Carpe Segmentos
July 30, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Carpe Segmentos...
Description
CACHDLGC ACR^D HGDL
ACKKD ^TD@XD IRCT 3>5
Idfldtrìc Rf``y
QDILD@XFQ
9).-Ackaukc ‛^B“, sg: CB ‑ BA 9).-Ackaukc ‑ BA < 3= y ‛^“ ds pu`tf ldhgf hd CA.
3).- Qdiú` dk irãegaf CH < 315. 3 15. Ackaukc ‛x“. ‛x“.
8x
2x + 5
C
B
2x + 3> C c) 1 h) 5
H
A
c) 33 h) 31
b) 32 d) 34
a) 3>
33 c) 4 h) 1
aulpkd:
A b) 9 d) 2
a) 7
c) 9 h) =
b) 5 d) 1
a) 4
3>).- ‛C“, ‛B“ y hd u`c rdatc. Ackaukc ‛BA“. ‛BA“. c) 1 h) 7
A
8).-Kfs pu`tfs afkg`dckds y af`sdautgvfs C, B, A y H sf` tckds qud: CH < 3=, BH < 31 y CA < 32. Ackaukc ‛BA“. ‛BA“. c) 1 b) 8 a) 4 h) 5
d) 9
b) 2 d) 2,4
hdk c)sdild`tf 3 h) 4
b) 3> d) 1>
UD@, C^RD@HD W UD@AD
‛A“ sf` sf` pu`tfs af`sdautgvfs CA < 2= y CB < BA + 32. b) 4 d) =
a) 9
. b) 2
a) 1
d) 9
32).-Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A, H y D af` kc sgiugd`td af`hgagñ`: CA + HD + AD < 88l. 88 l. Mckkc ckkc kc kf`i kf`igt gtuh uh hd hdkk s sdi dild ld`t `tf f ,s sg: g: CD < 28l y HD < 2CB. c) 3> b) 2> a) 1> h) 8> d) 4>
a) 3,4
5).- Ackaukc (^S), sg: ‛^“ ds pu`tf hd ldhgf hd CB, ‛S“ ‛ S“ ds ds pu`tf ldhgf hd AH y CA + BH < 8>.
c) 4 h) 2>
a) 5
33).-Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A, H. Qg: CB < 1BA < 8AH y CH ,4
b) 7 d) =
AH < 8CA, sg BH ‑ BH ‑ 8CB < 2>. Ackaukc ‛BA“. ‛BA“. c) 2 b) 1 a) 4 h) 9 d) 8
4 B
A a) 4
7).- Qfbrd u`c rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ‛C“, ‛B“, ‛A“ y ‛H“ tck qud:
7 C
B
. Ackaukc ‛AH“, sg:
CH < 2> c) 32 h) 3>
1).- Ackaukc ‛BA“, sg d` kc egiurc sd aulpkd: 2CA + 1FA < 94
F
^ b) 8,4 d) 7
=).- Qfbrd u`c rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ‛C“, ‛B“, ‛A“ y ‛H“. Qg sd
2).-Ackaukc 2).Ackaukc ‛BA“, sg: CA + BH < 17 17
B
f`hfrg Hgcz
31).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H? sgd`hf AH < 1CB y CH + 1BA < 5>l. Mckkc kc kf` f`i igt gtu uh h hdk dk sd sdil ild` d`tf tf . c) 33 b) 31 a) 34 h) 39 d) 37
a) 34
3
HFACRLF D - 3>
CACHDLGC ACR^D HGDL
ACKKD ^TD@XD IRCT 3>5
sctgsecad` kcs sgiugd`tds af`hgagf`ds: CB <
38).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H. Qg: CB < 2BA? AH < 2CB y CH < 2=l. Mckkc kc kf` f`i igtu tuh hh hd dk s sd dil ild d`tf . c) 2 b) 8 a) 5 h) = d) 3>
2? AH < 1? c) >,4 h) 3,24
, Ackaukc ‛BA“. ‛BA“. b) >,94 d) 3,4
22).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H, hf`hd BH < = y (CB ‑ ‑ AH).(CH + BA) < 15. Ackaukc ‛CA“. ‛CA“. c) = b) 3> a) 32
34).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H hd lfhf qud: CB < 7l y BA < 1l. Chdlãs: CB.AH < CH. BA. Mckkc kc kf`igtuh hdk sdild`tf . c) 2 b) 8 a) 5 h) = d) 3>
h) 38
d) 35
21).- Qfbrd u`c rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ‛C“, ‛B“, ‛A“, ‛H“ y ‛D“. Qg: CH + BD < 2> y BH <
35).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H. Qg sd aulpkd: CB.BH < CA.AH y CB < 5. Ackaukc ‛AH“. c) 1 b) 5 a) 7 h) 32 d) 34
c) 8 h) 32
c) 3 h) 3,4
Ackaukc ‛AH“.
