpilla terpilla r test fuel LHV (42,780), divided by the refer ence fuel LH V. Example: Ca ter pilla r B S FC of 1 193 93 g/bkW bkW--hr with 42,780 LHV. Competition declares dec lares B SFC wit h 43,00 43,000 0 LHV fuel. Equivalen Equiv alentt Ca terp terpil illar lar B SFC = 193 x 42780 = 192 g/ g /bkW-hr bkW-hr 43000 w it h 43,000 kJ /kg fu el. • Add 3% 3%to to the Ca terpill terpillar ar P erforma erforma nce Curve SAE J 1995 1995 B SF C figures to obta obta in a ma ximum gua ra nteed ra ted fuel co consumption. • Add 5% 5%to to the Ca terpill terpillar ar P erforma erforma nce Curve SAE J 1995 1995 B SF C figures to obta in ma ximum guara nteed part part load load fue fuell consumption. • Contact the factory factory fo for guara guara nteed fuel co consumption figures wit h h eavy fuels. A complete fuel specification is required. • The po power required to drive the Caterpillar supplied sea water pump is shown shown in Figure 30. 30. It is so sometimes metimes necessary necessary t o estima estima te th e added fuel consum consum ption needed to drive the pump at the ra ted speed speed of th e engine. This This can be found found by multiplying multip lying the BS FC for the rat ed power power by the sum of the ra ted power power an d the pump power power a nd then dividing dividi ng by the ra ted power. power. B S F C SW = B S F FC CR

(Power R + P o w er er S W) Power R

74  

50

40 1000 rpm

   )    W 30    K    )    (    W   r    K   e    (   w   r   e   o   w    P   o   p    P   m 20   p   u   m    P   u

900 rpm

750 rpm

   P

10 500 rpm 350 rpm 0 0

1000

2000

3000

4000

  (L/min) Flow 3600 Seawater Pump  Pump Power vs. Flow and Engine Speed

 

N ote: te: S ome co compe mpeti tito torr s publi sh fuel co cons nsumpti umpti on fi g ur es base based do on na“ “fu fue el optimized engine configuration”. This is a fully r un-i n-te n-test st e eng ngii ne, ne, gene generr ally  witho wi thout ut wate waterr and o oii l pumps a and nd wi th a turbo tur bocha charr ger matc match h and fuel i nj nje ecti cti on r ate ates/ s/ timi ti ming ng n no ot ap appli pliccab able le to  produc  pro ducti tio on e engi ngi ne nes. s. Only guar guarante antee ed fue fuell co cons nsumpti umpti on fi g ur es can b be e compar compare ed for   specci fificc ap  spe appli pliccati ati ons. 3600 I dl dle e Fuel R ates Figur e 31 31 shows shows t he idle fuel ra tes of 3600 Engines operating on distillate fuel w it h a den sit y of 838.9 g/L (7.001 lb/ga l).

5000

F igure 3 30 0

Tolerances The performa performa nce dat a presented presented in this section represent typical values under normal operating conditions. Ambient a ir conditions conditions and fuel will affect affect t hese values. Ea ch ma y vary in a ccordance ccordance wit h th e toleran toleran ces shown shown in Figur e 32. 32.

Performance Tolerances Item Power Fuel rate Specific fuel consumption Inlet air flow Exhaust flow Heat rejection Exhaust stack temperature

Tolerance ± ± ± ± ± ± ±

3% 5% 3% 5% 6% 5% 8%

Intake manifold pressure

±10%

F igure 3 32 2 75  

  100

26

90

24 22

80

   )   r    )   r  u    h    /  o    H    L    /    (   r   e    t   e    t   a    i    R    L    l    (   e   u   e    F    t   a    R    l   e   u

    6     6     1     3

70 60

   2    1    6    3

50 40

  0  8   3  6

30

 6   3   3 6  6 0

   F 20 10 0

20    )   r 18    )  u   r  o    h    /    H    / 16    l   a   n   g  .   o    l    l  . 14    S   a    U    (    G   e . 12    t   a    S    R  .    l    U   e 10   u    (    F   e    t   a 8    R    l 6   e   u    F 4 2

   0    0    3

   0    0    4

   0    0    5

   0    0    6

   0    0    7

   0    0    8

rpm RPM 3600 Engine Idle Fuel Rates

Figure 31

   0    0    9

   0    0    0    1

76  

77  

Fig Fi gure 2

Fig Fi gure 3  

78

79  

Fig Fi gure 4

Fig Fi gure 5  

80

81  

Fig Fi gure 6

Fig Fi gure 7  

82

83  

Fig Fi gure 8

Note: These ratings are for CPP applications only.

Fig Fi gure 9  

84

85  

Figure Fi gure 1 10 0

Figure 11  

86

87  

Fig Fi gure ure 12 12

Fig Fi gur ure e 13 13  

88

89  

Fig Fi gure ure 14 14

Fig Fi gur ure e 15 15  

90

91  

Fig Fi gure ure 16 16

Note: These ratings are for CPP applications only.

Fig Fi gur ure e 17 17

92

 

3606 and rpm 3606 and3612 3612--1000 1000 RPM 120

100

  r   e   w   o  r    P  e   o   w    R    S    P    C    f   R    S   o    t   C    f   n   o   e    t   c   r  n   e   e  r   c    P  e

  CSR MCR 3606 - 1680 1850 bkW 3612 - 3360 3700 bkW

II

80

60

Typical Propeller   Demand Curve

40

III

   P

20

I

0 20

IV 40

60

80

100

120

Percentof of Rated Rated Speed Percent Speed Zone l - Continuous Duty Zone I - Continuous Duty

Zone II,II,III lll and andIV lV- -Limited Limited Operation Zone Operation

Marine Propulsion Marine Propulsion Applications Applications HeavyFuel Fuel Heavy

Figure 19 3606/3612 1000 rpm Figure 19

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

1000

100.0%

1680

3360

2253

4506

90.0%

900

90.0%

1512

3024

2028

4055

85.0% 80.0%

850 800

32.7% 28.6%

550 480

1100 960

738 644

1475 1287

78.0%

780

26.6%

447

894

599

1199

70.0%

700

23.1%

388

776

520

1041

60.0%

600

16.5%

277

554

371

743

50.0%

500

12.4%

208

416

279

558

35.0%

350

8.6%

145

290

194

389

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

1000

110.0%

1850

3700

2481

4962

90.0%

900

99.1%

1665

3330

2233

4466

85.0%

850

73.7%

1238

2476

1660

3320

80.0% 78.0%

800 780

60.1% 57.0%

1010 957

2020 1914

1354 1283

2709 2567

70.0%

700

41.2%

692

1384

928

1856

60.0%

600

26.0%

436

872

585

1169

50.0%

500

15.0%

252

504

338

676

35.0%

350

8.6%

145

290

194

389

93  

3606 rpm 3606and and3612 3612 -- 900 RPM 120

100

  r   e   w   r 80   o   e    P   w   o    P    R    S    R    C 60    S    f    C   o    f    t   o   n    t   e   n   c   r  e   c 40   e   r    P   e

  CSR MCR 3606 - 1570 1730 bkW 3612 - 3140 3460 bkW

II

Typical Propeller   Demand Curve

III

   P

20

I 0 20

IV 40

60

80

100

120

Percent of of Rated Percent RatedSpeed Speed Zone I - Continuous Duty

Zone l - Continuous Duty Zone and IV Operation Zone II,II,III lll and lV- -Limited Limited Operation

MarinePropulsion Propulsion Applications Marine Applications Heavy HeavyFuel Fuel

F igure 20 20 3606/3612 900 rpm Figure 20

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

900

100.0%

1570

3140

2105

4211

88.9%

800

88.9%

1396

2792

1872

3744

83.3% 80.0%

750 720

30.9% 27.5%

485 432

970 864

650 579

1301 1159

77.8%

700

25.5%

401

802

538

1075

66.7%

600

21.2%

333

666

447

893

55.6%

500

14.7%

231

462

310

620

44.4%

400

10.6%

166

332

223

445

38.9%

350

9.2%

145

290

194

389

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

900

110.0%

1730

3460

2320

4640

88.9%

800

98.0%

1538

3076

2062

4125

83.3%

750

69.4%

1090

2180

1462

2923

80.0% 77.8%

720 700

61.4% 56.4%

964 886

1928 1772

1293 1188

2585 2376

66.7%

600

35.5%

558

1116

748

1497

55.6%

500

20.6%

323

646

433

866

44.4%

400

10.6%

166

332

223

445

38.9%

350

9.2%

145

290

194

389

94  

3606 and 3606 and3612 3612- -825 825rpm RPM 120

100

  r   e   w   o   r    P   e

  w   o    R    S    P    C    R    f    S   o    C    t    f   n   o   e    t   c   r   n   e   e   c    P   r   e    P

  CSR MCR 3606 - 1355 1355 1490 bkW 3612 - 2710 2710 2980 bkW

II

80

60

Typical Propeller   Demand Curve

III

40

20

I 0 20

IV 40

60

80

100

120

Percent Rated Speed Percentofof Rated Speed

Zone Continuous Duty Zone I l- -Continuous Duty ZoneII,III II, lll and - Limited Operation Zone and IV -lV Limited Operation

MarinePropulsion Propulsion Applications Marine Applications Heavy Heavy FuelFuel

Figure 21 3606/3612 825 rpm Figure 21

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

825

100.0%

1355

2710

1817

3634

90.9%

750

90.9%

1232

2464

1652

3304

87.3% 78.8%

720 650

87.2% 44.3%

1182 600

2364 1200

1585 805

3170 1609

72.7%

600

32.7%

443

886

594

1188

60.6%

500

23.8%

323

646

433

866

48.5%

400

16.4%

222

444

298

595

42.4%

350

12.0%

162

324

217

434

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

825

110.0%

1490

2980

1998

3996

90.9%

750

99.9%

1354

2708

1816

3631

87.3%

720

95.9%

1300

2600

1743

3487

78.8% 72.7%

650 600

58.6% 46.2%

794 626

1588 1252

1065 839

2130 1679

60.6%

500

26.7%

362

724

485

971

48.5%

400

16.4%

222

444

298

595

42.4%

350

12.0%

162

324

217

434

95  

3606 and 3606 and3612 3612- -750 750rpm RPM 120

MCR 100

  r   e   w   r   o   e    P   w    P   o    R    S    R    C    S    f    C   o    f    t   o   n    t   e   n   c   e   r   c   e   r    P   e

  CSR MCR 3606 - 1 1350 350 1485 bkW 3612 - 2 2700 700 2970 bkW

CSR

II

80

60

Typical Propeller   Demand Curve

III

40

   P

20

I 0 20

IV 40

60

80

100

120

Percent PercentofofRated RatedSpeed Speed

Zone Il- -Continuous Duty Zone Continuous Duty Zone II,III and IV Limited Operation Zone II, lll and lV - Limited Operation

Marine Propulsion Marine PropulsionApplications Applications Heavy Fuel Heavy Fuel

F igure 22 22 3606/3612 750 rpm Figure 22

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

750

100.0%

1350

2700

1810

3621

96.0%

720

96.0%

1296

2592

1738

3476

86.7%

650

44.4%

600

1200

805

1609

80.0%

600

32.8%

443

886

594

1188

66.7%

500

23.9%

323

646

433

866

53.3%

400

16.4%

222

444

298

595

46.7%

350

12.0%

162

324

217

434

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3606 Power

3612 Power

3606 Power

3612 Power

bkw

bkw

bhp

bhp

100.0%

750

110%

1485

2970

1991

3983

96.0%

720

106.0%

1431

2862

1919

3838

86.7%

650

78.1%

1055

2110

1415

2830

80.0% 66.7%

600 500

61.4% 35.6%

829 480

1658 960

1112 644

2223 1287

53.3%

400

16.4%

222

444

298

595

46.7%

350

12.0%

162

324

217

434

96  

3608 rpm 3608and and3616 3616-- 1000 1000 RPM 120

100

  r   e   w   r   o   e    P   w    P   o    R    S    R    C    S    f    C   o    f    t   o   n    t   e   n   c   r  e   c   e   r    P   e

  CSR MCR 3608 - 2110 2320 bkW 3616 - 4220 4640 bkW

II

80

60

40

Typical Propeller   Demand Curve

   P

III 20

I 0 20

IV 40

60

80

100

120

Percent of Rated Percent of RatedSpeed Speed Zonel -I -Continuous Continuous Duty Zone Duty ZoneII, II,III Operation Zone lll and andIVlV- -Limited Limited Operation

MarinePropulsion Propulsion Applications Marine Applications HeavyFuel Fuel Heavy

F igure 23 23 3608/3616 1000 rpm Figure 23

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

1000

100.0%

2110

4220

2830

5659

90.0%

900

90.0%

1899

3798

2547

5093

85.0%

850

85.0%

1793

3586

2404

4809

80.0%

800

30.3%

640

1280

858

1716

70.0%

700

24.5%

517

1034

693

1387

60.0%

600

19.2%

406

812

544

1089

50.0%

500

14.6%

308

616

413

826

40.0%

400

9.6%

202

404

271

542

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 P Po ower

bkw

bkw

bhp

bhp

100.0%

1000

110.0%

2320

4640

3111

6222

90.0%

900

99.0%

2088

4176

2800

5600

85.0%

850

93.5%

1972

3944

2644

5289

80.0% 70.0%

800 700

61.4% 41.1%

1296 868

2592 1736

1738 1164

3476 2328

60.0%

600

25.9%

547

1094

734

1467

50.0%

500

15.0%

317

634

425

850

40.0%

400

9.6%

202

404

271

542

97  

120

100

  r   e   w  r   o    P  e   w   o    R    S   P    C   R    f   S   o   C    t   f   o   n   t   e   n   c   r   e   c   e   r   e    P   P

3608 and and 3616 RPM 3608 3616- -1000 1000 rpm High Power   High Power

  CSR MCR 3608 - 2240 2460 bkW 3616 - 4480 4920 bkW

II

80

60

40

20

I 0 20

IV 40

60

80

100

120

Percentofof Rated Speed Percent Rated Speed Zonel I--Continuous Continuous Duty Zone Duty Zone II, and IV lV - Limited Operation Zone II, lll and - Limited Operation  Controllable Pitch Only Controllable PitchProp Prop Only

Marine Propulsion Applications Marine Propulsion Applications Heavy Fuel Heavy Fuel

F igure 24 24 3608/3616 1000 rpm High Power Figure 24

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

1000

100.0%

2240

4480

3004

6008

95.0%

950

94.9%

2126

4252

2851

5702

80.0% 70.0%

800 700

23.9% 19.2%

535 430

1070 860

717 577

1435 1153

60.0%

600

16.7%

374

748

502

1003

50.0%

500

12.1%

271

542

363

727

40.0%

400

8.8%

197

394

264

528

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

1000

110.0%

2460

4920

3299

6598

95.0%

950

105.0%

2352

4704

3154

6308

98  

3608 and 3616 3608 and 3616- -900 900rpm RPM 120

100

  r   e   w   r   o   e    P   o   w    R    P    S    C    R    f   S   o    C    t   f   o   n    t   e   c   r  n   e   e  c   r    P   e

  CSR MCR 3608 - 2090 2300 bkW 3616 - 4180 4600 bkW

II

80

60

Typical Propeller   Demand Curve

40

III

   P

20

I 0 20

IV 40

60

80

100

120

Percent of Rated Speed Percent of RatedDuty Speed Zone Continuous Duty Zone lI -- Continuous Zone II,III IV lV - Limited Operation Zone II, llland and - Limited Operation

Marine Applications MarinePropulsion Propulsion Applications Heavy Fuel Heavy Fuel

F igure 25 25 3608/3616 900 rpm Figure 25

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

900

100.0%

2090

4180

2803

5605

90.0%

810

90.0%

1881

3762

2522

5045

83.3% 80.0%

750 720

26.9% 25.4%

562 531

1124 1062

754 712

1507 1424

77.8%

700

24.7%

517

1034

693

1387

66.7%

600

19.4%

406

812

544

1089

55.6%

500

14.7%

308

616

413

826

44.4%

400

9.7%

202

404

271

542

38.9%

350

8.2%

172

344

231

461

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

900

110.0%

2300

4600

3084

6169

90.0%

810

99.0%

2070

4140

2776

5552

83.3%

750

69.0%

1442

2884

1934

3867

80.0% 77.8%

720 700

61.3% 51.8%

1281 1082

2562 2164

1718 1451

3436 2902

66.7%

600

32.6%

681

1362

913

1826

55.6%

500

18.9%

394

788

528

1057

44.4%

400

9.7%

202

404

271

542

38.9%

350

8.2%

172

344

231

461

99  

3608 and 3616 3608 and 3616- -825 825rpm RPM 120

100

  r   e   w   r   o   e    P   w   o    R    P    S    R    C    S    f   o    C    f    t   o   n    t   e   n   c   r   e   e   c   r    P   e

  CSR MCR 3608 - 1800 1980 bkW 3616 - 3600 3960 bkW

II

80

60

Typical Propeller   Demand Curve

40

III

   P

20

I 0 20

IV 40

60

80

100

120

Percent Rated Speed Percentofof Rated Speed

Zone Il --Continuous Duty Zone Continuous Duty Zone II,III IV lV - Limited Operation Zone II, llland and - Limited Operation

Marine Propulsion Marine PropulsionApplications Applications Heavy Fuel Heavy Fuel

F igure 26 26 3608/3616 825 rpm Figure 26

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

825

100.0%

1800

3600

2414

4828

90.9%

750

90.9%

1637

3274

2195

4390

87.3% 78.8%

720 650

87.3% 27.8%

1571 501

3142 1002

2107 672

4213 1344

72.7%

600

24.6%

443

886

594

1188

60.6%

500

17.3%

312

624

418

837

48.5%

400

13.7%

246

492

330

660

42.4%

350

10.8%

194

388

260

520

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

825

110.0%

1980

3960

2655

5310

90.9%

750

100.0%

1800

3600

2414

4828

87.3%

720

96.0%

1728

3456

2317

4634

78.8% 72.7%

650 600

58.2% 46.2%

1048 831

2096 1662

1405 1114

2811 2229

60.6%

500

26.7%

481

962

645

1290

48.5%

400

13.7%

246

492

330

660

42.4%

350

10.8%

194

388

260

520

100  

3608 and rpm 3608 and3616 3616 -- 750 750 RPM 120

100

  r   e  r   w  e   o    P  w   o    R    R    S   P    C   S    C    f   f   o  o    t   t   n  n   e  e   c   r   r   c   e   e   P    P

  CSR MCR 3608 - 1800 1800 1980 bkW 3616 - 3600 3600 3960 bkW

II

80

60

40

20

I 0 20

IV 40

60

80

100

120

Percent Rated Speed Speed Percent ofofRated I - Continuous Duty ZoneZone l - Continuous Duty

andlV IV -- Limited ZoneZone II, lllII,and LimitedOperation Operation

Generally Requires Controllable Pitch Prop

Generally Requires Controllable Pitch Prop Consult Caterpillar For Fixed Pitch Applications Consult Caterpillar For Fixed Pitch Applications

Marine Propulsion Applications

Marine Propulsion Applications Heavy Fuel   Heavy Fuel

F igure 27 27 3608/3616 750 rpm Figure 27

CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

750

100.0%

1800

3600

2414

4828

95.1%

713

90.0%

1620

3240

2172

4345

90.0% 85.1%

675 638

27.9% 26.6%

503 479

1006 958

675 642

1349 1285

80.0%

600

24.6%

443

886

594

1188

66.7%

500

17.3%

312

624

418

837

53.3%

400

14.1%

253

506

339

679

46.7%

350

10.3%

185

370

248

496

INTERMITTENT DUTY CONTINUOUS DUTY % Rated Speed

speed

% CSR Power

rpm

3608 Power

3616 Power

3608 Power

3616 Power

bkw

bkw

bhp

bhp

100.0%

750

110.0%

1980

3960

2655

5310

95.1%

713

105.9%

1906

3812

2556

5112

101  

 ® 

3600 Marine Engine Application and Installation Guide  Piping

LEKM8462

8-98

 

 ® 

Diesel Engine Systems - Piping General Requirements Piping Piping Sizes Sizes Fluid Design Velocities Piping Schedule Piping Symbol Legend

 

General Requirements The req uirement s included for diesel ma in propulsi propulsio on a nd genera tor set insta llations ar e not not int ended to replace replace a pplic pplicaa ble regulatory a gency gency requirements. Their r equirements should be reviewed prior to initiating system design or evalua tion. P iping iping should be direct direct w ith m inimum bends and sufficient joints for ready a ccessibi cessibility lity a nd removal. It must not interfere with w alkw a ys, doo doors or or ha tches, and permit unr estricted estricted a cc ccess ess in wa lk areas and designat designat ed work work spaces. space s. P iping iping should clear clear a reas required for for operat operat ion ion a nd ma chinery control, and should be routed around ma chinery or t a nk a cc ccess ess openi openings, ngs, a nd a ccess ccess openings openings used for shipping or r ec eceiv eiving ing ma chinery chinery a nd equipment. Expan sion sion joints joints m ust be used a t bulkheads and decks to prevent piping da ma ge from from structure movement movement due to ship flexing. Use removable piping when it obstructs equipment requiring dismantling for periodic overhaul. P rovide rovide isolat isolat ing va lves to minimize system disruption. disruption. Keep piping close close to bulkhea ds, behind fra ming, a nd a long long th e underside of decks. Lea ve sufficient sufficient spa ce betw een pipes and spool all pipes from decks or bulkheaa ds to permit easy ma intena nce bulkhe and painting. Galvanizing of ferrous piping should be done done only a fter fabrication. Minimize piping in control rooms or over electr elec tr ical equipment . When When t his is not possible, possible, fix the pipe in one lengt lengt h w ith a ll flan ges or screwed connections connections kept a wa y from elec electrical trical sw itch gear or cabinets. Support piping to prevent vibration da ma ge. If subjec subjectt t o mechanical mechanical damage it should be adequately protected pro tected by remo removable vable meta l guar ds.

causes, specially designed hangers or supports must be provided. Spring type hangers should be provided when required for for ma in engine exhaust ga s pipes. pip es. Hea vy items such as va lves a nd fittings must be supported to prevent overload verload ing t he a tt a che ched d piping. piping. Revise th e number of support support s provi provided, ded, th e type selected, and the location to elimina te excessive excessive vibra tion of piping piping under a ll normal opera pera ting condi onditions. tions. U se flexible cconnec onnections tions for a ll piping connected connected t o the engine or other reciproc recip rocaa tin g ma chinery chinery.. The The length a nd weight of piping mounted on the engine must be kept kept to a minimum , and th e flexible connection should be placed right at the engine co connection nnection flange w henever possible. possible. P rovide pipe supp support ort on the hull side of of th e system piping t o minimize pipe movement and flex connection Flexible connections inst a lled in loading. piping piping syst ems for fuel oil, oil, flamm a ble liquids, a nd high pressure conta conta inment ma y require approval approval by th e classificat ion society society a nd/or other applicable regulatory bodies. Avo void id piping piping a rra ngements w ith excessive exc essive turbulence, such as t ee connections. connections. High a nd low points should not occur. occur. U se plugs or va lves for dra ining in una vo voidable idable low low points. points. Fit high points points w ith vent va lves. lves. The integrity of wa ter a nd oil oil tight a reas in th e ship’s str ucture ucture m ust not be disrupted by piping piping design. Use flan ge ty pe welded connections connections on either side of bulkheaa ds to permit pipe disman tling bulkhe for service. Vent connections to the wea ther deck sho should uld ha ve a fla nged jo joint just a bove th e deck deck to fa cilita cilita te service o off the vent termina l. Do not use heat sensitive ma teria l, such such a s P VC piping in piping piping systems penetra penetra ting w a ter or oil oil tigh t division bulkhea ds, or for for systems tra nspo nsporting flamm able materials fuel such oil, diesel oil and lube oil. oil. P such VC orasother piping ma teria l must a lso meet all applica applica ble

The gua rds m ust a llow llow for inspection inspection a nd pa inting. When When subjec subject to movement from expan sion or or other

classification society approval.

5  

Va lves should norm norm a lly be ga te or globe ty pe, exce except pt for th rott ling purposes w here globe ty pe valves should be used. P a y spec special ial a tt ention ention t o the selectio selection n of seat seat , stem a nd trim mat erials. erials. Imprope Improperr ma terial a ppli ppliccat ion ion ma y result in the accelerated corrosion and failure of salt wa ter service service valves, and deteriora deteriora tion of seat mat erials erials in ba ll and butt erfly erfly

Vent t an ks containing containing fla mma ble fluids fluids a nd th e engine engine cra cra nkcase to atm osphere wit h a goosenec gooseneck k ventilator a nd flam e screens a nd closures. closures. Air vent discha disc ha rges must not enter ventilation air inlets, openings to a ccommodat ccommodat io ions ns or work spaces, discharge on machinery, electr elec tr ical equipment , o orr personnel. Thoroughly clea clea n a ll piping piping a nd

va lves used in fuel o oil il a nd lube oil tra nsfer systems. The The substitut ion ion of butterfly or ball valves ca ca n be made wh ere permitted by cl claa ssification ssification societies. soc ieties. Do not not use but terfly or ba ll va lves wh ere close, close, cont cont rollable thr ott ling is is man da tory. tory. Ha nd wheels or or op opera era tin g levers of of va lves should should be easily operated operated from a w a lkwa y or deck. deck. U nless o obvious, bvious, provide va lves wit h nam ep eplates lates clearly clearly stat ing their purpose.. Va purpose Va lves at ta ched to the ships hull or oil oil ta nks should be selec selected ted a nd

equipment equipme nt a fter fabrication and prior prior to ship installa tion. After After insta llat io ion, n, each system must be cleaned cleaned a nd flushed with the applicable system’s medium, or a n a pproved pproved substit ute. The The process process should be review review ed by th e ow ow ner, regulatory body’s inspector and the engine builder. Conduct each flushing at the syst em’s em’s ma ximum operat operat ing pressure press ure and t empera empera ture, and a bove bove norma l line velocity. velocity. Remove, bypass, or bla nk-off nk-off hea t exchan gers, cont cont rol va lves, an d other in-line in-line components components

arequirements. rra nged ba sed on classific classificaa tion soci society ety

wh ich ich co could uld tra p debris during the flushing process. Refer to Caterpillar procedure proc edure 3L0492 3L0492 fo forr fur th er det a ils on pipe flushing a nd pickling. pickling.

Safety or relief valve inlet piping should be as s hort a s possible. possible. W Where here discha disc ha rging t o atm osphere, sphere, direct direct the op open en end of pipes pipes aw a y from ma chinery, chinery, electrical equipment, or operating personnel. Discharge oil system r elief elief valves to th e low low pressure pressure side of the system.

Visually inspect combustion air and exhaust ga s piping piping systems to ensure weld sla g a nd debris is removed removed prior prior t o installation.

Syst em monitoring monitoring gauges, th ermometers, et c. should should be visible

The followin followin g t a ble is a pipe selectio selection n

from operat operat ing a reas. Thermometers should shoul d ha ve separa separa te wells. P ressure ga uges sho should uld ha ve test tees. Locate Locate isolating valves close to the main piping run. P ressure gauges, pressure pressure swit ches, or similar instr umenta tion used used in hea ted fuel oil piping systems, sh ould be the filled or or electric electric tr an smitter type.

Piping Sizes guid for sion, sugg v eloc elocities ities . To a vo void ide erosio ero n, ested w a terfluid ha mmer, or or t he possibility of noise, the upper velocity limits should not be exceeded. The fina l pipe size sizess should be selected selected ba sed on considera considera tions of piping piping la yout, num ber of fitt ings, va lves, viscosi viscosity ty of fluid pa pa ssing through th e pipe pipe,, an d pressure drop. Hea d loss on on t he suction side of pumps pumps sh ould be ca ca refully a na lyzed. Compare th e losses losses in in th e suction piping piping t o the net positive positive suction head a vaila ble with t he speci specific fic pump selected.

6  

Fluid Design Velocities Servi Ser vice ce

Nominala m/sec m/sec (ft/sec)

H ot w a t er s u ct i on s Hot-wa Hotwa ter discha discha rge Cold fresh wa ter suction suction Cold fresh wa ter discha discha rge

0. 06 √d 0.18 0.18 √d 0.18 0.18 √d 0.30 0.30 √d

( √d) (3√d) (3√d) (5√d)

Lub e oil service pum p suction Lube oil dischar ge Fu el oil serv ice suction Fuel oil oil service dischar ge Fuel oil oil tr a nsfer suction Fuel oil oil tr a nsfer dischar ge D iesel oil suction Diesel oil oil dischar ge Hy dra ulic oil suction Hy dra ulic oil dischar ge Seaw at er suctio suctions ns b Seawater dischargeb Steam St eam exha ust , 14 800 800 kP a g (215 215 psig) St eam exhaust, high vacuum

0.06√d 0.1 0.12 2 √d 0.06√d 0.0 0.09 9 √d 0.06 0.06√d 0.12 0.12 √d 0.12 √d 0.30 0.30√d 0.0 0.09 9 √d 0.48 0.48√d 0.18 √d 0.30√d 3.00 √d 4.54 4.54√d 4.54 4.54√d

( √d) (2 √d) ( √d) (1.5 √d) ( √d) (2 √d) (2√d) (5√d) (1.5 √d) (8 √d) (3√d) (5 √d) (50√d) (75√d) (75 √d)

Limit m/sec m/sec (ft/sec) .9 2.4 4.6 6.1

(3) (8) (15) (20)

1.2 (4) 1.8 (6) 1.2 (4) 1.8 (6) 1.8 (6) 4.6 (15) 2.1 (7) 3.7 (12) 2.4 (8) 6.1 (20) 4.6 (15) 4.6 (15) 61.0 (200) 76.2 (250) 100.6 (300)

ad is th e pipe pipe internal diam eter in mm (inches) inches)

b 2.7 m/sec (8.8 (8.8 ft/sec) nomin a l velocity for g a lva nized st eel pipe

Schedule of Piping Figur e 1 is a g uide for for prepa ring piping schedules. It is not int ended to replace spe specifi cificc requ irement s of a pplica pplica ble clas clas sifica sifica tion societies societies or or regula tory bodies.

Abbreviations Am er i ca n S oci et y of

CuNi

copper-nickel

Testing a nd Ma teria ls

Galv.

galvanized

Brz.

bronze

Sch

schedule

Cu.

copper

Std.

standard

Wt.

weight

AS TM

7

 

 ® 

3600 Marine Engine Application and Installation Guide  Distillate  Heavy

Fuel

Fuel

LEKM8463

8-98

 

 ® 

EngineSystemsDistillateFuel Oil Engine Fuel System Description Engine Fuel Flow Rates Bulk Storage And Delivery Systems Day Tank (Distillate Fuel Service Tank) Emergency Pump Settling Tank Fuel Cleanliness Water Separation Centrifuges Sample Points Suction Strainer Centrifuge Supply Pump Fuel Heater Customer Connections Flex Connections Fuel Lines Pressure and Flow Monitoring

 

Fuel Recommendations Recommendations Cetane Number Filtering Pour Point Cloud Point Sulfur Viscosity Additives Fuel Sulfur Content Specific Gravity Fuel Temperature Fuel Coolers Day Tank Sizing As A Heat Sink Day Tank Calculations Fuel Heaters Useful Fuel Formulas and Data Specific Gravity and Density Mass Flow Rate Specific Heat BurningHeat UsedRejection Crankcase Oil Continuous Blending Reference Material

 

Engine Fuel System Description Refer to Figur es 1, 2, an d 3 on on pa ges 24, 24, 25 a nd 26 for for schema tics of the engine fuel system. The sta nda rd primar y fuel system components components include a n engine dr iven fuel tra nsfer pump, duplex duplex media media type filters (seconda seconda ry), unit fuel injectors injectors a nd a fuel pressure pressure regulator. regulator. Optiona Optiona l Ca terpilla terpilla r supplied supplied fuel system components include flexible hoses, a ma nua l fuel fuel priming priming pump, and a duplex duple x primar y fuel stra iner. iner. If used, the prima ry duplex fuel fuel stra iner is installed remote from the engine in th e tra nsfer pump suction line. The The str a iner h a s 178 micron micron (0.0 (0.007 07 in.) cleana cleana ble elements. elements. The The ma nua l priming pump is installed on the engine in par a llel to th e engine driven pump. The The ma nua l pump helps helps to bleed bleed air from the fuel piping piping before init init ia l engine operation and following engine ma intena nce (filter (filter element element cha nges, injector inje ctor replacement, et c.) c.).. It ha s a suction lift of 2.6 m (8.5 ft) and a flow of 38 L (10 gal) per 115 revolutions. The ma nua l priming pump pump ha s a lift of 7.8 7.8 m (25.5 25.5 ft) if the fu el lines betw een th e fuel ta nk and t he pump pump are full, full, as a fter a filter element element change. To avoid air suction into th e fuel tra nsfer pump at low low suction suction pre pressures ssures and seal leaka ge at high suction suction pressures, pressures, the fuel pressure pressure at the engine driven tra nsfer nsfer pump at ra ted spee speed d must be grea ter th a n -39 -39 kPa (-5.7 psi) psi) or less tha n 100 kP a (14.5 14.5 psi) psi).. If t he ma nua l priming pum p is used the suction pressure must be less tha n 50 kP a (7.25 psi). The engine driven transfer pump may be used used for for fuel with a viscos visc osity ity up t o 40 40 cSt cSt a t 50°C . Higher viscosity visco sity fuels requir e a fuel booster booster module to circul circulaa te a nd hea t t he fuel prior to engine opera opera tion (see (see th e H eavy 

The engine driven transfer pump delivers fuel to the unit injectors via the secondar sec ondar y fu el filters. The 5 m icron icron (0.000 0.0002 2 in.) duple duplex x filter s a re usu a lly both in service for for norma l opera opera tion, a lthough one one housing housing ma y be isolat isolat ed at a time during operation for for filter replacement if requir ed. The The recommen reco mmen ded fuel delivery delivery pressur e to the injectors is 414-690 kPa (60-100 psi) at ra ted spee speed. d. The un it injector injector combines t he fun ctions of pumping, metering a nd injecting injecting into a single unit. It is mounted in the cylinder cyl inder head a t t he centerline centerline of of each cylinder. External manifolds supply fuel from fro m t he tra nsfer pump to the drilled drilled passa ges in the cylinder cylinder head, eli elimina mina ting t he need for for high pressure pressure fuel lines. A 100 micron (0.004 in.) edge type filter w ithin each injecto injectorr prevents prevents conta conta mina nts from fronce. m ent ering thulat e injec injesector tor during ma intena nce . Fuel circ circulat thr ough t he injecto injectors rs a nd t he portion portion th a t is n ot used for combustion combustion cool coolss th e inj injec ectors tors an d is returned t o the fuel fuel ta nk via t he pressure regulat regulat ing va lve lve.. For heavy fuel oil applications a special cool cooling ing circuit is design ed in t he unit injector to supply and circulate the cool coolaa nt th rough t he injector injector t ip (see (see the H eavy F ue uell Oi l section of this guide). The fuel delivery pressur e to th e injectors inje ctors is controlled controlled by a djusting t he pressure regulating valve on site. The valve is a spring loa loa ded va riable orific orifice type mounted on the front right side of of the engine engine,, and it ma intains adequa te injector inje ctor supply pressure for a ll engine speed and load ranges. The pressure regulat regul at or must be adjusted adjusted at the inst a lla tion s ite. To To provide 414414-690 690 kP a (60-100 60-100 psi) psi) fuel t o th e injectors, t he fu el return line restriction must not exceed 350 350 kP a (51 psi) a t r a ted engin e speed. speed.

Engine Fuel Flow Rates Refer to th e ta ble o on n pa ge 6 for for 3600 3600 engine fuel fuel flo flow w r a tes a nd heat

F ue uell Oi l section of this guide).

rejectio reje ctions ns a t va rious engine speeds. speeds.

5  

Bulk Storage and Delivery Systems Shipboa rd fuel systems must insure a Shipboa cont cont inuous supply of cclean lean fuel to th e engines.. B ulk fuel is engines is usua lly stored in a lar ge tan k( k(s) s) a nd tra nsferred to a sma lle llerr t a nk(s) nk(s) (da y or service service ta nk) nea r t he engine room room by one of of th ree methods: • Fuel Fuel flo flows by gravity fro from the ship’ ship’s ma in ta nk(s) nk(s) to the service ta nks. The The engine driven driven tra nsfer pump takes fuel directly from the service tank. Fuel is norma norma lly returned from the engine engi ne through a deaeration deaeration t ank back to the tra nsfer pump inlet inlet or directly back to the service tank. • An elec electric tric drive driven n tra nsfer nsfer pump pump delivers fuel from the ship’s main tank to a settling ta nk. After After a llo llowing wing t ime fo forr sett ling of of wa ter a nd solids solids the fuel is tra nsferred to the service service ta nk.

• A fue fuell oil oil se separator parator may be used used to tra nsfer fuel fro from m t he ship’ ship’ss ma in or settling ta nk to the servic servicee tan k. Inst a ll ve vents nts on each ta nk to relieve relieve a ir pressure press ure crea crea ted by filling filling a nd to prevent preve nt vacuum format io ion n a s fuel is is consum consum ed. Wa Wa ter a nd sediment should be periodic periodicaa lly dra ined from each fuel tank. Sea l pi piping ping and fitt ings to prevent prevent air or dirt conta conta mina tion. A Air ir in th e system causes har d sta rting, errat ic engine engine op opera era tion, a nd can a lso erode injectors. injectors.

F uel uel llii nes nes can be blac blackk i r on pi pe pe,, ste s tee el  pipe or co copp ppe er tubing. tubing . G Galva alvani nize zed, d, aluminum, or zinc-b zinc-be eari ng allo alloyy pi pipe pe mustt n mus no ot be use used. d.

3600 Engine Fuel Flow Rated Speed rpm

Fuel Fl Flow-L/min (g (gal/min) to Engine

from Engine

Fuel He Heat Re Rejection Without Injector Tip Cooling, kW (Btu/min)

3606

1000 900 750 720

41.5 (11.0) 38.0 (10.0) 31.5 ( 8.3) 30.0 ( 7.9)

32.4 ( 8.6) 30.0 ( 7.9) 24.5 ( 6.5) 23.6 ( 6.2)

12.5 ( 712) 11.0 ( 626) 10.5 ( 598) 10.0 ( 567)

3608

10 90 00 0 750 720

4 31 8..5 0 ((1 11 0..0 0)) 31.5 ( 8.3) 30.0 ( 7.9)

3 20 7..0 6 (( 7 7..9 3)) 22.6 ( 6.0) 21.4 ( 5.6)

1 16 4..7 6 (( 9 85 31 1)) 14.0 ( 797) 13.3 ( 757)

3612

1000 900 750 720

78.5 (20.7) 72.0 (19.0) 61.2 (16.2) 58.1 (15.3)

60.1 (15.9) 55.4 (14.6) 47.3 (12.5) 45.2 (11.9)

25.0 (1423) 22.0 (1252) 20.2 (1150) 19.1 (1087)

3616

1000 900 750 720

78.5 (20.7) 72.0 (19.0) 61.2 (16.2) 58.1 (15.3)

55.2 (14.6) 51.1 (13.5) 43.2 (11.4) 41.2 (10.9)

33.3 (1895) 29.3 (1668) 26.9 (1531) 25.4 (1446)

Maximum inlet restriction on pump = -39 kPa (-5.7 psi). Maximum return line restriction = 350 kPa (51 psi) at rated speed.

6  

Day Tank (Dis (Distillate til late Fuel uel Service Tank) Da y ta nks are used used in almost almost a ll ma rine applications. The installation design must consider engine mounted mounted t ra nsfer head  d  pump limita tions. Total sucti on hea

must no n ot exce excee ed 2. 2.6 6 m ((8.5 8.5 ft) ft).. Locate to avoid fuel levels higher than thetanks engine fuel injectors to prevent fuel lea lea kage int o the cylinders cylinders due to sta tic hea hea d when t he engine engine is shut do down wn . If ove overhea rhea d mounting is una voida ble, include a n open/close close solenoid sole noid valve in th e supply supply line a nd a 3.45 kPa (0.5 psi) check valve in the return line. The delivery line car ryin g fuel to th e fuel tra nsfer nsfer pump and t he return line line carrying excess fuel to the service tank should shoul d be no sma sma lle llerr t ha n t he engine fittings. La rger fuel supply supply an d return lines ensure ensure a dequa te flow flow if t he fuel ta nk feeds mult iple engines engines over 9.14 9.14 m (30 ft) from from the ta nk or temperat ures ar e low. T he maximum iinle nlett flo flow w rre estr strii ct ctii on

i s -39 kkP P a (-5.7 psi ) at rrate ated d spe spee ed. Ca terpilla terpilla r fuel pumps prime up to 2.6 m (8.5 (8.5 ft) of of suct ion lift , but pipe size, bends, and cold cold a mbients modify this capa bility. P osition osition fuel suction lines lines to remove fuel a bout 76 mm (3 in.) a bove

the ta nk bottom bottom and near t he tank end op oppo posite site t he ret urn line. Do not use joint joint cement affected by fuel or gasketed connections. F le lexi xi ble fue fuell llii ne ness must be

i nstal nstalle led d at the engi ng i ne fuel iinl nle et and  outlet ut let to acc accommo ommodat date e eng i ne mo motiti on. The retu rn line sh ould enter t he top of of the t a nk w ithout shut off valves. Avo Avoid id dips so air passes freely freely a nd prevents vacuum in t he fuel system. All All return fuel from from t he engine must be a llowed llowed t o deaera te befo before re being being retur ned to the engine. The maximum return flow  restr ictio iction n is 350 350 kPa (51 psi) a t r a ted speed. All engines engines add hea t t o the fuel fuel as t he engine ope opera ra tes. The The da y t a nk can be sized size d to dissipat dissipat e the ad ded heat. I f this is not possible fuel coolers may be requ ired (see (see th e section section on Fuel

Temperature). Figure 4 on on pa ge 27 shows a typica typica l delivery deli very system fro from m the da y ta nk to a main propulsion engine. See Figure 5 for for a reco recommended ta nk design. The The rules a nd regu la tions for fuel tan ks of of the a pplic pplicable able ma rine society soc iety m ust be observed. observed.

7  

Typical Arrangement of Service Tank

VENT PIPE LED TO ATMOSPHERE AND FITTING WITH FLAME SCREEN AND DRIP PAN ANTI-SIPHON OPENING

MANHOLE OVERFLOW TO SETTLING TANKS HLA RETURN FROM DEAERATION TANK OR ENGINE STEAM BLOW-OUT

BAFFLE PLATE LOCAL THERMOMETER

I

LLA

R

TO ENGINE TRANSFER PUMP SUCTION

SLUDGE SPACE

SLOPED BOTTOM

R R

VALVES FITTED WITH REMOTE OPERATING GEAR (AS REQUIRED BY CLASSIFICATION SOCIETY)

Fig Fi gure 5

E me merrgency P Pump ump An electric motor dr iven emergency pump ma y be required in some engine a pplic pplicaa tions for for use a s ba ckup ckup to the engine driven pum p. This This is genera lly a ma rine soci society ety r equirement for single engine propulsion propulsion a pplica pplica tions. Reco Rec ommended flow flow ra tes a re shown in the follo following wing ta ble and w ill fulfill fulfill the minimum engine requirements at all ra ted speeds betw een 700 700 and 1000 rpm. Flow Rate L/min (gal/min) Engine Fuel Pump

3606 42 (11)

3608 42 (11)

3612 3616 79 (21) 79 (21)

TO SLUDGE TANK TO FUEL OIL TRANSFER PUMP

F uel uel tr t r eatme atment nt ssyste ystems ms sh sho oul uld d be capab capable le of be beii ng mai maintai ntaine ned d wi tho thout  ut  i nte nterr r upti uptio on iin ne eng ngii ne ope perr ation.

Settling Tank T he sett ling ta nk should a 24fo ho hour minimum supply supp ly of distilla distillhold a te fuel for r tur he propulsion prop ulsion engine, plus plus th e norma l expected kilowatt load from the diesel generat or se sets. ts. Refer to the typica typica l settling t a nk design ((Figure Figure 14) 14) in t he H eavy F ue uell Oi l sec section tion of this g uide.

The emergency pump mu st d eliver the sta ted flow of diesel diesel fuel fuel a t 65° 65° C (149°F 149°F ) a ga inst a head of 500 500 kPa (73 psi)

A hea ting coi coill ca ca n be insta lled in the ta nk. It can can be used used as a standby heater to bring t he fuel to the proper proper ce centr ntr ifuge temperature. The coil should keep the distillaa te fuel t empera distill empera ture approximately approximately 20° 20° C (11°F ) a bove bove the pour point. point. F it t he

pressure. A Adjust djust t he fuel pressure regu la tor t o 414414-690 kP a (60-100 60-100 psi). psi).

heating steam suppl supplyy w ith an automatic tempera tempe ra ture r egula egula ting va lve to co control

fuel ta nk tempe tempera ra ture.

8  

U se sc screw rew t ype pumps pumps to tra nsfer fuel from the bunker bunker ta nks to the settling ta nk. T They hey m inimize th e possibility possibility of emulsif emul sifying ying wa ter entra ined ined in the distillate fuel. The transfer pump should operate automatically and fill the settling ta nk in less less tha n tw o hours.

system can be used betw betw een the main ta nk and the day ta nk to clean lean only th e fuel being burn ed. T The he filters ca n plug and careful at tention must be given to fuel pressure pressure levels at th e inj injec ectors tors to guar d a ga inst misfiring.

The following pump characteristics are provided for for guid a nce: • Opera Opera ting pressure — to suit suit condit condit ions of piping piping syst em

• A centr centr ifuge system can be used, used,

• Operating Operating fluid fluid temperat temperat ure — 38 38°° C (100°F)

Centrifuges

• Visco iscosity for sizing the pump motor — 500 cSt

Fuel Cleanliness Clean fuel is essential. The final filters are engine mounted mounted and tested at t he factory an d ar e never never bypassed on on a n operating engine. Optional Optional fa ctory supplie supp lied d duplex primary filters with 178 micron (.007 (.007 in.) clea clea na ble mesh screens coll collec ectt la rge debris prior to th e engine tra nsfer pump.

Water Separation With m odern odern h igh output eng ines using high injection injection pressure fuel pumps, it is ex extremel tremelyy importa importa nt t o maintain w at er a nd s ediment levels at or below below 0.1% 0.1%. Depending on on how t he engines engines a re a pplie pplied, d, wa ter a nd sediment can colle collect ct in fuel ta nks.specifications Therefore, Therefore, fuel meetin meetin g the required when delivered to the sit e ccaa n exce exceed ed limits wh en used in in th e engine. engine. Seve Severa ra l meth ods ca ca n be used t o remove exce excess ss wa ter and sediment: sediment: • A wa ter and sedime sediment nt separ separ at or can can be installed in t he supply supply line ah ead of the t ra nsfer pump. The The separ separ a tor must be sized to the handle the fuel being consumed by t he engines engines a s well as fuel being being returned to the t a nk. • Coalesc Coalescing ing filter filter systems work effectively effec tively t o remove sediment a nd

part icular icular ly if the fuel fuel quality consist consist ently exceeds exceeds the defined limit s specified herein.

Clean distillate distillate fuel with a separa separa te centrifuge system from those dedicated for heavy fu el on on t he sa me ship (see (see Figur e 6 on on pa ge 28 of of t his section). section). Even t hough the m a in propulsio propulsion n engines ma y be arra nged for for heavy fuel, size the distillate fuel trea tment pla nt t o suit both both t he main engines and t he ship service genera tor sets. Tw Tw o tra nsfer pumps, tw o centr centr ifuges a nd heat ers are normally used. U se an a utomat ic self cleaning cleaning ce centr ntr ifuge. ifuge. C onsult the centr centr ifuge ma nufa cturer to size the flow. flow. The fuel centr centr ifuge pipi piping ng sy stem must a llo llow w one of the centrifuges centrifuges to act a s a sta ndby ndby.. The The required flow flow ra te can be a pprox pproxima ima ted a s foll follo ows: Q=

x b x 24 x 1.15} {P_______________

Where: Q = P = b = R = t =

R xt

Flow requ ired, L/hr Total Eng ine Output, kW Fu el Cons umpt ion, g/kWkW-hr 3 Densit y of fuel, kg/m Da ily ily sep separa ara ting time in automatic operation: 23 hr

or or:: Q=

x be x 24 x 1.15 } {P________________ R xt

Where: Q = Flow requ ired, ga l/hr P be

Tota l engine output, bhp == Specific fuel consum co nsum ption,

wa ter. If the level level in the day t an k is not maint a ined at a consistent consistent level, level, install them betw betw ee een n the ma in ta nk and t he day ta nk. If pro prope perr day t ank opera pera tion is is maint a ined, a sma lle llerr

R t

lb/ lb /bh p-hr = Densit y of fuel, lb/ga l = Da ily ily sep separa ara ting time in aut oma tic o ope pera ra tion: 2 23 3 hr

9  

N ote: ote: • T he centr ntrii fug fuge e ma manufacturer nufacturer sho should  uld  assist assi st i n the fi nal ce centr ntrii fug fuge e se sele lect ctii on. ce entr i fug e flo fl ow h has as be bee en • T he c i ncr ncre ease ased d by 15% as a saf safe ety factor   forr o  fo ope perr atio ational nal tole tolerr anc ance es. Centr ifuge seal wa ter a nd control control a ir requirements m ust be spec specified ified by the centr centr ifuge manufa ctur er. er.

Sample Points The centr ifuge opera opera ting efficiency efficiency is check che cked ed by dra wing sam ples ples from both both sides of the centrifuge. Arrange the point point s a s shown in F igure 15 on page 48 of the H eavy F ue uell Oi l section. Suction Straine Strainer Insta ll a simplex simplex stra stra iner iner a head of the centrifuge supply pump and use a sta inless inless steel ba ba sket with perfora perfora tions protect thrae iner pump (0.8 (0.8ismm (sized 1/32 to in.)). in.)) . The The st body n orma lly ma nufactured from cast iron iron or bronze. bronze.

Centrifug ntri fuge e Supply Supply Pump P ump Mount a n electr electr ic motor motor dr iven supply pump separa separa tely from the centr centr ifuge a nd size for t he centrifuge flow. The The fo follo llowing wing pump chara cteristics cteristics a re provided for for guid a nce: • Opera Opera ting pressure pressure - to suit condit condit io ions ns of piping piping syst em • Operating Operating flui fluid d temperat temperat ure - 38° C (100°F) • Viscosity iscosity for for sizing sizing pump pump motor 500 cSt Fuel Heater The hea ter is sized using t he pump capacity a nd th e tempera tempera ture rise required require d between the settling settling ta nk a nd the final centrifuge. The heater should be thermosta tically contr contr olle lled d a nd selected sele cted to ma inta in fuel temperat ure to the cen centrif trifuge uge within within ± 2° C (± 4° F) F).. The The maximum preheating temperature for distill disti llat at e fuel fuel is 40 40° to 50°C 50°C (104 (104°° to 122°F).

Customer Connections Engine Fuel Piping (Inside Diameter) Fuel Supply Fuel Return

3606/3608 22 mm (7/8 in.) 22 mm (7/8 in.)

3612/3616 28 mm (1-1/8 in.) 22 mm (7/8 in.)

Flex Conne Connections ctions Connections to the engine must be flexiblee hose lloc flexibl ocaa ted a t t he engine inlet a nd outlet. outlet. D o not at ta ch rigid fuel llines. ines. The factory provided flex connections can be oriented oriented to ta ke maximum a dvan ta ge of multiple directio direction n flexing. flexing.

Fuell L ine Fue ines s B ypass (return) fuel fuel lea lea ving the engine pressure press ure regulat or should be returned t o the engine day t an k. A Any ny fuel returned directly direc tly t o the tra nsfer pump inlet inlet must be routed routed thr ough a deaera tor tor.. The final insta llation must be hydrosta tically tested to a t least 1.5 times normal w orking orking pressure or or t o a pplic pplicaa ble ma rine soc society iety r equirements, wh ichever ichever is grea ter. After fa brication a nd test ing, steel piping piping must be removed removed an d chemica chemica lly ccleaned leaned (pickled) pickled) to remove mill sca le, dirt , etc. Wa sh piping piping w ith suit a ble solvent solvent a nd dry th oroughly oroughly.. Coat the inside of pip piping ing wit h oil prior prior to final a ssembly. ssembly.

Pre Pr ess ssure ure and Flow Monitoring Monitori ng Eng ine fuel lines lines ha ve pressure pressure va ria tions due t o injec injector tor spill pulses. Monitoring devices devices must include da mpers or orifices orifices in th e lines to minimize pulse effects and obtain a ccurat e readings. Ca terpilla terpilla r supp supplie lied d ga uges have pro proper per damping incorporated in the hardware.

10  

Fuel Recommendat Recommendations ions Caterpillar 3600 engines are capable of burning a wide ra nge of of distillate fuels. fuels. Also see th e H eavy F ue uell Oi l section of this guide.

Distillate Fuel Recommendations Specifications

Requirements*

Aromantics (ASTM D1319) Ash (ASTM D482) Cetane Number (ASTM D613) Cloud Point (ASTM D97)

35% Maximum 0.02% Weight Maximum 40 Minimum Not above lowest expected ambient temperature 30 Minimum and 45 Maximum 6°C (10°F) below ambient temperature 0.5% Maximum (See Sulfur Topic) 20.0 cSt Maximum 1.4 cSt Minimum 0.1% Maximum

Gravity API (ASTM D287) Pour Point (ASTM D97) Sulfur (ASTM D2788, D3605, or D1552) Viscosity, Kinematic @ 38°C 38°C (10 (100° 0°F) ((ASTM ASTM D445) D44 5) Water & Sediment (ASTM D1796) *As delivered to fuel system.

The fuels recommen ded for 3600 eng eng ines a re norma lly No. 2-D 2-D diesel fuel an d No. 2 fuel oil. oil. No. 1 gra des a nd I SO-FSO-FDMB fuels are a lso a cc cceptable. eptable. Other fuel types ma y be used w hen economics economics or fuel availa bility bility dictat e. Consider t he follo followin win g fuel chara cteristics cteristics wh en procuring procuring fuel:

Cetane Number The minimum ceta ne number required fo forr a verage st a rting conditions is 40. 40. A higher ceta ceta ne value ma y be required for for high a ltitude operat operat ion ion or cold cold w eat her starting. Filtering Fuels should have no more than 0.1% sediment sedime nt a nd w at er. er. St ora ge of of fuel ffor or extended periods of of tim e ccaa n cau se fuel oxidation and formation of solids, leading t o filtra filtra tion proble problems. ms.

Cl Clou oud d Point The cloud point should be below the lowest lowest expec expected ted a mbient ope opera ra ting temperature. This prevents fuel filter elements ele ments plugging plugging wit h wa x crysta crysta ls. Sulfur Fuels containing 0.5%or less sulfur may be used used w ith norma l cra cra nkca nkca se oil oil drain interva ls using AP AP I C F performa performa nce oils. oils. With sulfur a bove the 0.5%level, 0.5%level, use AP I C F oil wit h a n ASTM ASTM D -2896 2896 minim um t ota l bas e number (TB (TB N) of 10 times th e fuel sulfur sulfur for normal oil drain intervals. See the guide section on L ub ubri ri cating Oil fo forr furth er details. Viscosity Fuel viscosity is important for lubricat io ion n of fuel system component component s a nd fuel a tomizat ion. ion. The The minimum allowable viscosity at the injectors is 1.4 cSt cSt .

Additives Fuel additives ar e gene genera ra lly not not recommended. Cetane improvers can be used as necessary. Biocides may be needed to eliminate microorganism growth in storage t an ks. Treat ment for entrained wa ter ma y a lso be nec necessary essary in cold conditions. C onsu nsult lt th the e fuel

 suppli er ab  suppli abo out the use of a addi dditi tive vess to to  preve  pre vent nt i nc nco omp mpat atii bili ty with wi th additi additive vess already in the fuel. Fuel Sulfur Conte ontent The percent percent a ge of sulfur in fu el will a ffect ffect engin e oil oil recommenda recommenda tions. Fuel sulfur is chemica chemica lly changed dur ing combust combust io ion n t o form both sulfurous a nd sulfuric a cid. The The a cids chemically chemically at ta ck metal surfaces surfaces and cause corrosive corrosive w ear.

Pour Point The pour point point of the fuel sh ould be at

Certa in a dditives used used in lubrica lubrica ting oil oilss conta conta in a lkaline compo compounds unds fo formula rmula ted to neutr a lize acids. The The mea sure of reserve a lkalinity is total ba se number

least 6°C the lowest expec exp ected ted (10°F) sta rtingbelow a nd operat op erat ing

(esse TB N). N) . Requir ed TB TB N va luesand a re essentia ntia l to neutra lize a cids

tempera tur es. The The lower pour point of No. 1 or or No. 1-D 1-D fuel ma y be n ec ecessa essa ry in cold weather.

minim ize corrosive corrosive wea r.

11  

The TBN recommendation for an oil is dependent dep endent on the a mount of sulfur sulfur in the fuel used. For 3600 3600 engines run ning on distillate fuel oil, oil, th e minimum new oil oil TBN (by ASTM D 2896) must be 10 times the sulfur perce percent nt by w eight in the fuel,, wit h a minimum TB fuel TB N of 5 rega rdless of the sulfur cont cont ent (see Figure 7). In m ost oil oil form form ula tions th e TB TB N is a function functio n of the ash bearing a dditives in th e oil. oil. Excessive a mounts of a sh bearing a dditives ca ca n lea d t o exce excessive ssive

piston deposits and loss of oil control. Therefore, excessively high TBN or high a sh oils should should not be used w ith 3600 3600 engines running on distillat e fuel. Successful operation of 3600 engines on distillate fuel has g enerally been been obtained with new oil TBN levels betw een 10 a nd 15. See the guide section on L ub ubrr ica icating ting Oil for more information.

P er i odi diccally r eque quest st fue fuell sul sulfur  fur  i nfo nforr mat matii on fr om the fue fuell su supp pplili er . F ue uell  sulfur conte content nt can change with wi th each ach delivery.

TBN vsFUEL FuelSULFUR SulfurFOR for3600 3600 Engines on Distillate FuelFUEL TBN VS SERIES ENGINES ON DISTILLATE 17

15 NEW OIL TBN FOR DISTILLATE FUEL

13

   6    9    8 11    2    D    M    T    S 9    A   —    N 7    B    T

USED OIL TBN LIMIT

5

3

1

0

.5

Fig Fi gure 7

1

1.5

FUEL SULFUR — % WEIGHT

NOTE: OPERATION AT FUEL SULFUR LEVELS OVER 1.5% MAY REQUIRE SHORTENED OIL CHANGE PERIODS  TO MAINTAIN ADEQUATE WEAR PROTECTION.

2

2.5

3

12  

Specific Gravity Fuel rack settings settings are based on on 35 35°° AP I (specific specific gra vity ) fuel. fuel. Fuel oil w ith a higher API (lower specific gravity) number r educes educes power power output unless the ra ck sett sett ing is corrected. corrected. When When usin g hea vier fuels (lo (low w er AP AP I nu mber), a corrected rack setting prevents power output a bo bove ve the a pproved pproved ra ting. The The Ca terpilla terpilla r dealer w ill correct correct the ra ck setting fo forr n on-sta n-sta nda rd fuels.

Fuel Temperature The fuel tempera tur e supplied supplied to the engine can affect unit injector life and maximum power capability. Reduced lubricat lubric at ion ion capa bility bility as a result of high high tempera tur e/low viscosity viscosity fuel ma y result in plunger scuffing. The The minimum allowable viscosity at the injectors is fuell te temp mpe er atur ature e 1.4 cSt cSt .  A maximum fue

li mit o off 72°C (162° (162°FF ) to the uni unitt inj ector tor s, regardless of fuel viscosity, prevents co cokk i ng or ggummin ummingg o off the i nj nje ecto ctor s. Th e ma ximum fuel viscos viscosity ity to the un it injectors inje ctors of 20 20 cSt prevents overpressur overpressur e da ma ge to the injec injectors. The engines are power set a t the fa ctory ctory with 30 30 ± 3° C (8 (86 ± 5° F) fuel fuel to the engine tra nsfer pump. Higher fuel temperat ures reduce maximum power capability. The fu el stop po  powe werr r educ ductio tion n

i s 1% for for eac ach h 5.6° 5.6°C C (10° (10°FF ) fue fuell supp supply  ly  the tempe te mperr atur ature e in increa crease sebelow ab abo ovethe 30° 30°C C . If engine is operating  fuel  fue l st sto op limit, the governor governor will a dd fuel as required to maintain the required engine speed an d pow pow er er..

Fuel uel C oolers Fuel coole coolers rs a re site specific a nd sized t o ha ndle fuel fuel heat not dissipa dissipa ted by the da y t a nk. The The cool cooler er must be locat locat ed on the return circ circuit uit with a three wa y temperat ure regulat ing valve to control control fuel return return temperat ure to the servic servicee ta nk (se (seee Figur e 4). 4). Su bmit th e co coole olerr design and materials to the appropriate classificat io ion n society society for a pprova pprova l. The suggested mat erial for a shell a nd tube type heat excha excha nger is: •

Shell Shell

Red Red brass



H ea d s

Ca s t iro iron



Tubes

Copper Copper



Tube she sheets ets

B rass



B a f f llees

Brass

A plate ty pe hea hea t excha excha nger ma y a lso be used use d with tita nium pl plat at es ffo or sea w at er cool cooling ing or sta inless steel plat es for for fr esh water cooling.

Day Tank Sizing as a Heat Sink  Da y ta nk sizing sizing is critical critical when fuel to the engine engine is fro from m a day ta nk without a fuel cooler. The supply temperature must be wit hin speci specified fied limits for injector life and maximum power capability. Da y ta nk temperatures temperatures are impacted impacted by: • Da y tank we wetted tted surf surface ace area (including tank bottom) • En gine(s) gine(s) fuel co consumption nsumption ra te • Da y ta nk reple replenishi nishing ng level level • Storage tank fuel fuel temperature temperature

D ay tank tank si zing i s cr cr i tica ticall to ma maii nta ntaii n the desi desi r ed fu fue el supply s upply tem tempe perr atur ature e. F uel uel co coo oler lerss may be r equi r ed.

• Ambien mbientt tempe temperature rature • Spaces Spaces cco ontiguous ntiguous to the day tank (void ta nks, co cofferda fferda ms, vessel shell plating, etc. etc.)) • Return Return ffue uell temperature temperature

13  

Ta nk tempera ture calculation a re perform ed in five [5] [5] st eps. The The fir st determines dete rmines the fuel fuel ma ss in the ta nk a t each t ime int erva l. The The second second st ep is based on a fuel mix tempera tempera ture resulting from th e engine driven tra nsfer pump pump flow flow r a te to the engine engine and t he return return flow flow ra te to the day ta nk. The third step determines the day ta nk fuel height height fo forr ea ch incrementa l time element. Typically Typically,, t he calcula tions w ill be based upon a 30-60 30-60 minut e itera tive tim e function. The The end point for t he calculat calc ulat ion ion is a ssumed to be wh en the da y t an k is refilled. refilled. The The fourth fourth step approxi appro xima ma tes the heat tra nsfer nsfer from the ta nk to the surrounding envi environment ronment due to th e temperat ure difference difference between the fuel mix tempera tempera ture a nd the a mbient temperat ure. This This convec convective tive heat tra nsfer then determines dete rmines the resul resulta ta nt t ank temperat ure. The Thefinal fifth fuel stepsupply evalua tes the impact of the temperat ure on the engine’s engine’s ma ximum power capability. The included exa mple calculat io ions ns should only be used to provide provide genera l guidan ce. If the day t a nk size is ma rgina l use a fuel cool cooler. er. To simplify t he followin followin g ca lc lcula ula tions, it is assumed assumed the day ta nk wa ll llss are surrounded by free moving moving a ir ir.. If t he ta nk wa lls are contiguous contiguous to the shell plat plat ing, heat t ran sfer sfer from from the day t ank will be enhanced. Conversely, if the day ta nk is bounde bounded d by void spaces spaces a nd cofferdams, heat rejection from the day ta nk w ill be reta rded. Typically Typically,, most day ta nks are loc locat ed with va rious rious combinations of the preceding boundary elements. The individual performing the ev evalua alua tion tion must be familiar w ith the installation installatio n a s well as the fundamental engineering concepts concepts of the formula s used in t he calcula calcula tions.

• B ra ke spec specific ific fuel cconsumption onsumption (bsfc) (bsfc) • Initial Initial day ta nk ffue uell tempe temperature rature • Storage tank fuel fuel tempe temperature rature (Make-up) • Ambien mbientt a ir temp temperature erature • Day tank length, length, width, width, and heig height ht • Typical ypical full day t an k fue fuell height height (assume 95%of tank capacity) • Engine fuel fuel tra nsfer nsfer pump flow flow ra te (see page 6 of this section) • Fuel heat rejec rejection from from the engine (see page 6 of this section) • Incremental Incremental time eleme element nt

Day Tank The Thermal rmal Capa Capacity city Calculation Example: • Applic pplicat at io ion: n: Single ma in engine • Eng ine Model: Model: 3612 3612 • Rat ed P ower: 4640 640 bhp (CSR) • Rat ed Speed: Speed: 900 900 rpm • bsfc: 0.326 0.326 lb/bhp -h r • Initia l Da y Ta Ta nk Fuel Tempera empera ture = 85°F • St ora ge Tan k Tempera empera ture = 85° 85° F • Ambient Air Air Tempera empera ture = 95° 95° F • Da y Tank Tank D imensio imensions: ns: Length (L) (L) = 12 ft. Width (W (W) = 8 fft. t. Height (H) (H) = 8.42 8.42 ft. • Fuel Height (@ (@ 95%o 95%off total C a pacity) (H) = 8 ft. • Eng ine Fuel Fuel Oil Tra nsfer Pum p Flow  Flow  Ra te ((q  q xfer) x fer ) = 19.0 gpm • Hea t r ej ejec ection tion from from engine to fuel oil oil (Q) = 1252 Bt u/min mi n • Incremental Incremental time eleme element, nt, (t) (t) = 60 min.

Assume that Assume that the day tank will will be replenished eplenished from from the vesse vessell’s storage tanks when the day tank  level falls to approximately 50-55% of normal operati operating ng capacity. capacity. Some of of the da ta a bove bove must be

Day Tank Calculations The follo fo llow w ing informa tion is requir ed to

converted other io units prior to w ing beginning to calculat ions. ns. T The he follow follo

formula formula s can be used: used: a ) Engine Driven Tra nsfer P ump Ma Ma ss Flow Flo w Ra te = M xfer (lb/ (lb /m in ) Assume: #2 DO with a n AP AP I gr a vit y of 35 ((7.1 7.1 lb/ga l)

perform the calculations: • Engine mode modell • En gine develo developed ped power power (MCR (MCR or CS R) • Engine spee speed d 14  

M xfer = q xfer x 7.1 lb/ga l = 19.0 gpm x 7.1 lb/ lb /ga l = 134.9 lb/ lb /m in b) Engine burn ra te under full full load load conditions 1) B urn ra te (gpm) (gpm) = bsfc x bhp x 1 Hr. _____________________ Fuel density x 60 min.



Q TE NG = ______________ M R TN x cp

1252 B t u/min mi n = ____________________________ (109.70 lb/ lb /m in x 0.5 B t u/lb-° F ) = 22.8 22.83°F 3°F e) 95%Ca 95%Ca pacity of Diesel Oil Da y Ta Ta nk, (lb)

= 0.326 _________________________________ lb /bh p - hr x 4640 bhp x 1 hr. 7.1 lb/ lb /ga l. x 60 min.

Weight dens ity (p) for #2 dies el oil = 52.42 lb/ft 3 M D T = L x W x H x pD O

= 3.55 3.55 gpm

= 12 ft x 8 ft x 8 ft x 52. 52.42 42 lb /ft 3 = 40258.6 40258.6 lb.

flow burn rat e = 2) Fuel mass flow M B R (lb/m in ) = 3.55 3.55 gpm x 7.1 l b/ga l = 25.21 lb/min mi n

Step 1 Ca lculate lculate the fuel fuel mass in the day t ank a t spec specific time int ervals:

c) Engine fuel return ra te under full load condit condit ions: ions:

Da y T Tan an k Fuel Quantity = M D T - (M (M B R x t )

1) Fuel return return flow flow r at e = q r t n (ga l/m in )

= Supply Supply ra te - burn rat e = 19.0 gpm - 3.55 gpm = 15.45 15.45 gpm 2) Fuel return mass flow flow ra te = M R TN (lb/m in ) = 15.45 15.45 gpm x 7.1 lb/ l b/ga l = 109.70 lb/min mi n d) ∆ TE NG of fuel = (T supply - T r t n )

Where: M D T = Da y ta nk co contents at a spec specifi ificc tim e step (lb) M B R = En gine fuel consum consum ption (lb/min) t = Incrementa l time step (min) Assume the da y ta nk is repleni replenished shed at 55%o 55%off initial q ua ntity of fuel. fuel. P repare a ta ble o off volumes as sh own below for our our example.

Incremental Time (Min)

Tank Fuel Fue l Quantity (lb)

0 60 120 180 240 300 360 420 480 540 600 660

40258.6 38746.0 37233.4 35720.8 34208.2 32695.6 31183.0 29670.4 28157.8 26645.2 25132.6 23620.0

100.0 96.2 92.5 88.7 85.0 81.2 77.5 73.7 69.9 66.2 62.4 58.7

720

22107.4

54.9

Capacity (%)

Refill

40258.6

100.0

15  

Step 2 Ca lculat lculat e the fuel oil oil mix temperat ure (T (Tm ix ):

[ (M

D T( t -1)

- [(M xfer x t )] )])) TD T (t -1) + (MRTN x t) x (TD T (t -1)+



]

TE NG )

_________________________ ____________ _________________________ _________________________ _________________________ _________________________ ________________ ___

M D T (t -1) - (M (M B R x t )

Where: MD T M xfer t TD T(t -1) M R TN ∆T ENG

MB R

Va lues for for t he exam ple ca ca lcula lcula tion: = Day tank co contents ntents at a specific tim e st ep (lb) (lb) = Engine transfer pump pump mass flow ra te (lb/min ) = Incrementa l time step (min) = Da y tank temperature temperature fo for previous previo us t ime st ep or or start ing temperature temperature (° (° F) = Engine return mass flow  flow  ra t e ((lb/ lb/min) mi n) = Fuel Fuel temperat temperat ure rise across the engine (° (° F) = Engine fuel consumption consumption (lb/m in )

M D T(t -1) M xfer t TD T(t -1) M R TN ∆TE NG

MB R

= Da y ta nk co contents from from previous previo us t ime st ep (lb) (lb) = 134.9 lb/mi n = 60 min. = Initial Initial day t ank temp temper erature ature is used for for first itera tion, 85°F 85°F = 109.70 lb/m in = 22.8 22.83°F 3°F = 25.21 lb/min mi n

[( [(40258.6 40258.6 - (134.9) (60)) (60)) (85) (85)]] + [( [(109.70) 109.70) (60) (85 + 22.83)] ______________ _____________________________ ________________________ __________ Tmi x = _____________________________ [40258.6 - (25.21) (60)] = 88.9°F 88.9°F @ t = 60 min.

This calcula tion is repea ted for ea ch increment (t). P repare a summa ry t a ble a s shown shown below below for for each incre increment ment (t). (t).

Incremental Time (Min)

Mix Temperature (°F)

0 60 120 180 240 300 360 420 480 540 600 660 720 Refill

85.0 88.9 92.9 97.1 101.5 106.1 110.9 116.0 121.3 126.9 132.9 139.3 146.1

16  

Step 3 Ca lculat lculat e the height of fuel co conta ined in the day ta nk at t = increm incremental ental time step.. P repare step repare a summary ta ble fo for each tim e increment (t). (t).

Incremental Time (min)

Height (ft)

8.0 7.7 7.4 7.1 6.8 6.5 6.2 5.9 5.6 5.3 5.0 4.7 4.4 8.0

0 60 120 180 240 300 360 420 480 540 600 660 720 Refill

M_____ D T ____ H = _____ ________ __ pxL xW Where: H = Height of fuel fuel in the ta nk M D T = Fuel conta ined ined in the day t ank a t each incrementa incrementa l time step step p = Weight density of #2 DO (52.42 (52. 42 lb/ l b/ft 3) L = Length of da y ta nk (12 ft) W = Width Width of da y ta nk (8 ft)

Step 4 Ca lculate lculate the heat tra nsferred nsferred between between the fuel fuel in the day ta nk and the a tmosphe tmosphere, re, the ∆T of the fuel in in th e day t a nk due to the heat t ra nsfer nsfer,, and the resulting fuel day ta nk temp temperature. erature. a) Heat t ransferred betw betw ee een n the day ta nk and the atm osphere sphere:: (TMI X + TD T) Q TK = [U x [ (H (H x (2L + 2W) 2W) + (L x W) ] x [ T AMB - _______________ ]] x t 2

Where: Q TK = Hea t tra nsfer to/from from a tmosphere tmosphere (B (B tu)

T hi s co consi de derr s 6mm (0. (0.25 25 iin.) n.) sste tee el plate  forr ming the tank  fo tank bo boundari undari es, a and nd tthe he  film  fi lm coeffi ci ent for for ai airr and oi l. The air   side  si fi lm coto effi ci eont p prr fiedominant do whe when n compared code mpared the i l si si si de lm.minant T he tank  thickness has a negligible effect. U

= Coeffic Coefficient ient of heat tra nsfer, nsfer, 2 (0.0424 B t u/m in • ft • ° F ) L = Da y ta nk length length (ft) W = Da y ta nk width (ft) TAMB = Ambient mbient temperat temperat ure (° (° F) TMI X = Mix temperat temperat ure of of return fuel and fuel in in ta nk (° (° F) TD T = Da y tank tempe temperature rature resulting from heat transfer to/from da y t a nk (° (° F) t = Incrementa l time step (min)

b) Tempera empera ture change in the day ta nk resultin g from heat t o/from day t a nk: Q TK ∆TD T = ________ ____________ _____ _ MD T x C p

Where: ∆TD T = Tempera tur e c cha ha nge of fuel in in the day ta nk (° (° F) Q TK = Hea t t ra nsfer to/from from at mosp mosphere here (B (B tu) M D T = Mass of fuel fuel in in da y ta nk (lb) (lb) cp

= Specific Specific heat of #2 MDO = 0.5 B t u/lb • ° F

c) D a y tan k temperat ure resulting from heat tra nsfer to/from from da y t an k: T DT

= T MI X

+

∆T

DT

H

= Fuel height for for speci specific fic time step (ft)

17  

These three calculations are interdependent interdepe ndent in na ture. First, Q TK is determined for for t he first incrementa incrementa l tim e step. The The result ing va lue fo forr Q TK is then u sed to compute compute the ∆TD T. ∆TD T is then used t o determine determine TTK . This process process is t hen r epeat ed for ea ch incrementa inc rementa l time step.

Where: temperature (° F) TD T = Da y tank temperature TMI X = Mix temperat temperat ure of of return fuel and t ank fuel (° F) ∆TD T

= Tempera empera ture cha nge of day tank (° (° F)

Exa mple a): a): Q TK = [U [ H x (2L + 2W ) + (L x W)] x [ TAMB - (T (TMI X+ TD T)]] x t ____________ 2 Q TK = 0.04 0.0424 24 x [7 [7.7 .7 (40) + 96 ] x [ 95 - (88.9 + 85)] x 60 _________ 2 = 82 8283 83.6 .6 Bt u

Example b):

Exa mple c) c)::

Q

TD T = TMI X + ∆TD T = 88.9 88.9 ° F + 0.4 0.43 °F = 89.3 89.3 ° F

TK ___ ∆TD T = _________ ____________

M D T x cp 8283.6_____________ Btu = ___________________________ ______________ (38746.0 (38 746.0 lb) (0.5 (0.5 B t u/lb ° F )

= 0.43 0.43 ° F (From (From a tmosphere tmosphere to day tank)

This series of calcula tions is t hen repeaa ted for the subsequent incrementa repe incrementa l time st ep eps. s. P repare repare a summary ta ble fo forr each time increment (t).

Incremental Time (min)

Heat Rejection to/from Day Tank (Btu)

Temperature Chg. in Day Tank (°F)

Day Tank Temperature (°F)

0 60 120 180 240 300 360 420

8283.6 4069.7 -4.0 -4022.0 -7966.3 -11818.7 -15561.4

0.43 0.22 0.00 -0.24 -0.49 -0.76 -1.05

85.0 89.3 93.2 97.1 101.3 105.6 110.2 114.9

4 58 40 0

--1 29 22 85 07 2..8 6

--1 1..3 77 1

1 12 20 5..0 2

600 660 720 Refill

-26253.3 -29655.5 -32973.6 -

-2.09 -2.51 -2.98 -

130.8 136.8 143.1 116.9

18  

The last pa rt in S tep 4 determines the day t a nk temperat ure aft er refi refilli lling ng (TD T ): refill

TD T

(MD T - MD T ) x TMU F + (MD T x TTK ) full _________________________ tn tn n = ____________ _________________________ ________________________ _______________ ___ refill MD T full

[

]

Where: MD T = Ca pacity pacity of day ta nk, (lb) (lb) full

M

= Fuel in day ta nk prior prior t o refill refilling, ing, (lb) (lb) DT tn

TMU F

= Tempera tu re of make-up make-up fuel, (° (° F)

TTK

= Tempera tur e of of ta nk fuel prior prior t o refilling, refilling, (° (° F) n

Example: TD T

refill

x 85] x 143.1) [(40258.6 - 22107.4) + (2 (22107.4 2107.4 = _______________ ________ _______________ _______________ _______________ ______________ ______ 40258.6 lb = 116.9°F 16.9°F

Step 5 The last step calculates calculates t he ma ximum power power capa bility bility of the engine at t he resultant resu ltant day ta nk temperat temperat ure for for each time interva l. A summa ry t a ble for for each increment (t) is also prepared:

Note: T he eng ngii nes nes ar e powe powerr se sett at the  facto  fac torr y wi with th 30 ± 3°C (86 ± 5°F ) fue fuell to the eng ngii ne transfe tr ansferr pump pump.. H i ghe gh er fue fuell tempe temperr atur es r educe du ce maxi mum powe power  r  capab capabii li ty. T The he fuel stop powe powerr r educti ductio on

itempe smper 1% rffo oatur r eac ach 5.6°C Fve) fue fuel lCsupp supply  ly  te ature ehi ncr ncre ease(10° abo above 30° 30°C . I f the engi ng i ne is oper per ating ati ng below below the fue fuell sto s top p li mi mit, t, the gove goverr nor nor wi ll add fue fuell as r equi quirr ed to maintai n the r equi quirr ed e eng ngii ne  spee  spe ed a and nd powe powerr .

(TD T - Tref ) 1 P corr = P rated x (1 - [___________ x _____] ) 10°F 100

Where: P corr = Corrected Corrected Eng ine Power, Power, bhp P rated = Rated bhp bhp Tr ef

= 86° (Power ssetti etting) ng)

TD T

= A ctua lraday ta nk fuell tempera tempe ture, °F fue

Example: For t = 60, th e corr corr ected ected power power of th e engine is: P CORR = [ (89.3° (89.3° F - 86 86°° F) x 1 ] ) 4640 bhp x (1 - ___________________ (10° F ) (100) = 4625 4625 bhp

19  

Incremental Time (min)

Day Tank Temp. (° (°F) F)

Corrected Engine Power (bhp)

0 60 120 180 240 300 360 420 480 540 600 660 720 Refill

85.0 89.3 93.2 97.1 101.3 105.6 110.2 114.9 120.0 125.2 130.8 136.8 143.1 116.9

4625 4607 4588 4569 4549 4528 4506 4482 4458 4432 4405 4375 4497

Conclusion The previous previous calculat ions indica indica te da y ta nk fue fuell temperat temperat ures can can have a n effecct on t he ma ximum power effe power capability of th e engine. The The exam ple w a s ba sed upon a fixed pitch propelle propellerr a pplica pplica tion. Typica lly, lly, a fixed pit ch propeller is selected and sized to absorb 85-90%of the engine's engine's nam e plat plat e rat ing. In this example, this would equate to 39504175 bhp. The lowest calculated corrected corrected po power wer wa s determined t o be 4375 437 5 bhp. This This w ould lea ve a 5-10% 5-10% power power m a rgin a nd vessel vessel performance performance would not be affected. While vessel performa performa nce may not be a ffe ffected cted in this example, the maximum fuel tempera tempera ture of 143. 143.1°F 1°F will put t he fuel viscosi viscosity ty nea r or belo below w t he minim um a llo llowa wa ble viscosi viscosity ty of 1.4 cSt a t t he injectors injectors depending depending on t he ty pe of of distillate fuel being being used. In a ddition, ddition, the temperat ure of of the fuel in the ta nk

after refill is now 116.9°F instead of 85°F a s used a t th e be beginning ginning o off the iterat io ion. n. Therefore, continued continued operat io ion n a t fu ll loa loa d on this fuel tan k would ca ca use the fuel tempera tempera ture to rise even even h igher tha n the ma ximum ximum tempera tempera ture shown shown in t his it era tion. To To protect protect t he fuel injectors a fuel cooler should be used in this a pplic pplicaa tion, despite despite the fact tha t a vaila ble eengine ngine po power wer is still acceptable. Aside from the impa ct on on engine performance, performance, maximum fuel ta nk temperat ures are a lso established by various marine classification societies and regulatory bodies. Their interest is ba sed upon upon th e increa increa sed risks of fire tha t results from elevat elevat ed fue fuell temperatures.

Fuel uel Heat ate ers Cold Col d w eather can form wa x crysta crysta ls in No. 1 or No. 2 diesel fuel if tempera tu res go below the cloud point. Small amounts of heat add ed to the fuel bef befo ore the filters ca n prevent clogging clogging pr oblems oblems due to wa x. At At t empe empera ra tures below below t he cloud clo ud point, fuel will flow t hrough pumps and lines but not filters. At temperatures below the pour point, fuel w ill not flow in lines or pum ps. The The use of fuel with a pour pour point point above the minimum expec expected ted a mbient temperat ure is not r ecommende ecommended. d. Fuel hea ters will often solve cloud cloud point point problems proble ms but not pour point point problems problems unless applied applied t o the entire fuel storage volume.

20  

The follow follow ing a re severa l suggest io ions ns for a pplying pplying fuel heaters: •

Use fuel fuel heaters when the am bi bient ent temperature is below the fuel cloud point. point. Ma ny t ypes of of heat ers ca ca n be used. Heat the fuel before before the first filter in the fuel system. D o not not use

 fuel he  fuel heate aterr s whe when n the am ambie bient  nt  tempe temperr atur ature e exce xcee eds 15° 15°C C (60° F ). T he maximum maxi mum fuel te tempe mperr atur ature e at the out utlet let o off th the e fu fue el he h eater mu must st n ne ever  exceed 72°C (162°F). •

Use heaters capa ble of handling the ma ximum fuel flow flow of the engine. The The restriction created must not exceed the ma ximum ximum allowa allowa ble. ble.



Coolant Coolant may be be ta ken ken fro from m ta ps on the engine when using the engine as

a heat sourc source. e. Care must be ta ken ken to a ssure tha t coo coolant shunting t o one system does not adversely affect another system, system, and tha t both both ha ve a dequa te flow. flow.

Caution: F ailed ai led wate waterr so sour ur ce ced d fuel heate hea terr s can i ntr oduce exce xcessi ssi ve water  i nto the engi ng i ne fue fuell syste system m and cause injector failure. Maintenance responsibility of this type of heater must  be cle clear arly ly d de efi ne ned. d. When fuel heat ers a re used in a mbient temperat ures be belo low w 0° C (32 (32°° F) F),, star t t he engine a nd run a t low low idle until the engine tempera tu re rises slightly. This This a llo llows ws h eat tra nsfer to the fue fuell befo before re high fuel flo flow ra tes a t h igh power power output oc occur cur,, reducing fuel filter w a x plugging.

21  

Useful Use ful F Fue uell Formulas a and nd Data The following following informa tion can be useful in sizin g fuel cool coolers ers a nd h eat ers:

Specifi Spe cific c Gr Gravity avity (SG) and De Density nsity AP I G ra vity = (141.5 141.5/ /SG ) - 131.5 131.5 SG = 141.5 141.5/ /(AP I G ra vity + 131.5 131.5)) S G = __________ Density 998 kg /m 3

D ens it y (kg/m 3) = S G x 998 k g /m 3 1 lb m /ft 3 x ________ 1 ft ft3 Densit y ((lbm/ lbm/ga l) = SG x 99 998 8 kg k g /m 3 x ___________ 16.02 16. 02 kg k g /m 3 7.4 7.48 8 ga l

Mass Mas s Fl Flow ow Rate 3 • te _(L/ min 1m __ ___ _ _ _ x _Flow ____ ___ _Ra _____ __ _____ __ __)_ 3 M (kg/sec) = D ensi en sitt y (kg/ (kg /m ) x 1 0 00 L 60 (s ec/m i n )

• M (lbm/min) mi n) = D ens it y (lbm/ga l) x Flow R a te (ga (ga l/min )

Specific Heat (cp) The following table shows typical specific heat values for two different API gravity fuels in B tu /lbm-° F: 100°F

140°F

180°F

200°F

240°F

API Gravity

(38°C)

(60°C)

(82°C)

(93°C)

(115°C)

30

0.463

0.482

0.501

0.511

0.530

40

0.477

0.497

0.516

0.526

0.546

1 B tu /lbm-°F = 4.186 4.186 kJ /kg-° kg-° C Heat Rejection • Q (kW) = M (kg /sec) se c) x cp (kJ /kg kg--° C ) x  ∆ T (° C ) • Q (B t u/min) mi n) = M (lbm /min) mi n) x cp (B t u/lbm -° F) x  ∆ T (° F)

22  

Burning Used Crankcase Oil With legislat ion a nd ecologic ecologicaa l pressures, it is becoming becoming in creasing ly difficult to dispose of of used oil. Bu rnin g of used cra nkcase oil in 3600 engines is nott reco no recomm mm ended due to the detrimenta l effec effects ts on exhaust emissions. However, if ancillary methods of reducing exhaust emissions to acceptable limits are used, or if emissio emissi ons a re not a proble problem, m, burning crankcase oil in 3600 engines is possible wit h t hese guidelines guidelines:: •

Only diesel diesel engine cra nkca nkca se oils ca n be mixed with the diesel engine fuel supply. The The r a tio of used oil t o fuel must not exceed 5%. Premature filter plugging plugging w ill occ occur ur a t higher ratios. Un der der no cir cumstance cumstancess

 sh d g as oli n e eoi nigls, i n spe e cr an k ca case se oi l,oul tr ansmi ssion o sp ecial hydr aul i c oi oi ls n ot cove coverr ed by  C ater ater pi llar r ecomm comme endati ons,  g r eases, cle cl ean i n g solvent sol vents, s, etc., be mi xed wi th th e di esel sel fu el . Do not use cra cra nkca nkca se oils oils co conta ining w a ter or an tifreeze from engine coolant coolant leaks or from poor poor st orag e pra ctices. ctices. •  Ade  A dequa quate te mixi ng iiss esse ssenti ntial al. Lube oil a nd fuel oil, oil, once once mixed, w ill combine combine an d not not separa te. Mix used cra cra nkcase oil with a n equa l am ount of fuel, fuel, filter, and t ta hen dd t re he new 5050-50 blend the supply nkabefore befo fuel is to a dded. This This procedure procedure w ill norma lly provide sufficient mixing. Failure to achieve a dequa te mixing will result in premat ure filter plugging plugging by slugs of undilut ed lube oil. oil. • Filter or or centrifuge centrifuge used used oil oil prio priorr to putting it in t he fuel fuel ta nk to prevent prevent premat ure fuel filter plugging or accelerat acce lerat ed wea r or plugging of fuel system par ts. Soot, Soot, dirt, met a l, and residue particles larger than 5 microns (.0002 (.0002 in.) must be

Caution: D i ese sell ffue uell day tank si ght   gl  glasse assess m may ay bla blaccke ken. n. Ash cco onte ntent nt of tthe he lube lu be oi l i n th the e fuel may also ca cause use mo morr e accumulation of turbocharger and valve depo deposi si ts. Continuous ontinuous Blending If the installation installation w arr ant s, us used ed lubricat lubric at ing oil ccan an be blended blended a nd used in th e engine in a co continuous ntinuous ma nner. The normal method uses a centrifuge module simila r t o Figure 8. The The following information describes the system: Centrifuge No. 1 En gine cran kcase oil oil is continuously continuously ce centr ntr ifuged ifuged excep exceptt w hen the clea clea n w ast e oil ta nk is low, low, at w hich hich time th e dirty wa ste oil oil is centrifuged centrifuged an d directed directed to the clean clean w ast e oil oil tank. Centrifuge No. 2 Dist illat e fuel fuel/ /oil oil mixtur e day ta nk is continua continua lly centr centr ifuged.