b) 2 d) @.C
kc kf`igtuh hdk sdild`tf pu`tf ldhgf hd . c) 1> b) 38 h) 39 d) 15
c) h) 2> 8
a) 34
b) d) 3> 4
Ackaukc ‛FL“, sg : (LC)(LB) + c) 3 h) 8,4
2>).- Qfbrd u`c rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ‛C“, ‛B“, ‛A“ y ‛H“ qud qud
b) 2 d) 7
. Ackaukc ‛BH“,
sg AH < 4. c) 32 = b) 7 a) 3> h) d) 31 23).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H qud UD@, C^RD@HD W UD@AD
sgd`hf ‛H“
a) 34
29).- Qfbrd u`c kì`dc rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ‛L“, ‛C“, ‛F“ y ‛B“. Qd aulpkd qud ‛F“ ds pu`tf ldhgf hd .
Ackaukc
a) 5
y CA <
a) >,4
25).- Qfbrd u`c rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ^, S, R y Q tck qud: SR < RQ y (^Q)2 ‑ (^S) ‑ (^S)2 (SQ). Ackaukc ‛ “.
37).- Qfbrd u`c rdatc sd ubgac` kfs pu`tfs af`sdautgvfs ‛C“, ‛B“, ‛A“, ‛H“ y ‛D“. Qg sd
vdrgegac`: CB <
2.
24).- Qfbrd u`c kì`dc rdatc sd tflc` kfs pu`tfs af`sdautgvfs C, B, A, H y D. Qg: AB < 8, HA < 5 y , ackaukc
3=).- D` u`c rdatc sd d`aud`trc` kfs pu`tfs af`sdautgvfs Q, ^, B, S y H y aulpkd` kcs sgiugd`tds rdkcagf`ds: 8^B ‑ ‑ BH ‑ ‑ 2SH < 8? ^B < 1 y ^S < 4. Ackaukc ‛^H“. ‛^H“. c) 33 b) = a) 7 h) 5 d) 9
‛BA“, sg: CD < 2= c) 1 b) 8 h) = d) 3>
a) 4
28).- Qdc` ‛C“, ‛B“, ‛A“ y ‛H“ pu`tfs af`sdautgvfs hd u`c rdatc, hd lfhf qud:
39).- Qfbrd u`c kì`dc rdatc sd af`sghdrc` kfs pu`tfs af`sdautgvfs C, B, A y H tck qud: CH < 12 y BA < 3>. Ackaukc kc kf`igtuh hdk sdild`tf qud tgd`d pfr dxtrdlfs c kfs pu`tfs ldhgfs hd y . c) 23 b) 22 a) 21 h) 28 d) 24
.
. Ackaukc Ackaukc ‛BH“. ‛BH“.
b) 3> d) =
? CA < 1, BH <
aulpkd:
a) 3
2
HFACRLF D - 3>
View more...
Comments