Metering Pump Adds up to 5%clean 5%clean w a ste oil to the distillate fuel (from the main supply ta nk) wh en the dayt a nk low low level switch calls for m ore fuel. Static Mixe Static Mixerr Runs w hen the metering pump is on on to insure a proper proper homogeneous homogeneous mixt ure of the fuel and clean clean wa ste oil. oil. The centr ifuge m odule is electr electr onica onica lly cont cont rolled an d includes th e components components wit hin the dotted line. Size the system for appropria te fuel delivery.

Reference Material SEHS9031  S pe pecci al I nstructions -

 S tor tor age R ecomm mme endat ndatii ons SEBD0717 D i ese sell F ue uell and Yo Your ur E ngi ne SEBD0640 Oil and Yo Your E ngi ngine ne LEKQ4219 E DS 60 60.1 .1 – F ue uell R ecomme commend ndati atio ons for  C ate ater pillar D i ese sell E ngi ne ness

removed.

23  

2

3

4

5

1

6

7

8

9

10

FUEL SUPPLY FUEL RETURN

11

12

13

14

15

16

3606 and 3608 Engines Fuel Flow Schematic 1. Fuel Filter Housings 2. Fuel Inlet Line 3. Unit Injector 4. Fuel Outlet Line 5. Fuel Return Manifold 6. Fuel Supply Manifold

9. Check Valve 10. Fuel Pressure Control Valve 11. Fuel Supply Line 12. Check Valve 13. Fuel Transfer Pump 14. Check Valve

7. Check Valve 8. Fuel Filter Change Valve

15. Fuel Priming Pump 16. Emergency Fuel Connection

Fig Fi gure 1 24  

2

1

3

4

5

6

8 7

9

10 FUEL SUPPLY FUEL RETURN

11

12

13

14

16

3612 and 3616 Engines Fuel Flow Schematic 1. Fuel Filter Housings 2. Fuel Outlet Line 3. Unit Injector 4. Fuel Inlet Line 5. Check Valve 6. Fuel Filter Change Valve

9. Fuel Return Manifold 10. Fuel Pressure Control Valve 11. Fuel Supply Line 12. Check Valve 13. Fuel Transfer Pump 14. Check Valve

7. Check Valve 8. Fuel Supply Manifold

15. Fuel Priming Pump 16. Emergency Fuel Connection

15

Fig Fi gure 2 25  

Fuel System Schematic

UNIT INJECTOR

PRESSURE REGULATING VALVE (RETURN FUEL) CHECK VALVE

SECONDARY FUEL FILTER ELEMENTS FILTER CHANGE VALVE

CHECK VALVE

SECONDARY FUEL FILTER ELEMENTS

EMERGENCY FUEL INLET (IF REQUIRED)

PRESSURE RELIEF VALVE (FUEL PUMP) MAIN FUEL PUMP

CHECK VALVE

CHECK VALVE HAND PRIMING PUMP

MAIN FUEL TANK

PRIMARY FUEL FILTER

Fig Fi gure 3 26  

   S    R   E    N    O   E    I    T   H    T   G    O   N    E

 .    O  .    K    Y    R    D   N    A    O   A    I    L    I    S    T   T    X    E    I    U   N    W   G    N    O   I    A   G    L   L    N    F   T    M   E    R   T    O    E   E    R    L    V   S    F    E    U   K    O

   Y    R    A   S    I    E    L    I    N    X   I    U   G    A   N    E    O    T

   F   N    E   A    T   T    A   Y    L

   T    N    E    V

   N    A    P    P    I    R    D

   L    I    D    T   A    S      I    D

   K    C    E    D    R    E    H    T    A    E    W

   A    L    H

   M    O    S    R   E    F   N    I    N   G    R   N    U   E    T    E   R    R   E    H    L   T    E    U    F   O

   E   E    L    F   T    A    A   L    B   P

   A    L    L    R

   E    E   V    R   L    U   A    T    A   V    R   L    E   O    P   R    T    M    E   N    T   O    C

   L    E    U    F   R    E   E    T   L    A   O    L   O    L    I   C    T    S    I    D

   E    E   N    I    E   V    G    R   L    N    U   A    V    S    E    S   G    E    N    I   O    R   N    P   T   D    A   E    L   L   T    E   U   N    U   G    F   E   U    R   O    M

   R    E    F    S   P    N   M    A   U    R   P    T    O    T

R

R

   G    N    R   I    E   T   L    T   A   I    C    H   O    E    M   E    O    M    R    E    H    T    K    N    A   E   S    T   N    I   E    Y   G    V    A   N   L    D   E   A    V    N    I   N   R    A    L    O    E   H   T    V   T   C    E   R   E    L   E   J    L   H   N    I    E   G    L    U   I    F   H   E    U    S   F    F    I   I

   N   P    M    E   U    V   P    I    R    D   R    E    E   F    S    N    I   N    G    A    N   R    E   T    O    L    T   I    O    L   L    E   E    U   U    F   F

   E    G    N    K    I   D    N    A   U    L    R   S   A    D    T    O    T

  m   e    t   s   y    S   y    l   p   p   u    S    l   e   u    F   e    t   a    l    l    i    t   s    i    D

   K    E   N    V   A   E   S    L   T   N   E    A   Y   I   V    V   A   G    N   L    D    I   D   E   A    O    N   N   V    N   I    A   R    O    E   L    H    E    L    T   T    V    C    O    S   E    L   R   E    L   L   E   J    L   E   H   N    I    A    G    I   L    T   U    S   F   H   E    U    N    I   F    I   S    I   F

   S

   M    1    P

   P    M    U    P    L    E    U    F    Y    C    N    E    G    R    V   E    R   M    E

Fig Fi gure 4 27  

   K    C    E    D    R    E    H    T    A    E    W    N    A    P    P    I    R    D

   P    P    A    M    O    L    U    T    H   P    S

   T    P    R    M    A   A    U    T   L    P    S   L

   L   P    E    M    U    F   U    P    E    T   R    E    M    A    L   F    L    I   S    T   N    A    S    I   R    D    T

   R    R

   E    T    G    A    I   K    L   N    L    L   N    E    L    T    I   U    A    T    F   T    T    S    E    I    S    D

   T    N    E    V    1    W    L    O    L    F    R    E    V    O    1    L

   1    T

   R

   1    T

   R

   N    A    P    P    I    R    D

   V    R

   I    P    S

   S

   R

   R    A    L    H

   I    P

   C    L

   E    E    T    A    L   C    I   K    L    E    N    V    L   U    I    A    T    F   R    T    E    S    I    S    D

   T    N    E    V

   S    E    R    T    E    A    L    N    I   K    T    U    S    B    I    D    L    E    O    U    T    F

R

   A    L    L

R

   I    P    E    P    M    G    U    U    P    F    I   Y    M    R    T   L    P    N    P    E    I    U    C    P    S

   E    G    D    K    U    N    L   A    S    T    O    T

  e   m   g   e   u    t    f    i   s   r    E    t   y    T   S   n    A    R    S   e  m    L   E    L   e    I   K    C   e   t    T   N   s   g    l    S    I   U    i   y    B   u    D    O    S    f    L    i    M    E   r      l    O    t    U   e    R    F   n   s    F   e   e    i    C    D    Y    L    l    P    N   e    P    O    U    I   u  .   S    T    F    O    C  .   E    U   e    F   G    S    t    T    O    I    F    U    P    M    R    U    T    P    N    E    C

   V    R

   L    E    U    F    R    E    E    T   T    A    A    L   E    L    I   H    T    S    I    D

   I    T    S    E    N    N    I    I    A    G    M    N    E    M    O    R    Y    R    F   A    I    L    I    N    X    R    U    U    T   A    E    D    R    N    A

   E    N    I    G    N    E

   S    E    N    I    G    N    E

   N    I    A    M    O    T

   Y    R    A    I    L    I    X    U    A    O    T

   E    E    T    G    A    L   U    F    R    I    I    L   E    U    T   F   T    S    I    N    E    D    C

   R    E    H    T    K    A    C    E    E    W    D

   T    N    E    V

   N    A    P    P    I    R    D

   C    L

   L    O    R    T    N    E    O    V    L    C    A    V    M    A    E    T    S

   G    N    I    L   D    N    A    U    C    O    O    L   S

 .   E    O  .   G    F   U    F    I    R    M    T    O    N    R    F   E    C

   A    L    H

   E    G    U    F    I    R    T    K    N    N    E    A    C    T    L    E    E    G    U    F   D    U    E    L    T   S    A    L    L    I    T    S    P    I    M    D    U    P    E    G    D    U    L    S    O    T

   l   a    i    t   s    i    D

Fig Fi gure 6 28  

RECIRCULATION PUMP

TO ENGINE

FUEL DAY TANK

DIRTY WASTE OIL

CLEAN WASTE OIL

FROM ENGINE

ENGINE OIL TO SUMP FROM SUMP

TRANSFER PUMP   CENTRIFUGE #1 STATIC MIXER

METERING PUMP FROM DISTILLATE FUEL STORAGE TANK

CENTRIFUGE#2

Module Schematic CentrifugeCentrifuge Module Schematic For Burning Used Crankcase Oil For Burning(Continuous Used Crankcase Oil Blending Method)

(Continuous Blending Method) Fig Fi gure 8

29  

 ® 

Engine Systems - Heavy Fuel Oil Heavy Fuel Usage Economic Studie Studiess Installation Costs Operational Costs Heavy Fuel Characteristics Viscosity Density Heating Hea ting Value Fuell Consumption Fue Consumption Corrections for Heating Heating Value and Density Sulfur Vanadium Micro Carbon Residue Asphaltenes Calculated Carbon Aromaticity Index As Ash h Catalytic Fines Water Heavy Fuel Specifications Blending of Heavy Fuel Oil with Distillate Fuel Oil Addresses for Fuel Oil Sample Analysis

 

Heavy Fuel Treatment Fuel Handling Systems Bunker Tanks Heavy Fuel System Components  T  Tra ran nsfe sfer Pu Pum mps Settling Tank Suction Strainer Centrifuge Supply Pump Preheater Centrifuges Centrifuge Centrifuge Si Sizing zing Sampling Points Sludge Tank Fuel Feed Systems System 1 Pressurized Fuel System Service Servi ce TankTank-Hea Heavy vy Fuel Service Tank-Distillate Fuel Heavy Fuel/Distillate Fuel Change Valve Suction Strainer Supply Pumps Fuel Cooler Pressure Control Valve Automatic Back Flush Filter Fuel Flow Meter Deaeration Tank Circulating Pump Pumpss Final Heater Viscometer Final Filter System 2 Atmospheric Fuel System Service Servi ce TankTank-Hea Heavy vy Fuel Service Tank-Distillate Fuel Heavy Fuel/Distillate Fuel Change Valve Fuel Flow Meter Mixing Pipe Suction Strainer Circulating Pump Pumpss Final Heater Viscometer Final Filter

Burning Used Crankcase Oils Unit Injector Tip Cooling Separate Sepa rate Circuit Tip Cooling Circulating Tank Strainer Circulating Pum Pumps ps Heat Exchanger  T  Te emperat rature Reg Regulat lating ing Valv lve e Series Circuit Tip Cooling Lube Oil Recommendations Lubricating Oil Centrifuging Start/Stop Procedures Low Load Operation  T  Tu urbo rbocha charge rger Wash Engine J acket acket Water Water Preheating Preheating Fuel Filter Preheating Performance Ratings Heat Rejection Air Flow Exhaust Backpressure Reference Material

 

Heavy Fuel Usage Ca terpilla terpilla r 3600 3600 engines engines a re designed to op opera era te on h eav y fuel oils. Fuel oil cost cost represents 6060-90%of 90%of th e opera opera tin g expenses of an engine. Therefore, reducing t he cost cost of the fuel oil by burning h eavy fuel ca ca n m a ke eco economic sense. The The C a terpilla r 3600 series engine has been been designed to burn Fue uell CI MAC K -55 fuel oil (see H eavy F Characteristics for for importa nt informa info rma tion) wh ic ich h ma ximizes ximizes th e sa vings potentia l for fuel oil oil costs. costs. Ca terpilla terpilla r Special Special Inst ruction ruction RE H S 0104 (7/97) ent it led G ui uide delili ne ness for  for 

 3600 H eavy F ue uell Oi Oill (H F O) E ngi ne ness conta conta ins very deta ile iled d informat ion ion on using h eav y fuel oil. However, some some of the man dat ory a tta chments listed listed in in section 5 are not applicable for marine

I nsta nstall llation ation Cos Costs ts Typical inst a llat io ion n costs costs for a h eavy fu el a pplicat pplicat io ion n r a nge fr om 2525-85%more 85%more tha n d istillate fuel a pplic pplicaa tions. T The he a dditiona dditiona l insta insta llation cos costs ts a re a result of addit io iona na l equip equipment ment required t o trea t the hea vy fuel an d lube oil. oil. Some of of this equipment includes: • Additio dditional nal ta nks • Additiona dditiona l fue fuell oil oil tra nsfer pump pumpss • Fuel oil separa separa tors • Fuel oil oil co conditioning equipment equipment (boost boost er m odule) • Lube oil sep separ ar at or • Tank heater • Stea m system or or elec electric heat heat ing system • Insulatio Insulation n and heat tracing tracing o on n fuel oil piping • Additiona dditiona l equipment equipment o on n engine

propulsion prop ulsion a pplica pplica tions. 3600 Heavy Fuel Engines Valve rotators

Standard on all engines

Special valve material

Standard on heavy fuel engines

Recessed exhaust valves

Standard on heavy fuel engines

Watercooled exhaust valve seats

Standard on heavy fuel engines

Increased air flow components

Standard on heavy fuel engines

Lower inlet air temperature

Standard on heavy fuel engines

Inlet manifold air temperature control

Required for heavy fuel engines for extended low load operation

Cuffed liners

Standard on all engines

The 3600 engine philosophy has been to offerr eng ines optimized for fuels offe including inc luding crude, crude, distilla distilla te a nd hea vy fuel oils. Components in the engine are changed t o optimize optimize relia relia bility bility a nd efficiency effic iency.. S ome of of t he component component s t ha t a re cha cha nged for for a heavy fuel engine are:

E co conom nomiic Studies While ther e is a potentia l for for lower fuel costs, there are a number of trade-offs when operating on heavy fuel. These tra de-o de-offs must be evalua ted aga inst the fuel oil oil savin gs. Some of the t ra de-offs de-offs

Operational Costs The cost cost of opera opera ting a hea vy fuel plant is genera genera lly lower lower t ha n operating operating a distillate plan t because of the lo lower wer fuel costs already described. However, there a re a num ber of of additional costs costs tha t must a lso be considered: considered: • Additional dditional operators operators to mainta in a dditiona dditiona l equip equipment ment • Greater spare spare parts usage usage as a re resul sultt of more more frequent overhaul int ervals • Increased Increased downt downt ime as a result result of more frequent frequent overha overha ul intervals • Additiona dditiona l lube o oil il co costs a s a result of contamination • More More educat educat ed o operators perators to service service more sophisticated equipment

fo forr opera opera ting on h eavy fuel versus versus distillate fuel include include increased increased ca pital costs, costs, reduced engine component component life, higher ma intena nce co costs, shorter t imes between overhaul overhaul a nd increased personnel costs. 33  

Heavy Fuel Characteristics

2. Find 380 380 cSt on the ve vertic rtical al a xis xis and draw a horizo horizonta nta l line line throu through gh tha t point.

Viscosity

3. Find the intersec intersection tion of the two lines. lines.

Viscosity iscosity of a fuel oil is a mea sure of the fuel’ss resista nce to flow. fuel’ flow. In other w ords it is a m easu re of th e cconsistency onsistency or or thickness of the fuel oil. P roper roper viscosity viscosity can a id th ccombustion ombustion process process by helping toeinsure the proper spray pat tern from th e injector injector.. Incorrect viscos visc osity ity ca n cause increased t herma l or mecha mec ha nical nical loa loa ding on a number of engine components. components. The r equired injectio injection n v iscosity iscosity of heavy fuel is 10-17 cSt (injection temperature not t o exceed exceed 135° 135° C). To obt obt a in t he proper injection temperature the heavy fuel must be heat ed prior to injec injection. tion. Referr t o Figure 9 to determine Refe determine t he a pprox pproxima ima te injec injection tion t empera empera ture. Example: Determine the injection temperature for a fuel oil oil wit h a viscosity viscosity of 380 380 cSt cSt a t 50°C. Solution: 1. Find 50 50° C on the ho horiz rizo ontal a xi xiss and draw a ve vertic rtical al line through through tha t point.

4. Draw a line line para para llel llel to the fuel fuel lines lines in the chart thr ough th e intersection intersection point point . A line alr ead y exists for 380 380 ccSt St fuel at 50° 50° C (IB F 380) 380). 5. Draw two horiz horizo ontal lines, lines, one one thr ough t he 17 cSt point point on the verticaa l axis an d one vertic one through the 10 cSt point on the vertical axis. 6. Where these these tw o lline iness intersec intersect t he 380 380 ccSt St fuel li line ne dra w vertica vertica l lines to determine the upper upper a nd lower temperature limits for injection. 7. For this exam exam ple ple,, the lo lower wer injec injection temperat ure limit is appro approximat ximat ely 127°C 127°C an d th e upper upper limit is 148°C 148°C . Since injec injection tion temperat ure ma y not exceed 135°C, injection viscosity would be limited to between 13 and 17 cSt. 8. Note Note tha t the visc visco osity of of the heavy fuels shown in Figure 9 are for ty pic picaa l fuel o oils. ils. A fuel sa mple must be obta obta ined wit h t he viscos viscosity ity measured at a minimum of of two points (ideally 95°C and 50°C) to determine th e tr ue viscos viscosity ity char a cteristics of of the fuel oil. oil.

34  

Figure 9 35  

Density

lat ent heat of vaporizat vaporizat io ion n of of the wa ter vapor formed during the combustion process. Since this water vapor is not condensed in a diesel engine the latent hea t is n ot recovered, recovered, so the low low er heat ing va lue o off the fuel is used used a s a reference for for fuel consum consum ption. It is importa impo rta nt t o insure insure tha t competitive competitive fuel fuel consumption consumption dat a reference referencess a similar heating value to get get a n a ccurat e comparison.

The density of a hea vy fuel o oil il impacts fuel sepa sepa ra tor efficiency efficiency.. Conventiona l separ sep ar a tors ca ca n ha ndle fuel fuel oils oils with a 3 den sit y u p to 991 kg/m at 15°C. New  types of of separa tors such such a s Alfa Alfa L ava l’ l’ss ALCAP u nit can ha ndle heavy fuel oils oils 3 w ith a densi ty up t o 1010 1010 kg/m at 15° 15° C. The density ofoil a hea vy fuel o oil il w will influence fuel consumption consumption hena lso comput comput ing t he volume of fuel consum consum ed.

Heating Valu Value e

Heavy fuel typically has less specific heating value tha n light ccrudes rudes and distillates. Hea vy fuel also ha s more sulfur,, free wa ter a nd sediment not sulfur contr contr ibuting to hea ting va lue. Figure 10 10 shows a n exam ple fo forr t he decrease decrease in heat ing va lue fo forr both specific specific gra vity and percent sulfur.

There are tw o heat ing values for for a ny given fuel oil: the gross heating value, wh ich ich is also referred referred to as the t ota l heat ing value or or higher heating va lue, and the net heating va lue, lue, which which is also referred to a s the lower lower hea ting va lue. The gross heating value includes the

Heating Btu/lb Value

Heating Value kJ/kg 46,540

20,000

Higher Heating Value

19,250

4% 3%

18,500

0% 2% 1%

4%

Sulfur 43,050

17,750

Lower Heating Value

44,795

3%

0% 2% 1%

Sulfur

41,305

17,000

39,560

16,250

37,815

15,500

36,070

API 40 38 36 34 32 30 28 26 • • • • • • • • .8 2

.84

Figure 10

.86

.88

.90

24 •

22 20 18 16 • • • • .92

.94

S ec eciif ic ic Grav Graviit at 60˚ 60˚ F

.96

14 •

12 • .98

10 • 1.00

8 • 1 .0 2

36  

The following table compares the specific gravity and heating value of four different density fuels. Viscosity Redwood 1 cSt 50°C

API° Gravity

Specific Lower Heating Value Gravity Btu / lb kJ / kg

Density

Type

%S

lb / gal

g/L

IBF 180

2.5

1500

180

16

0.96

17 225

40 065

8.0

960

Crude

1.0

Alaska

Heavy

17

0.89

17 900

41 635

7.4

890

No.2

0

40

---

34

0.85

18 280

42 520

7.1

850

Crude

0.5

North Sea

Light

36

0.84

18 280

42 520

7.0

840

Fuel Consumpt onsumption ion Corrections Corrections for for Heatin eating g Value Value and Dens Densiity

I BF 180 cSt @40, @40,06 065 kJ /kg (17,225 ,225 Btu/lb) Btu/lb) lower heating value

Ca terpillar terpillar uses a stan dard lower hea ti ng va lue of 42,78 42,780 0 kJ /kg (18,390 (18,390 Bt B t u/lb) for a ll 3600 engin e fuel consumption consumption data . Ba sed on on a given fuel’ss low fuel’ low er hea tin g va lue it is possible possible to calculat e the corrected fuel consum consum ption of a n engine. As As a n exam ple, ple, the fol following lowing t a ble shows a 3606 3606 engine’ engine’ss

203 g 42,780 kJ /kg 325 kg 1500 kW-hr x ______ x ____________ = 325 kW-hr kWhr 40,065 kJ /kg

specific spec ificrdfuel consumption consumption ba sed onvalue. t he sta nda reference refere nce lower lower heat ing Power

Specific Fuel Consumption

Lower Heating Value

1500 bkW 2000 bhp

203 g/kW•hr .334 lb/bhp•hr

42,780 kJ/kg 18,390 Btu/lb

To corr corr ect t he specific fuel consum ption to a different different lower heat ing value the fol following lowing formula is used: LHV _____________ corrected corrected bsfc = ra ted bsfc x standard actual LHV

B a sed on on t his formula formula it is a lso possibl possiblee to calculate the amount of fuel consumed fo forr va rious rious fuels in a similar a pplic pplicaa tion to compare fuel costs. The following calculat io ions ns use th ree of of the fuels from the preceding preceding ta ble to show show the a mount of fuel consumed by weight and by volume for for t he 3606 3606 engine shown above:

x_______ 1000 325____ kg_ = 339 ___ ______ _______ 3 39 L 960 g /L 0.334 lb 18,390 B t u/lb 713 lb 2000 hp-hr x _______ x ____________ = 713 hp-hr 17,225 B t u/lb 713 lb__ = 8 __ ____ ____ ____ 89 9 ga l 8 lb/ lb /ga l

Al Alaskan askan Cr Crude @41,6 @41,635 35 kJ /kg (17, 7,90 900 Bt Btu/lb) u/lb) lower heating value 203 g 42,780 kJ /kg 313 kg 1500 kW-hr x ______ x _____________ = 313 kW-hr kWhr 41,635 kJ /kg 1000 x 313 kg ______________ = 352 352 L 890 g /L 0.334 lb 18,390 B t u/lb 686 lb 2000 hp-hr x _______ x _____________ = 686 hp-hr 17,900 B t u/lb 686 lb _________ = 93 gal 7.4 lb/ lb /ga l

No. 2 Diese Di ese l @42 ,520 ,520 kJ /kg value (18,280 Btu/lb) lower heating 203 g 42,780 kJ /kg 1500 kW-hr x ______ x _____________ = 306 306 kg kW-hr kWhr 42,520 kJ /kg 1000 x 306 kg ______________ = 360 360 L 850 g /L 0.334 lb 18,390 B tu /lb 672 lb 2000 hp-hr x _______ x ______________ = 672 hp -hr 18,280 B tu /lb 672 lb _________ = 95 gal 7.1 lb/ lb /ga l

37  

In the sa me combustion combustion system, more ma ss of of heavier fuel will be required because of lower specific energy. For exam ple, 325 325 kg of IB F 180 will be requ ired to produce produce 150 1500 0 kW• kW• hr vs 306 kg of No. 2 diesel.

Sulfur Fuel sulfur increases ring, liner, liner, a nd valve guide wear. Without engine modifications and with temperatures below belo w th e dew point of sulfuric acid, liner wear can increase ten times when fuel sulfur is increa sed from 0.6 0.6%to %to 3.5%. The The most effective t rea tm ent of fuel sulfur is t o keep keep the engine liner and valve stem temperature temperature a bove bove the dew point of sulfuric acid, neutralize a cids with high a lkalinity lube oils oils and ma intain high inlet ma nifold nifold air temperat ure during light load operat operat ion. ion. See Low Load Operation section. Coping wit h th e effects effects of fuel sulfur is not a simple ta sk. Even though the use of proper proper lubricant s a nd correct correct oil change int ervals r educes educes the degree of corrosiv corrosivee dam a ge, engine engine wea r w ill increase inc rease significa significa ntly when high sulfur fuels produce produce a cid products products du ring combustion. These acids chemically a tt a ck the engine ca ca using corrosiv corrosivee w ear. H igh TB TB N oils help to control control a cid corrosion corrosion but a lso conta conta in high er levels of a sh. Un fo fortun rtun at ely, ely, high a sh oils oils in the absence of high sulfur fuel increase deposit depo sit forma forma tion and w ear. Here are five steps to combat combat th e ccorrosive orrosive a nd deposit effects associated with fuel sulfur.

• Know the actua actua l fu fuel el sulfur sulfur co content of of each bulk delivery. delivery. Sulfur cont cont ent can chan ge with each delivery delivery.. Ha ve the fuel a na lyzed by your supplie supplierr or independent laboratory. Do not rely on published specific specificaa tions from t he fuel supplie supplierr t o determine the a ctual sulfur content content . • As a start ing point point fo forr selec selecting ting the correct TBN oil, follow the reco rec ommenda tions in th e a ppropriat ppropriat e ma intena nce gui guide de a nd Figure 11. 11. Let Infrared Analysis, ASTM Procedure D2896 results (performed every 250 op opera era tin g hours) and Trend Ana lysis of these data establish t he correct correct oil oil selection selec tion a nd cha nge inter va l. Trend Ana lysis of of the t est results is th e best best method to manage the oil selection and chan ge interval. interval. Infrared Ana lysis determines the a mount of sulfur products in the crankcase oil. ASTM STM D2896 D2896 measur es the a mount of alka line a dditive (TB (TB N) in t he oil to neutra lize a cids. • Use an Americ American an P etrole etroleum um Institute Institute (AP I) class CF engin e oil. The The oil must a lso meet the requirements of th e Ca terpilla r MicroMicro-Oxida Oxida tion Test Test (CM OT) OT) an d/or F ield iel d T Test est Qua lific lificaa tions. T The he percent percent a ge of sulfur in the fuel will affect the oil recommendations.

38  

The sulfur products products forma tion depends on the fuel sulfur cont cont ent, oil formulation, crankcase blowby, engine operating conditions, humidity, and am bient bient temperat ure. The The effectiveness effec tiveness of an oil oil formula tion w ill depend on the additive package. A bala nced nced a dditive package oil oil o off a low low ersulfur TB TB N neutra can belization more effective effec in fuel an dtive overall overall performance performance tha n some oils oils with higher TB TB N va lues which have additives just for increased TBN. • Adhere to a 250 operating hours oil oil Trend Analy sis progra progra m unt il the corr corr ect ect oil selection selection a nd cha nge interva l ha ve been been determined. After After selec sel ection tion and change interva ls ha ve been determ ined, cont cont inue t o: 1) 1) U se th e scheduled scheduled oil sampling (SOS ) program pro gram to monito monitorr a nd trend w ear meta ls (iron, (iron, cchromium hromium , lead) ca refully; refully; 2) U se Infra red Analysis Trendin g t o continua continua lly deter mine oil cond cond ition; 3) U se AST ASTM M D2896 to measure and trend reserve alkalinity (TB (TB N). • B e sure jacket acket wa ter outlet utlet temperature is above 85°C (185°F) to minimize sulfur sulfur a tt a ck. ck. Select Select t he prope pro perr t hermostat to be in the preferred range of 85°C-98°C (18°F208°F).

 A mini mi nimum mum i nitial ni tial T TB B N oi l o off 20 ti time mess the fue fu el su sulf lfur ur per per cent cent i s rre ecomme commended  nded  (within (wi thin the limits li mits o off oi oi l ava avaii lab labii li ty ty). ). T he mini mum T B N leve levell o off oi oi l i n the engi ne  sump i s ha half lf the i ni niti tial al T B N of the the ne new  w  oil (see F igur e 11) 11). Also see t he L ub ubri ri cating Oil sec section tion of th is G uide.

Vanadium Fuel van ad ium forms highly corrosiv corrosivee compounds during combustion. They meltt a t high temp mel temperatures eratures and at ta ck meta l surfaces, espe especi cially ally exha ust va lve faces. If the temperat ure is above  stiction temp tempe er atur ature e, the molten compounds compounds stick to th e valve fa ce, ce, remov remove e oxide oxide co coabo tings, nd a tt k molec mol ecular ular gra in bounda undaaries. Lea Leaack channels then fo form rm on t he valve fa ce, reducing va lve coo cooling ling from sea t cont cont a ct. This a ccelerat ccelerat es the va lve’s lve’s deteriora tion a s its tempera ture rises even even furt her. her. Va na dium ca nnot be eco economically nomically removed from hea vy fuel. T The he engine must be specifi specifically cally designed t o reduce van a dium effects. effects.

Micro Carbon Residue Micro Ca rbon Residue (MCR) is a measure of carbon deposit formation trends during combustion. combustion. Ca rbon rich rich fuels ca ca n lea d to more so soot ot an d deposits, deposits, wh ich ich a re source sourcess of of abra sive wea r a nd valve a nd t urbocha urbocha rger deposits. deposits.

Asphaltenes Asphaltenes a re la rge, heavy, hydrocarbon molecules containing heavy meta ls such such a s nickel, nickel, iron, iron, and van a dium. They They a re slower slower bur ning, a ffect ffect t he co combust mbust io ion n process, process, an d require regular exhaust-side exhaust-side turbine washing.

39  

 

TBN vs Fuel Sulfur for 3600 Family of Engines on Heavy Fuel 40 NEW OIL TBN FOR HEAVY FUEL

35

30

   6    6 25    9    9    8    8    2    2    D    D    M    M 20    T    T    S    S    A    A     —    N    N 15    B    B    T    T

USED OIL TBN LIMIT

10

5

0 0

Figure 11

1

2

3

4

5

FUEL SULPHUR - % WEIGHT

Fuel Sulfur - % Weight

Total Base Number (TBN) for Heavy Fuel E ngines ngines:: 3600 3600 engines opera opera ting on heavy fuel must use a n oil specif specifically ically blended for hea vy fuel engines. Oils for hea vy fuel engines a re specia specia lly blended for for use w ith lube oil ccentr entr ifuges; these oils oils must

50 TB TB N (by ASTM D 2896); 2896); how ever, the majority of Caterpillar experience is w ith t he 30 TB N a nd 40 TB TB N oils. oils. For 3600 3600 engines run ning on hea vy fuel, the minimum new oil TB TB N must be 20 20 times the fuel sulfur level level,, an d th e maximum TBN is 40 regardless of sulfur

be a ble to release release wa ter a nd conta conta mina nts by centrifuging centrifuging with out th e loss loss of of ad ditives. These oils oils ar e generally a vaila ble from from 20 TB TB N t o

level. Oils for for hea vy fuel 3600 3600 engines must a lso pass t he perfo performa rma nce requirements for commercially a vaila ble o oils. ils.

40  

C alculate alculated dC Carbo arbon n Aromaticity Index The C alculat ed Ca rbon Aromat Aromat ic icity ity Index (CC (CC AI) is an a pprox pproxima ima te indicat or of fuel combust combust io ion n chara cteristics. cteristics. This This index w a s developed develo ped by Sh ell Oil Co. It can be calculat calc ulat ed from from t he visco viscosity a nd density of th e fuel, using t he follo follow w ing formula : C C AI = D - [log log (V + 0.85)] 0.85)] - 81 Where: V = Viscosity of Fu el in cSt @ 50°C D = Dens ity of fuel in kg/m 3 @ 15° C Fuels with a CCAI greater tha n 84 Fuels 845 5 may cause engine dama ge. Co Consult nsult Ca terpillar terpillar for for fuels fuels with a CCAI greater tha n 845. 845.

Ash As h Ash can exist in fuels a nd become become suspended in oils. oils. Filterin g is the most effective effec tive met hod for for r emoval.

C at atalyt alytiic F Fines ines Refineries increasingly Refineries increasingly use cat alyt ic cracking cracki ng t o raise th e percenta percenta ge of distillate fuels from crude. The catalyst residue is is sma ll abra sive pa pa rticles rticles of aluminum and silicon. The particles pass t hrough media t ype fuel fuel filters, filters, cause da ma ge to fuel injection injection equipment, and increase ring a nd liner wear. Centr ifuging ca ca n remove a high percent perce nt a ge of ca ca ta lyt ic fines. fines. Tw Tw o centr centr ifuges ifuges in series ma y be required t o remove the particles to a safe level.

Water Wa ter exists in all fuels fuels an d can da ma ge fuel injection equipment. Remove water by settling in tanks a nd centrifuging. centrifuging.

Heavy Fuel Specifications Limits for fuel as bunkered: C I M AC d es i g n a t i on K 55 Viscosit iscosit y - cSt @ 50°C 700 D ens it y - kg/m 3 @ 15° C 10 1 0 Sulfur - %by weight 5 Va n a d i u m - ppm 600 Micro Ca rbon Residue - %by w eight 22 As p h a l t en es - % b y w ei g h t 15 Wa t er a n d S ed ed ime imen n t - %by %by w eeig igh h t 1. 0 Ash - %by w eight 0.20 Alum inu m - ppm 80 S ilicon - ppm 80 F l a s h p oi n t 6 0° C Limit s fo forr fuel a t injectors: injectors: Viscosit iscosit y - cSt @ 135° 135° C ma x 10-17 10-17 D ens it y - kg/m 3 @ 15° C 10 1 0 Sulfur - %by weight 5 Va n a d i u m - ppm 600 Micro Ca rbon Residue - %by w eight 18 As p h a l t en es - % b y w ei g h t 15 Wa t er a n d S ed ed ime imen n t - %by %by w eeig igh h t 0. 5 Ash - %by w eight 0.15 Alum inu m - ppm 3 S ilicon - ppm 3 Va n a d i u m /s od i u m r a t i o 10

Ble Bl ending o off H He eavy Fuel Oi Oill with Di stil Dis tillate ue uelloil Oil l T he blending oflate heavyFfuel oiOi l w ith distilla te fuel oil oil should be a voided. voided. It must n ever ever be at tempted on on site wit hout speccial equipment an d tra ined spe op opera era tors. If blend ing of the fuel oil is required, approval approval m ust be ob obta ta ined from th e factory a nd t he fuel oil oil supplier supplier..

41  

Addresses for Fuel Oil Sample Analysis F.O.B .A.S. .A.S. (Fuel (Fuel Oil B unker Analy sis a nd Advisory Advisory S ervice) ervice) TNTNT-Sky pak In tern a tiona l ((U U K) Limited U nit 6, Spitfire Est at e, Spitfire W Waa y, Hounslow, Middlesex, England, TW5, 9NW 9N W Att n: ACP 80 Code DRX Skypak Code CB10 If n o TNT TNT--Sky pak In tern a tiona l Ser vice is ava ilable, send send by air freight via Hea thr ow Airport irport to the a ddress above. above. Attn: ACP 80 CODE D RX SKYPAK SKYPA K CODE CB 10

For inside U.K. send to the following foll owing addres address: s: FOBAS c/o Ca leb Bret t La borat ory Limited Kingston Road, Leatherhead Su rrey KT22 KT22 7LZ 7LZ Alwa ys notify FOBAS by telex when sa mple is sent @ telex #: 895360 89536033-LR LR LON G.

Other Addresses: DNV Petroleum Services Inc. DNVPS OSLO DNVPS Verita sveien 1 NN-1322 1322 H ovik Norway phon e: 47 67 57 9900 fax: 47 67 57 9393 DN VPS ROTT ROTTER DAM Ha astrec astrechtstraa htstraa t 7 3079 3079 DC Rotterda m phon e: 31 10 292 2600 fax: 31 10 479 7141 DNVP S S INGAPORE DNVP INGAPORE 10 Science par k Dr ive D NV Technology Cen tr e

DNVPS TEANECK 111 Ga lwa y P lace Tea neck, NJ 07666 07666 U SA phon e: 201 833 1990 fax: 201 833 4559 DNVPS FUJAIRAH Fujaira Fuj aira h P ort P.O. B ox 1227 1227 Fujairah U AE phon e: 971 9 228 152 fax: 971 9 228 153 Review a na lysis results before Review before the fuel fuel is co consumed. Separa te supply supply ta nks are recommended. To esta esta blish fuel oil oil tr ends t he sa me laborat ory a nd/or test methods must be used.

Heavy Fuel Treatment Fuel uel H Handli andling ng Sys Syste tems ms Installation Recommendations for Heavy Fuel Item



40 cSt

> 40 cSt - ≤ 700 cSt

Minimum tank 2°C (36°F) temperature for pumping

10°C above pour point

Tank heating required

No

Yes

Minimum fuel

See Figure 1

See Figure 1

Normal fuel Steam and/or heating method electricity

Steam and/or electricity

Fuel Centrifuge

Yes

Yes

Fuel transfer pump

Engine driven

Off engine

Unit injector tip cooling method

Series tip cooling circuit required

Separate tip cooling circuit required

Remote mounted final fuel filters

No

Yes

Starting aid

Jacket water

Jacket water

temperature at injector to attain 10-17 cSt

Singapore 118224 phon e: 65 779 2475 fax: 65 779 5636

preheat to 45 C preheat to 65°C (113°F) (149°F). Fuel heated to proper viscosity Turbo wash for Yes exhaust turbine

Yes

Figure 12 42  

Separ at e newly newly bunkered hea hea vy fuel from previous bunkerin gs. The The fuel should remain separated until compat compat ibility ibility is esta blished. blished. Hea t a nd insulat e all hea hea vy fuel fuel pipi piping ng to allow allow fuel pumping pumping a t a mbient temperatures. Piping carrying heavy fuelbooster at injection the pumptemperature, suction and including recirculation lines, should be heat traced (either st eam or elec electr tr ic) ic).. Line hea tin g is a lso required when sta rting a cold cold engine on heavy fuel. Heat ed heavy heavy fuel fuel storage storage ta nks (bunker, bunker, sett sett ling, day a nd dra in ta nks) must be vented to at mosphere mosphere in a sa fe loc loca tion. Vents Vents must ha ve a flame screen, check check valve, closure closure (ma nua l vent shut off device) device) a nd drip pa n a s requ ired by classifica tion societies. societies. Inst a ll hea hea ting coils coils in all bunker ta nks to mainta in a tempera tempera ture of of 10° 10° C (18° 18° F) minimum a bove th e fuel pour pour point point . Hea ting coil coil sizing must consider consider heat tra nsfer nsfer required to raise the temperat ure of of the fuel in in th e ta nk in a given time frame (for example 0.56°° C /hr (1° F/hr ). T 0.56 The he r equ irem ent s t o ma intain the fuel fuel at its final temperat ure must be co considered. Norma No rma lly lly,, o only nly t he bunker ta nk conta conta ining th e fuel being being used is heated. T he others ar e unheat ed until rea dy for use. The externa l fuel system design ma y va ry from ship to ship. H owever, owever, every system must have clean clean fuel at t he correct correct visc visco osity a nd pressure a t the engin e. The The fuel mu st be free o off solid ma tter a nd wa ter. ter. In additio addition n to the harm poorly centrifuged fuel will cause to th e engine’s engine’s injection injection syst em, a high content content of wa ter ma y a lso cause serious serious problems with the fuel feed system components. Install well proven

Fuel trea tment co coo ordina tion responsibility must be clearly unders tood tood by a ll conc concerned erned ea rly in a project. Consider using a consultant. Ca terpillar terpillar w ill a dvise in a general sense but deta iled iled guida nce must be obta obta ined from vendors.

Bunker Tanks problems are Fuel compatibility eliminated by installing a suitable number of bunker ta nks an d a vo voiding iding mixing fuel from different bunkerings. Heating coils or bunker tank suction heaters should should mainta in a minimum temperat ure of 1 10°C 0°C (18° 18° F) abov abovee the bunkered fuel’s fuel’s pour point. point. Hea ting coil coil grids should be manufa ctured fro from m seam less steel p pipe ipe with a schedule 80 80 minimum w a ll thickness. thickness. U se welded welded joints in the heat ing co coil grids within the tanks. Heavy Fuel System Components

 S ee F i gur e 13 fo forr a sc sche hema mati ticc of tthe he  follo  fo llowi wing ng cco omp mpo one nents. nts. Trans Transfe ferr Pumps P rovide rovide tw o tra nsfer pumps (o (one in sta ndby) fo forr pumping from from the bunker ta nks to the se sett tt ling ta nks. Scre Screww-type type pumps minimize wa ter emulsific emulsificaa tion during tr an sfer ope opera ra tions. Arra nge the pumps for for a utomat ic op operat erat io ion n a nd size them t o fill fill the settling ta nk in 2 to 4 hours. The following pump design characteristics are provided for guidance: • Opera Opera ting pressure– pressure–to to suit co conditions of piping piping syst em • Operating Operating fluid fluid temperat temperat ure = 38° 38° C (100°F) • Visc isco osity for for sizing pump pump motor– motor– 1000 cS cS t • P ump Flow (L/ (L/hr) = 2.95 2.95 x bkW

equipment a nd compo components nents in th e fuel oil oil syst em. Follow Follow cent cent rifuge sizing recommendations closely.

43  

   N    A    P    P    I    R    D

   R    K    E    K    N    A    N    T    U    B    W    O    T   O    L    F    R    W    E    O    L   V    F   O    R    R    E    V    O    O

   K    N    L    I   A    T    O    L   W    E    O    U    F   L    F    R    O    T   E    V    O

   R

   K    C    E    D    R    E    H    T    N   A    A    E    P    P    I    W

   G    N    I   K    L   N    T   A    T   T    E    S    R

   1    L    A    L    H

   1    T

   P    P    M    U   M    P    V    R   R    1    E    P    F    S    S    N    A    R    T

   P    P    M    U    M    P    R    1    E    P    F    S    S    N    A    R    T

   R

   T    N    E    V

   1

   1

   T    P   R    P    M    A   A    O    M    A   P    L    U    T   L    T    U    H   P   S    P   S   L

   R    E    K    S    N    K    U    N    B    A    T    O    T

   V    R

   R    E    K    N    S    U    K    B    N    A    T    M    O    R    F

   G    L    I    )    I   N    S    N    R    E    O    O    E    N    L   I    I    E    E    T    G    I   L   T    S    U    U    N    D    F   N    O    E    D    O    A    O    O    I    O    B    C    M    (    T   V

   R

   A    R    L    L    R

   E    C    I   K    N    V    A    R    T    E    S

   R    D    T    N    E    V

   1    L

   1    T

   R

   S    L

   R

   1    L

   T    N    E    V

   1    T

   R

   G    N    I   K    L   N    T   A    T   T    E    S

   N    A    P    P    I    R    D

   R

   A   P    L   O    H   T    S    P    M    U    P

   T   A    R   L    A   L    T    S    P    M

   R

   E    G    D    K    U    L   N    A    S    T    O    T

   P    E    M    G    U    U    P    F    I    Y    R    T   L    M    P    N    P    E    U    C    S

   S

   P    E    M    G    U    U    P    F    I    Y    R    T   L   M    P    N    P    E    U    C    S

   1    P

   1    P

   S    1    P

   1    P    V    R

   V    R

   E    G    R    U    F   E    T    I    R    A    T   E    N    H    E    C

   E    G    R    U    T    F    I   E    R    A    T   E    N    H    E    C

   P    U

 .    V  .    C  .    S

   1    T

   K    N    L    I   A    T    O    L   W    E    O    U    F   L    F    R    O    T   E    V    O

   G    N    I    L   D    A   N    U    C    O    O    L   S

   S    L

   T    N    E    V

   L    I    K    O    N    L   A    T    E    S    G    E    I   N    I    D    L    T    M    T    E    O    S    R    F

   1    T

   K    N    A    T    E    G    D    U    P    L    M    S    U

   P

   L    O    R    T    N   E    O   V    C   L    A    V    M    A    E    T    S

  g   n    i   p    i    P   e   g   u  g    f    i   r   n    i    t   n   p    i    &   e      P    l    i   C    &   e    O    l    i    l    g   u    O    f   e    l   i   r   u    t   e    F    F   u  e   n    l    C   a   c    i   p   y    T

   L    I   K    N    O    A    L   T    E    E    S    E    I    I   C    V    D    R    E    O    T   S

   E    L    I    G    O   U    F    I    L   R    E   T    U   N    F   E    C

   E    G    D    U    L    S    O    T

   A    L    H

Figure 13 44  

Settling Settli ng Tank  U se two settling ta nks to obta obta in prope properr settling of so solids lids and w a ter in th e fuel fuel a nd t o separa separa te fuels of of different different bunkerings. Design Design t he ta nks to hold hold a 24 hour supply of fuel a t full engin e loa loa d operation. As As a guide, the sett sett ling ta nk volume should be:

The centr ifuge pump suction pipe must be kept kept a bove bove the sludge space and the sludge space fitted wit h a dra in valve. P rovide rovide the follo following wing a dditiona dditiona l connections: • Air vent (size (sized d to meet classific classificaa tion society requirements) • Overflo Overflow w pipe pipe

Volume (Liter s) = 5.9 x bkW Volume (ga llons) = 1.05 x bh p

•• St Filling Fill ing blowpipe pipe eam blo w-out, out, (fo forr tan k cleaning with steam) • Inspec Inspection tion manhole manhole and ladder ladder,, (if req uired) • Loca Loca l thermometer, thermometer, (in well) • High and low low tank lev level el alarms • P ump sta rt/stop level level switches • Fuel tra nsfer pump suction suction pipe pipe • Remote Remote and loca loca l so sounding, unding, (leve (levell gauges)

A typical settling ta nk design is shown shown in Figure 14. Baffle plates reduce fuel a gita tion iin n rough seas. seas. S lope lope the ta nk bottom to form form a sludge spa ce. ce. The The ta nk should be cofferda cofferda mmed from th e ship’s ship’s side and insula ted from therma l losses. losses.

Typical Arrangement of Settling Tank

VENT PIPE LED TO ATMOSPHERE AND FITTED WITH FLAME SCREEN AND DRIP PAN INSULATION MANHOLE TO OVERFLOW TANKS

R

FROM CENTRIFUGE

HLA PUMP STOP

FROM F. O. TRANSFER PUMP STEAM BLOW-OUT (BLANKED)

OVERFLOW FROM SERVICE TANK

PUMP START LLA

BAFFLE PLATE

STEAM VALVE

T LOCAL THERMOMETER

TEMPERATURE PROBE HEATING COIL R

TO CENTRIFUGE PUMP SUCTION

SLUDGE SPACE R SLOPED BOTTOM R

VALVES FITTED WITH REMOTE OPERATING GEAR (AS REQUIRED BY CLASSIFICATION SOCIETY)

TO SLUDGE TANK TO FUEL OIL

TRANSFER PUMP SUCTION

NOTE: The rules and re regulations gulations for fuel tanks issued by the classification society must be observed.

Figure 14

45  

The ta nk hea ting coil coil should should heat the fuel evenly evenly to the required temperat ure w ithin 2 to 3 hours. The The stea m supply must ha ve a temperat temperat ure regulating regulating valve to automa tically control control the ta nk fuel temperat ure.

Follow t he fuel oil Follow oil sepa sepa ra tor ma nufa cturer’s cturer’s recommenda recommenda tions for for t he supply pump.

The coil coil design must a void:

Preheater The preheater is normally sized based on the centrifuge supply pump capacity a nd the temperat ure rise required

• Locate Agita tion f the sludge sludge to heat ing. theoheating coil adue sufficient dista nce above the sludge collec collectin tin g space. • Fuel tempera tempera tures above above 75° C (167° F). • Heat tra nsfer nsfer per per unit unit surface surface area 2 a bov e 1. 1 W/cm (24 B t u/h r-in 2). Ca rbon rbon deposits deposits can form form on t he heat ing co coil at higher tempera ture levels.

betw be tw ee een n the settlingures. tank The ahe ndhea theting final ce centr ntr ifuge temperat T surface tempera tempera ture must a vo void id fuel cracking and be thermostatically controlled to maintain correct centrifuge temperature temp eraturess within within ± 2° C (± (± 4° F) F).. The The temperat ures are determined by fue fuell viscosity. Contact the centrifuge manufacturer for information regarding purificat io ion/ n/separ a tion of hea vy fu el w ith specific specific gravit ies above 0.9 0.991 91..

The follo following wing ta nk t empera empera ture information is provided for guidance

The follo followin win g ta ble indica indica tes t he required temperature at the centrifuge

only:

for var ious gra des of of fuel: Settling Tank Temperature

Fuel cSt @ 50°C 80 81-180 181-380 381-700

Centrifuge Temperature Ranges

Temperature °C (°F) 45 55 60 60

(113) (131) (140) (140)

Suction Straine Strainer Insta ll a duplex duplex strainer a head of the centrifuge supply pumps. It should include inc lude sta inless inless steel baskets w ith perfo perfora ra tions sized o protect protect th e supply pumps (a pproxima (a ppro ximattely 0.8 mm [1/32 in i n .]).

Centrifug ntri fuge e Supply Supply Pump P ump The pump m ust be electr electr ic icaa lly dr iven and mounted separately from the centr centr ifuge. ifuge. A high tempera ture resista nt screw pump is recommended. Size it for the viscosity viscosity being pumped and the design centr ifuge flow. flow. The The flow ra te th rough t he cent cent rifuge should not exceed exceed the m aximum fuel co consumption of of th e engin es by m ore th a n 18%. The The

Fuel cSt @ 50°C

Temperature °C (°F)

80 81-180 181-380 381-700

80 - 98 (176 - 208) 95 - 98 (203 - 208) 98 (208) 98 (208)

As a genera l rule the minimum hea ter capacity is: . = P

x T {M________ } 1700  ∆

Where: P = He H ea t r eq u i r ed , k W M = Ca pacity pacity of se separa para tor feed feed pum p, L /h r ∆T = Te m pe per a t u urr e r iiss e i n h eeaa t er er, ° C P = (M x S H x  ∆ T)

Where: P = He H e a t r e q u i r e d , B ttu u /h r M = C a pa pa ci ci t y o off s epa ra r a to t or ffeee d pu pump mp , lbs/ lbs /hr ∆T = Te m pe per a t u urr e r iiss e i n h eeaa t er er, ° F SH = Sp peeci f i c h eeaa t o off f u el , a ss ssum e

fo follo llowing wing pump chara cteristics ar e provided for for design g uida nce: • Opera Opera ting pressure pressure 5 B ar (75 (75 psi) psi) • Opera Opera ting Fluid Tempera empera ture 100°C 100°C (212°F) • Viscosity iscosity for sizing pump motor 1000 cS cS t

0.48 B t u/lb/ lb / F

46  

Centrifuges The fuel oil centrifug e, or separ a tor, must be sized sized in acco accorda nce wit h t he recommendations of the supplier. Install tw o automatic programm programm able centr centr ifuges ifuges a s shown in Figure 13. Tra ditiona lly fuel oil oil separa tors for heavy fuel have been been o operated perated w ith tw o

Example: Ca lculate lculate t he minimum separa separa tor syst em capa city for tw o 361 3616 6 eengines ngines operating a t 900 rpm w ith a publ published ished brake specific fuel consumption of 202 g/bkWbkW-hr. The The m a xim um continu conti nu ous ra tin g of th e engine is 460 4600 0 bkW a nd t he dens ity of th e fuel is 950 kg/m 3. A

in series asisa apurifier-clarifier purifier(the first centrifuge purifierclarifier removing entrained wa ter a nd the seco second centrifuge is configured as a clarifier by replaa cing repl cing t he gra vity disc, thereby a llo llowing wing remova remova l of solid solid conta conta mina nts). The current recommen recommen da tion is to use tw o separa separa tors in par par allel with controlled partial discharge of sludge tha t opera opera te on a continuous continuous basis.

contr co ntrbe olle lled d par tia l disc discha ha rge sep sepaa ra tor w ill used.

Centrifuge Sizing Ma jor jor fa ctors to consider consider wh en selectin selectin g fuel oil oil centr centr ifuges include the num ber of engines ope opera ra ting, engine ra ting, specific spec ific fuel consumption consumption a nd fuel density.. The density The minimum sepa sepa ra tor syst em capacity is determined using using th e following formula: Q mi n = N  x

[

(P x b x 24) 1.18 x __________ (R x t )

]

Where: Q mi n = minimum separa separa tor system system capa city (L/hr ) N = n um um b er of en g i n es P = M a xi xi m u m Co C on t iin nu uo ou s R a t in in g of engines (bkW) b = B r a ke k e s pe ci f i c f u eell cco on ssu u mp mpt iio on (g/ (g /b k W-hr ) R = D e n si si t y of t h e f ue uel oi l (k gg/ /m 3) (usee 950 (us 95 0 kg/ k g/m 3 for for t ypical ypical heavy fuel oil) t = D ai a i l y s epa rraa ttii on t i m e i n automatic service (hr) (23 for purifier-clarifier mode, 24 for contr contr olle lled d pa rtia l discharge separators)

marr gi n o off 18 pe perr cent (1. (1.18 18 iin n N ote: ote: T he ma the ab abo ove for for mula) al allows lows fo forr non-I non-I S O

N P b R t

= = = = =

2 en g i n es 4 6 00 b k W 196. 5 g /b k W-h r 950 k g /m 3 24 24 h ou r s

[

]

bkW x 196.5 g/bkW-hr g/bkW-hr x 24 hr) ______________________ _ Q mi n = 2 x 1.18 x (4600 3 (950 k g/ g/m m x 24 hr)

Q mi n = 2,245 L/hr

N ote: ote: The fuel consumption of  additio additi onal auxi auxilili ary e engi ngi ne ness o orr boi le lerr s that wi ll use heavy heavy fue fuell oil fr om the day  tank nee needs ds to t o be added to the mi mini ni mum  sepa  se parr ato atorr syste system m cap apac acii ty. ty. The number of separators required can be determined by dividing the minimum separ sep ar a tor system capacity ((Q Q m in ) by t he ma ximum flow flow of the sep sepaa ra tor for for th e given viscosity viscosity of the fuel oil oil.. Refer t o the separat or manufa cturer’s turer’s specifications to determine the ximum flo w visco t hrough sep a raa tor for amagiven fuelflow oil viscosity. sity. the All All sepa separ torsfor are derated from their rated capacity ba sed on th e viscosity viscosity of the fuel oil (refer to the t a ble below below for typical separ sep ar a tor de dera ra tes). tes).

Typical Separator Derates Fuel Oil Viscosity - cSt @ 50° 50°C C (122 ( 122° °F)

Separation Temperature °C (°F)

Maximum Throughput (% of rated capacity)

180

95-98 (203-208)

31

condi condi tio ti ons, we wear, ar, fue fuell contami contaminati natio on, etc. T he marg i n fo forr a fue fuell oi oi l se separato paratorr syste system m may be r educe duced d i f the cco ontami nant leve levels ls of th the e fue fu el oi oill ar e low and an al allowance lowance i s made ma de for for non-I non-I S O standard condi nditi tio ons. H owe weve verr , the r educe duced d marg i n re r equi quirr es  facto  fac torr y ap appro prova val. l.

380

95-98 (203-208)

26

460

95-98 (203-208)

22

700

95-98 (203-208)

18

47  

N ote: ote: F ollo ll ow th the e manufactur manufacture er ’s r eco comme mmendati ndatio ons i n det dete er mi mini ni ng the maximum throughput of the separator. U nde nderr no ccii r cum cumstanc stance es sh sho ould the thr oug ughput hput r ate of a se separ parato atorr exce xcee ed the manufactur manuf acture er ’s r ecomme commendati ndati ons ns.. Ca terpilla terpilla r r eco ecommends supplying a

Ca terpillar terpillar rec reco ommends operat operat ing the redundant separ separ at or during no norma rma l op opera era tion. The The th roughput of the separ sep ar a tors shoul should d be a djusted djusted so the tota l sep sepaa ra tor thr oughput is no more more th a n 1 110 10 perce percent nt of th e plant ’s tota l fuel consum consum ption. This This w ill increase t he efficiency effic iency of of ea ch separa tor. If one

minimum in of all oneapplications redundan t fuel oil oil for separator except single engine engine insta llat ions. ions. In t his ca ca se distill disti llat at e fuel fuel ma y be ma de ava il ilable able as a backup in in the event of a separ separ a tor failure.

sep separ ar a tor period is out o of op erat io ion n flow for a of n the extended off operat of tim e, the rema ining separa tor(s) tor(s) sho should uld be increased inc reased so the tota tota l sep sepaa ra tor th roughput is no more tha n 110 110 perc percent ent of the plan t’s t’s fuel oil co consum nsum ption.

Example: Selectt a fuel oil Selec oil sepa sepa ra tor w ith sufficient sufficient capa city to clea n 2,245 L/hr of 380 380 cSt @ 50° C (122° (122° F) fuel oil. The The followin g informa info rma tion is provided provided by the separa tor manufacturer:

The separators should be installed in a cco corda rda nce wit h the ma nufa cturer ’s recommendations. Ancillary equipment for the separ a tor should be provided provided or or a pprove pproved d by t he sepa sepa ra tor manufacturer.

Manufacturer Information for 133-0831 Centrifuge Module Group

Sampling Sampli ng Points Centrifuge efficiency is determined by ta king fue fuell oil oil samples upstrea upstrea m a nd do down wn strea m of each centr centr ifuge. Figure 15 is a typical typical a rra ngement.

Viscosity - cSt @ 50°C (122° (122 °F)

Capacity L/hr

Separation Temperature

Rated

16,000

-

180

4,400

98°C 98°C (208°F) ( 208°F)

380

3,000

98°C (208°F)

460

2,550

98°C 98°C (208°F) ( 208°F)

600

2,100

98°C 98°C (208°F) ( 208°F)

FUEL OIL PIPE GLOBE VALVE

6 mm (.25 in)

N ote: ote: C apa apacity city data iiss for examp xample le  purpose  purpo sess o only. nly. F ollo llow w tthe he se sepa parr ato ator  r  manufacture manufactur er ’s r ecomme commendati ndati ons to de dete terr mine mi ne actual capac capacii ty. Number of of separa separa tors = minimum separ sep ar a tor system capa ci city ty [Q m in (L/h r )]/ [ma ximum separ a tor ca pacity (L/hr)] Number of sepa sepa ra tors = (2,245 2,245 L/hr )/ (3,000 L /h r ) Number of of sepa sepa ra tors = 0. 0.75 75 sepa sepa ra tors rounded up to 1, plus one one redund a nt separator

DRIP PAN

Typical Sampling Connection

Figure 15 Sludge Tank  Locat Loc at e the sludge ta nk belo below a nd a s close as possible to the centrifuges (see Figure 16). The centrifuge sludge pipe must h ave a co continuous ntinuous down down wa rd slope slope

toward t he sludge sludge ta nk with no horizonta horizo nta l sec sections. tions. Insula te a nd hea t tr a ce lo long ng sludg e pipes. pipes. Fol Follow low th e fuel oil separa separa tors ma nufa cturer’s cturer’s recommendations for sludge system design and construction.

A total of two (2) 133-0831 fuel oil separ sep ar a tors would be required required for for t his example.

48  

Typical Arrangement of Sludge Tank CENTRIFUGE

LOCAL SOUNDING AIR PIPE LED TO ATMOSPHERE AND FITTED WITH FLAME SCREEN AND DRIP PAN.

MISCELLANEOUS DRAINS MANHOLE HLA STEAM BLOW OUT HEATING COIL TO SLUDGE PUMP SUCTION

SLOPED BOTTOM

Figure 16

THE RULES AND REGULAT REGULATIONS FOR FUEL TANKS NOTE: The rulesNOTE: and rregulations egulations for fuel tanksIONS issued ISSUED BY THE CLASSIFICATION SOCIETY MUST BE OBSERVED by the classification society must be observed.

  Sludge ta nk capa capa ci city ty is determined by: • Fuel cleanlines leanlinesss • Time between emptying • Number, Number, size size a nd type of ce centr ntr ifuges discha disc ha rging to the sludge ta nk including fuel oil, diesel oil oil a nd lube oil oil units . • Other sludg sludgee so sources urces using the tank The fina l volume volume of the sludge t a nk is normally determined by the system designer, designe r, ba ba sed on on consulta consulta tion with the ship’s operator and centrifuge manufacturer.

Fuel Feed Systems Two heavy heavy fu fue el oi l system systemss ar e descr descrii bed. bed.  S yste ystem m 1 is a pre pressur ssurii zed zed fue fuell de delili ve verr y   system  syste m typ typii cally use used d wi with th vi visc sco osi siti tie es  gr eate ater than 180 ccS S t @ 50°C . Syste S ystem m 2 is an atmosphe atmospherr i c fue fuell de d eli ver ver y system typically used used wi th vi sco scosi siti tie es up to 180 cS cS t @ 50°C . Consider a pressurized fuel delivery system for all heavy fuel systems

ga s fo forma rma tion in the fuel return lines from th e engines. As As discussed in th e fuell treatment system, heat t race and fue insulat e all hea vy fuel lines. lines.

System 1 — Pressurized Fuel System System (viscosities above 180 cSt @ 50°C, see Figure 17 on page 60). Service Tank-Heavy Fuel Trea ted hea vy fuel from the ccentr entr ifuges discha disc ha rges to th e service service ta nk. T The he ta nk a nd centrifuge piping piping should a llo llow w continuous centrifuge operation and also cont cont inuously fill the service ta nk. A tw enty -four hour fuel supply (a (a t full loaa d engine opera lo opera tion) in t he service ta nk pro provides vides a rea so sona na ble time for for ce centr ntr ifuge maint enance. Figure 18 depiccts a typic depi typicaa l service service ta nk. B a ffle plates reduce fuel fuel a gita tion in rough seas. The t a nk bott om is sloped sloped to form a sludge space. It sh ould also be cofferda cofferda mmed fr om the ship’s ship’s side an d insulated from thermal losses. The

supply pump suction pipe be kept a bo bove ve the sludge space space andmust the sludge space fitted with a dra in valve. P rovide rovide the following additional connections:

beca use of beca of th e possibility possibility of deteriorat ing fuel quality a nd t o minimize minimize the flow flow of fuel at high temperature. It eliminates

49  

• Air vent vent (size (sized d to meet Classifica Classifica tion Society Soc iety requirements) • Over Over flow flow pip pipee • Filling Filling pipe pipe • Stea m blo blow out out ((fo forr ta nk cle cleaning aning with steam) • Inspec Inspection tion manhole manhole and ladder (if req uired)

Fit the steam supply supply with a regulat regulat ing valve to aut omatically contr contr ol ta nk fuel temperature.

•• • •

Se Servi rvice Tank-Distillate Tank-Distill Fifuge uel uel is used A sep sepa ace ra te, a dditio dditiona na l ate ce centr ntr used to clean clean distilla te fuel. The The cent cent rifuge flow rate is normally selected to meet the requirement of the a uxiliar uxiliar y generat or dies diesel el pla pla nt. However, However, w hen heavy fuel main engines are used the ta nk minimum ca pacity should should include include a n a dditiona dditiona l 8 hour minimum suppl supplyy for for th e main engines operating operating a t full loaa d. Ta lo Ta nk design should be similar to the heavy oil service tank in Figure 18.

Loca Loca l and thermometer inelwell) High low low tank lev l(evel alarms Fuel tra nsfer pump suction suction pipe pipe Remote Remote and lo local sounding sounding (level ga uges) • Drain to sludge sludge tank

Depending on fuel viscosi viscosity, ty, the ta nk heat ing coil coil should should ma inta in approximately 60°C (140°F) fuel temperat ure during engine operat operat ion. ion.

Locat e the ta nk to keep Locat keep an a pprox pproxima ima te 42 kP a (6 psi psi)) positive positive st a tic hea d on th e supply pump inlet.

Typical Arrangement of Service Tank

VENT PIPE LED TO ATMOSPHERE AND FITTING WITH FLAME SCREEN AND DRIP PAN ANTI-SIPHON OPENING INSULATION MANHOLE OVERFLOW TO SETTLING TANKS HLA RETURN FROM DEAERATION TANK STEAM BLOW-OUT STEAM VALVE TEMPERATURE PROBE

BAFFLE PLATE LOCAL THERMOMETER

I

LLA

HEATING COIL R

SLUDGE SPACE R SLOPED BOTTOM R

TO SUPPLY PUMP SUCTION

VALVES FITTED WITH REMOTE OPERATING GEAR (AS REQUIRED BY CLASSIFICATION SOCIETY)

Figure 18

TO SLUDGE TANK TO FUEL OIL TRANSFER PUMP

Note: The rules and regulations for fuel tanks issued by the classification society must be observed.

50  

Heavy Fuel/Di Fuel/Dist stil illate late Fuel Change Valve This valve allows the system to be changed between heavy fuel and distillate fuel. The valve is normally remotely cont cont rolled from from t he engine room roo m by a pneuma tic or electr electr ic motor. motor. Limit sw itches on th e valve indicat indicat e the va lve po position sition mode. The The sw itches a re connected to indicator lights in the cont cont rol roo room. m. The The va lve body must be ma nufactured from cast st eel or bronze and t he valve trim a nd seals must must be suita ble for for t he temperat ure involved. involved. Include a ma nua l cco ontr ol override in the valve. Suction Straine Strainer Inst a ll a simplex simplex stra iner ahea d of of ea ea ch supply supp ly pump. It should be hea hea t t ra ced and have stainless steel baskets with perfora perfo ra tions sized t o protect protect th e supply pumps. The strainer body is normally ma nufactured from cast steel or or bronze.

Supply Pump Pumps s P rovide tw o electr electr ic motor driven supply pumpss with one arra nged as a standby. pump standby. A high temperat ure resista resista nt screw type pump is recommen recommen ded. Size it to deliver about 150%of the consumed fuel. The pressure losses losses in th e piping piping syst em including inc luding th e filter a nd flow m eter (if (if fitt ed) must be considered. considered. The following pump characteristics are provided for for design g uida nce for for pump selection: • Opera ting pressur e - 690 690 kP a ((10 100 0 psi psi)) • Operating Operating fluid fluid temperat temperat ure - 75° C (167°F) • Viscosity iscosity for sizing pump motor 1000 100 0 cSt • Flow - 150%o 150%off cconsumed onsumed fuel requirements

Fuel Coo C ooler ler An air cooled fuel cooler is normally inst a lled in the pump outlet line. This This

Pressure Control Valve The pressure control valve maintains consta consta nt fuel pressure pressure at the required level. leve l. Size the valve to return the following quantities of fuel to the pump inlet side: • With engin e(s) e(s) shut down - 100%o 100%off supply pump flo flow  w  • W ith eng ine(s) ine(s)flo a tw full loa loa d - 33%of 33%of supply pump flow  The valve must be adjusta ble and set between 350 and 400 kPa (51 to 58 psi).

Automatic Back Flush Automatic F lush Filter Fi lter An automatic back flush filter should be insta lle lled d in t he supply supply line to the deaeration deaeratio n t ank. Insta ll a bypass filter filter in para llel llel with th e automa tic filter filter to a ct a s a sta ndby ndby.. The The bypass filters should should not cause a pressure pressure drop in the system during the flushing cycle. The automatic back flush filter can also be insta lle lled d on th e hot side of the fuel oil conditioning conditioning module. modul e. It would then be loca loca ted a fter th e viscosity cont cont roller. roller. The following filter design characteristics are provided for guidance: • Fuel oil oil viscosity viscosity - to suit fuel specification • Operating Operating flui fluid d tempe temperat rat ure - 38° 38° to 150°C (100 to 302°F) • Flow - see supply pump flow  flow  • (145 Opera Operapsi) ting pressure pressure - to 1000 1000 kP a • Stea m jacke jacketed ted or iinsulated nsulated • Filter rat ing - back flush filter: 90% 90% separ a tion a bove 5 micron micron (mesh (mesh size 10 micron maximum) Filter r a tin g - bypa ss filter: 20 micron nominal and 35 micro micron n maximum • Maximum pressure pressure drop a cross cross filter at normal ope opera ra ting viscosity viscosity t o be approximately: cleaa n filter - 21 kP a (3 psi) cle dirt y filter - 85 kP a (1 (12 2 psi) a la rm - 152 152 kP a (22 psi)

prevents excessive recirculating system heat buildup wh en the supply supply pump is operating a nd the engine is is shutdown. The coole coolerr m ust be sized to dissipa te t he heat produce produced d by t he operat operat ing pump. The coole coolerr ma y not be req uired in a ll fuel oil oil system s.

Fuel Flow F low Meter Meter If used, locat locat e the flow met er betw ee een n the supply supply pumps and t he deaera tion ta nk. Insta ll iso isolat lat ion ion valves at t he inlet inlet a nd outlet outlet connec connections. tions. U se a ma nua lly cont cont rolled valved by pass for service. service. 51

 

Deaeration Tank  The deaeration deaeration ta nk is arr anged to collec collectt t he ga s/a ir ent ra ined in t he fuel. Equip the tank with a ve vent nt va lve a ctua ted by a level switch insta lle lled d in the tank, and insulat insulat e the ta nk. Ba se th e volume volume of the ta nk on about 10 to 15 15 minutes of operation operation wit h t he engine at

The following pump design chara cteristics cteristics ar e provided provided for for guidan ce in pum p selection: selection: • Design pressure pressure – 100 1000 0k kP P a (145 (145 psi) • Operating Operating fluid fluid temperat temperat ure – 150° 50° C (302°F) • Viscosity iscosity for sizing pump motor – 500 cSt

ha lflf-lo loaa d consumption. efore efore pr olonged olonged shutdowns, change th e Bsystem over over to distillate fuel to allow allow gra dua l temperat tempe rat ure equalizat equalizat ion. ion. Fit t he ta nk w ith t he follo follow w ing connections: connections: • Clean out out conne connectio ction n • Outlet Outlet valvedfo valvedforr servi servicce require requiremen ments ts • Filling Filling pipe pipe • Vent conne connectio ction n with aut omatic a ir pressure relief valve • Press Pres s ure ure ga u ge • Loca Loca l thermometer (in well) • Lo Low w lev level el alarm • Le Leve vell switch switch

• requirements Flow Flow – 4 times(minimum) consume consumed d fuel fuel

• F u el el ret ret u rn • Manua l controlle ntrolled d drain valve valve The ta nk should be capa ble of of 1000 1000 kP a (145 145 psi) working pressure a nd be a pprove pproved d by th e appropria appropria te Cla ssific ssifica tion Society Society rules a nd regulations.

As a general rule th e required minimum capacity of the heat er is:

Ci Circulating rculating Pumps Pumps Circulating pumps ensure the fuel injectors inje ctors ar e supplied supplied wit h sufficient sufficient fuel a t the correct correct visco viscosity a nd pressure. P rovide rovide tw o pumps with one for for sta ndby operation. A high temperat ure resistant screw type pump is recommended. Each pump must circulate circulate a t least four four times the ma ximum required fuel fuel consum consum ption. The The pum p discha rge pressure should be a pproxima pproxima tely 690 880 kP a (100(100-128 128 psi) t o allow al low for f or pressure losses losses in piping, heat ers, filters, a nd t he viscometer. viscometer. Adjust th e engine mount ed pressure va lve on on site t o supply 500-690 500690 kP a (73-100 73-100 psi) t o th e inject ors. The engine mount ed pressure va lve is used to regulat e pressure to the engine.

Fi Final nal He H eater ater The heat er must m a inta in a visco viscosity of 1010-17 cSt cSt a t th e engine injec injectors. tors. Increase Incre ase the outlet outlet tempera tempera ture a t t he heat er by approximat approximat ely 4 4°° C (7° (7° F) to compensa compensa te for piping losses betw een the engine a nd the heat er. er. Norma Norma lly two final heat ers are insta lle lled, d, ea ea ch ssized ized to ha ndle t he t ota l engine’s engine’s fuel flow. flow. The The heat ers can be stea m or electric electric..

P =

x T} {M_______ 1700  ∆

Where: P = Heat requ require ired, d, kW M = Ca pacity of circula ircula ting fee feed d pum p, L /h r ∆ T = Tempera empera ture rise in hea hea ter, ° C or or:: P =

{M x S H x  ∆ T}

Where: P = Heat Heat requi required, red, B tu/hr M = Ca pacity of circulating circulating feed feed pum p, lb /hr ∆ T = Tempera empera ture rise in hea hea ter, ° F SH = Specific Specific heat of fuel, fuel, assume 0.48 B t u/lb/ lb /° F The follo following wing heat er t empera empera ture rise can be used, used, assuming a temperat ure in th e service ta nk of 60°C 60°C (140° 140° F). Temperature Rise thru Heater Fuel

Temperature

Set the circulat circulat ing pump relief relief va lve high hi gh enoug h (900 - 965 kP a [130 - 140 psi])) to prevent fuel recirculat ing a round psi] the pump under n orma l conditions. conditions.

cSt @ 50°C 180 380 700

°C 50 71 83

(°F) (90) (128) (150)

52  

Viscometer A viscometer installed between the heat er outlet outlet a nd th e engine engine fuel fuel ma nifold nifold contr contr ols the final fuel hea ters. It must w ithstand the pressure pressure peaks peaks caused by th e engine fuel injec injectors. tors.

• Filter Filter rat ing - 5 micro micron n nominal nominal • Maximum press pressure ure drop drop across across filter at operating viscosity to be approximately: Clea n filter - 1 14 4 kPa (2 psi psi)) Dir ty Filt er - 84 kP a (12.0 12.0 psi) Ala rm - 103 kP a (15.0 psi)

The following fuel characteristics at the engine design • Visco iscoare sityprovided ra nge (a (a tfor injecto inje ctors) rs)guidance: 10-17 1017 cS t • Opera Opera ting fluid fluid temperat ure - 150°C 150°C (302°F) • Opera Opera ting pressure pressure -965 -965 kP a (140 (140 psi) For steam heat ed hea hea vy fuel systems the viscometer should automatically control the steam r egulating va lve, wh ic ich h is insta lle lled d on the steam inlet line to the heat er. er. If a n electric electric heat er is used, the viscometer visco meter should cont cont rol the conta cts tha t energize a nd deenergize deenergize the heat ing coils coils as r equired to ma inta in th e prope properr fuel temperat ure.

Fina Fi nall Fi Filte lterr Ca terpilla terpilla r supplie supplied d final filters are remote mounted mounted a nd insta lle lled d in the supply supp ly line directly directly a head of the engines. The filter ha ndles the t ota l circulated circulated fuel flow, and has isolating valves for element service on on ea ch filter can ister. The valve is normally in the center run position, position, but ca n be used to isola isola te ha lf th e elements for service. The The filter must be svided stea tea m with ja ja cketed cketed or or rentia heat tra ce ced, d,sure and provided pro a differentia diffe l pressure pres gauge and alarm, and a dra in connection. The following filter design characteristics are provided for guidance: • Fuel viscosity viscosity - 1010-17 cSt • Operating Operating tempe tempera ra ture - 38 38°° to 150 50°° C (100° 100° to 302°F 302°F ) • Flow Flow - see supply supply pump flo flow  w  • Opera Opera ting pressure pressure - 965 965 kP a (140 psi)

System 2 — Atmospheric Fuel System (Viscosities below 180 cSt @ 50°C, see Figure 19, page 61). Service Tank-Heavy Fuel See pa ge 49 under th e topic Pressurized  F ue uell S yste ystem m - Servi ce TankTank-H H eavy F ue uell. Service Servi ce Tank-Distillate Tank-Distill ate F uel uel See pa ge 50 under th e topic Pressurized 

F ue uell S yste ystem m - Se Serr vi vicce Tank-D i stillate sti llate Fuel. Heavy Fuel/Distillate Fuel/Distill ate Fuel Chang C hange e Valve See pa ge 51 under th e topic Pressurized 

F ue uell S yste ystem m-H He eavy F ue uel/ l/ D i stillate sti llate F ue uell C hange V Valve alve. Fuel Flow F low Meter Meter If a flow flow meter is used, loc loca te it between the service service ta nks a nd t he mixing pipe pipe.. P rovide rovide iso isolat ion ion valves at the inlet and outlet connec connections tions an d a valved bypass. Mixing Pipe The mixing pipe is is fa bricat ed from 200 to 300 mm (8 to 12 in.) diam eter schedule 40 sea sea mless pipe a nd collec collects ts the ga s/a ir entra ined in the fuel during star tup. Equip the pip pipee with a n a dequa tely sized vent vent line led directly directly t o a tmosphere tmosphere above the wea ther deck. Inst a ll a cco ondensat e tra p iin n the vent line. Insula te a nd fit the pipe pipe with a heating coil. B a se the volume of of th e pipe pipe on on a bout 10 to 15 minutes of ope opera ra tion with the

• Stea m J acketed acketed opera pera ting pressure pressure:: 150 150 psig of stea m 7 lbs/hr - In lin e 6800 B t u/hr - I nline nli ne 10 lbs l bs /h r - Vee 10,240 B t u/hr - Vee

engine at half-load consumption. Before prolo pro longed nged shut downs t he system is changed over to diesel oil operation. This allows allo ws fo forr gra dual t emp emperature erature equa lization. Fit the p pipe ipe wit h the following connections: 53

 

• • • • • • • •

Fuel oil filling filling F u el el ret ret u rn Valved alved drain Vent conne connectio ction n with co condensat e tra p Valved outlet Thermometer (wit h well) Heating coil Clean out out conne connectio ction n

Design th e mixing pipe pipe for for a pressure to suit th e height of the vent vent pipe pipe and approval by the applicable classification society.

Suction Straine Strainer Inst a ll a simplex simplex stra iner ahea d of of ea ea ch circulating circulating pump. It should should be stea m jacketed or or hea t t ra ce ced d a nd use sta inless inless steel baskets wit h perfora perfora tions sized sized to protectt t he supply pumps. The protec The str a iner bo body dy is norma lly ma nufa ctured from cast steel or bronze. bronze. Ci Circulating rculating Pumps Pumps See pa ge 52 under t he topic Pressurized  F uel uel S yst yste em -Ci r culat ulatii ng P ump umpss. Final Fi nal H He eater ater See pa ge 52 under t he topic Pressurized  F ue uell S yste ystem m -F i nal H eate ater . Viscometer See pa ge 53 under t he topic Pressurized  F uel uel S yste ystem m-V Vii sco scome mete ter  r . Fina Fi l Fi Filte Seenal pa ge lter 53runder t he topic Pressurized  F uel uel S yst yste em - FFii nal FFii lte lter  r . Burning Used Crankcase Oils See page 23 under th e heading Burning U se sed dC Crr ankca ankcase se Oi ls of E ngine  S yste ystems ms - Di stillate sti llate F ue uell Oi Oill in this guide.

Unit Injector Tip Cooling To contr contr ol erosion a nd d eposit eposit f orma ti on, th e unit injector injector tip is cool cooled ed for hea vy fuel opera opera tion. With With fuels up t o 40 40 cSt cSt @  serr i es ccii r cuit  ui t co 50°C, se cooling oling is pr ovided by routing combustion fuel through the injector inje ctor tip. The The engine is equipped w ith the required required hardwa re and a dditional dditional external plumbing is not required. Figur es 20 a nd 21, on on pa ges 62 a nd 63, show t he engine piping for series circuit tip cool cooling ing for a n in-line in-line a nd vee engin e respectively.

Separate Sepa rate C ir ircuit cuit Ti Tip p Cooling For hea vy fuels a bove 40 cSt @ 50° 50° C, a  sepa  se parr ate externa l co cool oling ing circuit is designed in t he injector injector to supply supply a nd circulate coolant around the tip. SAE 10W 10Wcoolant. lubricat ing oil is norma lly used for the A cooli cooling ng m odule must be used w hen t he engine is equipped equipped wit h se  sepa parr ate ate circuit tip cooling. cooling. Typical Typical schema tics a re shown in F igure 22, pag e 6 64, 4, for for a single engine insta insta llation an d Figure 23, 23, page 65, 65, fo forr mult iple iple engine usage a t t he end of this section. The module design should provide for coo coola la nt pressure a nd temperat ure measurement capability capability.. Eng ine co connections nnections are ma de at t he right front front of the engine. Opera te th e module Opera module when t he engine is running, r egardless of the fuel being being burned. B y continua continua lly supp supplying lying fresh cool coolaa nt to th e injector injector tips, high temperat ure degrad at io ion n of the co coolant is prevented. The module does not require operat operat io ion n before before engine sta rt up. The recommen recommen ded sepa ra te circuit injector inje ctor coo cooling ling syst em is shown in deta il in Fig ure 24, page 66.

54  

Typical Injector Tip Cooling Circulating Tank

AIR VENT LOCAL FILLING

HIGH AND LOW LEVEL ALARMS TOP COVER PLATE (REMOVABLE)

RETURN FROM COOLER

LOCAL GAUGE GLASS (AUTOMATIC CLOSE TYPE)

LOCAL THERMOMETER T

OUTLET TO CIRCULATING PUMPS

SLUDGE SPACE DRAIN CONNECTION SLOPED BOTTOM BAFFLE PLATE

Figure 25 Ci Circulating rculating Tank  Tank  A baffle plate isolates the coolant return from the circulating pump suction to minimize air entra inment in the suction suction piping (see (see Figur e 25) 25). S lo lope pe the t a nk bo bott tt om to form form a sludge spa spa ce wit h a dra in va lve. Locate Locate t he pump suction suction a bo bove ve the sludge space. P rovide rovide the following additional connections: air vent, filling pipe, access cover, local

Strainer Insta ll a simplex simplex sstra tra iner iner a head of the ci circulating rculating pumps a nd include a 400 micron (0.016 (0.016 in.) st a inless s teel basket. The The stra iner should should a lso ha ve a differential pressure gauge and alarm. The strainer body is normally ma nufa ctured from from cast iron iron or bronze. bronze.

thermometer, thermometer high anic d low lo wse) level m, ga uge glass (a, utomat clo close) a ndalar pump suction.

P rovide rovi de . two pumps withpumps one acting sta ndby ndby. Screw or gear fitt fitt edas a wit h a pressure relief relief valve a re recommen reco mmen ded. The The flow requ ired for each pump depends on th e engine model insta lle lled d a nd t he number of engines. engines. The coolant coolant flo flow w requ ired for ea ch engine is as shown in th e follo following wing ta ble, ble,

The inner ta nk surfa ces must be a ccessible ccessible for clean clean ing. Clea n it prior to filling fill ing th e ta nk a fter constr constr uction uction or repairs.

Ci Circulating rculating Pumps Pumps

C oolant F lo low w and H eat D Dii ssipa ssi pati tio on. Size the t a nk to prevent prevent overflowing verflowing due to therma l expansion expansion when the system is shutdown shutdo wn a s well as to mainta in a minimum circulating circulating vo volume lume wh ile op opera era tin g. I f one cooli cooling ng module is used

The following pump design characteristics are provided for guidance: • Design P ressure - 518 518 kP a (75 (75 psi)

for mult iple engines, proper proper flow levels must be ma inta ined when one or more engines a re isola isola ted for service. service.

• Opera Opera ting Tempe Tempera ra ture - 65° 65° C (15 (150°F 0°F ) • Visc isco osity for for Sizing Electric Motor Motor 1000 cS cS t

55  

Heat eat Exchange E xchangerr A hea t exchan ger is used in th e ccircuit ircuit wh en it is not practical to size the circulating circulating t an k lar ge enough enough t o remove remove the hea t a dded to the co coolan olan t from the injec injector tor t ip. Informat ion ion for t a nk sizing to remove remove the required a mount of hea hea t is included in the Distillate Fuel section of this guide.shell If a and cooler is required it can be either either tube or or plat e type, a nd include: include: • D ra r a in in s • Air ve vents nts • Zinc Zinc an odes (fitted in in ea ea ch head) The suggested ma teria l for for t he shell a nd tube heat excha excha nger is: • Shell - Steel • Heads - Cast iro iron • Tubes - 90/10 C uN i • Tube S heet s - 90/10 Cu Ni • Ba ff ffle less - Steel Steel The suggested mat erial for a pla te ty pe heat excha excha nger is: • Fra me - Mild Mild steel steel • P lat es (sea wa ter) - Tita nium or or aluminum brass; (Raw fresh water) Stainless steel • Nozzles Nozzles (sea wa ter) - St eel, eel, co coa ted; (fresh w a ter) - St eel, coat coat ed • Ga skets skets - Nitril Nitrilee Cla ssific ssifica tion soci societies eties ma y r equire a spray shield around the plates to prevent preve nt liquid spray ing on equipment or personnel. The hea t excha nger sh ould be sized sized ba sed on on th e follo follow w ing: Coolant Flow & Heat Dissipation Flow (minimum) Engine Model L/min (GPM) 3606 3608 3612 3616

36 48 72 96

(9.5) (12.7) (19.0) (25.3)

Dissipation kW (Btu/hr) 6 (20,472) 8 (27,296) 12 (40,944) 16 (54,592)

Tempe Tem perrature Reg R egulati ulating ng Valve

The following valve characteristics are provided for for gu ida nce: • Design pressure - 517 517 kP a (75 (75 psi) • Design temperat ure - 65° 65° C ((15 150°F 0°F ) • Ca st iro iron n or or bronze bronze body body

Seri Se rie es Circui rcuitt Tip Coo Cooli ling ng Eng ines opera pera ting w ith heavy fuel visco viscosities sitiesprovided up t o 40 40 with cSt cSt @a 50° 50 ° C a re not normally separate circuit injector cooling system. The fuel ci circulated rculated w ithin t he injecto injectorr t ip ma inta ins the p prop roper er tip temperat ure. The fuel flow ca n be found in Distillate Fuel sec section tion of th is guide. The The hea t rejec rej ection tion is the same a s in the separa te circuit tip cooling description.

Lube Oil Recommendations Lubrica nt s for 360 3600 0 heavy fuel engines depend on on th e fuel to be used an d w ill be evalua ted on on an individua l basis. See the L ub ubri ri cating Oil sec section tion of this g uide.

L ubri ubrica cating ting Oil Centrifuging A higher level of combustion products is introduced introduc ed into the lube oil oil wit h h eavy fuel operat operat io ion. n. Remote mount ed centrifuges are recommended. See the L ub ubri ri cating Oil sec section tion of this g uide.

Start/Stop Procedures The 3600 3600 E ngines a re designed to sta rt a nd stop on on hea vy fuel and t his is the preferred prefe rred pra ctice. ctice. Cha nging t o diesel diesel can r esult in incompat incompat ible mix mixtures tures in th e fuel system lea ding t o injec injector tor sticking. How ever, ever, in some some inst a nces it ma y be necessar necessar y t o use die diesel sel oil oil a nd depending on condit condit ions, use the following procedures.

Inst a ll a self-co self-conta nta ined tempera tempera ture regulat regul at ing valve with ma nual override override a s shown in Figure 24. 24. Selec Selectt t he valve to control control the t empera tur e of of th e ccoo oola la nt back to the circulating circulating t a nk at 50 to 65° C (122 (122 to 150° 150° F).

• shutdown Tempora empora ryfor shutdown engine less tha -n If12the less hours, theis ja ck cket et wa ter should be at least 65° 65° C (150° F).

56  

• E xte xtende nded d shutdo shutdown wn – If t he engine is shutdown for more tha n 12 hours and lesss tha n thr ee da ys, use the engine les jacket water heater. The fuel circula ircula ting syst em can be shut down or a djusted djusted to a lower temperat ure. If shut down down it must be heat heat tra ced to a llo llow w resta rt. S hut off the injec injector tor tip cool cooling ing circuit. B efore efo re t he e ised resta rted, th e fuel fue l must beengin circulat circulat a t t he prope properr visco viscosity unt il all part s of th e fuel syst em, including th e engine mounted fuel lines, have prope pro perr temperat ure a nd flo flow. w. • I nde ndefifini nite te shut shutdo down wn – If t he engine is shutdown for more more tha n three days (or for for a n un known leng th of time) it should be done done using dist illat e fuel. Sw itch the engine to distillat distillat e fuel 1515-30 min. before shut down to purg e the fuel system of hea hea vy fuel. Shutt ing do down wn on distillat e allows th e jjaa cket cket wa ter hea ter a nd fuel conditioning systems t o be shut shut off. Use th is proccedure when ma intena nce to the pro fuel handling equipment is needed, or w hen w ork on on t he fuel injectors injectors or or fuel lines is required. Operational constraints may require the a bove recomm recomm enda tions to be modified. modified. The importa importa nt considerat considerat ions ions th at must be adhered to are: • Circulation of of p prop roper er vis visco cosity sity fuel priorr to sta rtup. prio • J a ck ck eett w a t er h ea ea t in g a n y t ime ime t h e engine is is not running a nd hea vy fuel is in the system. If t he engine iiss shut d own for for a long long period peri od of of time w ith the fuel system op opera era tin g, th ere is the possibility possibility of a ma lfunctioning fuel injec injector tor lea king fuel int o th e cylinder. To a void th e possibilit possibilit y of hydra ulic lock, lock, ba ba r t he engine over wit h a cylinder pressure pressure indica indica tor valve open prior prior t o sta rtup.

Do not sta rt a nd idle the engine for for short perio periods ds to maint ain jacket jacket w a ter tempera tur e. This This w ill produce produce excessive excessive deposits depo sits in t he combust combust io ion n cha mbers and ga swa ys. Use the jacket acket w at er heater to mainta in jjacke ackett w at er temperatures.

Low Load po Operation Hea vy fuel with poo or ignition quality requires higher cylinder cylinder air temperat ure a nd pressure for for sa tisfactory ignition. This can be a significant problem at idle a nd light lo loaa d co conditions nditions in pie  pierr -to -to-pie -pier  r  operations. For these applications, the cool cooling ing syst em is modified modified to a t w o step inlet air temperat ure co contr ntr ol system regulat ing engine combustion combustion a ir temperature. At engine loads below 40% of ma ximum, a signific significa nt inc increase rease in th e tempera tur e of of compression compression is aofchieved. chieve This This a llo llow w s extended perio light d. load operation on heavy periods fuel ds wit hout switching to distillate fuel. Figure 24 is an estimat e of of time a llowed llowed a t par t loa loa d while usi using ng heavy fuel. If op opera era tion is expected expected beyond t hese times, provide provide the capa bility bility to op operat erat e th e engine on on dist illat e fuel. Sw itch-ove itch-overr must be done so th e fuel injec injectors tors a re never running wit hout fuel. fuel. The sha ded portion of of th e gra ph indiccat es the area w ith a tw o step indi coo cooling system t o heat the int a ke air. See th e section section in th is guide on on F r esh Wate Water  r  Cooling for cool cooling ing sy stem schema tics.

57  

3600 Heavy Fuel Operational Requirements 100

75

Unlimited Heavy Fuel Operation Permitted

hp %

50 Requires Two Step Inlet Air Temp. Control

25

0

F igure 26 26

No. 2 or MDO Required

0

6

12

18

24

Hours/Day Part Load Hours/Day at at Part Load Typical Typic al Turbocharger Washing Arrangement for In-Line Engines INLET HOSE

TURBO WASH SUPPLY

TURBO WASH RETURN

LEFT SIDE VIEW OF ENGINE

REAR VIEW OF ENGINE

F igure 27 27

Turbocharge urbochargerr Wash Heavy fuel engines are equipped for wa ter w ash ing of of the turbine side of the turbocha turboc ha rger. rger. Scheduled Scheduled w a shing a t 100 hour intervals removes deposits from the nozzlee ring and t urbine wheel a nd nozzl extends turbocha turbocha rger overha overha ul interva ls. To clean clean th e tur bocha bocha rger t he engine must op opera era te a t r educed educed load for 5-10 5-10 min.

A 137137-702 7024 4 t oo ooll gr oup is su pplied w ith each heavy fuel engine. Special Inst ruction ruction SE HS 9929 9929 de desc scribes ribes the wa shing proc procedure and provides provides a d at a sheet t o determine t he effectiveness effectiveness of th e process. process.

58  

Dry part icle icle cleaning cleaning of the t urbine side is also acceptable, allowing full load cleaning. cleaning. F or a dditiona dditiona l informa informa tion contact Caterpillar Inc.

Engine Jacket Water Preheating Hea t t he engine engine ja ja cket cket wa ter prior prior to sta rting on h eavy fuel. fuel. This This reduce reducess t he viscosity visco sity of the fuel in t he unit injector injector a nd a ids in sta rting. Turn Turn off the jacket jacket wa ter preheat preheat er when t he engine engine is running. Fuel Viscosity

Jacket Water Temperature

40 cSt cS t at 5 50° 0°C C > 40 cSt c St at 50° 50°C C

45°C (113°F) 65°C (150°F)



The ja ja cket w at er heat er is factory supplied when heavy fuel codes are selected. selec ted. The The hea ter is sized t o ra ise the jacket wa ter temperat ure to the required levell wit hin t wo hours. leve Additiona dditiona l informa informa tion is in t he Fresh Wate Wa terr C ooli ng S yste ystem m sec section tion of th is guide.

Fuel Filter Preheating When operat operat ing on heavy fuel with a viscosity visco sity a bove 40 cSt @ 50° 50° C, t he fina l fuel filter is st eam ja cketed cketed (or (or optional electr elec tr ic hea ters a re used) a nd off-engine off-engine mount ed. B efore efore th e fuel conditioning conditioning system is operated, the viscosity of the fuel in the filter housings housings must be reduced to 1000 cSt or less. This allows fuel to be pumped th rough th e filter wit hout collapsing collapsing t he elements. elements. Required fuel temperat ure an d heat -up time va ry depending on on fuel type and inst a llat io ion. n. Ta Ta ke ca ca re not to overhea overhea t the fuel or filter elements.

Performance See gu ide section section on E ngi ngine ne D ata for ra tings of heavy fuel burning engines. See gu ide section section on E ngi ne P er fo forr ma manc nce e for differences differences in ra ting condit condit ions for for heavy fuel engines. engines.

Rejection SeeHeat gu ide section sectio n on E ngi ngine ne D ata for heat rejec rejection tion dat a . It will differ differ from a distillate engine due to ra ting differences, injec injector tor tip cooli cooling, ng, a nd higher a ir flow flow required on on hea vy fuel engines. Air Fl Flo ow See gu ide section section on E ngi ne D ata. ata. To mainta in a lower lower exhaust exhaust va lve temperat ure the a ir flow flow is co considerably higherr t han a distillate highe distillate engine engine running at the same power power a nd rpm.

E xhaus xhaustt Back Backpr pre essur ure e The exhaust backpressure limit is 2.5 kPa (10 in. H 2O) w hen opera opera tin g on hea vy fuel due to the effec effectt of higher backpressure on valve temperature. The exhaust flow flow is higher for engines capable of of burning hea vy fuel tha n on engines configur configur ed for for dist illat e fuel (see note a bove on on Ai  A i r F lo low  w ). ).

Reference Material REHS0104 G uide ui deliline ness fo forr 3600 H F O

E ngine nginess SEBD0717 D i ese sell F ue uell and Yo Your ur E ngi ne Your E ngi ngine ne SEBD0640 Oil and Yo (Other P ublicat ublicat io ions) ns) AB S Notes on Hea vy F uel Oil (19 (1984 84)) American merican B ureau of Sh ipping ipping 45 Eisenha uer Drive P ara mus, NJ NJ 0765 07652 2 U SA Tel. (201)368-9100 Att n: B oo ook k Order Depart ment

59  

   K    C    E    D    R    E    H    T    A    E    W

   T    N    E    V

   E    G    U    F    I    R    T    N    E    T    C    N  .    E    V    O  .    F    M    O    R    F

   A    L    H

   A    L    L

   E    G    D    K    U    L   N    S   A    T    O    T    R    E    F    S   P    N    A   M    U    R    T   P    O    T

   R

   N    A    P    P    I    R    D

   E  .   C    I   K    N    O  .   V    R   A    H    E   T    S    1    L

   1    T    R

   1    L

   1    T    R

 .  .    R    O  .    V    D    V    O    /    E    L  .   G    A    O    V  .   H    F   C

   L    I   E    O    C    K    L   I   N    E   V    A    S   R    E   T    E    I   S    D

   N    A    P    P    I    R    D

   E    G    U    F    I    R    T    N    E    C  .    O  .    D    M    O    R    F

   R

   A    L    H

   G    E    N    N    I   I    T   G    A   N    L   E    U    G    N    E   O    R    E   D    E    R    T    U    S   N    U    S    E   O    M    R    P   E    L   V    E   L    A    U    F   V

   T    N    I    O    P    R    O    H    C    N    A    E    P    I    P    S    E    T    O    N    E    D   :    E    T    O    N

   K    N    A  .   T    O  .   W    D    O    L    O    T   F    R    E    V    O

R

   E    N    I    L    G    N    I    T    A    L    U    C    R    I    C

   A    L    L

   Y    R    E    A   S    I    N    O    I    L    I    T    G    X   N    U    A   E

   S    E    N    M    I    O    G    R    F   N    E    N    Y    R    R    U    I    T   A    I    E   L    X    R    U    A

   Y   S    L   P    P   M    P    U    U    S   P

   S    1    P

   M

M    1    P

   V    R

   1    P

   R    E   E    N    I   T    L    F   I    F

   S    S   R    A   E    P   T   -   L    I    Y   F    B

   )    L    A    N    O    I    T    P    O    (

   N    O    I    T   K    A   N    R    E   A    T    A    E    D

   1    P

   R    E    A    T    E    H    L    A    N    I    F

   1    T

   1    T    M

   M

   R    E    T    E    M

   1    T

   S

   N    I    A    R

   V    R    1    T

   1    T

   R

   l   e   m   u   e    F    l    t   e   d   s   y   u    S   e    F   z   y   m    d   i   r   r   e   e   t   z   s   u   e    i   s   i   r   y   u   S   s   v   s   e   l   s   y   r   e   r   e   e   D   r   P   v    P   l    l    i   a   e   c   D    i   p   y    T

   L    O    E    M    V    A   R    E   T   L    A    T   N    V    S   O    C

   V    R

   1    1    T    P

   W    O    L

   A    F    L

   1    T

   R    E    A    T    E    H    L    A    N    I    F

   P    F

   E    V    E   L    A    R    V    U    S   L    S   O    E   R    R    T    P   N    O    C

F

   A    N    I    F

   L    O    E    M    V    A   R    E   T   L    A    T   N    V    S   O    C

   1    P    V    R

   P    F

   R    E    T    L    I

   R    E    T    E    M    O    C    S    I    V

   W    O    L    F

   R    L   E    E   L    O    U    F   O    C

   P

   F    L    A    A    N    I    F

   R    O    S    N    E    S    E    R    U    S    S    E    R    P

   S

   1    P

   R    E    T    L    I

   S

   N    O

   

   D

   I    T    P    A   S    L   M    U    U    C    P    R    I    C

   M    F

Figure 17 60  

   K    C    E    D    R    E    H    T    A    E    W

   A    L    H

   A    L    L

   N    A    P    P    I    R    D

   E  .   C    I   K    O  .   V   N

   T    N    E    V

   E    G    U    F    I    R    T    N    E    C  .    O  .    F    M    O    R    F

   E    G    D   K    U   N    L   A    S   T    O    T

   R

 .  .    O  .   R   E    D   V   V    /  .   O    A    G   L    O  .   H   V    F   C

   T    H   R    E   A    S

   1    L

   1    T

   1    L

   1    T

   T    N    E    V

   R    E    F    S   P    N   M    A   U    R   P    T

   A    L    H

   E    G    U    F    I    R    T    N    E    C  .    O  .    D    M    O    R    F

   T    N    I    O    P    R    O    H    C    N    A    E    P    I    P    S    E    T    O    N    E    D

   O    T

   L    I    E    O    C   K    L   I    V   N    E   R    S   E   A    T    E   S    I    D

   N    A    P    P    I    R    D

   G   E    N    I   N    I    T   G    A   N    L   E    U    G   N    E   O    R    E   D    R   E    T    U   N    S   U    S   O    E    R   M    P    V    L   E    E   L    U   A    F   V

  :    E    T    O    N  

   K    N    A  .    T    O  .    W    D   O    O   L    T   F    R    E    V    O

   R

   E    N    I    L    G    N    I    T    A    L    U    C    R    I    C

   A    L    L

   Y    R   S    A   E    N    O   I    I   I    T   L    X   G    U   N    A   E

   S    E    N    M    I    O   G    R   N    F   E    N   Y    R   R    U   I    A    T   L    E   I    R   X    U    A

   R    E    T    L    I    F

   P

   L    A    A    N    I    F

   P

   F

   R    E    T    L    I    F

   l   e   u    F   c   m    i    l   r   e   e   t   e   m   u  s    h   e   y    t    F   p   S   s   s   y   e   o   y   r    S   r   m   e  e    t   p  v   y    A   r    h   i    l    l   e   s  e   a   v   o   D    i   c    l    i   m   e   p    t   y   D    A    T

   A    A    L

   F

   N    I    F

   R    E    T    E    M    O    C    S    I    V

   L    O   E    M    R   V    A   T    L    E   N   A    T    S   O   V    C

   M    F

   R    E    T    E    M    O    M    R    E    H    T

   N    A    P    P    I    R    D

   R

   T    N    E    V

   N    I    A    R    D

   1    P

   1    T

   R    E    T    A    E    H    L    A    N    I    F

   K    C    E    D    R    E    H    T    A    E    W

   L    O   E    M    R   V    A   T    L    E   N   A    T    S   O   V    C

   R    E    T    A    E    H    L    A    N    I    F

   1    T

   V    R

   1    T

   S    S    A    P    Y    B

   V    R

   1    T

   M

M    1    T

   1    T

   R    K    N    O   A    T   T    N    I    E

   E    P    I    P

   S

S

   A   G    R    U    D   D    L    S

   G    I    N    X    I    M

   N    O    I    T   S    A   P    L   M    U   U    C   P    R    I    C

Figure 19 61  

TOP VIEW OF CYLINDER HAED

12

13

14

5

6

13 11 14

12 10

9 5

4

6 3*

7 2* BYPASS FUEL 8

SUPPLY FUEL

1

3600 Fuel System Schematic With Series Circuit Injector Tip Cooling Model 3608 1. Fuel Transfer Pump (Eng. Mounted) 2. Hand Priming Pump 3. Fuel Filter Duplex Valve Shaft 4. Fuel Filters 5. Unit Injectors 6. Manual Drain Locations (8) 7. Fuel Pressure Regulator

8. Emergency Fuel Connection 9. Filtered Fuel 10. Fuel Manifold (Supply) 11. Fuel Manifold (Return) 12. Fuel To Injection 13. Bypass Fuel (To Tip Cool Circ.) 14. Fuel Return

* Left Hand Service Shown _ Shown _ Right Hand Service Available

F igure 20 20 62  

TOP VIEW OF CYLINDER HEAD

14

5

13

12

12 14 13 9

6

10

7 4

11

5 3*

BY - PASS FUEL

6

2*

SUPPLY FUEL 8

1

3600 Fuel System Schematic With Series Circuit Injector Tip Cooling Model 3612 1. Fuel Transfer Pump (Eng. Mounted) 2. Hand Priming Pump 3. Fuel Filter Duplex Valve Shaft 4. Fuel Filters 5. Unit Injectors 6. Manual Drain Locations (8) 7. Fuel Pressure Regulator

8. Emergency Fuel Connection 9. Filtered Fuel 10. Fuel Manifold (Supply) 11. Fuel Manifold (Return) 12. Fuel To Injection 13. Bypass Fuel (To Tip Cool Circ.) 14. Fuel Return

* Left Hand Service Shown _ Shown _ Right Hand Service Available

Figure 21 63  

Typical Injector Tip Cooling Module Single Engine MODULE INJECTOR TIP COOLING SINGLE ENGINE

THERMOSTATIC REGULATOR MAY BE REQUIRED

DIFFERENTIAL PRESSURE GAGE

LEVEL INDICATOR: SIGHT GAGE OR DIPSTICK

INTERNAL RELIEF VALVE

FILL

VENT

OIL FILTER UP TO 400 MICRON

50-65˚C

PUMP

HEAT EXCHANGER T=6˚C

DRAIN

COOLANT: SAE 10W WEIGHT OIL

56-71˚C

PRESSURE GAGE TEMPERATURE GAGE (INLET)

FACTORY SUPPLIED ENGINE MOUNTED PIPING

TEMPERATURE GAGE (OUTLET)

P

LOW PRESSURE ALARM FLEXIBLE CONNECTION

ENGINE CONNECTIONS: 3606 & 3608= 3/4 - 16 THD 37˚ FLARED

3612 & 3616= 1 3/16 - 12 THD 37˚ FLARED UNIT INJECTOR

F igure 22 22 64  

Typical Injector Tip Cooling Module INJECTOR TIP COOLING MODULE MULTIPLE ENGINES Multiple Engines

DIFFERENTIAL PRESSURE GAGE

LEVEL INDICATOR: SIGHT GAGE OR DIPSTICK

THERMOSTATIC REGULATOR MAY BE REQUIRED

FILL

VENT

OIL FILTER UP TO 400 MICRON INTERNAL RELIEF VALVE

50-65˚C

PUMP*

HEAT EXCHANGER T=6˚C

DRAIN

COOLANT: SAE 10W WEIGHT OIL BACKPRESSURE VALVE

56-71˚C

BALANCE VALVE

BALANCE VALVE

PRESSURE GAGE TEMPERATURE GAGE (INLET)

TEMPERATURE GAGE (OUTLET) FLEXIBLE CONNECTION

P

LOW PRESSURE ALARM

P

ENGINE CONNECTIONS: 3606 & 3608= 3/4 - 16 THD 37˚ FLARED 3612 & 3616= 1 3/16 - 12 THD 37˚ FLARED

FACTORY SUPPLIED ENGINE MOUNTED PIPING

* System must be designed to provide proper flow and temperature to each engine. This must be maintained while an individual engine is isolated for servicing. System may include variable spee speed d pump, flow regulating valves, or bypass plumbing.

F igure 2 23 3 65  

   R    E   S    H   E    T   N    I    O   G    O   N    T   E    O   P    T   M    H   U    C   P    T    I    Y    B    W    S   D    N    E    T    R   A    U   S    S   T    S   R    E   A    R   T    P   S

   P

   S    P

   1    P

   V    R

   V    R    1    P

   1    P

   M

   E    G    A    L   U    A    I    T   G    E    N   R    E   U    R   S    E   S    F   E    F    I    R    D   P    G    N    I    N    L   O    I    L    I    T    F   C    E    L   N    A    C   N    O   O    L   C

   1    P

   1    P

   1    P

   A    L    H

   A    L    L

   )    2    E    T    O    N    E    E    S    (    E    V    L    A    V    E    R    U    S    S    E    R    P    K    C    A    B

   S

   S    S    A    L   L    A   G    C   E    O   G    L    U    A    E    G    L   E    F   T    F   A    A   L    B   P

   T    U    O    R    E    T    A    W    A    E    S

   R

   N    I    A    R    D    T    N    E    V

   G   K    N    I    N    T   A    A   T    L    U    C    R    I    C

   A    P    L

   X   R    E   E    L   N    I    P   A    M    I    R    S   T    S

   N    A    P    P    I    R    D

   R

M

   A    T    H

   E

   N    I    R    E    T    A    W

   R    E    G    N    A    H    C    X    E    T    A    E    H

   R    E   S    H   E    T   N    O   I    M   G    O   N    E    R    F

  m   e   m    t   e    t   s   s  y   y   S    S   g  g   n   n   l    i    l   i   o  o   o  o    C   C   n  n   o  o    i    t   i   c   t   e  c    j   e   n   j    I   n    I

   G  .    N    I    G    D    T   N    I    N    A   I    P    A   D    L    E  .    U   P    W    N   G   G   S    O   I    I    E   S    L   A   N    F   T   C    I    R   A    P    N    R   I    V   W    Y    E   A   R   O   B    P   M   E   L   E    O   E   S   F   H    R   B   R  ,    T    P   T   O   P    I    E   S   F   M   N    U    D    I    U   D   P   E    V    V   M   E    L    D    O   S   T    E    R   I    A    A    P   V    T   P   H    T   L    O   E    E    S   S   R    N  .    I    I    O    T   E    O   D   N   I    S   E   U    S    P   E   I    L    S    E   B    A    R   N   G   N    E    N   I    I    O   G    R    E   G   R    H   I    P    A    N   V   K    C   S    E   H    N   D    C   E   E   C    A    A   L   D   A    E   A   U   B    E   E    P   B   O   U   L   A    I    T   D   C    P   T    S    I    R    V   N    I    O    S   U   E   I    E   M   R   D   Y   /    T    U   N    I    A   D    O   M   T    M   N    A    A    N   E   R   N    A    T    M   S    E   :    S   E   E   E   E    E   D   Y   P   I    T   V    T    S   M   L    S   L    H    O  .  .    E    Y   A    S   V    N   1   2   T   W

   V    L    E    A    A    E    D    E    N    S    I    R   V   L    A   U   G   A    U    T   T   N    E    N   A   I    T   N    I    O   R   A   A   D    L   M   R    C   -    E    U    P    F    H   R    E    L   M   G   T    E   E   E   I    V    O    S   T   R   W

F igure 24 24 66  

 ® 

Diesel EngineSystems- Lubri ric catingOil Engine System Description Oil Pumps Emergency Pumps Prelubrication Customer Supplied Prelube Pumps Tilt Capability Wet Sump Sump External Sump Tank Under The Engine Remote Sump With Scavenging Pump Piping Suction Strainer Lube Oil Centrifuge Centrifuge Supply Pump Preheater Sample Points Lube Oil Storage and Transfer Transfer System Clean Oil Dirty Oil Renovated Oil Transfer Pump Storage Tanks

 

Oil Guidelines Caterpillar Micro-Oxidation Test Oil Requirements Commercial Oils Lubricant Viscosity Lubricant TBN Oil Change Interval SOS Analysis Wear Analysis Oil Condition Analysis Initial Oil Change Interval Oil Change Intervals Without Oil Analysis Results Increasing Oil Change Intervals Estimating Oil Consumption Oil Consumption as an Overhaul Guide Reference Material

 

Engine System Description

• Tube bundle oil oil coo coolers lers a re used w ith seriess w at er flow serie flow an d par allel oil oil flow. flow.

The lube oil system is engine m ounted a nd fa ctory tested. It provide providess a consta nt supply of 85° 85° C (185° (185° F) filtered oil at 430 kPa (62.4 psi) pressure up to the limits of a w ell designed designed cool cooling ing syst em.

• The filters filters ca ca n be cha cha nged while the engine is running. The maximum chan ge period period is 1000 1000 hrs or w hen t he oil filter pressur e drop reaches 104 kPa (15 psi), whichever occurs

An oil priorit priorit y va lve regula tes oil pressure a t t he cylinder block block oil oil ma nifold nifold rat her tha n a t t he oil oil pump. pump. This ma kes the oil ma nifold pressur pressur e independent of oil filter and oil cooler pressure dr op ops. s. A gea r dr iven oil pump is mount ed on on th e front left side of th e engine. Oil to th e pump passes th rough a 650 650 micron micron (.025 .025 in.) screen screen loca loca ted betw een t he suction bell and su ction tube. A scavenge pump ca ca n be mounted on the front r ight side of of th e engine to tr a nsfer oil to, or or from, an external oil sump. Schema Schema tics of th e lube oil oil system a re shown in Figures 1, 2, 2, an d 3 at the end of this section. Oil tempera tempera ture r egulators direct direct the oil to coo coolers lers a t oil tempera tur es above 85°C 85°C (185°F). Oil flows from the coolers to the 20 micron (.78 mils) final filters. From the filters, oil flows through the priority valve to drilled oil oil passages in the cylinder block. Oil flo flows to the relief valve and bypass valve ports ports of the priority priority valve. B ypass oil oil a lso flo flow w s to optiona optiona l engine mount ed centrifugal oil filters. The oil pump relief va lve op opens ens a t 1000 100 0 kP a (145 psi) send ing co cold ld oil ba ck to the engine sump, sump, preventing preventing da ma ge to the lubrication system components. The bypa ss va lve opens opens at 430 430 kPa (63 psi) to send excess oil oil ba ck to th e engine sump.

first. The The oil oil priority priority valve ma inta ins full oil oil pressure to the bear ings rega rdless of oil oil filter pressure dr op op.. • Engine mounted mounted centrif centrifugal ugal bypass oil oil filters are available options. They receive 3-4%of the oil pump flow and remove very sma ll, solid, solid, micron micron size part icles icles and can extend oil filter filter chan ge periods periods — but n ot beyond beyond t he 1000 100 0 hour cha ng e period. The The centr centr ifugal filters each have a dirt capa city of 3.6 kg (8 lb) a nd r equire cleaning cleaning a t 1000 1000 ho hour ur int ervals. • All engine engine o oil il systems are fa ctory ctory insta lle lled, d, plumbed plumbed and t ested as integra l co compo mponents nents unless a dry sump, sta ndby oil pump, remote remote mount ed prelube pump, or or a n oil cent cent rifuge is used. This This elimina tes conta mination during installat ion ion a nd reduces installation costs. • The engines are shipped shipped with out oil from th e factory u nless specified specified otherwise.

Oil Pumps Dr ive spe speed ed ra tios ar e 1.52 1.524 4 times engine speed for the main oil pump and 1.627 1.6 27 for for t he scav enge pump. The oil pump pump provides more th a n t he required engine oil oil a t ra ted conditions. conditions. This a llo llow w s high oil pressure pressure ea rly in t he operating speed ra nge as w ell a s providing pro viding flow flow ma rgins for w orn engines. engines.

Other ma jor fea fea tures of the system ar e: See Figur e 4. 4.

4  

Typical 3600 TYPICAL 3600Oil OIL Pressure PRESSURE 550 525 500

   ) 475   a    P    k    ( 450    Y    R    E    L 425    L    A    G 400    N    I    A 375    M    O    T 350    E    R    U 325    S    S    E 300    R    P    L    I 275    O 250 225 200 25

50

100

PERCENT OF ENGINE SPEED

Fig Fi gure 4

E me merrgency P Pumps umps An electric emergency, or standby, oil pump is usua lly required for single engine marine propulsion applications by th e applica applica ble ma rine society society.. Other a pplic pplicaa tions ma y a lso use an electric electric sta ndby oil oil pump. The The emergency pump is connected in parallel to the engine driven oil oil pump. A loss of engine dr iven oil pump pump pressure pressure cau cau ses an a lar m a nd a utomat ic sta rt of the emergenc emergencyy pump to allow the engine to continue operating. The following engine oil flow  rat es ar e the minimum require requirements ments a t full power power an d ra ted speeds speeds between 700 a nd 1000 1000 rpm. Engine Flow Rate — L /min (gpm) 3606 750 (198)

75

3608 770 (203)

3612 890 (235)

3616 1200 (317)

tha n a st anda rd prelub prelubee pump, pump, and under certa certa in conditions conditions it can ca use the oil oil filter elements t o burst . A sma ller separ sep ar a te prelube p pump ump is required in a ddition ddition t o the emergency emergency pump.

Prelubrication Engine prelubrication is required prior to start ing or or rotat ing the engine with the ba rring device. device. This This insures th a t there is sufficient sufficient oil oil at bearing a nd other cont cont a ct faces to prevent prevent direct meta l to meta l conta conta ct befo before re engine driven oil oil pump pressur e is developed. developed. A prelube oil oil pressure sensor is mount ed in the most most remote ca ca msha ft bearing from t he engine oil oil pump. When When sufficient oil pressure is detected at this sensor,, th e engine cont sensor cont rol system provides pro vides a green light light t ha t a llo llows ws engine sta rt ing. This This sensor is a lso configur configur ed

a s a st a rting int erloc erlock to prevent prevent engine star ting without oil oil pressure pressure at t he sensor.

The emergen cy oil oil pump ca nnot be used for prelubing the engine prior to sta rting. The The emergency emergency pump flow flow ra te a nd discha discha rge pressure pressure ar e much much higher

5  

Ca terpilla terpilla r ha s various prelubric prelubricaa tion systems a vaila ble tha t include include the motor motor (air or electric), prelube pump, electric motor st a rt ing box (if (if a pplica pplica ble), ble), check check va lve, a nd en gine piping. The The check check valve is used used a t t he discha discha rge of of the prelube pump to prevent pressurized oil from flowing to the prelube pump during engine operation. The Caterpillar prelube system can be engine mounted by the factory prior to shipment, or shipped loose loose for cust cust omer insta llat io ion. n. En gine connections connections for customer supplied prelube systems are also available. For ma rine a pplic pplicaa tions in genera genera l, Ca terpilla terpilla r recommends recommends remote mounting t he prelube prelube pump from from t he engine. This prevents any engine vibrat ion ion from a ffecting ffecting the pump an d it a llo llows ws the pump to be mo mounted unted in a n easily a ccessible ccessible locat locat ion for service. How ever, ever, remote mounted prelube pumps must be loc loca ted a nd plumbed to prevent excessive pump inlet r estriction. For Ca terpillar terpillar supplie supplied d pumps, the ma ximum a llo llowa wa ble velo veloccity in t he pum p su ction lin e is 1.5 m/ m /sec (4.9 ft /sec) to prevent prevent pump ca ca vita tion, and t he net positive positive suction hea d of the pum p is 2 m H 2O (6.6 ft H 2O) O).. See th e pump ma nufacturer ’s dat a for customer customer supplied supplie d pr elube pumps. Ca terpilla terpilla r offe ffers rs prelube prelube pumps power power ed by compressed compressed a ir or by single phase AC, three phase AC, or DC motors. Flow characteristics of some Ca terpilla terpilla r supplied supplied pumps are shown in Figur e 11 11 at th e end of of th is section. section. Tw o types of of prelubricat io ion n syst ems a re available: intermittent and continuous. Int ermittent prelube prelube is generally used fo forr ma rine a pplic pplicaa tions, and involves involves running t he prelube prelube system for for a few  minutes prior prior t o engine engine sta rting or

configur configur a tion. When When t he prelube pressure press ure sensor sensor mea sures 10 kP a (1.5 psi) th e sta rt ing int erlock erlock a llo llow w s th e engine to be cra cra nked. T he i nte nterr mitte mi ttent  nt 

 prelube pum  prelube pump p sho should uld no nott be ope perr ate ated  continuously for more than 10 minutes. Time for engine prelube va ries w ith engine size, size, oil oil temperat ure a nd viscosity, etc. Typica Typica l curves for prelube pump perfo performa rma nce are shown in Figures 5 and 6. Cont inuous prelube iiss ty pica pica lly used in emergencyy g enerat or set a pplic emergenc pplicaa tions wh ere the engine must st a rt on loss loss of power power from a ma in genera genera tor and a ssume loa loa d. Continuous prelube prelube systems a re designed designed for co consta nt operation during engine shut down down . A  spill tube insta lled lled at the front of of the engine prevents excessive oil from flo floo oding th e ccylinder ylinder heads a nd causing hyd ra ulic lo lock ck on on st a rt up. A lo low w er flow  pump is a lso used for for continuous prelube systems. A ja ck cket et wa ter hea ter must a lso be used for for emergen cy genera tor sets to keep keep the engine wa rm for quick sta rting. An o oil il heater is genera lly not required with continuous prelube since the oil circul circulaa tes th rough the engine a nd picks up heat from the engine block that is kept kept wa rm by th e jacket jacket wa ter. The prelube pump ma y a lso be used a s a sump dra in pump. Two ma nua l thr ee ee-wa y va lves lves ar e required to co configure nfigure the prelube p prelube pump ump as a sump dra in pump. The oil sump dra in va lve is connected connected t o the prelube pump suction with one thr ee ee--wa y valve, and t he pump discha disc ha rge goes goes to a w ast e oil oil tan k via the other three-way valve. The three-way valves a re not supplied supplied by Ca terpilla terpilla r. Inst a ll a pres pressure sure switch at t he prelube prelube pump outlet outlet to aut oma tically shut down the pump w hen th ere is a loss loss of dischar ge pressure. This This prevent s running the pump dry when dra ining ining

th e oil oil sump.

barring device use. With intermittent prelube the engine is not available for immediate immed iate sta rting. Intermittent prelube prel ube may ta ke up to several several minut es depending on oil viscosi viscosity, ty, tempera tu re, engine condition and system

6  

3608 Prelube Time 3608 PRELUBE TIME Intermittent Electric Prelube INTERMITTENT ELECTRIC PRELUBE 140 (20.3)

120 (17.4)

   )    i   s   p    (   a    P 100 (14.5)    k    E      R    U    S 80 (11.6)    S    E    R    P    G    N    I 60 (8.7)    R    A    E    B    O 40 (5.8)    T    L    I    O

23 C (73 F) OIL

63 C (145.4 ) OIL

20 (2.9)

0 0

20

40

60

80

100

PRELUBE TIME - (SECONDS)

Fig Fi gure 5

3612 Prelube Time

3612 PRELUBE TIME Intermittent Air INTERMITTENT AIRPrelube PRELUBE 120 (17.4)

   )    i   s   p    (   a    P 100 (14.5)    k      E    R    U    S    S    E    R    P    G    N    I    R    A    E    B    O    T    L    I    O

33 C (91.4 F) OIL 80 (11.6)

60 (8.7)

40 (5.8)

20 (2.9)

120

140

160

180

0 0

10

20

30

40

50

60

70

80

PRELUBE TIME - (SECONDS)

Fig Fi gure 6

7  

Customer Supplied Prelube Pumps Locat Loc at e a gear t ype pump pump with a pressure pressure relieff valve nea r t he front of the engine relie wit h t he follo following wing chara cteristics: cteristics: In ter mit tent /Cont inuous • F l ow

76 L pm (20 g pm )

• O p er a t in in g Pressure

23 L pm (6 g pm )

172 kP a (24.5 psi)

• O p er a t in in g Tempera tu re

21°C (70°F)

• Visc iscos it it y for for sizing electr electr ic motor

340 cSt

Continuous Tilt Angle Capability

Eng ine room room spa ce, ce, tilt requirements, or the desire t o extend extend oil cha cha nge periods ma y dicta dicta te using an external oi oill sump ta nk. T The he follo following wing a rra ngements a nd Figures 9 and 10 at the end of this

Marine Auxiliary

module ar e provided provided for for guida nce.

± 10°Pi 10°Pitch tch & ± 22.5 22.5°Ro °Roll ll

± 10°Pi 10°Pitch tch & ± 22. 22.5°Rol 5°Rolll

(any combination)

(any combination)

The suggested design of an external sump ta nk is shown in Figure 9.

X X X X

X X X X

X X X X

X D X X

X D X D

Level Installation

X D X D

X X X X

X = Standard Sump, capable of meeting the indicated tilt criteria. D = Requires Dry Sump option to achieve the indicated tilt criteria.

Note: If wet sump engine is installed at >0°tilt, it will reduce oil capacity and reduce the oil change interval. Consult Caterpillar for specific details.

Fig Fi gure 7

pan a t t he fro engine connects co nnects dirfront ectly ecnt tlyoft othe theengine engineand driven oil pump, (see (see Figures 1 a nd 2). 2). See F igure 16 for for w et su mp oil volumes volumes for ea ch engine m odel. odel.

Marine Propulsion

Installation Angle /  Rear Down (Degrees) Engine Model 0 1 2 3 4 5 3606 3608 3612 3616

The sta nda rd 3600 3600 eengine ngine configur configur a tion uses a w et oil sump. This This is a n oil pa pa n mounted directly underneath and connected to the engine block. An oil pump suction pipe pipe with a suction bell bell nea r t he cent cent er of th e oil oil pan exits t he oil oil

External Sump Tank

Tilt Capability

Intermittent Tilt Criteria

Wet Sump

Under the E ngi ngine

Ext end the lube oil oil sump ta nk over over the entire length of th e engine to ensure uniform unifo rm therma l exp expan an sion sion of the engine founda founda tion structure. Use flanged, flexible, flexibl e, dra in connections connections a t ea ch end of the engine mounted sump to prevent dama ge from from vibration vibration a nd thermal growt h. The The connections connections must be compatible with engine lube oil at a temperature up to 130°C (266°F), and should shoul d w ithsta nd exposure exposure t o fuel, fuel, coo coolant , a nd solutio solutions ns used t o wa sh do down wn the engine. Terminat Terminat e the dr ain pipess from th e engine oil pipe oil sump t o the external sum p below below th e minimum oil level. leve l. Locate Locate t he engine sump dra ins a s far a wa y a s possibl possiblee from from t he o oil il pump pump suction a rea . The The oil should should be in t he tank for the longest possible time to ma ximize degassing.

8  

To provide provide adeq ua te dega ssing of the external sump, a m inimum dista nce of a pproxima pproxima tely 150 mm (6 in.) must be provided pro vided be betw tw een the top of of the t an k a nd t he highest oil oil level level expec expected ted in t he ta nk. Pr ovide the tra nsverse structure in the ta nk with a ir holes holes and tw o 100 100 mm (4 in.) minimum diameter air vent pipes, one at the forwa forwa rd end of of the ta nk and another at the aft end. The oil oil passa ges in the t ra nsverse structure must ensure adequa te oil oil flow  flow  to the pump suction piping. piping. Fit th e end of each suction pipe w ith a bell mouth mouth to keep pressure pressure losses to a minim um. The The ma ximum ava ilable suction suction lift lift to the engine dr iven lube oil pump, pump, including losses losses in the pipi piping ng a nd st ra iner, iner, must be kept below 1.3 m (4 (4 ft 3 in .) .).. Cofferda m the externa l sump tank from Cofferda the shell a nd fit wit h a coil coil to heat the oil to 38° C (100° 100° F). The The coils should be ma nufactured from from corrosio corrosion n r esista esista nt material. Locat e a colle Locat collecting cting sump at the a ft end of the ta nk. When When used, t he lube oil oil centrifuge should take oil from the collec collectin tin g sump a t a level below below t he ma in lube oil pump suction suction pipe. Discharge t he clean clean oil from from t he centrifuge near the lube oil pump suction piping. The inner surfaces of the external sump ta nk should be acce accessible ssible for for cleaning . Thoroughly horoughly clea clea n t he ta nk a fter construction construction o orr r ep epaa irs a nd prior to filling. Use fla nged joint joint s on on t he suction piping to th e lube oil oil pump t o allow  inspection before use. The surfaces above the minimum oil level must be corrosion corrosion protectio protection n coa coa ted. The t a nk requires a loc loca l sounding sounding tu be as w ell a s a low low level level a lar m conta conta ctor. tor.

Remote Sump with Scavenging Pump An engine driven scavenging pump can be provided provided to empty th e o oil il in th e engine pan pan to a r emote emote storag e ta nk ((see see Figur e 10 a t t he end of this section) section).. This ar ra ngement is norma lly used wh ere the founda founda tion structure height is sma ll. Oil Oil from from t he remote tan k is returned t o the engine oil oil system by t he engine driven driven ma in pressure pump. pump. Due to the importa importa nce of the main engine lube oil syst em, ma rin e societies societies a nd /or the owner ma y r equire electric electric motor motor driven sta ndby pumps. This This system ca n become bec ome very complex complex due to t he a dditiona dditiona l pumps, piping piping a nd va lves. lves. Also, the oil level level in t he remote st orag e ta nk must be kept kept below below the engine crankcase to prevent oil leak back into the engine when the engine is stopped. This ca ca n result in a lo long ng na rrow ta nk ta king useful sp space. ace. Incorpo Incorpora ra te t he features recommended in the design of the remote sump ta nk lo located cated below below t he engine as discussed above.

Piping The piping piping must be short short wit h m inimum bends bends and have a continual upwa rd slope slo pe towa towa rds t he pump to avoid pump cavita tion an d keep suction suction pressure pressure drops low. Install a non-return valve in th e piping piping t o prevent prevent t he oil oil from flowin flowin g backwa rds w hen the engine is stoppe stopped. d. The pipes pipes must be support support ed an d ha ve flexiblee cconnec flexibl onnections tions a t t he engine a nd auxiliary connecting points. Provide vent a nd dra in co connections nnections at the high an d low low points points in t he system.

Suction Straine Strainerr Inst a ll a suctio suction n stra iner in the pipi piping ng between the ta nk an d the lube oil circulating pumps to protect the pumps from large particles collecting in the ta nk. It should have stainless stee steell ba sket w ith 650 650 micron ((0.0 0.025 25 in.)

perforations perforations and ma gnetic inserts. inserts. P rovide rovide a differential pressure gauge to indicaa te when ma nua l cleaning indic cleaning of of the stra iner is is required.

9  

Lube Oil Centrifuge The engine is provided w ith lube oil oil fina l filters and centr centr ifugal bypass filters. A lube oil oil centr centr ifuge, or or separ a tor, can a lso be insta lle lled d a s optional optional equipment for for distillate fuel a pplic pplicaa tions and is required for hea vy fuel a pplic pplicaa tions. Hea vy fuel engines produce produce higher levels of lube oil co conta mina nts t ha n distillat e fuel engines. The The lube oil separa tor removes remov es insoluble insolubless a nd w a ter from the lube oil, oil, wh ic ich h increa ses th e life of the lube oil oil a nd lube oil filters. The lube oil separ separ a tor is sized ba sed on th e pow pow er output of the engine. For hea vy fuel oil applica applica tions, th e lube oil oil must be continuously continuously processed processed by th e lube oil oil separa separa tor at a minimum flow  r a t e of 0.14 L /bkW-hr bkW-hr (0.028 ga l/bh pp-hr hr ). The lube oil centrifuge should be of the self-cle selfcleaa ning t ype due to the frequen t cleaning cleaning required. Solid bowl bowl separ separ a tors must not be used for lube oil service. The fresh wa ter a nd co contr ol air requirements for th e cent cent rifuge sh ould be specified specified by the ma nufa cturer. cturer. The The sludge discharge proce pro cess ss should should be a utomat ic with t he sludge ta nk ar ra nged simila simila r to the fuel fuel oil sludge tan k a s described described in the H eavy  F ue uell Oi l sec section tion of this g uide. There a re tw o methods for for configur configur ing th e lubeisoil oiltosepa sep a ralytoreach systengine em. The The method supp supply witfirst h its own d edica edica ted lube oil separa tor. The The second sec ond met hod is t o service service up t o four four engines w ith one single lube oil oil separator. Certain requirements must be met in order t o use a single sepa sepa ra tor for multiple engines: • Only Alfa Alfa La val ALCA ALCAP P model model sepaa ra tors, or sep or simila r m odels from from other man ufacturers, ma y be used used in multiple engine applications.

• Utilize Utilize Caterp Caterpil illar lar P LC and a uto utomatic matic va lves fo forr t he chan geover geover of sumps. • U se no more tha n fo four ur oil oil sumps per per separator. • A red redundant undant sep separa ara tor tor a nd the necessary nec essary piping piping for the a dditiona dditiona l sepaa ra tor must be inco sep incorpora rpora ted into th e design of the engine room. • The lube oil separa separa tors shall be oversized (grea ter th a n 0.14 L/bkWbkW-hr (0.028 g a l/bh pp-hr hr )). )). Consult Ca terpilla r for a specific specific projec projectt or application. The cent cent rifuge should ta ke oil oil from th e rear of the engine an d return it t o the front fro nt of th e engine so tha t clean oil is as close clo se to th e engine oil pump pump suction a s possible. possible. Oil connections connections a re provided a t both ends of the oil oil sump. Sh utoff va lves a re provided for customer connection, connection, but flexible connections connections must be provided by th e customer. customer. The ma ximum a mount of time a heavy fuel engine engine ccaa n opera opera te w ithout clea clea ning th e lube oil oil is eight h ours.

Centri ntrifug fuge e Sup Supply ply Pum ump p The centrifuge su pply pump can be either direct direct driven from the centrifuge or electric electric moto motorr dr iven. Size t he pump in accorda accorda nce wit h th e man ufacturer ’s recommendations.

Preheater P reheat er size is determined by pump pump capacity and required temperature rise betw betw ee een n a mbient mbient t emperature emperature a nd the fina l ce cent nt rifuge. The The fina l outlet temperat ure is de determined termined by the ce centr ntr ifuge ma nufa cturer, but but w ill ra nge betw een 85° -95° 95° C (185° 185° -203° 203° F) depending depe nding on the gr a de an d t ype of of oil oil used. Other hea ter sizing co considerat ions ions

• All prec precaut aut ions ions must be taken to minimize sump cross-contamination. This includes loca loca tin g t he cha ngeover manifold at the separator.

are: • Oil tempe temperat rat ure mus mustt be 95° 95° C (203° 203° F) fo forr en gines centr ifuging during engine operation.

10  

• The heater must be oversize oversized d to a ccount ccount for for t he heat normally supplie supp lied d by a n opera opera ting engine so the centrifuge ca ca n be op operat erat ed when the engine is shut down. • Thermo hermostat stat ically ically co control the heater to ma intain t he oil oil temperature temperature to the centrifuge entrifuge within 2° 2° C (± (± 4°F). 4°F).

Sample Sam ple Poi Points nts Ch ec eck k th e cent cent rifuge efficiency efficiency by dra wing sa mples mples from from points points upstream a nd downstrea m of the centr centr ifuge. Figure 11 11 iiss a t ypica ypica l arr an gement. LUBE OIL PIPE

GLOBE VALVE

Renovated Oil Conta mina ted oil can be ccleaned leaned using the lube oil oil centrifuge centrifuge an d discha discha rged to the renovated oil oil ta nk. Trans Transfe ferr Pump The lube oil oil tra nsfer pump ca n t a ke oil oil from th e engine sump (or (or sum ps), ps), th e cl clean ean oil storage t an k, the dirt y lube oil oil storage sto rage and settling tank, and t he renovat ed oil oil ta nk. T The he pump ca ca n discha disc ha rge to the dirty lube oil oil and settling settling ta nk, the sludge sludge tank, and the engine sump (or sumps). Use a gear type pump a nd include a r elief va lve. T The he following characteristics are provided for guidance: • Flow - 190 190 Lpm (50 (50 gpm) • P ressure - 345 345 kPa (50 psi) • Operat ing Fluid Temp. Temp. - 130°C 130°C (266°F) • Viscosity iscosity for sizing electric motor motor 1000 cSt

6 mm (.25 in)

DRIP PAN

Typical Sampling Connection Typical Sampling Connection

Figure 11

Storage Tanks A lube o oil il storage ta nk capa city t a ble iiss provided belo below w for guida nce. Ma ny var iables go into esta esta blishing blishing ta nk capacity — the number of engines inst a lled, sump volume, volume, lube oil oil consum consum ption, et c.

Lube Oil Storage and Transfer System Figures 12 a nd 13 at t he end of of this section sec tion show t ypical piping schema schema tics for operational lubricating oil storage. It consists consists of three stora stora ge ta nks, a centrifuge and a transfer pump arranged as follows:

Cl Cle ean Oil Clean oil from from t he storage t an k is piped piped to supply the engin e sump (or (or sumps) either by gr a vity, vity, via the centrifuge, or or by the tra nsfer pump. pump.

Tank Volumes Liters

Gallons

Lube oil storage tank Dirty oil storage and settling tank

7500

2000

3780

1000

Renovated oil storage tank

3780

1000

Ea ch tan k should should have th e follo following wing connections: connections: filling, vent , loca loca l sounding, ga uge glass, hea ting coil, coil, thermometer thermometer (with well), transfer pump suction, outlet, stea m blowout, blowout, ma nhole a nd la dder (if required).

Dir ty Oil Dirty Dir ty lu be oil oil is removed removed from th e engine sump (or sumps) by the transfer pump a nd discharged to the dirt y lube oil oil storage sto rage a nd settling settling ta nk.

P reheat reheat the oi oill with ta nk heating coils coils to a pproxima pproxima tely 38° 38° C (100° 100° F). W When hen heating with steam or wa ter, ter, the he heat at ing coils coils must be ma nufactured from from corrosio corrosion n resista nt m a teria l.

11  

The engine can be filled filled w ith oil oil from th e storage ta nk via the centr centr ifuge, ifuge, by the lube oil oil tra nsfer pump (wit (wit h a stra iner) through the forwa forwa rd or aft sump dra in valves, or through the filling cap located on the eng ine cra nkcase cover. cover.

To simplify t he oil selection process, Ca terpilla terpilla r ha s develo developed ped reco rec ommenda tions to determine t he most suita ble oils oils for for t he 3600 3600 Fa mily of Eng ines. In most insta nces, nces, the own own er can select th e oil oil company company he prefers. Caterpillar will assist the customer and supplier in choosing an oil that meets

Oil Guidelines As with all modern high technology

engine requirements based on th e fuel being burned in the engine. At  A t all ttii me mes, s,

engines, oil selection selection for t he 3600 3600 engines is m ore crit crit ical a nd possibly possibly more time co consum nsum ing t ha n for older, lower specific output engines. Even th ough th e proce process ss is necessa necessa ry, it must be reco recognized tha t n ewer engines deliver deli ver more po power a t lower owning a nd operating cost than their predecessors. Fuel quality ha s also changed considerably considerably ove overr t he past thr ee decades, m a king t he choice choice of oil oil even more complicat complicat ed.

i t iiss the r espo sponsi nsi bili bil i ty o off the suppli supplie er to maintai n the q quali uali ty and pe perr fo forr manc mance e leve levell of hi s pr oduct.

Even th ough choosing choosing a proper proper oil for for th e 360 3600 0 engines ma y not be a s simple a s wit h older older engines, it it can still be a fairly ea sy proce process ss if all varia bles bles ar e understood.

The Ca ter pilla r Micro-Oxida Micro-Oxida ti on Test speeds up a nd simplifies the screening a nd selectio selection n process. process. Rath er tha n th e traditional method of selecting oil th rough expensive, tim e cconsuming onsuming engine testing (typical of the method used by competit competit ors as w ell), ell), the Ca terpillar terpillar test is a n a lternative method method of initially screening an oil from the selected selec ted su pplier. pplier. Fina l oil accepta accepta bility is obta obta ined through demonstra demonstra ting sat isfacto isfactory ry oil performa performa nce during engine opera opera tion for an ext ended period period of time.

The higher t ec echnolo hnology gy a ssocia ssocia ted w ith modern mode rn engines ha s placed placed grea ter dema nds on th e lube oil oil to perform perform its functions; this is true with 3600 engine competition as well. The reduced oil consum consum ption of modern engin es, while

The Ca ter pilla r Micro-Oxida Micro-Oxida ti on Test uses a meta l test specimen specimen (sam (sam e alloy a s th e 3600 3600 piston cro crow w n) heat ed to a temperature similar to an operating engine. A sma ll am ount of test oil is impinged impinge d on on the meta l surface a nd the

reducing reduc ing opera opera ting cost, ost, d oes mean the oil oil is not co cont nt inua lly being repla ced ced by oil oil a dditions a s on older older engines.

induction tim e to rapid deposit forma forma tion is mea mea sured.

Oil selection selection is fur th er complicat complicat ed by the w ide oil oil perfo performa rma nce varia tions within: • The AP AP I classifica classifica tion (CF) (CF) • The base stock stockss an d addit ive packages ava ilable on on a w orld wide basis

T he e exi xi ste stence nce of th the ese known var varii atio ati ons

Caterpillar Micro-Oxidation Test The followin followin g provides int erpreta tion of Caterpillar Micro-Oxidation test induction times:

I nduction Ti Time me ____________________

Oi Oill Sta Status tus ____________

Less tha n 90 minutes 90 minut es or grea ter

U na ccepta cepta ble Accepta ccepta ble

Caterpillar will consider the use below belo w 90 minut e test r esults if thofe oil ooils il supplierr ca n provide compara supplie compara tive field test result s in excess of of 7000 7000 o opera pera ting hours. The The field field test must be at similar or higher load fa ctors tha n t he own own er’s er’s engine.

make blank blank et approval by br brand and name i mp mprr acti acticcal. T hi hiss i s the gene generr al pract practii ce  forr 3600 e  fo engi ngi ne comp mpe eti titi tio on a ass we well. ll.

12  

Ca terpilla terpilla r h as provided provided Mic MicroroOxida tion Test procedures procedures a nd a na lysis techniques to various labora labora tories tories a s well as worldwide additive packa packa ge suppliers supplie rs a nd m a jor jor oil companies. companies. Conta ct t hem or or similar la bs for for informa info rma tion on on th eir ca ca pabilities and fees. Test w ork done by la borat ories

• Depending Depending on on oil oil pan pan capacity (se (seee Figur e 13) 13), oil ccha ha nges m ust be ma de at 1400 1400 hour intervals (ma ximum) for for t he first 3000 3000 hours of opera opera tion. If n o oil oil rela ted problems are encountered in the first 3000 3000 hours, th e ccha ha nge period ma y be determined by oil oil a na lysis. After After t he

other tha n t he Ca terpill terpillar ar lab listed listed belo bel ow must be certifie certified d by Ca terpilla terpilla r.

initial eva luat io ion, n, the oil ccha ha nge interva l should should only be increased increased a t 250 250 hour increment s prior to moving to the n ext 250 250 hour interva l extension. The The oil must be an a lyzed at eac each h interval.

Inq uiries about about C a terpillar terpillar MicroMicroOxidation testing ca n be directed to: Test & D evelopment evelopm ent Ca terpillar terpillar I nc. nc. Technica l C ent er - E P.O. B ox 1875 1875 P eoria , I L 6165661656-1875 1875 Teleph el eph one on e (309) 578-6604 578-6604 F a x: (309) 578-4496 578-4496

Oill Requir Oi quire eme ments nts To be accepta ble in a 3600 3600 engin e, a n oil oil must demonstra demonstra te sat isfactory isfactory performance performance in t he follo following wing ar eas: • Th e oi l must have an AP AP I classification of CF. Military S pecifica pecifica tion Mil-LMil-L-210 2104D 4D oils also meets this requirement. • Th e oi l must pass the Ca terpill terpillar ar Micro--Oxida tion t est perform Micro perform ed on samples from the suppliers facility suppo supp orting the engine. If mult iple iple suppliers supplie rs a re involved, oil oil must be evalua ted from a ll suppliers. suppliers. The The test ca n be run a t labs ha ving equipment equipment a nd procedures procedures a pproved pproved by Ca terpilla r. The The oil oil accepta accepta bility rema ins valid, consi consistent stent w ith constant oil base stock, formulation, a nd blending pra ctices. ctices. • Sched Schedul uled ed Oil Oil Sa mpling mpling (SOS) (SOS),, TBN, viscosity, oil consumption and cra nkca nkca se pressure pressure trends must be a na lyzed every 250 hours. An An oil cha nge interva l chart is provided provided for for

B ased on on w orldwide testing testing and quality cont cont rol mea sures in blending processes, processes, Ca terpillar terpillar DE O (CF) (CF) SAE SAE 40 oils oils are recommen reco mmen ded for use in th e 3600 3600 Fa mily of En gines. It does does not requ ire th e Mic MicroroOxidation test. Ca terpill terpillaa r D EO (CF) oil meets t he performa performa nce requirements of AP I C F, with high detergency eff effec ectiveness. tiveness. It ha s high a lkalinity (TB N 14) 14) for the neut ra liza tion of w earcausing combustion products and higher fuel sulfur.

N ote: ote: C ate ater pillar D E O mu multig ltig r ad ade e oi ls are ar e spe special cially ly ffo or mulate mulated d for smaller  engi ng i nes and ar are e not rre ecomme commended nded for tthe he  3600 F am amii ly o off E ngi ne nes. s.

Comm ommerci rcial al Oi Oils ls Caterpillar recognizes commercial oils th a t h a ve succ successfully essfully completed completed 7000 7000 hours of documented field service in 3600 3600 eengines. ngines. G uidelines for for field t esting a re ava ilable through 3600 3600 Cust omer Servicess in the La rge En gine Center. Service Center. Dur ing the test the engine must ope opera ra te at norma norma l ope operat rat ing lo loads ads a nd ha ve the following parameters monitored: oil consumption, oil deterioration, and valve recession. At the completion of the field tria l, the condition condition of of the oil and the engine must be w ithin t he follo following wing limits:

• No ring sticking sticking or ring scuffing scuffing iofo wh ere SOS no t ainsta vailallat bleions fns or scheduled schedul ed anisa not lysis.

• No liner scuffing scuffing or or carbon cutt cutt ing from excessive excessive piston t op la la nd deposits deposits

13  

• Valve recessio recession n m ust not exceed exceed the limits established by Ca terpill terpillaa r for the engine • Oil co consumption must not excee exceed d tw o times the initial oil consumption. Initial oil consumption is established durin g th e first 1000 hours of operation. • At the end of the specifie specified d oil oil change periods, perio ds, th e oil oil condition condition must r ema in wit hin Ca terpillar terpillar limit for for oxidat oxidat ion, ion, nitration, and TBN. Ca terpilla terpilla r does not not reco recommend lube oils by bran d na me. Field Field operat operat ion ion ma y identify oil brands which yield good results. Oils Oils w hich hich ma y be listed as having good field operating results do not form form a Ca terpilla terpilla r reco recommenda tion. They serve only a s potent potent ia l oils oils w hich ma y be successf successful. ul. Ea ch pa rticular oil company has control of its product and should be a ccounta ccounta ble for for it s oil performance. Establish product consist consist ency before before using a ny pr oduct. oduct.

Lubricant Viscosity U se an SAE 40 gra de o oil. il. SAE SAE 30 and some some multigra de oils oils may be used used if the a pplica pplica tion requ ires. SAE 30 is preferable to a multi-grade oil. Ambient Temperature Range Oil Viscosity SAE 40 SAE 30 SAE 20W-40 SAE 15W-40

°C +5 to +50 0 to +40 -10 to +40 -15 to +40

°F +41 to +122 +32 to +104 +14 to +104 +5 to +104

L ubri ubricant cant T Tot otal al Bas Base e Numbe Numb er (TBN) (TBN) The TB TB N r ec ecommenda ommenda tion for a n oil is dependent on t he sulfur level of the fuel used. For 3600 3600 engines runn ing on

distillate fuel oil, oil, the m inimum new oil oil TBN (by ASTM D 2896) must be 10 times the sulfur perce percent nt by w eight in the fuel, fue l, with a minimum TB TB N of 5 rega rdless of the fuel sulfur cont cont ent (see Figur e 6). 6). In most oil oil formula tions the TB N is a function function of the ash bearing a dditives in the oil. oil. Excessive Excessive a mounts of ash bear ing addit ives can lead to excessive piston deposits and loss of oil co cont nt rol. Ther efore, excessively high TB N or high a sh oils should should not be used wit h 3600 3600 engines engines runn ing on distillat e fuel. Successful operation of 3600 engines on on distillat e fuel has genera lly been obta obta ined w ith n ew oil TB TB N levels betw een 10 10 and 15. 15. 3600 3600 engines ru nning on heavy fuel oil oil must use a n oil specif specifically ically blended for heavy fuel engines. Oils for heavy fuel engines a re specially specially blend ed fo forr use wit h lube oil oil separa tors; these oils oils must be a ble to release release wa ter a nd conta conta mina nts by ccentrifuging entrifuging with out th e loss loss of ad ditives. These These oils oils a re generally a vaila ble fro from m 20 TB TB N t o 50 TB TB N (AST (ASTM M D 2896 2896)), however most Ca terpillar terpillar exp experie erience nce is with 30 to 40 TBN oils. For 3600 engines running on heavy fuel oil, the minimum new oil TB N must be 20 tim es the fuel sulfur perce percent nt by weight in the fuel, with a maximum TBN of 40 regardless of the fuel sulfur level (see Figure 15). Oils for heavy fuel 3600 engines must also pass the performance performance requirements fo forr commercially available oils as previously described. Alwa ys co consult a Ca terpilla terpilla r Dea ler for for the la test lubrica lubrica nt r eco ecommenda tions. For more informa informa tion on oil oil an d fuel sulfur content refer to: SEBD0640 Oil and Yo Your E ngi ngine ne

14  

  TBN vs Fuel Sulfur for 3600 Engines on Distillate Fuel 17

15 NEW OIL TBN FOR DISTILLATE FUEL

13

   6    9    8    2    6    9    D    8    M    2    T    S    D    A    M   —    T    N    S    B    T    A      N    B    T

11 9

7 USED OIL TBN LIMIT

5 3

1

0

.5

1

1.5

2

FUEL SULFUR — % WEIGHT

Figure 14

Fuel Sulfur - % Weight

NOTE: OPERATION AT FUEL SULFUR LEVELS OVER 1.5% MAY REQUIRE SHORTENED OIL CHANGE PERIODS TO MAINTAIN ADEQUATE WEAR PROTECTION.

 

TBN vs Fuel Sulfur for 3600 engines on Heavy Fuel 40 NEW OIL TBN FOR RESIDUAL FUEL

35

30

   6    9 25    8    2    6    D    9    M    8    T 20    2    S    A    D   —    M    N 15    T    B    S    T

   A      N    B    T

10

5

USED OIL TBN LIMIT

2.5

3

00

1

Figure 15

2

3

4

5

FUEL SULPHUR % Weight WEIGHT Fuel Sulfur - -%

15  

Oill C Oi Chang hange e I nterval nterval To achieve ma ximum life from th e engine oil and provide optimum optimum protection for the internal engine components, a Scheduled Oil Sampling progra pro gra m (SOS) must be used. Informa tion is is ava ilable through Ca terpilla terpilla r Dea lers. The The progra progra m w ill determine oil oil change int ervals ba sed on on trend a na lysis and condemning condemning limits established for for t he engine. For For a n optimized program, oil samples must be ta ken every 25 250 0 operat operat ing hours throughout the life of the engine.

When e When exte xtendi ndi ng lube oi l li fe, fe, C ate aterr pi pill llar  ar  r ecomme commends nds that th the e oi l change iinte nterr val not not exce excee ed 30 3000 00 h ho our s u unl nle ess tthe he o oii l i s manage ma naged d thr ough the C ate ater pill pillar ar S OS  progr  pro gr am am..

SOS Analysi Analys is on samples taken Analysis is performed every eve ry 250 hours an d requires tw o test procedures: • Wear Analysis • Oil Condition Condition Ana lysis

Wear analysis is usually performed wit h a n a tomic absorption absorption spectr spec tr op ophotometer hotometer or fla me emission spect roscopy (AST (ASTM M D3601). D3601). After thr ee samples are ta ken, trend lines for for the various wear elements elements a re established. Impending failures can can bem identified identifie d w hen tr end lines deviat deviat e from fro the esta blished blished norm. The The SOS progra progra m ha s also esta esta blished blished limits for for a ll appropri appro priat at e wear metals. Contact a Ca terpilla terpilla r Dea ler for for more informa informa tion.

C ate aterr pi pillar llar D eale alerr s can can de dete terr mi mine ne acce acc eptable cco once ncentr ntr atio ati on le l eve vels ls for the varii ous e var ele leme ments nts i n the a analysi nalysiss pr pro ogr am. •

Ot h heer o oil il co con d it it ion ion resu resu lt lt s determined from S OS include: include: ma ximum permissible w a ter (0.5% 0.5%); glycoll is not glyco not permit ted in t he oil oil an d cha cha if detected (itAshould S TM D be 2982 298 2 Pnged rocedure B ); ma ximu m fu el dilut ion (3 (3% %).



Additiona dditiona l oil condition ondition tests a re required unt il the fina l change period period is esta blished. blished. The t esting should be cont cont inued periodi periodically cally a t oil change int ervals a nd/or oil bran d or forma tion changes. The The tests can be a rra nged thr ough C a terpilla terpilla r D ealers a nd/or independent indep endent testing facilities: facilities:

TBN (Tota l B a se Number ) The limit is rea ched when th e TB TB N of th e used oil is 50%of 50%of the n ew oil oil TB TB N a s mea sured by ASTM STM D 2896 2896.. Viscosity The limit for used oil viscosity is 3 cSt a bove th e new oil viscosity viscosity a s measured by ASTM D445 @ 100°C.

I nitial nitial Oil C hang hange e I nterval nterval The follo followin win g char t is t he requir ed initial oil cha cha nge ba sed on on engine type used a nd oil sump size. Engine Model 3606

Oil Condition Analys Analysis is includes the following: • Infrared analysis analysis monito monitors rs soo soot, sulfur sulfur products produc ts (from combustion of t he fuel),, a nd oxida fuel) oxida tion. The The soot soot index

3608 3612 3616

Oil Pan Capacity

Oil Change Interval

Liters Gallons 697 * 184 846 ** 224 761 * 201 1078 ** 285 909 * 240 1268 ** 335 1057 * 279 1649 ** 436

(Hours) 1025 1400 925 1325 750 1050 605 1025

correla correla tes t o th e am ount of soot soot or or ca rbon part icles icles in the oil. oil. Infra red oxidat ion ion level co correlat es wit h t he a mount of oil oil degrada tion. Use sulfur products pro ducts readings a s part of a n oil condition ondition trend a na lysis.

* Typical marine oil pan; tilt angles > 0°may 0°may change volumes. ** Typical generator set or industrial oil pan.

Figure 16

16  

Oil Change Intervals without Oil Oil Analysi Analysis Results Results If SOS ana lysis lysis results results a re not not a vailable, vailable, see Figure 16 to determine oil cha cha nge interva ls. Even though oil oil sam pling pling results ma y not be a vaila ble on the recommen reco mmen ded 250 250 hour hour int erva ls, sam ples ples shoul should d be ana lyzed at every every oil change period, period, even even if t he turn ar ound time for for th e data ma y be long. long.

If o oii l sample analysi analysiss i s no nott ava avaii lable lable,, the oi l mus mustt be changed iin n 50 500 0 hour  i nte nterr vals w whe hen no ope perr ating ati ng on hea heavy vy fuel.

I ncreas ncreasing ing Oi Oill C hang hange e IInte ntervals rvals Cha nge intervals can only be increased increased wh en ana lysis results results indica indica te the oil oil ha s not reached the co conta mina tion or or depletion depletio n limits. Trendmust lines measured para meter para mus t hafor veea a ch nearly consta consta nt slope slope and m ust not rea ch condemning limits. If conditions are favorable the oil oil cha cha nge interval ma y be increased in 250 250 hour hour increment s. Oil change interva l increases increases ar e limited limited to 250 250 ho hours urs w ith continuous tr ending of sample results. Consider the effect of upcoming upco ming loa d or operat operat io iona na l cha cha nges on change int ervals before before implementing increases. Oil cha cha nge interva ls ca ca n a lso be

The rate of oil consumption is called B SOC (bra ke spec specific ific oil oil consum consum ption) a nd the unit of measure is grams per bra ke kilow a tt hour (g/bkWbkW-hr ) o orr poun ds per br a ke hors epower hour (lb/bhpbhp-hr hr)). The typical B SOC for ne new  w 360 3600 0 engin es operating a t 100% 100%lo loaa d fa ctor is 0.486 0.48 6 g/ g /bkW bk W-h r (0.0008 lb/ l b/bh p-hr p-hr). ).

N ote: ote: T his hi s va value lue can vvary ary si signi gni fificcantly  due to engi ng i ne cco ondi tio ti on, loa load d fac f acto torr and  maintenance practices. Also, with very  low consu consumpti mptio on me measur asur eme ment nt me methods thods become difficult and numbers erratic. T her here efore for e, these val values ues can o onl nlyy be use used  d  as a gui g uide de fo forr make make-up -up o oii l r equir eme ments. nts. T he followi following ng fo forr mula may be use used d to esti mate oi l co consu nsumpti mptio on pe perr hour hour : Eng ine bkW x Load Fa ctor (%) x B SO C (g/bkW-hr bkWhr ) ______________ _____________________________ _________________ ___ L/hr = _____________________________ Densit y of Oil* Engine bhp x Loa d F act or (%) x B SOC (lb/bhp-hr) ______________________________ _______________ ______________________________ _______________ ga l/hr = Densit y of Oil* *Typical *Typical engin e oil ha s a dens ity of 899 g/L (7.5 lb/ga l).

Oil Consumption as an Overhaul Guide When t he oil consumption consumption of an engine ha s increased increased to roughly three times the initia l (new (new ) consum consum ption due to norma norma l wea r, the engi engine ne ma may  y need to be scheduled for for overha ul. However, the 3600 3600 engine can ea sily opera opera te w ith oil

increased by th e addition of increased of an external sump located located either und er or adjacent t o the engine (see Figures 9 and 10). The preceding prec eding trend an alysis requirements still a pply. pply.

consum pt ion u p t o 2.2 g/bkWbkW-hr (.0036 .0036 lb/bhpbhp-hr hr ) wit hout da ma ge.

Estimating Oil Consumption

still performing at acceptable levels it should n ot be overha uled. Therefore, Therefore, to obta obta in minimum operating co cost st it is essentia l to keep keep trend lin es for for listed items.

Oil co consumption dat a a long long w ith fuel consumption consumption and ma intena nce informa info rma tion ca ca n be used used to estima estima te tota l

T he tr ue me measu asurr e of w when hen to ove verr haul an engi ng i ne i s pe perr formance me measur asur ed by tr tre end  li nes nes o off output, spe specif cifii c fue fuell co consu nsumpti mptio on, and cyli cyli nde nderr pre pr essur e. If a n engine is

Reference Material

operating cost. Oil consumption data ma y a lso be used used to estima te the qua ntit y of ma keup oil required to a ccommodat commodat e maint enance interva interva ls. Many factors can affect oil consumption including load, oil density, oil a dditive packages, and ma intena nce practices. practices.

SEBD0640 D2896

Oil A nd Y Yo our E ngine  AS  A S T M ((A A me merr i can S oci ety  of Te Testin stingg and M Mat ate er i als)

17  

TYPICAL 3600 OIL PRESSURE 550 525

15 13

500

6

11

   ) 475   a    P    k    ( 450    Y    R    E 425    L    L    A    G 400    N    I    A 375    M    O    T 350    E    R    U 325    S    S    E 300    R    P    L    I 275    O

10

14

5 3

12

250

4

225 200

7

25

50

75

PERCENT OF ENGINE SPEED

8

16 9 8 1 2

17

3608 Lube Oil System 1. Oil Pump 2. Prelube Pump 3. Oil Coolers 4. Oil Filters 5. Oil Thermostat Housing 6. Oil Filter Duplex Valve Handle 7. Priority Valve 8. Oil To Centrifugal Filters 9. Emergency Oil Connection

10. Oil Manifold (Oil To Piston Cooling Jets) 11. Oil Manifold (Oil To Bearings) 12. Oil To Main Bearings 13. Oil To Camshafts 14. Centrifugal Filters 15. Turbocharg Turbocharger er 16. Bypass Oil 17. Check Valve

10 0

* Flow In Opposite Direction During Prelube

Fig Fi gure 1 18  

15

11 16

13 10 12

14

13

5 3 11 18

6

4

7

9

16

8 2

17 1 3612 Lube Oil System

1. Oil Pump 2. Prelube Pump 3. Oil Coolers 4. Oil Filters 5. Oil Thermostat Housing 6. Oil Filter Duplex Valve Handle 7. Priority Valve 8. Oil To Centrifugal Filters 9. Emergency Oil Connection

10. Oil Manifold (Oil To Bearing) 11. Oil Manifold (2) (Oil To Piston Cooling Jets) 12. Oil To Main Bearings 13. Oil To Camshafts 14. Centrifugal Filters 15. Turbocharg Turbochargers ers 16. Bypass Oil 17. Check Valve 18. Piston Cooling Jets

* Flow In Opposite Direction During Prelube

Fig Fi gure 2 19  

Lube Oil System LUBRICATION SYSTEM Schematic SCHEMATIC

OIL COOLER

OIL TEMP. REGULATOR

OIL COOLER

OIL FILTER (3FILTER ELEMENTS)

VENT TO SUMP

FILTER CHANGE VALVE

OIL FILTER (3FILTER ELEMENTS)

VENT TO SUMP

PRIORITY VALVE CENTRIFUGAL OIL FILTER NO FLOW AT LESS THAN 100 kPa (15psi)

MAIN OIL COOLING JET MANIFOLD FLOW AT CONTINUOUS 140 kPa FLOW (20 psi)

BY-PASS VALVE TO SUMP FLOW AT 430 kPa (63 psi)

TO SUMP CHECK VALVE

BREATHER TO ATMOSPHERE

ENGINE SUMP

PRELUBE OIL PUMP

RELIEF VALVE TO SUMP FLOW AT 1000 kPa (145 psi)

MAIN OIL PUMP

STRAINER

Figure 3 Prelube

Flow

Pressure

Intermittent Air Electric (110/220 50 Hz) Electric (115/230 60 Hz) Electric (60-72 VDC)

20 gpm 17 gpm 13 gpm 16 gpm

172 kPa 172 kPa 172 kPa 172 kPa

Continuous

6 gpm

172 kPa

20  

   N    E    V    I   P    R    M    D    U    P    E    N    I   L    I    G    O    N    E    E    B    O    U    T   L

   K    E    C    V    L    E    A    H    V    C    R    N    E    O    I    N    I    T   A    C    R    U    T    S    S    K    N    A    T    D    E    P    O    L    S

   N    O    I    T    C    U    S    P    M    U    P    E    B    U    L    E    R    P

   T    N    E    V    T    E    L    T    U    O    L    I    O    P    M    U    S

   E    G    U    F    I    R    T    N    E    C  .    O  .    L    M    O    R    F    N    R    U    T    E    R

 .    X  m    )    O  m   n    i    R    0   6    P    (    5    K    P    1    N    P    A    A    O    T   T

   P    M    U    S

   L    E    L    I   V    E    O    L  

   L    L    E    H    S

   G    N    I    T    C    E    L    L    O    C

   T    N    E    V

   P    M    U    S    E    N    I    G    N    E    E    N    I    G    N    E

 .    O  .    L    E    O    T   G    U    N    F    I    O    I   R    T   T

   N    R    E    O    I    F   T    S    C    N    U    A    S    R    T  .   P    M    C    U    N    E    O    C  .   U    S    L   P

   E    P    I    P    G    N    I    D

   P    M    U    C    P    I    R    T   Y    B    C    D    E    L   N    A    E    T    S    O    T    N    E    E    P    V    I   I    P    R    D    N    O    I   R    T   O    T    C    O    U    S    M

   N    U    O    S

   S    N      O    )   E    I   m   n    T   m    i    X    P    I    C   0    E    6    S    (   P    L    E    5    L   N    F    I    N   1    O    N    O    I    O    T    P    C    C

   l    i   s   n    O   i   o   p   t   c   m  e   u  n    S  n    M   o    l   E    U   a   N    C    S   c   N    i   n    L

  p   m   p   u   m    S   u      l    S    i    l    i    O    O   e   e    b    b   u   u    L    L   e    t   e    t   o   o   m   m   e   e    R    R

   i   p   O    A   a   y   C    C    T  r    I    P   N    I    D    Y   A    T   R    D

   M    A    D    R    E    F    F    O    L    C    L    E    H    S

Fig Fi gure 9 21  

   )    G   D    E    I    N    I    L    L   P    P   P    U   U    O   S    C    R    E   E    L   M    B   O    I    X   T    E   S    L    F   U    C    (

   E    L   R    I    O   U   P    M    E   S    U    B   S    E   P    U   R    L   P

   )   n    i    6    (    E   m   P    I   m   P    0    5    1

   E    N    F   I    O   G    N    E    W    E    I    R    V   A    L    T   L    I    N   P    O   R    R   E    F   T    A    C

   )   n    i    8    (    E   m   P    I   m   P    0    0    2

   T    N    E    V

   E    L    O    H    N    A    M

   E    X    E    L   R    M    F   O    T    S    U    C    (

   D   e    D    t   e    t   o   o   m   e   m    R   e

   )    D    E    I    L    P    R   P    E   U    S    N    I    A   R    R   E    T   M    S   O    T    S    U    C    (

   L   E    I    G    O   N   P    M    E   E    U    B   V    A    P    U   C    L   S

   )    D    E    G   I    N   L    P    I    L   P    P   U    U   S    O    C   R    E    E   M    L   O    B    I    T    X   S    E   U    L   C    F   (

   )    D    E    I    L    T   P    N    I    P    U    O   S    J

  m   e    t   m   e    t  s   y   s    S   y    S   p   p   m   m   u   u    S    S   y   y   r   r

   )    D    E    I    P   L    M   P    P    U   U    S   S    E    T   R    O   E    M    M   O    E   T    R   S    U    C    (    N

   R

       A    R    D

   W    O    L    F    R    E    V   K    O   N    O   A    T   T

Figure 10 22  

   R    E    T    E    M    O    M    R    E    H    T

   G    N    I    D    N    U    O    S    L    A    C    O    L

   E    B   P    U   M    L    E   U    R   P    P

   T    U    O    M    W    A    E    O    T   L    S    B

   )    L    A    L    I    N    O    O   I    T    E   P    B   O    U   (    E    L   R    R   E    P   T    A    E    H

   S

   K    N    L   A    I    T    O    E    E    G    B    A    U    L   R    O    T    S

   T    N    G    E    N    I    V    L    L    I    F  .    O  .    L

   R    E    T    E    M    O    M    R    E    H    T

   G    I    N    D    N    U    O    S    L    A    C    O    L

   L    G    I    N    I   O    T   C    A    E    H    T    U    O    M    W    A    E    O    T   L    S    B

   L    I   K    N    O    A    T    D    E    T   E    G    A    A    V    R    O    O    N    T    E    S    R

   T    N    E    V

   P    M    Y   U    B   P    D   L    N   I    A   O    T   E    S   B    U    L

   M

   K    N    A    T    E    G    D    U    L    S    O    T

  :    E    T    O    N

   M

   N    E    V    I    P    R   M    D   U    P    E    N    I    I    L    G   O    N    E

   E    N    I    G    N    E    R    A    L    L    I    P    R    E    T    A    C

   L   R    I    E    O   F   P    M    S   M    E   N   U    B   A   P    U   R    L   T    S

   1    P

   G    N    I    D    N    U    O    S    L    A    C    O    L

   T    N    E

 

   T    U    O    M    W    A    E    O    T   L    S    B

   G    N    I    L    L    I   T    O    T    E    E    S    K    B    N    U    &    L    A    E    Y    T    T   G    R    I   A    R    D    O    T    S

   E    I    L   G    U    O    F    I    E    R    B    T    U    N    L   E    C

   K    N    A    T    E    G    D    U    L    S    O    T

  p   m   u    S    t   e    W   m   e    t   s   y    S    l    i    O   e    b    L   u   p   m   u    S    t   e    W   m   e    t   s   y    S    l    i    O   e    b    L   u

   G    N    L   I    A   D    C   N    O   U    L   O    S

   L    G    I    N    I   O    T   C    A    E    H

      R       E       T       E       M        O       M       R       E       H T

   T    N    I    O    P    R    O    H    C    N    A    E    P    I    P    S    E    T    O    E    N    D

   S    1    P

   )    L   L    I   R   M    A    O    E    N    T    O    E    I    A    1    T   B    E    P    P    U    H    L    O    (

   E   P    G   M    U   U    F    I    P    R   Y    T   L    N   P    E   P    C   U    S    V    R

   V    L    G    I    N    I   O    T   C    A    E    H

   S    )   E    S    C    I   P    A    L   T   Y    T    A    G    M    E    E    O    T   S    G    O    U    U    L    A    A    (    G    C

Figure 12 23  

   T    N    E    V

   K    N    O    T   A    T    N    I   E    A   G    R   D    D   U    L    S

   E    T    /   A    F   K    O    C    P   A    O   T    T   S    T    N    E    V

   G    N    I    D    N    U    O    S    L    A    C    O    L    T    N    G    E    N    V    I    L    L    I    F

   T    N   S    N    E   E    V   D   P    N   A    L    I   O    R    O    C   T

       R        E        T        E        M        O        M        R        E        H        T

   )    L    A    L    I   N    O    I    O    T    E   P    B   (    O    U    L   R    E   E    R   T    P   A    E    H

   T    U    O    M    A   W    E   O    T   L    S   B

   K    N    L    I   A    T    O    E    E   G    B   A    U   R    L   O    T    S

   S

   O  .  .    L    L    G    I    N    I   O    T   C    A    E    H

   G    N    I    D    N    U    O    S    L    A    C    O    L

   T    N    E    V

   O   K    T   N    A    N    I    T    A   E    R   G    D   D    U    L    S

      R       E       T       E    T       M    U       O    O    M       M    W       R    A    O       E    E    L       H    T    B       T    S

   L    I   K    N    O    A    D   T    E   E    T    A   G    V   A    R    O    N   O    E   T    R   S

   K    N    A    T    E    G    D    U    L    S    O    T

   M   K    O   N    R   A    F   T    T   P    N   M    E   U    V   S

   /    L    I    P    O   A    R    T   T    N   E    E   T    V   A    F   S    O   N    E    L    I    D    A   N    T   O    E   C    D

  m   e  m    t   s   t   y  e    S  s   y    S   p   p   m   u  m    S  u   y   r   S   y    D   r    D

   E    B    U   P    L   M    E   U    R   P    P

   Y   P    B   M    D   U    N   P    A  .    T   O  .    S   L

   M

   1    P

   N   R    E    O    I   N    T   I    C   A    U   R    S   T    S    A    L    H

   S

   M    N    E    V   P    I    R   M    D   U    P    E    N    I    I   L    O    G    N    E

   P    M    U    P    R    E    F    S    N    A    R    T    L    I    O    E    B    U    L

   1    P

   S

   K    N    A    T    P    M    U    S    G    N    I    L   D    A   N    C   U    O    O    L   S

     M

   S

   L    G    I    N    I   O    T   C    A    E    H

   G    N    I    D    N    U    O    S    L    A    C    O    L

      R       E       T       E       M       O       M       R       E       H       T

   A    L    L

   T    U    O    M    A   W    E   O    T   L    S   B

   G    N    I    L    I   L    T    O    T    E   E    B   S   K    U   &   N    L    A

   L    E    V    E    L    L    I    O

   1    P

   E    L   G    I    U    O    F    I    E   R    B   T    U   N    L   E    C

   K    N    A    T    E    G    D    U    L    S    O    T

   S    1    P

 

   P    E   M    U    G    U   P    F    I   Y

   L    G    I    N    I   O    T   C    A    E    H

   P    M    U    S    N    O    I    T    C    E    L    L    O    C

   )    L   L    A   I   R    E    N   O    T    E    I    O    T   B   A    P   U   E    H    O    (   L

   T    Y   E    T   G    A    R    I   R    D   O    T    S

   T    N    E    V    S    )    E    S   C    P    A   I    L   T    Y    A    T    G    M    E    E   O    T   S    G    O    U   U    A   A    (   L    G    C

   M

   1    P

   R   L    T   P    N   P    E   U    C   S    V    R

   L    G    I    N    I   O    T   C    A    E    H

Figure 13 24  

 ® 

3600 Marine Engine Application and Installation Guide  Fresh  Sea

Water Cooling

W ater C Water Coo ooliling ng

LEKM8465

8-98

 

 ® 

Diesel Engine gineSystemsFreshWaterCooling Operating Parameters Basic System Configurations Configurations Combined Circuit Separate Circuit Engine Coolant Flow Control Temperature Regulation Water Pumps Standby Pumps Flow Requirements Heat Rejection Aftercooler Correction Factors Heat Rejection Tolerances Heat Exchanger Heat Recovery Units Heat Exchanger Heat Exchanger Sizing Expansion Tanks Expansion Tank Volume System Pressures External Circuit Resistance

 

Keel Coolers Fabricated Cooler Performance and Sizing Application Performance and Sizing Criteria Baseline Performance Conditions Correction Factors Worksheet Design/Installation Design/Inst allation Considerations Bypass Filters Strainers Packaged Keel Coolers Keel Cooler Location Keel Cooler Circuit Pumps Keel Cooler Venting Marine Gear Heat Rejection Piping Cleanliness Venting Line Sizing Connections Jacket Water Heating System Water Treatment System Monitoring Serviceability System Design Design Forms Heat Recovery Heat Balance Heat Balance Example

 

Operating Parameters B a sic opera pera ting par a meters for for th e fresh fresh wa ter closed closed circuit engine cooli cooling ng system are: • 32°C (90°F) (90°F) nominal nominal wa ter temperat ure to the a ftercoo ftercooler an d oil cooler when using distillate or heavy fuel. fuel. • 90°C (194 (194°° F) nominal nominal wa ter temperature to the cylinder block circuit circuit on distillate a nd 93°C (199°F 199°F ) on heavy fuel. • 85° 85° C (185 (185°° F) nominal oil oil to bea bea ring temperature. Mar ine engine engine rat ings are ba sed on on 32° 32° C (90° 90° F) wa ter t o the a ftercoo ftercooler an d 25° 25° C (77° 77° F) air t o the tur bo boccha rger. rger. Mar ine engines engines wh ic ich h must operate in sea sea w at er tempe tempera ra tures greater greater tha n 26° 26° C (7 (79° 9° F) w ill be a llow llow ed to opera opera te without any power power deration with wa ter to t he a ftercooler ftercooler a nd oil oil cool cooler er of 38° 38° C (1 (100 00°° F) ma ximum. Lar ger heat excha exc ha ngers will be required to att a in 38°C (100° 100° F) a ft ercooler/ ercooler/oil co cooler oler wa t er tempera tempe ra tures when sea sea w at er tempera tur es exceed exceed 26°C 26°C (79° 79° F), but the benefits will be longer valve, exhaust ma nifold, nifold, an d t urbocharger urbocharger life. Consult t he dea ler or factory projec projectt engineer in those ca engineer ca ses where a ftercooler/ ftercooler/oil co coole olerr wa ter tem perat ures a re expected expected t o exce exceed ed th e 38° 38° C (100 (100°° F) limit.

Basic System Configurations Two ba sic close closed d circuit fr esh w a ter cool cooling ing sy stems a re used — combined combined circuit ircuit an d separa te circuit. circuit.

sys tem uses th e a ft ercooler/ ercooler/oil co cooler oler outlet w a ter t o ccoo ooll a portion of th e high temperature outlet water. The block cool coolaa nt is cconta onta ined on the engine. Only th e wa ter r etur ning t o th e aft ercool ercooler/ er/oil cooler pump requires a cooling source. This r esults in simple cool coolaa nt piping insta llat io ion. n. Refer to Figure 1 for for a typica l combined typica combined circ circuit uit flow flow diagr am . An in-line in-line engine is sh own in Figur e 2 a nd a vee engine engine in Figure 3. Figure 4 is a piping piping schema tic for for t he combined combined circuit system. (R efe ferr to page pagess 33 thr thro ough ug h

 36 for for i llustr ati ati ons.) Figure 5, 5, page 37, 37, is a diag ra m fo forr a tw o step inlet inlet a ir temperat ure contr contr ol system for continuous continuous hea vy fuel a pplica pplica tions. See the H eavy Fue F uell sec section tion for furt her details.

 sepa parr ate ate ci r cuit  ui t cooling system The se shown in Figures 6, 7, 7, an d 8 is ava ilable for for ma rine applicat applicat io ions. ns. It is norma norma lly used for keel cooled or radiator cooled insta llat io ions ns to reduce reduce the external ferr to page pagess 38cool cooling ing packa ge size. (R efe 40 for illustrations.)

Engine Coolant Flow Control The correct correct coolant coolant flow flow s a re provided by factory installed orifices combined with external circuit circuit resista nce (set a t ea ch site). The orifices are sized to provide proper flow splits and pressure levels to engin e co componen mponen t s (a ft ercooler, ercooler, oil oil cooler, cooler, cylinder block, cylinder heads, and tur bochargers). bochargers). T The he externa l resista nce setting is critical. critical. It esta blishes blishes tota l circuit circuit flo flow w by ba lan cing cing t ota l circuit circuit losses with pump performance curves. Set it with a n a djusta djusta ble, ble, loc lockable valve or orifice orifice in customer piping. Mea sure external circuit circuit resista nce with blocke blocked d open open regulat ors t o assure a ll flow flow is

The co comb mbii ned ned ci cirr cuit configuration is also referred to as the single circuit fresh wa ter system. It is typically typically used for for ma rine and hea vy fuel a pplic pplicaa tions wh ere a single heat excha excha nger is preferred. The aftercooler and oil cooler circuit is externally regulated (fluid inlet temperature control) to 32°C (90° (90°F F ). Th e

passing t hrough the externa l ccircui ircuit. t. T he valve val ve use us ed to se sett the rre esi stance stan ce mus mustt not  use elastome elastomer se seat at mate materr i al.

Typical fa ctory a nd customer orifice orifice locat lo cat io ions ns a re shown in F igure 1 for for a combined system and Figure 6 for a separ sep ar a te ci circuit rcuit system. 5

 

Temperature Regulation Inlet contr contr ol tempera tempera ture regulat ors ar e used on on the jacket jacket wa ter a nd a ft ercooler/oil cooler cooler (AC/OC ) ccoolan oolan t a nd lube oil circuits. The standard regulator cha ra cteristics ar e shown belo below. Some ma rine societies societies requir e ccoo oola la nt temperat regula regul tors to ha a ma nua l override oure verride ca caapability. pability . Invet hese cases the sta ndard Ca terpillar terpillar regulator is not a ccepta cepta ble and a nother supplier supplier must be used. StartStar t-Op Open en Full Full-O -Ope pen n Temp Temp °C (°F) °C (°F)

AC/OC Circuit*: Distillate and 27 (8 (81) 37 (9 (99) Heavy Fuel Two Step Control (at low load) JW Circuit**: Distillate Fuel 85 (185) 95 (203) Heavy Fuel Lube Oil C Ciircuit:

88 (190) 76 ((1 169)

98 (208) 89 (192)

Nomina Nomi nall Temp °C (°F)

32 ((9 90) 75 (167) 90 (194) 93 (199) 83 (181)

* Dual temperature control m may ay be required on heavy fuel applications. See “Heavy Fuel” in the “Engine Systems” section of this guide. ** Minimum allowable inlet water temperature is 83° 83°C C (181°F) (181° F) on distillate di stillate fuel and 85°C (185° (185°F) F) on heavy he avy fuel.

Hea t r eco ecovery circuits circuits usually require a n external r egulator t o prevent prevent overovercool cooling ing t he engine. If t he hea t r ec ecove overy ry circuit circ uit uses less th a n 30%of 30%of the ava ilable ilable jjacke ackett w at er heat load, then an external regula tor is not not required. If used, the heat reco recovery regulat or must ha ve a st ar tt-toto-o open pen t empera empera ture 5° C (9° F) lo lower tha n t he ja ja cket w a ter circuit circuit regulator. See H eat R ecove coverr y within this section. Regulator mounting location depends on the cool cooling ing system type a nd engine package configura configura tion. If a n expansion ta nk is mounted on an a cc ccesso essory ry m odule

in front of the engine, engine, the regulat or ma y be mounted mounted on the ta nk. See the ta ble belo bel ow fo forr t ypica ypica l Ca terpill terpillaa r regula tor mounting locations. Regulators supplied by other suppliers suppliers ar e usually m ounted in the shipya rd piping. piping.

Water Pumps All engines have two engine driven fresh wa ter pumps mounted mounted on the front front engine housing. The right hand pump (viewed fr om th e flyw heel end) supplies supplies cool coolaa nt to th e cylinder block, block, cylinder heads, a nd t urboc urbocha ha rger. rger. The The left ha nd pump supplies cool coolaa nt to t he a ftercooler ftercooler a nd oil cool coolers. ers. C omplete omplete pum p performance performance curves curves a t var io ious us pressure heads a re shown in Figure 9. An An engine driven drive n ra w w at er pump pump is is ava ilable ilable and is gear driven off the front of the engine. See Figur e 46 46 in the E ngi ne P er fo forr ma manc nce e section sec tion fo forr ra w wa ter pump power power requirements. Some applica applica tions will require sta ndby pumps. Electrically Electrically driven st an dby pumps are shown in Figures 4 and 5 a nd a re a lso included included in the follo following wing description.

Standby Standb y Pumps Typically a n elec electr tr ic sta ndby pum p is required to para llel llel each engine driven pump for for single engine ma propulsion applications to rine meet marine society soc iety req uirement s. Tw o fresh w a ter pumps are required for standby, or emergency,, service. emergency service. One par a llels the engine driven high t empera empera ture jacket wa ter circuit. circuit. T The he o other ther para lle llels ls the engine dr iven low t empera tu re AC/OC ci circuit. rcuit. Ea ch externa externa l circui circuitt must be isolaa ted fr om the engine by chec isol check k or shutoff valves.

Cooling

Expansion Tank

JW Regulator

AC/OC Regulator

Oil Regulator

System

Location

Location

Location

Location

Combined Combined Sep. Circuit Sep. Circuit

Module Remote Module Remote

Engine Engine Exp. Tank Remote

Exp. Tank Exp. Tank or Remote Remote (in piping) Remote (in piping)

Engine Engine Engine Engine

6  

Water Pump Performance 3606 & 3608 Engines 320 280 1000

240

   )   a    P200    k    (   e   s160    i    R   p   m120   u    P 80

900 750 720

AC/OC Pump Operating Line

JW Pump Operating Line

40 350 rpm Engine 0 0

400

800

1200

1600

2000

2400

2800

Fresh Water Flow in L/min

Water Pump Performance 3612 & 3616 Engines 320 280 240

   )   a    P200    k    (   e   s160    i    R   p   m120   u    P 80

1000 900

AC/OC Pump Operating Line

750 720

JW Pump Operating Line

40 350 rpm Engine

0 0

400

1200

2000

2800

3600

Fresh Water Flow in L/min

Fig Fi gure 9 7  

Wa tercooled tercooled ma nifolds are not used a nd th ere is no direct direct h eat reje rejectio ction n from exhaust m a nifolds nifolds to the co coolant . J a cket water heat rejection on 3600 Engines a lwa ys refers to the sum of the block, block, head, a nd turbocha turbocha rger. rger.

Insta ll a w at er press pressure ure lo low a larm contactor at the discharge of the engine driven pum p to control control th e opera opera tion of the st a ndby m otor driven pump. The The standby pump should start au tomat ically ically if the engine driven driven pump discharge pressure falls below 120 kPa

Nominal values for heat rejection,

(17.4 psi). psi). The The co cont nt rol configur a tion should sho uld be arr a nged to ope opera ra te only when the engine is running. Additionally, the cont cont a ctor should be tied into the oil step function func tion of of the speed switch so tha t the sta ndby pump can only ope opera ra te a bo bove ve 75%of 75%of ra ted speed. This This is beca use t he engine driven driven pump pressure may be lower lower tha n the a larm set point point a t low  engine speeds, but but t he pump pressure is still sufficient sufficient t o cool cool th e engine an d th e sta ndby pump is not not required.

coo coolan t flows, flows, a nd temperat ures are shown in the E ngi ngine ne D ata section. For the most current data always consult the TMI TMI S ystem.

Aftercooler C orre rr ection F Fac acto tors rs H eat reje rejectio ction n correction correction fa ctors for for t he a ftercooler ftercooler can be calculat ed fo forr var ious ious ambient a ir and coo cooling wa ter tempera tu res (see (see Figur e 10) 10). A typic typicaa l correctio correction n fa ctor for 45° 45° C am bient bient a ir a nd 32° 32° C w a ter to the aft erco ercooler would would be approximat approximat ely 1 1.2 .2 times the nominal aftercooler heat rejection valve in the En gine Da ta section section of of this guide.

Flow Requirements St an dby pump flo flow w requirements must ma tch the engine driven driven pump it is to replace. See the following following t a ble for for pump requirements.

Heat Rejection Tolerances Coolant Flo Coolant Flow w = ± 10% Hea t Rejectio Rejection n = ± 10%

AC/OC Pump @ 32 C Flow Rise L/min gpm kPa

psi

Flow L/min

3606/3608: 1000 rpm 900 rpm 750 rpm 720 rpm

1200 1080 900 860

317 285 238 227

295 240 170 160

42.8 34.8 24.7 23.2

1460 1315 1095 1050

385 347 289 277

295 240 170 160

42.8 34.8 24.7 23.2

3612/3616: 1000 rpm 900 rpm 750 rpm 720 rpm

1730 1560 1300 1250

457 412 343 330

305 245 170 160

44.3 35.6 24.7 23.2

2920 2630 2190 2100

771 694 578 554

290 240 170 155

42.1 34.8 24.7 22.5

°

The recommended materials for the standby pumps pumps a re: • Casing — Cast Iron • Impelle Impellerr — B ro ronze nze • Shaft — Stainles Stainlesss Stee Steell • Seal — Mechanical Mechanical For em ergency pum p connection connection

JW Pump @ 90 C Rise gpm kPa °

psi

The tolerances account for engine-toengine var iat io ion, n, test dat a a ccura ccura cy, cy, repeat repe at ability ability,, a nd scat ter. The The hea t rejectio reje ction n t olera olera nce ban d does no not  t  a ccount ccount for on-site on-site conditions such a s a mbient a ir t empe empera ra ture. To Tolerance guidelines are as follows:

locaa tions a nd sizes see Figure 4 loc (combin combin ed circuit).

Heat Exchanger Tolerances B ase heat rejectio rejection n ca ca pacity on the high side of of the t oleran oleran ce band, i.e., i.e., + 8%to + 10% 10%. This This t ends t o assur e norma l engine opera pera ting temperat ures and compensa compensa tes for unexpected unexpected fo fouling uling situations.

Heat Rejection Hea t rejection rejection to engine cool coolaa nt comes comes from th e ccylinder ylinder block, block, cylinder hea ds, wa tercool tercooled ed turbocha turbocha rger t urbine housing, aftercooler, and oil cooler. 8  

AfterCooler Heat Rejection Correction Factors for Water and Ambient Air Temperature NOTE: Applicable At or Near Rated Load Only. 1.6

W 27 C  a  t    e 32 C r  T  37 C  e m  p 42 C  t    o 47 C A   C 

1.4

°

°

°

°

°

1.2

  r   o    t   c   a    F   n   o    i    t   e   c 1.0   r   r   o    C    C    A

   H 0.8

0.6

0.4

-20

0 20 Ambient Air Temp ( C)

40

60

°

STD. Conditions

Fig Fi gure ure 10 10

9  

Heat Recovery Unit Tolerances Assume reco recoverable heat a vaila ble is is a t th e low low er end of the toleran ce zone, i.e., -8%t -8%t o --10% 10%. This This a djust s for t he regulat or contr contr ol system cha ra cteristics cteristics a nd convection/ convection/ra dia tion losses from t he coverr y in t his section piping. See H eat R ecove section of the guide.

JACKET WATER

SINGLE PASS

Heat Exchanger The Ca terpilla terpilla r shell and tube type heat excha exc ha ngers provide compa compa ct, reliable, a nd cost cost effective effective cooling. cooling. S ince heat exchanger tubes can be cleaned easily, raw wa ter is usuall usuallyy routed routed through tubes an d engine co coolant thr ough t he shell.. The shell The flow flow in th e ra w wa ter section section is eith er sin gle-pass gle-pass or t wo-pass wo-pass (see Figur e 11) 11).. A tw o-pass o-pass ty pe flows flows ra w  water twice through the exchanger; single--pass ty pes use ra w wa ter only single once. onc e. To provide provide ma ximum tempera tur e differential and heat transfer in singlepass exc exchangers, the ra w wa ter flows flows opposite opp osite t o ccoo oola la nt flow. The The di rection of flo flow w is not importa importa nt in tw o-pass exchangers. If the ra w wa ter conta conta ins debris debris,, use stra iners to prevent prevent tube plugging. In cases of extreme silt contamination or abr a sive mat erials, consider consider a back-flush back-flush filter.. Some raw wa ter sources filter sources contain contain high levels of impurities or hardness wh ich ich a ccelerat celerat e heat excha excha nger fouling. fouling. More Mo re frequent hea t exchanger clea clea ning will be required if treat ment is not practical. Hea t excha excha nger performa performa nce depends depends on on raw wa ter fflo low w an d tempe temperat rat ure differentia l. Orifices Orifices or or fixed va lves must be used used to limit ra w w a ter veloci velocity ty a nd a void tube erosion. erosion. D o not not use tempera tempe ra ture regulators regulators in the raw wa ter

COOLING  WATER

JACKET WATER

TWO-PASS

Heat Exchanger Types

Figure 11

Heat Exchanger Exchanger Sizing Si zing Combine Com bined d Cir C ircuit: cuit: The hea t excha nger sh ould be sized sized using a maximum coolant temperature a t th e AC/ AC/OC pump inlet of 38°C 38°C (100°F 100°F ) for all Ma rine engines. The The hea t excha exc ha nger sizing must also consider consider the ma ximum expec expected ted a mbient air temperat ure, maximum engine po power wer (ra ckwa stop po w er), er) , ma ximum expe expected cted raw ter pow temperature, temp erature, and 10 10%margin %margin for for a fo fouling uling an d sa fety fa ctor. tor. Consult a projec proj ectt engin eer if the vessel will opera opera te in sea sea w at er te tempe mperat rat ures greater tha n 32° 32° C (90° 90° F) F).. It is impractical t o purchase purchase heat excha excha ngers w hich hich a re sized for for less tha n a 6°C (11°F ) diffe differentia rentia l be betw tw ee een n sea w a ter a nd AC/ AC/OC w at er er..

circuit. ircuit. E ngine ja ja cket w a ter is thermosta tically contr contr olled olled and ad ditiona ditiona l contr contr ols a dd expense, expense, cause restriction, and decrease reliability.

10  

Separate Circui Separate Ci rcuit: t: There ar e tw o heat excha excha ngers required for sepa sepa ra te circuit cool cooling ing sys tems, one fo forr t he engine jacket jacket wa ter circuit circuit a nd one for th e AC/ AC/OC w a ter circuit. The The jacket wa ter hea t excha excha nger should should be sized size d using a ma ximum cool coolan an t temperat tempe rat ure at the jacke jackett w at er pump inlet of 93° 93° C (199 (199°° F) for for h eavy fuel engines, and 90°C (194°F) for distillate fuel engines. The jacket water heat exchanger sizing must also consider ma ximum engine power power (ra ck stop stop power), power), ma ximum expec expected ted ra w w a ter temperat ure, and 10%ma 10%ma rgin for for a fo fouling uling a nd sa fety fa ctor. ctor. The AC/OC h ea t excha nger should be sized size d using a ma ximum cool coolan an t tempera tur e at th e AC/ AC/OC pump inlet of 38° 38° C (1 (100 00°° F) for for a ll ma rine engines. The The AC/OC hea ger expected sizing mus t a lso consider thet exchan maximum am bient bient a ir temperat temperat ure, maximum engine power (ra ck stop po power wer ), ma ximum ximum expec expected ted ra w w at er temperat ure, and 10%ma 10%ma rgin for for a fo fouling uling an d sa fety fa ctor. ctor. See the previous previo us note on combined circuit circuit hea t excha exc ha nger sizing if if sea sea w a ter temperat ure is grea grea ter tha n 32° 32° C (90 (90°° F) F).. Separ at e ccirc ircuit uit coo cooling systems a re most comm comm only used in applicat io ions ns where keel coolers or radiators are used a s the heat excha excha ngers, to keep keep the equipment size to a minimum .

Expansion Tanks Ca terpilla terpilla r expansion expansion ta nks provide: provide: • Expa nsion nsion volume volume for for cco oolan t • Coo Coolant lev level el alarm • Single filling filling loc loca tion • P ressure ressure cap & vent • Coo Coolant sight sight gauge • Deaeration Deaeration chamber

Ca terpillar terpillar of offers fers two expa expa nsion nsion ta nks. The smaller ta nk ha s an expa expa nsio nsion n volume of of 75 L (20 (20 gal) and th e lar ger tank has 245 L (65 gal). Calculations can determine if if an a uxilia uxilia ry exp expaa nsio nsion n ta nk is required. Two ta nk a rra ngements can be provided provided by Ca terpilla terpilla r a s follo follows: ws:

 S tandard tandard Vo Volume lume Tank - For use w ith cool cooling ing sys tems w hose tota l volume volume is up to 1500 1500 L (40 (400 0 ga l), l), a ssuming a 4.4° 4.4° C (40° 40° F) ffill ill wa ter t empe empera ra ture.

H i gh Vo Volume lume Tank - For use with cooling systems w hose hose tota l volume volume is up to 5700 5700 L ((15 1500 00 gal), assum ing a 4.4° 4.4° C (40° 40° F) ffill ill wa ter t empe empera ra ture. Figur es 12 12 and 13 o on n pa ge 13 show t he tw o Ca terpill terpillar ar ex expansio pansion n ta nks that are available. Tw o p possibl ossiblee meth ods of of a rra nging th e expan exp an sion sion t an k in th e coo cooling system a re the full flo flow w syst em and shun t t ype system. The The most importa importa nt point point w ith either system is to ensure tha t a ir entra ined in the coo coolant is remo removed ved to prevent preve nt pump ca ca vita tion and cavita tion erosion erosio n of intern a l engine components. components. Dea erat ion ion of the co coo olant requires a lo low  w  veloccity a rea. I n either case, locate velo locate t he expan exp an sion sion t an k to pre prevent vent va cuum formation. T he water le leve vel l i innth the e tank   sho  should uld b be e the highe hiwate ghest str po poi i nt tthe he cooli ng ci r cuit ui t at any ship attitude attitude.. With t he full flow flow sy stem , the ent ire flow  flow  of coolant passes through the expansion ta nk via a regulat regulat or mounte mounted d on the ta nk. T This his a llo llow w s a ir to be removed removed from the coo coolant bec becaa use the ta nk ha s internal baffles baffles tha t slow slow the w at er flow  flow  dow n t o 0.6 m/ m /sec (2 ft /sec). T The he fu ll flow  f low  syst em provides a single fill poi point nt in

bo both th the combined combined a nd separ a te circuit circuit syst ems. A ma ke-up ke-up line betw betw een the

• Thermostat hermostat mounting mounting

tw o circ circuits uits is required on the sep sepaa ra te circuit system (see Figure 6). The full flo flow w syst em is usually used when the expan exp an sion sion t an k is lo located cated nea r t he front front of the engine.

rsitive a in in e pump •• D P ora sitiv pump inlet inlet pressure pressure

11  

With t he shunt type system, the expansion tank is connected to the cool cooling ing syst em by one smaller pipe tha t ma inta ins a sta tic hea hea d on on the cool cooling ing system. Separa te vent lines lines must be run from fro m ea ch system high point point t o the expaa nsion exp nsion ta nk to remove remove entr entr a ined air from fro m t he coo coolant . A dea dea erat or cha mber

Expansion Tank Volume

must a lso be installed at the coo coolant outlet from the engine. The deaerator removes remov es entra ined a ir from t he coo coolant an d a port port in t he top of the chamber is used to connect to the expansion tank. Figure 5 shows a shunt type cooling system used in a heavy fuel engine engine tw o step cool cooling ing sy stem.

cool co olaa nt lvol volume ume plussupplied) t he volume of of a ll externa (cust (cust omer circuits. circuits. Volume dat a is shown in F igures 12 an d 13 for the engine, full Caterpillar sta nda rd a nd high volume volume expansio expansion n ta nks, tank pip piping ing and t he Ca terpi terpillar llar supplie supp lied d shell a nd t ube heat excha excha nger. nger.

The shun t t ype system is used in applicaa tions where the expansion applic expansion ta nk ca nnot be loc loca ted nea r t he front front of the engine. In t his ca ca se the expansion expansion ta nk is mounted remotely (usually theonly next deck up from from t he engine level), level)on , a nd a few sma ll conne connectio ction n lines to the ta nk ar e required required for for vents and t he stat ic hea d connection. connection. This This prevent s th e need for runn ing la rge coolant coolant pipes pipes over over long dista nces through t he engine room. room. The The coo oolant lant regulat or is mounted separa tely from fro m th e expansio expansion n ta nk in a place convenient convenient for th e builder.





Expansion tanks must provide adequate volume for for coola coola nt expansion plus reser ve. Tota l cooling cooling sys tem volume must be known to determine the minimum a cceptable cceptable expansion expansion ta nk size. The The tota l volume volume is t he engine

The req uired expa nsion volume is calculat calc ulat ed a s follows: follows: Requir ed Expa nsion Vol Volume ume = (Tota l S ys t em Volum Volume) e) x (Expan sion sion Ra te) The expansion ra te depends on the coo coolant mixture being used, and can be determined from the curves shown in Figur e 14 on on pa ge 14. Some insta insta llations will use the Ca terpilla terpilla r supp supplie lied d heat excha excha nger and factory piping. piping. I n t hose ca ca ses, the vo volume lume of all externa l piping piping must be calculated. The minimum reserve capacity is determined from from t he following table:

Total External Circuit Volume

Minimum Reserve Capacity

50% of Engine Coolant Volume 60% of Engine Coolant Volume 70% of Engine Coolant Volume 80% of Engine Coolant Volume 90% of Engine Coolant Volume 100% of Engine Coolant Volume

10% of Total System Volume 9% of Total System Volume 8% of Total System Volume 7% of Total System Volume 6% of Total System Volume 5% of Total System Volume

The minimum acceptable expansion tank volume is: Minimum Tank Volume = (Expansion Volume) + (Minimum Reserve Capacity)

12  

Expansion Tank Standard Volume Volume 75 L (20 gal)

Figure 12

Expansion Tank High Volume Volume 245 L (65 gal)

Figure 13

Engine 3606

Engine Coolant Volume

Expansion Tank Standard Increased Capacity Capacity

400

Liters (kg) 300 (300) 475

(400)

(475)

Expansion Tank Piping 150 (150)

Heat Exchanger 50

(50)

3608 3612 3616

530 (530) 800 (800) 1060 (1060)

Engine 3606 3608 3612 3616

475 475 475

300 (300) 300 (300) 300 (300)

(475) (475) (475)

150 (150) 200 (200) 200 (200)

50 (50) 100 (100) 100 (100)

U.S. Gallons (lb) 105 (875) 140 (1167) 210 (1751) 280 (2334)

80 80 80 80

(667) (667) (667) (667)

125 125 125 125

(1042) (1042) (1042) (1042)

40 40 55 55

(333) (333) (333) (333)

15 15 30 30

(125) (125) (250) (250)

13  

Figure 14

System Pressures The following following pressur e limits a pply to all 3600 3600 Diesel En gines: Wat er Pump P ressures: Maximum Allo llowa wa ble Sta tic Head .. ..... ...... ...... ...... ...... ...... ...... ...... ...14 145 5 kPa (15 m H 20) Minimum AC/OC P ump In let (Dyna mic) mic)......... .................. ...................-5 5 kPa (-0.5 m H 20) Minimum J W P ump Inlet (Dyna mic mic))* .... ........ ........ ........ ....... ....... ........ ......3 ..30 0 kP a (3.0 3.0 m H 20) Minimum Raw Water P ump Inlet (Dyna mic mic)) ........ ..............-5 5 kPa (-0.5 0.5 m H 20)

Maximum Operating Pressures: Engine Cool Cooling ing Circuits... Circuits..... ..... ...50 500 0 kPa (51 m H 20) Caterpillar Expansion Tan ks ................. .......................... .................. ..........15 .150 0 kP a (15.3 15.3 m H 20) Caterpillar Heat Exchangers ........ ............ .......1 ...100 000 0 kPa (102 102 m H 20) Ra diat ors/Non-Ca Non-Ca t Heat Excha ngers ......... .................. .................. .............( ....(Cont Cont a ct Supplier) * Acceptable jacket water pump inlet pressures are achieved on combined co mbined cooli cooling ng syst ems by m ainta ining the correct external circuit circuit resistance.

14  

E xte xternal rnal Circui Ci rcuitt R Re esist istance ance The met hod used to set extern a l circuit circuit resista nce depends depends on cooling cooling syst em geometry.

Method No. 1: Used w hen t he cool cooling ing circuit circuit includes includes the C a terpilla terpilla r expan exp an sion sion ta nk and regula tors mounted mounted on the front module assembly (full flow  flow  system). External pressure drop is measur ed from from t he engine outlet outlet t o the cold cold flo flow w entra nce at t he regulat or housing. housi ng. Measur e both both pressures pressures a s close clo se to the sa me elevat io ion n a s possible possible (see Figure 15 15 and ta ble at right). cooling ing Method No. 2: Used w hen t he cool circuit circ uit includes a remote-mounted remote-mounted expan exp an sion sion ta nk an d remote remote regulat ors (shunt type system). system). Ext erna l pressure drop is measured from the engine outlet

rpm 1000 900 750 720 Tolerance:

 

∆P

(P1-P2) kPa (psi) 90 (13) 73 (11) 51 (7.5) 47 (7) ±10%

T he a abo bove ve e exte xterr nal r esi stance se setti tting ngss mustt be made wi th bl mus blo ocke ckedd-o ope pen n r eg ul ulato atorr s to assur e ful fulll h he eat e exchang xchange er   flow.  flo w. R efe ferr to E ngi ne D ata ata S he hee et 50.5, “C ooli ng S yste ystem m FFii eld T Te est” st”..  A loc lockable plug va valve lve i s p prr efe ferr r ed fo for  r   setting  se tting e exte xterr nal r esista si stanc nce e. A p plate late typ type e or i fi ce or othe therr adj adjustable ustable valve m may ay be used, use d, but i t must not in include clude an elas lastome tomerr seal eleme element nt..

to the pump inlet. pressure measur ements a t tMake he co corresponding rrespo nding outlet a nd inlet elevations (see F igur e 16). 16).

Figure 15

15  

3606 and 3608 Combined Circuit External Circuit Resistance, kPa (psi) Engine Speed rpm

Low Temperature Circuit ∆ P (P1-P2)

High Temperature Circuit ∆ P (P3-P4)

1000 900

91 (13) 71 (10)

— —

750 720

45 (6.5) 40 (5.8)

— —

Tolerance:

± 10%



104 (15) 84(12) 58 (8) 52 (7.5)

99 (14) 77 (11) 50 (7) 44 (6)

± 10%

± 10%

1000 900 750 720

85 (12) 66 (9.6) 42 (6) 38 (5.5)

— — — —

Tolerance:

± 10%



1000 900 750 720

85 (12) 66 (9.6) 42 (6) 38 (5.5)

103 (15) 81 (12) 52 (7.5) 47 (7)

Tolerance:

± 10%

± 10%

3606 and 3608 Separate Circuit 1000 900 750 720 Tolerance:

3612 and 3616 Combined Circuit

3612 and 3616 Separate Circuit

Figure Fi gure 1 16 6

16  

The correct correct circuit r estriction mu st a lso be maint a ined for for bypa ss flow. flow. Systems including the module mounted expansion sio n t ank with Ca terpill terpillar ar regulat regulat ors contain factory inst alled orifice orificess t o cont cont rol bypass flow. Fo Forr rem ote system s, set the externa l bypass restriction restriction to 130%± 10%of 10%of the co corresponding rresponding exter na l restriction va lue for restriction for full hea t excha excha nger flo flow. w. The The rest riction must be set before the circuit circuit r eaches regulator st a rtrt-totoopen pen temperat ure.

Keel Coolers A keel coo cooler ler is a n outboa rd h eat excha exc ha nger at ta ched ched to the submerged submerged port port io ion n of a ship’s ship’s hu ll. They They a re typically used in applications encount enco unt ering m uddy or silty cool cooling ing water. Fa brica brica ted keel co coolers olers use ma ny sha pes pes (pipe, pipe, tubing , ccha ha nnel, etc.). etc.). Ma teria l choice cho ice depends depends on t he cool cooling ing w a ter enco enc ountered. It must be co compat ible with the ship’s hull materials to prevent ga lva nic corrosion. corrosion.

Fabri cated Fabricate d Coo C ooler ler Performance and Sizing This guide section ma y be used t o determ ine keel cool cooler er performa nce characteristics, including sizing, for 3600 Engines. Careful identification of application type, operating conditions, coo oolant lant temperat ure specific specificaa tions, a nd accepta acce pta nce li limits mits m ust be emphasized for accurate analysis.

Application The da ta ma y be used for for t he follo following: wing: • Determine keel coo cooler ler size ((surfa surfa ce area) required for either a combined or separate circuit cooling system. • Determine the performance performance ccaa pability, pability,

• P r e di di ct regulated co coo olant temperat ures a t a ny engine operat operat ing conditions conditions for for a specific keel cooler configuration. This is an iterative process and requires tempera tempera ture regulat or chara cteristic cteristic curves curves (tempera (tempera ture vs str oke a nd flow split vs st roke) for the thermosta ts being used. used. Conta ct a Ca terpill terpillaa r Applic pplicaa tion E ngineer for this ana lysis. lysis. The general technique for analyzing keel cool cooler er performa nce is ba sed on establishing a unit hea t r ej ejec ection tion capa city fa ctor in t erm s of kW/ kW/m 2 of surfacee area per ° C temperature surfac difference betw een coolant coolant -to-engine to-engine a nd the ra w wa ter. This This is determined from from the curves in Figure 17 fo for a nominal (ty pic picaa l) set of co condit ndit ions, an d is r eferred to as the baseline performance. The baseline cerat ca a pacity isnditions th en a djusted djusing usted afor a ctua l op operat ing conditions co set of correction correction fa ctors. The The corrections corrections ta ke into acco account fo fouling uling factors (ra (ra w wa ter a nd coola coola nt ), use of a nt ifreeze (%glyco (%glycol) l) if applica applica ble, ble, a nd a ctual st ee eell thickness thickness of the heat transfer surface. Materials other t ha n str uctura l (mild) (mild) steel are not considered considered in this an alysis. For keel coole coolerr sizin g, t he hea t rejectio rejection n capacity fa ctor ctor is used t o ca ca lculat lculat e the tota l surface ar ea required. This This is based on accepta accepta nce ccrit rit eria for the specific specific engine a nd a pplica pplica tion. Acc Accepta epta nce is norma lly ba sed on co cool olaa nt -to-engine to-engine temperat ure limits spec specifie ified d in the beginning of this Cooling section. After determining the required surfa surfa ce area , the st ructura l members can be selected selected based on space limitat io ions, ns, a vaila bili bility ty,, a nd tota l co cool olaa nt flo flow. w. The The cross sections sections selected selec ted (an gle irons, chan nels, etc.) must provide flow conditions (velocity a nd t urbulence) urbulence) used in th e capacity calculat calc ulat io ions ns a nd a na lysis. Flow Flow losses losses

including the return to engine coolant

(pressure dr op op)) through th e cool cooler er m ust

tempera tur e, for for a n existing keel coo cooler ler configuration.

also be ble calculated an ta nce a ccepta cepta externaltocircuit ciconfirm rcuit r esista esis nce..

17  

To eva lua te a n exist ing keel cooler cooler configur configur a tion (vessel repower, etc.), etc.), t he heat rejec rejection tion ca ca pacity fa ctor is used t o calculat e t he coolan coolan tt-toto-engine engine temperature. This calculation should be done assuming full keel cooler flow  (thermostats fully open). If the resulting coo oolant lant temperat ure is below t h e ma ximum a llo llowa wa ble limit, limit, the keel keel cool cooler er design is a cc ccepta epta ble relat ive to heat rejec rejection. tion. P ressure drop through th e ccoo ooler ler must a lso be ca ca lculat ed to determine if externa l circuit circuit r esista esista nce is acceptable. The curves an d techniq ues in th is section sec tion can a lso be applied to predict predict engine cooling system temperatures for specific operating conditions. This an alysis procedure procedure requires the determina tion of of th e equilibrium equilibrium point point a t wh ich ich th e system flows flows — cooler temperat ures, engine heat rejection, keel capacity, and thermostat temperature/ flo flow w cha ra cteristics are a ll balan ce ced. d. Refer this iterative process to a Ca terpilla terpilla r Applic pplicat at ion ion En gineer. gineer.

Performance and Sizi Sizing ng Criteri Cr iteria a

K eel coo cooler ler si zi zing ng must be base based d on the most critical set of operating conditions. • For mar ine prop propulsio ulsion n engines operating in a consistent t ype of of ra w  wa ter, the critica critica l case w ill most most likely be ma ximum power powerexpected a t ra ted vessel speed atengine maximum raw -wa ter t emperature. emperature. Exa mples mples w ould include include ocean ocean going ships, vessels vesse ls limited to the Gr eat La kes, or or lar ge river river tugs. • For propuls propulsio ion n engines ope opera ra ting in multiple ra w-wa w-wa ter types, several several cases ma y ha ve to be evalua ted to identify th e critical critical situa tion. An An exam ple is a n ocea ocea nn-going going vessel

• Fo Forr mar ine auxiliar auxiliar y engi engines nes,, the critical condit condit io ion n will most likely be ma ximum loa loa d, still wa ter (ship (ship anchored), and maximum raw-water temperature. If load demand varies significantly signifi cantly betw een anchored anchored an d under-way op opera era tion, both condit condit ions must be evaluated. The keel cool cooler er design must meet t he following criteria: • St ructura l (mild) (mild) steel welde welded d to ship’s hull. I f r aw wate waterr te tempe mperr atur e exce xcee eds

 30°C , parti parti cular ularly ly in sa salt lt w wate aterr , the the use of pack packag age ed co coo oler lerss mad made e of cor corrr osi on resistant materials is recommended. • Engine co coolant flowing flowing fro from m rear to front of the vessel (counter-flow). If this is not possible due to the hu ll design a nd piping piping limita tions, or or if a n existing coole coolerr w ith split flow ty pes is being being ana lyzed, lyzed, cco onta ct a Ca terpi terpill llar ar Applicat pplicat io ion n En gineer. • No pa pa int or protective protective co coaa tings a pplie pplied d to heat tra nsfer nsfer surfa ces. The engine cool coolaa nt m ust m eet th e following: • Wat er used used must meet Cat erpill erpillar ar specifications. • Conditio Conditioner ner must be used used and ma inta ined at proper proper co concentr ncentr a tion levels. • U se of of an tifr eeze (glycol) glycol) is acc accepta epta ble. En gine coolant coolant flo flow w th rough t he cool cooler er must meet t he fol follo lowing: wing: •

Flo Flow w ve velo loccity: M a xi xi m u m 2. 5 m /s ec (8. 2 f t /s e c) M in i m u m 0. 5 m/ m /s ec (1. 65 fftt /s ec) Design P oint** 1.5 m/sec (4.92 4.92 ft/sec sec))

• Turbulent flow flow (na tura l or or induced) induced)

entering inland ha rbors via rivers, channels, etc.

** Rated engine speed speed w ith full flo flow w through coole coolerr (thermost a ts fu lly ope open) n)

18  

Baseline Performance Conditions The ba seline performa performa nce curves curves in Figur e 17 17 are for th e follo follow w ing conditions: Eng ine Coolant Coolant : Trea ted Fr esh Wa Wa ter (no glycol) Eng ine Coolant Coolant Fouling Fouling Fa ctor: ctor: 0.0010 0.00 10 (no (no excessive excessive h a rd ness) Ra w Wa ter Fouling Factor: 0.003 0.0 030 0 ((ty ty pica pica l river w a ter) Steel Thickness: 6.35 mm (0.25 (0.25 in )

Correction Factors The baseline keel cooler performance (unit heat rejection capacity) obtained from Figure 17 must be adjusted to a ccount ccount for actu a l conditions. conditions. Correction factors (multipliers) required are shown in Figur es 18 18 and 19. U se o off extremely extremely hard w a ter Figure 18 U se of an tifreeze (glycol (glycol)) Figure 18 Raw wa ter fouli fouling ng factors factors Figure 18 St eel thickness thickness (heat (heat tra nsfer surface) Figur e 19

0.40 0.38

2.5 m/sec 2.0 m/sec

0.36

   )    2   m   T    S    /    C    W    k    (   y    t    i   c   a   p   a    C   n   o    i    t   c   e    j   e    R    t   a   e    H    t    i   n    U

1.5 m/sec 1.0 m/sec

0.34

            °

0.32 0.5 m/sec

0.30 0.28

Coolant: Treated Water W/O Glycol (ff=0.0010) Raw Water: Typical River Water (ff=0.0030) Hull Material: Steel

0.26 0.24

Note: CST = (T COOLANT TO ENGINE – TRAW WATER) = in  C  °

°

0.22 0.20 0.18 0

2

4

6

8

Vessel Speed (knots)

Keel Cooler Performance & Sizing

10

  r   e    l   o   o    C    h   u   g   o   r    h    T   y    t    i   c   o    l   e    V    t   n   a    l   o   o    C

Baseline Heat Rejection Capacity Figure 17

19  

Keel Cooler Performance Correction Factors Corr orrection ection Factors Factors for Coo C ooli ling ng Syste System m Water ater: Wa ter meets Ca terpilla r specific specificaa tions ............... ....................... ............... ............... ............... ............... ........((ba seline)1.0 seline)1.00 0 E xtr emely ha rd w a ter (>15 (>15 gra ins/ga l) l)............................ ............................ .............................. ............0.90 Correction F Facto actors rs for Antifre Antifr eeze: ze: 0%glycol.....................................................................................................(baseline)1.00 10%glycol ............................ .............................. .............................. .............................0.97 20%glycol ............................ .............................. .............................. .............................0.94 30%glycol ............................ .............................. .............................. .............................0.91 40%glycol ............................ .............................. .............................. .............................0.88 50%glycol ............................ .............................. .............................. .............................0.85

Correction Factors for Raw-Water Type

R aw-Water Description R i v e r w a t er (b a s e l i n e) O pen s e a (ocea n w a t er ) G r ea t L a k es C h i ca g o C a n a l

*F ouling Factor 0. 00 3 0 0. 00 0 7 0. 00 1 0 0. 00 6 0

Correction Cor rection Factors @ Vessel Speed 2 knots 1. 00 1. 00 1. 11 1. 16 1. 10 1. 13 0. 88 0. 85

* Fouling Fouling fa cto ctorr is show n h ere for for r eference eference only only a nd is u sed to calculate t he vessel speed correction correction fa ctor.

Figure 18 1.6

3.175 mm (0.125 in)

1.4

 r  o   t  c  a   F    n  o   i

  t  c  e  r  r  o   C    s  s  e  n   k  c   i   h   T   l  a   i  r  e   t  a   M

1.2

1.0

BASELINE

6.350 mm (0.250 in)

.8

  h   T   l  a   i  r  e   t  a   M

9.525 mm (0.375 in)

.6

 s  s  e  n   k  c   i

12.70 mm (0.50 in)

19.05 mm

(0.75 in)

.4 0

2

4

6

8

10

Vessel Speed (knots)

Figure 19

Keel Cooler Performance & Sizing Capacity Corrections for Material Thickness (Structural Steel) 20

 

Worksheet A worksheet fo forr calculat ing keel coo cooler ler size (surfa (surfa ce a rea ) is shown on page 22. This w orksheet a pplies pplies t o combined combined a nd sepaa ra te circuit sep circuit systems. A sep sepaa ra te circuit ircuit system r equires tw o worksheets: worksheets: one for for t he low-tempera low-tempera tur e ((aa ftercooler/ ftercooler/ oil cooler) circuit, and one for the high temperat ure (ja (ja cket cket wa ter) circui circuit. t. Design/Installation Considerations La rge cross-sec cross-sectiona tiona l cha cha nnels a re often used for keel cooler passages. This can result in wa ter veloc velocities tha t a re too slow slo w fo forr effective effective heat tra nsfer. nsfer. Insert s can be installed to create localized high wa ter v elocity elocity or tur bulence. bulence. An An effective effective design for keel coo cooler ler insert s is a ladderlike device inserted through the full length of the keel coo cooler ler pa ssa ges.

recommen ded line size. A different ia l recommen pressure gauge across the duplex stra iner ca ca n be used to determine determine service periods. P ressure drop across a st ra iner at maximum w at er flo flow must be considered as part of the system’s external resistance. The The str a iner should ha ve no more more th a n 1 m (3 ft) H 2O restr ictio iction n in clean condit condit io ion. n.

Packaged Keel Coolers P ackaged keel co coolers ar e purcha purcha sed and bolted bol ted t o the outside of a ship’s ship’s hull. They are normally copper-nickel alloy a nd ar e initia initia lly toxic toxic to marine growth, one of of the more importa importa nt a dvan ta ges over fabricated keel coolers. The toxicity w ill decline decline wit h t ime, but t he keel coo cooler ler can be part ially restored by cleaning cleaning th e

rods [6 [6 mm (Construct 1/4 in.) diat he metladder er] a ndusing fla t ba r (appr oxima tely the sa me shape, but 70%o 70%off the cross cro ss sectional a rea of the keel coole coolerr flo flow w pa ssages). ssages). Use the sa me meta l alloy a s th e hull a nd keel coole cooler. r. The The fla t ba r cross pieces must not restrict flow. They should redirect the flow to avoid the lamina r flow flow due to slo slow w a verage veloci velo city. ty. Insert th e ladder in to the keel cool cooler er flow flow pa ssa ges a nd w eld on on end inlet an d outlet outlet m a nifolds. nifolds.

heat t ransfer surfaces surfac es adva with nta a vinegarvine garsalt so solutio lution. n. A Another nother ge o of f packa ged keel coole coolers rs is th eir compactness compactness a nd light weight compa ompa red to fa bricat ed keel ccoo oolers. lers. They They ca n ha ve less tha n 20 20%o %off the heat t ra nsfer surfa ce of a fa bricat ed co coole oler. r. Man ufacturers publish publish sizing guidelines guidelines for specific condit condit ions.

Bypass Filters Bypass Fi lters Welded str uctura l steel cool cooler er syst ems require stra iners betw betw ee een n t he co cooler oler a nd the pump inlet. inlet. Ma teria l such such a s weld slag and corrosion products must be removed from the system to prevent wear and plugging of cooling system components. Use a continuous bypass filter used to remove smaller particles a nd sediment . The The element size of th e cont cont inuous bypa ss filter sh ould be 20 20 to 50 micr ons (0.000787 (0.000787 t o 0.000197 0.000197 in. ).

P ackaged keel co coolers are ra rely the sam e ma teria l a s th e ship’s ship’s hull.* hull.*

N eve verr pai paint nt packag package ed kke eel co coo oler lerss. Paint great ly reduc reduces es hea hea t tr a nsfer. nsfer.

If the piping piping is not not th e same ma teria l a s th e ccoo ooler ler,, it mu st be electr electr ically isolat iso lat ed fro from m the hull meta l and t he ship’s piping.

Keel Coo C ooler ler L ocation ocation Locat Loc at e the co coo oler in a protected protected area a nd low low on t he hull. The The a rea immediat ely forwa rd of the propellers propellers is a region of of

Wa ter flow t hrough th e bypass filter mu st not exceed 19 L/min mi n (5 ga l/min). mi n).

high water velocity. It is high enough on th e hull to be protected from grounding da ma ge. T The he effects effects of of san dblasting the cooler (from the propellers) during a stern ma neuvers must be co considered.

Strainers Full flow flow st ra iners are desirable. Size the stra iner screens screens no larg er tha n 1.6 mm (.063 (.063 in.) mesh. C onnections must be no smaller smaller tha n the

*Coolers of aluminum alloy reduce the galvanic corrosion problems probl ems associated with dissimilar dissimilar metals submerged in sa lt wa ter, ie. aluminum and coppe copperr nickel.

21  

KEEL COOLER SIZING WORKSHEET GENERAL INFORMATION: Project

Engine

Application Fuel Type Rated Power

bkW

Rated Speed

rpm

Cooling System Type (Combined or Separate) DESIGN-POINT CONDITIONS: Engine Power

bkW

Engine Speed

rpm

Heat Rejection Data (from TMI): Jacket Water

kW

Oil Cooler

kW

Aftercooler

kW

Vessel Speed

knots

Maximum Expected Raw Water Temperature

°C

Raw Water Type / Description CIRCUIT ANALYSIS INFORMATION: Circuit Being Analyzed Total Circuit Heat Rejection

kW

Max Allowable Coolant-to-Engine Temp

°C

Regulator (Thermostat) Part Number Start-to-Open Temperature

°C

Full-Open Temperature

°C

Total Circuit Flow

L/min

Coolant Velocity thru Keel Cooler

m/sec

Max Allowable Circuit Resistance

kPa

Coolant Water Type Antifreeze Content (glycol) Steel Thickness of Heat Transfer Surface CIRCUIT ANALYSIS INFORMATION: Baseline Unit Heat Rejection Capacity (Figure 17) Total Correction Factor (see Figures 18 and 19): Water Glycol Raw-Water Thickness Factor Factor Factor Factor ( ) x ( ) x ( ) x ( ) Corrected Unit Heat Rejection Capacity: Baseline Total Correction Capacity Factor ( ) x ( ) Temperature Difference Calculation: Coolant-to-Engine Raw Water

% mm =

(kW/sq m) °C

=

=

(kW/sq m) °C

Temperature ( ) °C

-

Temperature ( ) °C

Unit Heat Rejection Capacity @ Design Temperatures: Corrected Unit Temperature Capacity Difference ( ) x ( ) Total Surface Area Required: Total Circuit Unit Capacity Heat Rejection @ Design Temps ( ) / ( )

=

°C

=

kW/sq m

=

sq m

22  

Keel Coo Keel C ooler ler Cir C ircuit cuit Pumps The engine driven w a ter pump w ill normally circulat circulat e engine fresh wa ter thr ough t he cool cooler er.. If t he tota l external resistance ca ca nnot be held held w ithin limits, an a uxiliar uxiliar y pump will be required. required. Keel Cooler Venting P roper venting of fa bricat ed keel coo cooler ler chan nels is crit ical for g oo ood d cooling cooling system opera opera tion. Both ends of ea ea ch cha nnel section section should should ha ve ma nua l o orr au tomat ic vent va lves lves to remove remove air during initial system filling. This is importa impo rta nt beca beca use the ship’s ship’s tr im can var y from vessel vessel to vessel vessel and a ir can be tra pped pped if the cha cha nnels are vented at only one end. end. If a ir gets tr apped in the cha nnel sections sections during initia l fill, the expaa nsion exp nsion t a nk volume will drop dramatically when the engine is running becaa use tha t a ir w ill be comp bec compresse ressed d by the pump pressure pressure a nd coo coolant will ta ke its place. This This tr a pped pped a ir can also cause the external circuit resistance to be set improperly, imprope rly, w hich ma y result in poor poor coo oolant lant flo flow w to the engine. P ump ca vita tion may a lso result from from a ir tr a pped in t he keel coole cooler. r.

Marine Mari ne GearHeat Rejection Rejection Mar ine gears h a ve an eff effic icienc iencyy of about 97%. Approxima Approxima te h ea t r ejection ejection t o the marine gear cooling system is: H = P xF Where: H = Mar ine Gea r H eat Rejec Rejection, tion, (kW (kW)) P = Engine P ower, (kW) kW) F = G ear E fficiency fficiency Loss, (0.03) 0.03) H = P x F x 42.41 Where: H = Marine Gea r H eat Rejec Rejectio tion, n, (B t u/min) mi n) P = Engine Power, Power, ((hp) hp) F = G ear E fficiency fficiency Loss, (0.03) 0.03)

The gear m a nufacturer ca n supply supply a ctua l heat r ejec ejection tion values as well as required coo cooling temperat ures. U se the gra phs previo previously usly presented to calculate the a dditional coo cooling a rea required for for the marine gear.

Piping U se black se seaa mless pipe pipe with connections connections fitt ed in t he flow flow direction to minimize turbulence. D o not not use

 galvanized  galvanize d pipe pipe..

Cleanliness All externa externa l pipe pipe a nd w at er passa ges must be cleaned before initial engine operation. S trai ne nerr s a arr e ava avaii lab lable le fr om

C ate aterr pi pillar llar to be i nstalle nstalled d in i n pi pipe pess leadi leading ng to e exte xterr nall nallyy adde added d eq equi ui pme pment. nt. They a re a va ilable for 10 100 0 mm, 127 mm, a nd 152 mm (4 in., 5 in., a nd 6 in.) pipe sizes a nd a ll ha ve 1.6 mm (1/16 in.) mesh size. I nstall the them mo on n si te pri pr i or to star startup tup

and remove after commissioning.

Venting P roper roper venting is required for for a ll applications. Route vent lines to the expansion tank at an upward slope w ithout dips. Avoid Avoid tra ps in customer supplied supplie d piping, but if th is is not possible th ey must be vented. When When it is not pra ctica cticuase l toa utomat route vent lines to a va common point, point, ic air-release airrelease lves. lves. The va lves a re suit ed for low low velocity velocity coo coolant ar eas such as expansio expansion n ta nks. They ma y a lso be ada pted to de deaa erat ion ion chambers. Locations must be selected to collect entrained air. Automatic air releaa se valves a re ava ilable in rele in seve severa ra l sty les. T The he hea vy dut y ((cast cast iron bo body) dy) style is recommende recommended. d. In a ddition ddition t o the a utomat ic venting fe feaa ture, the valves usually have a fast fast-ve vent  nt port available.

Typically it is a pipe plug w hich can be removed or replaced by a ball valve, a llo llowing wing venting during initia l system fill.

23  

Line Sizing Wa ter velo velocity city guidelines a re: Maximum Velocity m /s ec f t /s e c P r es s u r i z e d L i n es 4. 5 15 Pressurized Th i n -Wa l l Tu b es 2. 0-2. 5 6. 5-8 Suction Lines (P u m p I n l et ) Low Velocity D e a e r a t i on L i n e

1. 5

5

0. 6

2

Connections Cooling system weld flanges for customer connections connections a re shown in F igures 20, 21, 21, 22, and 23. (R efe ferr to page pagess 41-4 41-44 4 for 

illustrations.) Ca terpillar terpillar fle flexibl xiblee jjo oint assemblies are available in the three pipe sizes used on cooling systems: 100 mm, 127 mm, a nd 152 mm (4 in., 5 in., a nd 6 in.). U se flex flexible ible joints joints for a ll connections connections to th e engine, but do not not us use e r ubbe ubberr hose hoses s. Minimize th e lengt lengt h a nd w eight of piping piping mounted on t he engine. P lace the flexible flexible conn conn ection ection a s clo close se to th e engine connectio connection n a s possible, possible, prefe prefera ra bly right a t th e engine cconnection. onnection. This This min imizes th e stresses on on th e wa ter pump housings housings ca use used d by pipi piping ng w eight. eight. P ro rovide vide adequat e pipe support on t he hull side of syst em piping pip ing t o minimize pipe pipe movement movement a nd flex connection connection loadin g. Arra Arra nge flexible connections, check valves and shutoff va lves a s shown in Figure 4 when emergency cooling cooling conn conn ect ect ions a re used so th a t t he engine engine ccaa n cont cont inue to op operat erat e wit h th e sta ndby pump. T This his is particularly important in single engine propulsion applications. Orient t he flex connec connector tor t o ta ke ma ximum ad va nt a ge of of its flexi flexibili bility. ty.

wit h potentia potentia l co coolant co conta nta mina nts such as lube oil, fuel, and system cleaning solutions. The outer cover must be compat compat ible wit h its environment environment — temperature extremes, ozone, grease, oil, paint, etc.

Jacket SystemWater Heating J acket acket w at er he heat at ing sys systems tems allow  allow  star ting a t ambient temperat temperat ures belo below  w  0°C (32° 32° F) F).. Heated w at er must enter the top of of th e cylinder block block a nd exit from the bottom. This This ma inta ins a positive positive wa ter pressure to the hea hea ter pump and a vo voids ids priming a nd cavita tion pro problems. blems. The ja ja cket wa ter hea ter a nd pump should automatically turn on when the engine is shutdown and automatically stop wh en the engine is is sta rted. The Ca terpill terpillaa r syst em is a prepackaged shipped loose loose unit in cluding: • Circul Circulating ating p pump ump • Elec Electric wa ter heater heater • Control panel including including contr contr ols for for sta rt ing/stopping pump, high temperat ure shutd own , no flow  flow  shutdown, etc. • P iping, iping, valves and fittings are on on the unit -- th e ccust ust omer must plum b the unit t o the engine A typical jjacket acket wa ter hea ting pa ck ckaa ge is shown in F igure 24. (R efe ferr to page 45 ffo or  illustration). The hea ting requirements for each engine is shown in F igure 25.

Consider norma norma l and m a ximum expec expected ted movement move ment r a nges when selecting selecting connectors. Mat erial compat compat ibility ibility must also be evalua evalua ted. The The interna l surfa ce must be co compat ible with the coo coolant used over the a nticipa nticipa ted operat operat ing temperat ure a nd pressure ran ges. The The liner mat erial must also be co compat ible

Coolant Temperature — Above Ambient

Figure Fi gure 25 25

24  

Water Treatment C ate aterr pi pill llar ar ’s wate waterr quali ty rre ecomme commenndati ons mus mustt be foll follo owe wed  d , particularly in closed cooling systems. Excessive hardness w ill ca ca use deposits, deposits, fouling, a nd reduced cooli cooling ng syst em component component effectiveness. effec tiveness. Wa Wa ter h a rdn ess is described desc ribed gra17.1 ins llo llon, n,million one gra being equainl to 17 .1 per pa pa rtga s per millio n in (ppm) or mg /L, bot h expr essed a s calcium ca ca rbona te. Wa Wa ter cont cont a ining up to 3.5 gra ins per g a l ((60 60 ppm) ppm) is considered considered soft a nd cau ses few deposits. deposits. Cooling Coo ling system wa ter must meet the following criteria: Ch loride (CL ).......2.4 g/ga l (40 ppm) ppm) ma x. Su lfa te (S O4).....5.9 g/ga l (100 (100 ppm) ma x. Tota l H a rd ness .......10.0 g/ga l (170 (170 ppm) ma x. Tota l Solid s ..... .20.0 g/ga l ((340 340 ppm) ma x. pH ........................... ........................5.5 - 9.0 COOLANT FREEZING AND BOILING TEMPERATURES VS. ETHYLENE GLYCOL CONCENTRATION

Wa ter softened by r emoval of calcium an d ma gnesium is a cc cceptable. eptable. Corrosio Corrosion n inhibito inhib itors rs a dded dded to wa ter ma intain cleanliness, reduce scale and foaming, a nd provide pH cont cont rol. With With th e ad dition dition of of an inhibitor, inhibitor, maint a in a pH of 8.5 to 10. Exposing engine cool coolaa nt to freezing a mbient temperatur es requires requires the use of a nt ifreeze. Eth ylene glycol glycol is most common. common. T The he concentra concentra tion req uired ca n

Fi Figure gure 26 26

N ote: ote: C ate aterr pillar pil lar anti antifr fr eeze contai ntains ns the  prope  pro perr amo amount unt of cco oolant condi nditi tio one ner. r. D o not use use coolant coolant condi ti oner eleme ment ntss or  li qui quid d co coo olant co condi ndi tio ti one nerr s wi th D owthe wtherr m 209 F ull-F i ll C oolant. C ate aterr pill pillar ar i nhi nhibito bitorr s ar are e comp mpat atii ble wi th ethylene g ly lyco coll base anti fr eeze ze..  S oluble oi l o orr chro chroma mate te so soluti lutio ons m must  ust  not be used.

be determ ined from F igure 26. Also Also refer to F orm N o. SE B D0970D0970-01, 01, C oolant and  Your Your E ngi ngine ne.

Water tr eatme atment nt may be r eg ul ulate ated  d  Note: Water by lo l ocal co code dess wh whe en coo cooli ng water  contacts contacts dome domesti sti c water su suppli ppli es.

Ca terpilla r r ec ecommends ommends us ing a 50/ 50/50 mixtu re of glycol/w a ter. Concentra tions lesss th a n 30%require les 30%require the a ddition ddition of corrosion inhibitors to maintain cleanliness, reduce scale and foaming, an d provide provide a cidity a nd a lkalinity (pH) (pH) cont cont rol. T The he rust inhibit or must be compat ompat ible with t he glycol glycol mixture mixture a nd

Ca terpillar terpillar ’s co coolant a dditive iiss ava ilable in 19 L (5 ga l) a nd 208 L (55 ga l) containers: Part No’s. 8C3680 and 5P2907 respec respectively tively.. C a terpilla r d oe oess not recommend additives from other supplie supp liers. rs. Ca terpilla terpilla r a ntifreeze is is a va ilable in 3.8 L (1 (1 gal) an d 208 L

(55 gal) conta conta iners: P a rt No s. 8C3684 8C3684 and 8C3686 respectively.

not da ma ge flexible flexible cconnec onnections, tions, sea ls, or or ga skets. A Avoi void d sudd en cha nges in cool coolaa nt compositio composition n t o minimize a dverse effects effects on nonmeta llic compo component nent s.

25  

System Monitoring

Serviceability

Ma ke pro provisio visions ns for pressure an d temperature differential measurements a cross cross ma jor jor component component s. This This a llow llow s accurat e setup setup a nd performa performa nce document doc ument a tion of the cool cooling ing syst em durin g t he comm comm issioning issioning procedur procedur e.

Access ccess to hea t excha ngers is r equired for tube rodding (cle cleaa ning) or removal of the tube-bundle tubebundle a ssembly ssembly. E ngine w a ter pumps should a lso be be easy to remove. Remote water temperature regulators must be accessi accessible ble,, a nd a ppropriat ppropriat e

Fut ure syst em problems problems or component component deteriora tion (such (such as fouling) a re easier to identify identify if basic da ta is ava ilable. It also provides information for relating on-site condit condit io ions ns t o th e origina origina l factory test.

isolaa tion va lves provided. isol provided. Apply Apply similar guidelines to heat recovery units, deaera tion ccha ha mbers, and other components components r equirin g service.

Tempera empera ture a nd pressure measurement locations locations sho should uld give a n a cc ccura ura te reading of fluid str eam conditions. conditions. P referred lo locations are in stra ight length s of piping reas onably close close to each syst em component component . Avoid Avoid pressure measurement s in bends, piping piping transition pieces, or turbulent regions. Self-sealing Selfsealing probe probe ada pters ar e ava ilable in severa severa l sizes sizes of male pipe pipe threads a nd stra ight t hread s for O-ring O-ring ports. The The ad apt ers use a ru bber bber seal allowing temperat ure or pressure pressure to be measured wit hout lea lea kage. P robe diam eters up to 3.2 mm (0.125 (0.125 in.) ma y be used. The straight-threaded adapters are used on the engines wit h a vaila ble ports. ports. P ipe threaded a dapters a re more easily easily incorporated in the external customer supplie supp lied d system. The The a da pters a re a n excell exc ellent ent a lterna tive to perma perma nently installed thermometers, thermocouples, an d pressure ga uges. They They a re not subjec subj ectt t o breaka breaka ge, fatigue fa ilures, ilures, a nd ga ugeuge-toto-ga ga uge rea ding va ria tions.

System Design: Engine Data, Criteria and Guidelines Desiign F Des Forms: orms: In cluded in this section section a re forms for for recording design input for both the combined co mbined 27) a ndt he sepa ra te syst ems (pa (p(page a ge 28) 28 ). See E ngi ngine necircuit D ata section sec tion of this g uide for hea t r ej ejec ection tion a nd coo coolant flow flow values for both both distillate a nd hea vy fuel engines. engines. Use Figure 10 to correct correct t he AC/ AC/OC w a ter a nd a mbient a ir temperat ures when different different from sta nda rd conditions. conditions.

26  

3600 Combined Cooling System PROJECT: _______________________________________________ DATE: ______________ ENGINE: ____________________________________ SPEED: ___________________ (RPM) APPLICATION: APPLICATIO N: _______________________________ POWER: __________________ (BKW) ALTITUDE: _______________ (M)

COOLANT: ______________________________  (T3)=

°C

CYL BLOCK & HEAD HEAT REJ (H3) = kW TEMP RISE (t3) = °C (Q3)= L/MIN

JW PUMP

(T7)=

°C

JW REG.

85°C OIL

OIL

REG. OIL COOLER(S) HEAT REJ (H4)= kW TEMP RISE (t4)= °C

(Q4)= L/MIN

TURBO

AC/OC PUMP

°C

(T4)=

MIX=1 T6= °C

MIX=2 T2= °C

INLET AIR (TO)= °C (Q2)=

(Q5)= L/MIN

AFTERCOOLER HEAT REJ (H5)= kW TEMP RISE (t5)= °C

INL. MANIFOLD

(T5)=

L/MIN

°C

ENGINE MODULE

EXPANSION TANK T1= °C

AC/OC REG. ORIFICE (BYPASS FLOW) ORIFICE

(H.E. FLOW) HEAT HEAT REJEXCHANGER (H2)= kW TEMP RISE (t2)= °C FULL FLOW (Q2)= L/MIN

27  

3600 Separate Circuit System PROJECT: _______________________________________________ DATE: ______________ ENGINE: ____________________________________ SPEED: ___________________ (RPM) APPLICATION: _______________________________ POWER: __________________ (BKW) ALTITUDE: _______________ (M)

COOLANT: ______________________________ 

85 C °

OIL

REG.

CYL. BLOCK & HEAD HEAT REJ (H3)= kW TEMP RISE (t3)= C °

(T4)= C °

OIL COOLER(S) HEAT REJ (H4)= kW TEMP RISE (t4)= C

(Q4)= L/MIN

°

INLET AIR (T0)= C

TURBO

MIX T6= C

°

°

(T5)= C °

AFTERCOOLER HEAT REJ (H5)= kW TEMP RISE (t5)= C

(Q3)= L/MIN

(T3)=

 

C

°

(Q5)= L/MIN

°

JW PUMP

INL. MANIFOLD T1=

 

C

°

AC/OC PUMP MAKE-UP LINE

ENGINE MODULE

AC/OC REG. ORICICE (H.E. FLOW)

EXPANSION TANK T7= C

ORIFICE (BYPASS FLOW)

°

AC/OC HEAT EXCHANGER HEAT REJ (H1)= kW TEMP RISE (t1)= C FULL FLOW (Q1)= L/MIN °

JW REG. ORIFICE (BYPASS FLOW)

ORIFICE (H.E. FLOW)

JW HEAT EXCHANGER HEAT REJ (H3)= kW TEMP RISE (t3)= C FULL FLOW (Q3)= L/MIN °

28  

Heat Recovery The 3600 Engines convert about 44%of their input fuel energy energy int o mecha mecha nical nical pow pow er compa compa red t o 33%o 33%on n older engin es. The remaining input fuel energy tra nsforms nsforms into heat from friction friction and combustion. It is carried from the engine

The ty pica pica l hea t ba la nce o off 3600 3600 En gines is shown in F igure 27.

Typical 3600 Heat Balance ISO Conditions MECHANICAL WORK ENERGY 44%

by jacket jacket wa ter (including (including tur bo bocharger charger cool cooling ing w a ter), oil oil coole coolerr wa ter, a ftercool ftercooler er w at er, er, exhaust, surface ra diat ion, ion, a nd convec convection. tion. Hea t r eco ecovery is a viable optio option n w ith t he 3600 3600 En gine, but becau se of of high overa ll therma l effici efficienc encyy it must be given given m ore deliberate consideration. Older engines ha ve tra ditiona ditiona lly higher perce percenta nta ges of of heat rejected to the exhaust and cooling systems, ma king heat recov recovery ery more desirable.

EXHAUST GAS 29%

AFTERCOOLER COOLING WATER 12%

CYLINDER BLOCK, HEADS, & TURBO COOLING WATER 9%

OIL COOLING WATER 4% RADIATION 2%

Hea t reco recovery design best suited for for a ny insta llation depends depends on on ma ny t ec echnical hnical a nd economic economic considera considera tions. H owever, owever, the prima ry function function of a ny design is to cool cool th e engines. Eng ines must be a dequa tely coo cooled even even wh en heat recovery reco very dem a nd is low. Due t o the wide var iety of uses uses for for t he hea t r ec ecove overed red from a diesel engine, engine, it is impra ctica ctica l to discuss speci specific fic systems in deta il. Ut ilize ilize design co consulta nts or factory a ssistan ce wh en consi considering dering heat recovery.

TOTAL FUEL ENERGY INPUT 100%

F igure 27 27

29  

Hea t r ejec ejection tion values for for m a rine propulsion prop ulsion engines ar e included included in t he E ngi ngine ne D ata section of this guide. The following data is included for all four engines at 750, 800, 900 and 1000 rpm. • J acket acket w at er heat rejec rejectio tion n (inc (include ludess turbo) •• Oil co cooler rej ection tion Aftercooler ftercoo lerheat heatrejec r ej ejec ection tion • Exhaust ga s heat rejec rejectio tion n using the lower lower fuel heat ing value • Exhaust stack stack gas tempe temperature rature • Volume olume flow flow of the exhaust exhaust ga s • Coolant Coolant flow flow — jacke jackett w at er and AC/OC w a ter Hea t r ejec ejection tion for for ma rine auxiliary engines is given in Form No. LE KX6559, KX6559, the Te Techni chniccal D ata section of the EPG A&I G uide. When considering h eat recovery recovery for for 3600 3600 Engines r eview t he cooli cooling ng sy stem parameters. The two cooling systems ava ilable are t he co combined circui circuitt a nd sepaa ra te circuit, sep circuit, and either system can use the high temperat ure ja ja cket cket wa ter circuit circ uit for heat recovery recovery.. Figur e 28 shows

a combined combined circuit cool cooling ing sy stem a nd Figure 29 shows shows a sepa sepa ra te circuit circuit cooling system, both with heat recovery from fro m the high temperat ure ja ja ck cket et wa ter circuit. circ uit. The The flow flow rest riction in th e hea t recovery reco very circuit is critica l beca beca use a ll of th e ccylinder ylinder block flow flow is directed t o the heat reco recovery unit. P ressure mea mea suring locations locations at the inlet a nd outlet connections connections of the engine a re provided, but a fa ctory proj projec ectt engin eer should be consulted to determine the permissible pressure differential of the heat recovery system. Exha ust ga s heat recovery recovery is also available in either either arr angement but deta ils a re not not shown. If the heat recovery reco very circuit uses less tha n 30%o 30%off th e ava ilable ilable jjacke ackett w at er heat load, then an external tempera ture regulat or is not not required. If a r egulator is used it it must be set 5° 5° C (9°F (9°F ) lower lower t ha n the jacket jacket wa ter circ circuit regula tor tllo aprevent pfull revent ove rcooli oling the uit engine. Insta flow flowoverco bypa ss ng valve to isolate the heat recovery circuit w hen not in use. A hea t r ecove ecovery ry un it bypass line may be required if the heat recov rec overy ery unit cannot use t he full a mount of coolan coolan t flow.

30  

Heat Balance Typica ypica l hea t bala nce calculat calculat ions ions a re illustra ted in the fo follo llowing wing informa informa tion. These These ar e typical numbers only, only, mea nt to illustra illustra te t he calculat calculat io ions ns requ ired. Va Va lues se selec lected ted a re from the Engine Da ta section section of of this guide. For For th e latest da ta use the T TMI MI S ystem.

Heat Balance Example U se a 3606 3606 En gine w ith a single circuit circuit cooling cooling syst em ra ted a t 1730 kW (2320 2320 bhp) a t 900 900 rpm ((using using dist illat e fuel) a s a n exa mple. Hea t R ejec ejection tion Ava Ava ilable See Te Tecchni ca call D ata within the E ngi ngine ne D ata sec section tion of this g uide. B l ock , h ea d a n d t u r b och a r g er O i l cool er w a t er Af t er cool er w a t er

Total wa water he heat rejection ion at approx. 45°C (113°F) E xhaust heat rejection

kW 37 3 18 5 40 2

B t u /m i n 21, 212 10, 521 22, 877

960 1256

54,610 71,475

Tota l Fuel E ner gy I nput = ________B S FC x kW  k W x Qc________ (1000 g /kg )( )(60 60 m in /h r )(60 )(60 se sec/ c/m in ) Wher e Qc = LH V o off Fu el = 42,780 42,780 kJ /kg (18,390 (18,390 B t u/lb) = 195.5 195.5 x 1730 x 42,780 3,600,000 = 4,019 kW (2 (228,710 28,710 B t u/min) mi n) P ra ctical ctical E xhaust Hea t Recovery Recovery,, assuming 177° 177° C (350 (350°° F) gas t emperature emperature a fter heat ex excchanger •

Q (ava ilable) = mc p   ∆T • Where: m = ma ss flow flow ra te, kg/hr cp = spec specific heat of exhaust ga s = 0.01 0.018 8 kW - min kg - ° C ∆T =

exhaust temp drop through heat reco recovery, very, ° C

The exhaust ga s ma ss flow flow r a te is obta obta ined by multiplying the volumetric volumetric flo flow ra te 3 (372.1 m /min in t his exa mple) by t he densit y. See t he conversion conversion formula in t he E xha xhaust  ust section. Q ((aa va ilable) = .018 .018 x 11,439 x (403-177) x 1/60 Q (a (a v a il il a b bll e ) = 776 k W (44, 160 B t u /m in in ) Note: This This example does does not consider the heat of vaporization of wa ter, a produc productt of combustio combustion n a nd not usua lly retrievable.

n = Th e r m a l ef f i ci en cy = B r a k e k W

=

17 3 0

=

43. 0%

F u el k W

40 1 9

J a ck et R eject i on =

3 73

=

9. 3%

4019

31  

Heat Bal Balance ance (continued) Oil Cooler =

185 4019

=

4. 6%

Aftercooler =

402 4019

=

10. 0%

Exhaust =

1256 4019

=

31. 3%

Radiation =

73 4019

=

1. 8% 100%

Available Hea Avai Heatt Reco R ecovery very Using high temperat temperat ure jacke jackett w at er circ circuit uit a nd exhaust ga s Q = Qj + Qex Qex Q (Ava (Ava ilable) = 373 373 + 776 776 Q (Ava (Ava ila ble) = 1149 kW (6 (65,386 5,386 B t u/min) mi n) n (Availa ble) ble) = .43 .43 + 1149 149 4019 n ((A Availa ble) ble) = 71.6 71.6% %

32  

3600 Combined Circuit Cooling Typical System Schematic

Fig Fi gure 1

33  

Typical 3606 and 3608 Combined Cooling Schematic 1. Aftercooler/Oil Cooler Pump 2. Aftercooler 3. Jacket Water Pump 4. Oil Coolers 5. Thermostat Housing (JW circuit) 6. Water Manifold

Fig Fi gure 2

7. Jacket Water Pump Suction LIne 8. Water From Heads 9. Water To Block 10. Turbocharg Turbocharger er 11. Vent Line

34  

Typical 3612 and 3616 Combined Cooling Schematic 1. Aftercooler/Oil Cooler Pump 2. Aftercoolers 3. Jacket Water Pump 4. Oil Coolers (2) * 5. Thermostat Housing (JW circuit) 6. Water Manifold

7. Jacket Water Pump Suction Line 8. Water From Heads 9. Water To Block 10. Turbocharg Turbochargers ers

* Three Coolers Required On Some Applications.

Figure 3

35  

  r   o    t   a    l   u   m   r   g   a   e    l    R    l    A   e   v   e    L   w   o    L

   d   r   r   a   a    l   y    l    i    i   p   p   r   h   e   c   e   S   i    t   r   a   r   f    C   O   O    J    I

  n   o    i   s   k   n   n   a   a   T   p   x    E

  p   a    C   r   e    l    l    i    F

  e   p   o    l    S    d   r   a   w   p    U    l   a   u   n    i    t   n   o    C   e    d    i   v   o   r    P

  y   r   e   v   o   t   c   i   e   n    R   U    t   a   e    H

   t   r   a   e   e   g   n    H  a  .    h   c    W  .   x    F   E

   K    S    P

  e   n    i    L    t   n   e    V

   1    P

  e   g   s   u   s   a   a   l    G   G

  •



   A

  y   r   e   v   o   r   c   o   e   l    t   a    R    t   u   a   g   e   e    H   R

  •   •   w   o   s    l    F   s   a    l    l    b   u   y    F   B





   B    C    D

   C    O    /    M   A    C  p   m   y   u    b   P    d   n   a    C  p    t    O    S    /   m    C  u    A   P

   C   x    A    i   r   m    l    t    C   a    t    l    i    S    O



  m   e    t   s   y    S   g   n    i    l   o   o    C    l   a    i   c   p   y    T

   )    )    )    )    3   3   3   3    6  .    6  .    7  .    7  .    5   5   6   6    H   (    (    (    (    3   3   1   1    4   4   7   7    1   1   1   1    )    3   )    3   )    3   )    3    3   3   6   6

   E    L    B    A    T    E    G    N    A    L    F

  e   n    i   g   n    E

   H    G    F

  •

   1    P

   t   n    i   o    P   r   o    h   c   n    A   e   p    i    P   s   e    t   o   n   e    D   •   :   e    t   o    N

   )    )    )    )    3    7  .    3    7  .    3    7  .    3    7  .    6   6   6   6    K   (    (    (    (    1   1   1   1    7   7   7   7    1   1   1   1    )    )    )    )    3   3   3   3    6  .    6  .    6  .    6  .    5   5   5   5    J   (    (    (    (    3   3   3   3    4   4   4   4    1   1   1   1    )    )    )    )    3   3   3   3    6  .    6  .    6  .    6  .    5   5   5   5    I    (    (    (    (    3   3   3   3    4   4   4   4    1   1   1   1



   E

  p   m   u



   P    W    J

  r   e    t   a   e    H   c    i   r    t   c   e    l    E

  •

   1    P

   S    P

   1    P

 .    W  .

  p   m   u    P   n   o    i    M    t   a    l   u   c   r    i

  e    l   u    d   o    M   r   e    t   a   e    H   r   e    t   a    W    t   e    k   c   a    J

 .  .  .  .    5    )  .    G   4    (    (    4    (    (    5   n    3    0   3    i    4   4    1    1    (    0    1   1   1   1   m    )    )   m    )    )    3    3   3   -    3    3    3  .    6  .  .  .  .    4   4   6    5    5    F   (    (    (    (    D  .    0   3   3    I    0    1   1   4   4    E    1   1   1   1    G    )    )    )    )    3   3   3    N    3  .    7  .    7  .    7  .    A    7    6    (    6    (    6    (    L   E   (    6    1   1   1    F    1    7   7   7   7    D    1   1   1   1    L    E    )    )    )    W    )    3   3   3   3    7  .    7  .    7  .    7  .    6    (    6    (    6    (    6    (    D   1   1   1   1    7   7   7   7    1   1   1   1    )    )    )    )    3    3   3   3    3  .    6  .  .    3  .    6    5    5    4    4    C   (    (    (    (    3    0   0   3    4   4    1    1   1    1   1   1    )    )    )    )    )    3   3   3   3    3    3  .    3  .    6  .    3  .    6    4   4    5   (    5    4    (    (    (    B   (    3    0   0   3    4   4    1    1   1    1   1   1    )    )    )    )    3   3   3   3    6  .    6  .    6  .    6  .    5    5    5    5    (    (    (    (    A    3   3   3   3    4   4   4   4    1   1   1   1

   M    J

   E    N    8   2   6    I    6    0   1   1    G   0    6   6    6    N   3   6    3   3   3    E

   C

  y    b    d   p   n   m   a    t    S   P   u

Fig Fi gure 4 36  

  n   o    i   s   n   a   k   p   n   x   a    E   T

  m   r   a    l    A    l   e   v   e    L   w   o    L   &

  e   p   r   u   a   s   C   r   s   l   e   e   r   l    i    P   F

  e   o   p    l    S    d   r   a   w   p    U    l   a   u   n    i    t   n   o    C   e    d    i   v   o   r    P

  n   o    i   s   k   n   n   a   a   T   p   x    E

  n    i   a   r    D

  c  r    i   e   n   l    l   o   o   r   t   r    t   c  n   e    E    l   C   o

  e   c    i    f    i   r   e   s    O   g   s   u   a   a   l    G   G   y    l    l   a   d   c  e  r    i   o   n   l    l   t   o   o    l   r   r   a    t   t   c  n  u   e  o  g   e    l    C    E    R

  e   c    i    f    i   r    O

  e   n    i    L    t   n   e    V

   S    P

   1    P

  •

   A

  •





   B    C    D   r   o    t   a   r   e   a   e    D

  y   r   e   v   o   r   c   t   e   o   a    R   l    t   u   a   g   e   e    H   R   y   r   e   v   o   t   c   i   e   n    U

   t   r   a   e   e   g   n    H  a  .    h   c    W  .   x    F   E

  •   •   w   o   s   s   a    l    F    l    l    b   u   y    F   B

            °

   1    P

   C    O    /    M   C  p    A   m   y   u    b   P    d   n    C  p    t   a    O    /   m    S    C  u    A   P

   C   x    A    i   r   m    l    t    C   a    t    l    i    S    O

   t   n    i   o    P   r   o    h   c   n    A   e   p    i    P   s   e    t   o   n   e    D   •   :   e    t   o    N

   l   e   u    F   r   y   o  v    f   a   m  e   e   H    t   s   n   y   o    S  s   g  n   n  o    i    t    l    i   a   o  r   o  e    C  p    l    O   a    i   c   a   p   d   o   y   L    T   w   o    L

   )    )    )    )    3   3   3   3    6  .    6  .    7  .    7  .    5    5    6    6    (    (    (    (    H    3   3   1   1    4   4   7   7    1   1   1   1    )    )    )    )    3    3   3   3    3  .    6  .  .    3  .    6    4   4   5   5    G   (    (    (    (    3    0   0   3    1   1   4   4    1   1   1   1

   E    L    B    A    T    E    G    N    A    L    F

  e   n    i   g   n    E

   H    G    F    E   •

  g   c   i   n    5   d    7  n   r   e    O  p   c  e    2   e    3   D   n   s   i   g   n    i   n   a   E    t   n  e   d   e   a    i   n   a   h   o    i   d   t    T   u   g  a  p    M    L   n  o  n   r   o  e    L   I   e   T  n    E    l    l   t   i   g   o  n   r   a  n    t    l   n  o   E   o  o  n    C    C    O   :   e    t   o    N                 °

  •

  p   m   u    P    W    J

  r   e    t   a   e    H   c    i   r    t   c   e    l    E

  •

   1    P

   1    P

  p   m   u    P   n   o

  e    l   u    d   o    M   r   e    t   a   e    H   r   e    t   a    W    t   e    k   c   a    J

   )    )    )    3    3   3   3    3  .    6  .  .    3  .    6    5    4   4    5    F   (    (    (    (    0   0   3   3    1   1   4   4    1   1   1    )  .    1    )    )    )    )    N    I    3   3   3    (    3    7  .    7  .    7  .    7  .    6    (    6    (    6    (    M   E   (    6    1   1   1    M    1    7   7   7   -    7    1   1   1   1

 .    D  .    )    )    )    )    I    3   3   3   3    7  .    7  .    7  .    7  .    E    6    6    6    (    (    (    (    G   D   1   1   1   6    N    7   7   7   1    1    A    1   1   1   7    L    F    )    )    )    )    3   3   3   3    D    3  .    6  .  .    3  .    6    L   C   4    (    5    (    (    4    (    5    E    0   0   3   3    4   4    W    1    1   1    1   1   1    )    )    )    )    3    3   3   3    6    3    3  .  .  .  .    5   6    4   4   (    5    (    0    0   3    B   (    4   3    4    1   (    1   1    1   1   1    )    )    )    )    3   3   3   3    6  .    6  .    6  .    6  .    5    5    5    5    (    (    (    (    A    3   3   3   3    4   4   4   4    1   1   1   1

   E    N   6   8   2   6    I    0   1   1    G   0    6   6   6    N   6    3   3   3   3    E

       t   a   e    H

   S    P

 .    W  .    J   y    M   d    b   p   n   m   a   u    t    S   P

   i    M    t   a    l   u   c   r    i    C

Fig Fi gure 5 37  

3600 Separate Circuit Cooling Typical System Schematic

Fig Fi gure 6

38  

Typical 3606 and 3608 Separate Circuit Cooling Schematic 1. Aftercooler/Oil Cooler Pump 2. Aftercooler

6. Water From Heads 7. Water To Block

3. Jacket Water Pump 4. Oil Coolers 5. Water Manifold

8. Turbocharg Turbocharger er 9. Vent Line

Fig Fi gure 7

39  

Typical 3612 and 3616 Separate Circuit Cooling Schematic 1. Aftercooler/Oil Cooler Pump 2. Aftercoolers 3. Jacket Water Pump 4. Oil Coolers (2) * 5. Outlet Housing * Three Coolers Required On Some Applications.

Fig Fi gure 8

6. Water Manifold 7. Water From Heads 8. Water To Block 9. Turbocharg Turbochargers ers

40  

3600 Combined Circuit — Treated Water Cooling System Customer Connections HEAT EXCHANGER A ST STAT AT MIX MIX

C OIL COOLER

D

AC

STAT

AC/OC PUMP

EXPANSION TANK

B

JW PUMP

E

CATERPILLAR SUPPLIED WELD FLANGES

Weld Flange ID — mm ENGINE

A

B

C

D

E

3606

143

171

143

143

171

3608

143

171

143

143

171

3612

143

171

143

143

171

3616

143

171

143

143

171

Figure Fi gure 20 20

41  

3600 Combined Circuit — Treated Water Cooling System with Auxiliary Pumps Customer Connections HEAT EXCHANGER

A ST STAT AT MI MIX X H I

OIL COOLER

J

AC

STAT

B G

AC/OC PUMP

EXPANSION TANK C K

F

JW PUMP D

E

AUX  AC/OC PUMP

AUX JW PUMP

CATERPILLAR SUPPLIED WELD FLANGES EMERGENCY WATER LINES

Weld Flange ID — mm ENGINE

A

B

C

D

E

F

G

H

I

J

K

3606

143

110

110

171

171

110

110

143

143

143

171

3608

143

110

110

171

171

110

110

143

143

143

171

3612

143

143

143

171

171

143

143

171

143

143

171

3616

143

143

143

171

171

143

143

171

143

143

171

Figure Fi gure 2 21 1

42  

3600 Separate Circuit — Treated Water Water Cooling System Customer Connections

HEAT EXCHANGER D A E

F OIL COOLER

STAT

EXPANSION TANK

AC

AC/OC PUMP STAT

G C

B

JW PUMP

HEAT EXCHANGER

CATERPILLAR SUPPLIED WELD FLANGES

Weld Flange - mm Engine

A

B

C

D

E

F

G

3606 3608 3612 3616

110 110 143 143

171 171 171 171

171 171 171 171

171 171 171 171

143 143 143 143

143 143 143 143

171 171 171 171

Figure 22

43  

3600 Separate Circuit — Treated Water Cooling System With Auxiliary Pumps Customer Connections HEAT EXCHANGER

H A I J OIL COOLER

STAT

AC B

G

EXPANSION TANK

AC/OC PUMP STAT

F

C

K JW PUMP D

E

HEAT EXCHANGER

AUX  AC/OC PUMP

CATERPILLAR SUPPLIED WELD FLANGES EMERGENCY WATER LINES AUX JW PUMP

Weld Flange ID - mm Engine

A

B

C

D

E

F

G

H

I

J

K

3606 3608 3612 3616

110 110 143 143

110 110 143 143

110 110 143 143

171 171 171 171

171 171 171 171

110 110 143 143

110 110 143 143

143 143 143 143

143 143 143 143

143 143 143 143

171 171 171 171

Figure 23

44  

46.00 Ref. 1168.4 This Edge up For Horizontal mounting Outlet Position For Horizontal And Vertical Mounting

Elem. CL 24.18 Ref. 614.1 .84 21.4 20.00 508.0

22.97 583.4

21.50 Ref. 546.3

12.00 MTG. 304.8

15.92 Ref. 404.4

C.G. 8.34 211.8

4.25 108.0

4.06 MTG. 103.12

.125 M.P.T Drain Plug

Red Power on  Light

42.00 1066.8 51.314 MTG. 1303.4

This Edge Up For Vertical Mounting

12.63Ref. 320.8

Coolant Outlet 1.00 N.P.T. Rotate Outlet Position As Shown For Base Down Mounting

26.75 (730 mm) For Element  Removal Max Elem.Dia. 5-1/8" (130 mm)

4.60 116.84

5.00 127.0

18.00Ref. 457.2

Coolant Inlet 1.25 N.P.T.

C L

5.50 139.7

5.31 Ref. 134.9

C.G.

Power In (1.106 Dia. 26 mm)

Base Down Mounting Edge

24 V.D.C. to Control Relay Col. (.875 Dia 22 mm)

35.00 889.00

1.44 Ref. 36.58

41.25 1047.75 53.00 1346.2

Sample Model No. Large Coolant Heating System 1 - 1 Phase   3 - 3 Phase   120 - 12000 Watts 150 - 15000 Watts 180 - 18000 Watts 240 - 24000 Watts (Incoloy Sheath Elements)

CL

3

180

4

5

CAT

NOTES: Designed to Caterpillar Specifications Hertz 5 - 50Hz    Blank - 80 Hz

  Main Power     

2 - 220/230v. 3 - 380v. 4 - 480v. 5 - 575v.

1. THE HEATING SYSTEM MUST BE MOUNTED IN THE PROPER POSITION TO ENSURE COMPLETE FILLING OF THE HEATING TANK. THE OUTLET MUST ALWAYS BE AT THE HIGHEST POINT OF THE INSTALLED SYSTEM. IF THE HEATING TANK IS NOT COMPLETELY FULL, PREMATURE ELEMENT FAILURE MAY RESULT. 2.COOLANT PUMP SUPPLY LINE MUST BE 1.25 1.25 NPT MIN. PUMPING SPECIFICATIONS: WARM WA WATER LP.M. (GPM) 15.6°C (50°F) 62 6 2M (25’) SUCTION LIFT 0 (0) 2 6. 6. 6° 6°C ( 80 80 °F) 6 5. 5. 6M 6M ( 20 20 ’) S UC UCT IO IO N L IF IF T 37 .8 .8 ( 10 10 ) 3 7. 7. 8° 8°C ((1 10 0° 0°F ) 5 2. 2. 5M 5M ((1 1 6’ 6’ ) SU CT CTI ON ON L I FT FT 75 ..7 7 (2 (20 ) 4 8. 8. 9° 9°C ( 12 12 0° 0°F ) 36 36. 1M 1M ( 11 11’ ) SU CT CTI ON ON L I FT FT 11 3 ( 30 30 ) 60°C (140°F) 1 9. 9.7M (6’) SUCTION L IF IFT 151 (40) 8 2. 2. 2° 2°C (1 (18 0° 0°F ) 1 3 3.. 1M 1M (4 (4 ’) PO PO S SII TI TI VE VE S UC UCT . 16 9 ( 50 50 )

(HEAD IIN N ME METERS (FT) 195.7 (60) 18 0 ( 55 55) 1 47 47 .5 .5 (4 (45 ) 13 1 ( 4 40 0) 98.4 (30) 8 5. 5. 6 ( 20 20 )

3. THE COOLANT PRESSURE RELIEF VALVE IS ADJUSTABLE FROM 3.6-25.4 kPa COMPLETELY FULL, PREMATURE ELEMENT MAY RESULT. (25-175 P.S.I.) AND IS PRE-SET TO RELIEVE AT 10.9 kPa (75 P.S.I.) AND HAS AN .75 NPT OUTLET. 4. TOTAL SYSTEM WEIGHT 130 Kg (266 LBS.) 5. DIMENSIONSSHOWN DIMENSIONSSHOWN AS INCHES mm

Typical Jacket Water Heating System F igure 2 24 4

45  

3600 Combined Circuit Heat Recovery System With Heat Recovery on Jacket Water Circuit

HEAT RECOVERY UNIT HEAT RECOVERY UNIT BYPASS LINE (OPTIONAL BASED ON HEAT RECOVERY UNIT FLOW) HEAT RECOVERY REGULATOR  ( SET 5 C BELOW JACKET WATER  REGULATOR) °

MIXED TEMP. FROM ENGINE AND HEAT RECOVERY CIRCUIT

FULL FLOW BYPASS  VALVE

CYLINDER BLOCK, HEAD & TURBO

JW PUMP REGULATOR (ENGINE JW) MIX FROM AC/OC

FACTORY OR CUSTOMER ORIFICE

OIL COOLER

FACTORY ORIFICES

AFTERCOOLER

FACTORY OR CUSTOMER ORIFICE

AC/OC PUMP

REGULATOR

HEAT EXCHANGER

EXPANSION  TANK

F igure 28 28

46  

3600 Separate Circuit Heat Recovery System With Heat Recovery on Jacket Water Circuit HEAT RECOVERY UNIT HEAT RECOVERY UNIT BYPASS LINE (OPTIONAL UNIT FLOW)BASED ON HEAT RECOVERY HEAT RECOVERY REGULATOR  ( SET 5 C BELOW JACKET WATER  REGULATOR) °

HEAT EXCHANGER (JW CIRCUIT) FULL FLOW BYPASS  VALVE

CYLINDER BLOCK, HEAD & TURBO

REGULATOR (ENGINE JW)

JW PUMP EXPANSION TANK VENT LINE

MAKE-UP LINE

HEAT EXCHANGER (AC/OC CIRCUIT)

OIL COOLER

FACTORY ORIFICES

CUSTOMER ORIFICE

AFTERCOOLER CUSTOMER ORIFICE

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF