CAPE pure math unit 1 2008-14
January 24, 2017 | Author: kesna | Category: N/A
Short Description
Download CAPE pure math unit 1 2008-14...
Description
1 1.
In the real number system, the inverse of addition is represented by (A) (B) (C) (D)
2.
5.
x+0= x x + (− x) =0 0+x=x+0 x( y + z ) = xy + xz
If x += b x ; x, b ∈ N , then the value of x in terms of b is (A)
−b
(B)
−
(C)
b
(D)
b 2
Which of the following statements is true? n
(A)
n
∑ r = 2∑ r 2
r 1= r 1 =
n
(B)
n r = r 1 1=
∑
r =
2
∑
6.
r
2
n
(C)
n
∑ ( 2 + r ) =2 + ∑ r 2
2
r 1= r 1 = n
(D)
The polynomial P ( x) = 2 x 3 + x 2 − 13x + 6, when divided by ( x − 1), gives a remainder of (A)
−4
(B)
0
(C)
6
(D)
18
n
∑r = ∑r 2
2
b 2
r 1= r 0 =
n
3.
The (k + 1)th term in
∑ r (r − 1) is
7.
(4 x)3 − (4 y )3 can be expressed in the form (A)
(4 x − 4 y ) (16 x 2 − 16 y 2 )
(B)
(4 x − 4 y ) (16 x 2 + 16 y 2 )
(C)
(4 x − 4 y ) (16 x 2 − 16 xy − 16 y 2 )
(D)
(4 x − 4 y ) (16 x 2 + 16 xy + 16 y 2 )
r =1
4.
2
(A) (B)
k k +1
(C)
k (k + 1)
(D)
(k + 1) 2
The basic wage Wb and the overtime wage Wo of a shop attendant never differ by more than $100. An inequality representing this statement is (A)
Wo − Wb ≤ 100
(B)
Wo − Wb < 100
(C)
Wo − Wb ≥ 100
(D)
Wo − Wb > 100
8.
If α and β represent roots of the
equation x 2 − px + q = 0, then the value
of α 2 + β 2 is (A) (B)
p2 p−q
(C)
p 2 − 2q
(D)
p 2 + 2q
CAPE Unit 1 P1 2008 ROR
2
9.
10.
11.
25 The exact value of 16 (A)
2 5
(B)
4 5
(C)
5 4
(D)
5 2
Rationalising
−
1 2
is
12.
Which of the following mapping diagrams does NOT represent a function? (A)
y
x
2 −1 gives 2 +1
(A)
1− 2 2
(B)
1+
(C)
3+2 2
(D)
3−2 2
(B)
y
2 2 3
x
The expression 2 − 4 x + 3 x 2 can be written as
(C)
y
2
(A)
2 3 3 x − − 3 2
(B)
2 2 3 x − − 3 3
(C)
3 2 3 x − + 2 3
x
2
2
(D)
y
2
(D)
2 2 3 x − + 3 3
x
CAPE Unit 1 P1 2008 ROR
3 Item 13 refers to the diagram below.
15.
The sketch below shows a function y = f ( x).
The function y = f ( x) is represented by (A)
13.
The function f ( x) is decreasing for the range
14.
(A)
x-q pz > pq p - I< q- I
(A) (B) (C) (D)
I only II only I and III only II and III only
I-2J2
(B)
3-2J2
(C)
I+Ji
(D)
I+2J2
If a remainder of 7 is obtained when
(A) (B) (C) (D)
6.
4 x 4 +8x3 -2x 2 -6x-4? I.
Two roots of the cubic equation 2x3 + 3x2 - 5x- 6 are -I and -2. The THIRD root is
(C)
(D)
-3 2
I
-II -IO IO II
Which of the following are factors of
IV.
X+ I X- I X+ 2 X- 2
(A) (B) (C) (D)
I and II only II and III only I and III only I and IV only
(A) (B) (C) (D)
(a- b)(ct- a 3 b + a 2 b 2 - ab 3 + b4 ) (a- b)(a4 + a 3 b + a 2 b 2 + ab 3 + b 4) (a+ b)(a4 - a 3 b + a 2 b2 - ab 3 + b4 ) (a+ b)(a4 + a 3 b + a 2 b 2 + ab 3 + b4 )
II.
(B)
gives
x3 - 3x + k is divided by x- 3, then k equals
If p and q are positive integers such that p < q, then which of the following statements is/are correct?
(A)
v2 +I
(A)
III. 3.
J2 -I
~
-2J2
(B)
2.
. I. . Rat10na Ismg
7.
2
3 2
3
GO ON TO THE NEXT PAGE 021340 I 0/CAPE 2013
-3-
8.
Which of the following mapping diagrams does NOT represent a function? y
9.
If g(x) is the inverse of.f(x) then the correct diagram is (A)
(A)
y
t__
(B) (B) X
y
(C) (C) X
~
y
r: r
L
(D) (D) X
~
GO ON TO THE NEXT PAGE 02 13401 0/CAPE 2013
-410.
Which of the following is true if a., fi and y are roots of the cubic equation 3x3- 4x2 -7x- 10 = 0?
a+ fi + r
(B)
a+ fi+r=-, afi+ fir+ra = -
(C)
a + fi + r
=- '
a + f3 + r
4 = -'
=-,
3
afi + fir + ra = -
-3
-7
4
3
3 4 3
7 3
afi + fir + ra = af3 + f3r + ra
(D)
5 16 log2 16 log 2 30
1
4
2
25
(A)
I 36 -log-
(B)
log-
(C)
0
(D)
1
2
(A)
a x a 3
(B)
-a x < - o r x >a 3
(C)
x > - a andx I x I, a> 0, are
3
The annual growth, g(x), (in thousands) of the population over x years is represented by g(x) = 2x. Over how many years will an annual growth of 32 thousand be achieved? (A) (B) (C)
12.
-7
(A)
(D)
11.
4
13.
converse tautology contradiction contra positive
The statement -(p v (- p 1\ q)) is logically equivalent to (A) (B) (C) (D)
pA-q p :::::> -q
-pA-q -p:::::>-q
25
25 4
GO ON TO THE NEXT PAGE 0213401 0/CAPE 2013
-516.
A
vector equation ts gtven as
s[ -~)+ tG) =[ -n.
20.
If~ is an acute angle and cos ~ = 2._ , then 13
sec~=
The values of sand
tare, respectively
(A)
5 13
(A) (B) (C) (D)
-2 -2 2 2
and -1 and 1 and 1 and -1
(B)
(C) (D)
17.
sin (30°- A) is equal to -1 cosA - -sm A
(B)
-1 cosA + -sm A
(D)
18.
2 sin (A) (B) (C) (D)
19.
J3 .
(A)
(C)
12 13 13 12 13 5 ,
2
2
21.
J3 .
2
J3
-
2
J3
-
2
x2 + y- 1Ox + 2y + 1 = 0.
2
The coordinates of the other end of the diameter are
1 . A cosA + -sm
2
(A) (B) (C) (D)
1 sm . A cosA - -
2
e cos ~ is equivalent to sin (8 + ~) + sin (8- ~) sin(8+~)-sin(8-~) cos(8+~)+cos(8-~) cos(8+~)-cos(8-~)
The point (2, 3) is at one end of a diameter of the circle whose equation is
22.
(-12, -5) (-12, -1 ) (8, -5) (8, -1)
The value of sin[;+ (A) (B) (C) (D)
p)
is
- sinp - cosp sinp cosp
The equation of the circle whose centre has coordinates (4, I) and whose radius is 7 units is (A) (B)
(C) (D)
x2 + y + 8x + y- 49 = 0 x 2 + y- 8x- 2y- 32 = 0 x 2 + y - 8x- y + 49 = 0 x 2 + y + 8x + 2y + 66 = 0
GO ON TO THE NEXT PAGE
0213401 0/CAPE 2013
-623.
What value of e, 0 :S e :S n, satisfies the equation 2 cos 2 e + 3 cos e - 2 = 0?
27.
(A) (B) (C)
7(
(A)
(B)
(c) (D)
Ifp = 2i+ j andq = /.. i+6j are perpendicular vectors, then the value of/.. is
6 7(
(D)
4
-3 • -1 0 2
7(
3
28.
7(
JC. The general solution for sin 29 = sm-ts 6
2 (A)
2nJC +. ff6 B= 5JC (2n+1)16
(B)
B=
'{
24.
With respect to an ongm 0, A has coordinates (3, -2). The position vector of3 OA is (A)
(3 , -6)
(B)
(9, - 2)
(C)
(-~J
(D)
25.
(B) (C)
(D) 26.
5JC nJC+ 12
B= {
(D)
nJC+ ff B= 6 5JC (n+1)
(_:)
sin lOA -2 cos 2A 2 cos SA sin A 2 sin 5AcosA
1 + cos 4A - sin 4A = (A) (B) (C)
(D)
1 +cos 4A 2cos2 A cos2A 2 cos 2 A sin 2 A
nJC +12 ff 5JC (2n7r) 12
(C)
The expression sin 6A + sin 4A may be written as (A)
{M+~12
{
6
29.
The cosine of the angle between the vectors -6 j and i + j is (A)
(B)
(C)
(D)
-1
J2 1
J2 -5
J2 6
J2
GO ON TO THE NEXT PAGE 0213401 0/CAPE 2013
-- ---
r
- -----------------------:r-------------------------;~
-7Item 30 refers to the diagram below. y
33.
l=x
~(x 3 sin x) dx
(A) (B) (C) (D)
34.
x2 x2 x2 x2
may be expressed as
(cos x + 3 sin x) (x cos x- 3 sin x) (3 cos x + sin x) (x cos x + 3 sin x)
The function g is defined as 3x + 5 for x < 3 g(x)= { px+2 for x~3 For the function to be continuous at x the value of 'p' should be
30.
In the diagram above showing NOT defined for (A) (B) (C) (D)
31.
lim x~3
(A) (B) (C) (D)
y = x, y
(A) (B) (C) (D)
is
0 X~ 0 x> 0 X< 0 X =
35.
2
(A)
-21 (3 -4x) 2
(B)
21 (3 -4x) 2
x- 3
(C)
Given that lim sin x = 1 , where x is measx-+O X • 3 . . Jim Sin X • ured In radians, then x---+0 ~ IS
27-8x (3-4xf
00
(D)
32.
-3 -1 4 12
If y = x - 6 then dy is 3-4x dx
X -9. --IS
0 6
= 3,
36.
If y
-27 -8x (3 -4x) 2
= -J2x + 1 then
2
d Y is dx 3
1 (A) (B)
(C) (D)
. 3 sm 2 sin3x 2x 2 3 3 2
(A)
(2x+
1)( -J2x+ 1) -1
(B)
(2x +
1)(-J2x + 1)
(C) (D)
(2x + 1)
GO ON TO THE NEXT PAGE 0213401 0/CAPE 2013
- 837.
38.
If y =tan 6x then dy is dx 2 (A) 6 tan 6x (B) sec 2 6x (C) 6 sec 2 6x (D) sec 6x tan 6x
(A)
(B)
(B)
y = sin x + k y =cos X+ k
(C) (D)
y = - COS X + k y =-sin x + k
(C)
(D)
f"(x) = 6x, then given that f'(O) = 0, and cis a constant,j(x) =
If
(A) (B) (C) (D)
Given that
3x2 + x + c x3 + x + c 3x2 + c x3 + c
42.
3 4
9, 4
27 4
The gradient of the normal to the curve = 3x 2 - 2x + 1 at x = 1 is
y
The path ofan object is given parametrically as x = sin t + 2, y = cos t + I . The slope of the tangent at t (A)
-I
(B) (C) (D)
0
is
4
1
(A) 40.
J: 4f(x)dx =9 , the value of
J: 3f(x)d;c
If dy =cos x then dx (A)
39.
41.
=-1t
4
4 (B)
2
is (C)
. -I
(D)
4
undefined
GO ON TO THE NEXT PAGE 0213401 0/CAPE 2013
-943.
Water is leaking from a tank. The rate of change in volume of the water in the tank with respect to time, t, is inversely proportional to the volume, V, of water in the tank. If k is a positive constant of proportionality, then the equation that models this situation
44.
Given dy = 2x, then possible sketches of dx the graph of y are
•
I.
y
II.
y
III.
y
IV.
y
lS
(A)
-k V =-
(B)
---
(C)
dV =-k.JV dt V =-kt
(D)
.Ji
dV dt
-k
v
-----+--~--+---~~X
-1
(A) (B) (C) (D)
0
1
I and II only III and IV only I, III and IV only II, III and IV only
GO ON TO THE NEXT PAGE 0213401 0/CAPE 2013
- 1045.
The radius of a circle is increasing at a rate of O.lcm s- 1_ At the instant when the radius is 3 em, the rate of increase of the area in cm2 s- 1 is 2
(A)
-Jr
(B)
-Jr
5 3
5
(C)
2n
(D)
47t
END OF TEST
IF YOU FINISH BEFORE TIME IS CALLED, CHECK YOUR WORK ON THIS TEST.
0213401 0/CAPE 2013
CAPE Mathematics U1 P1 CAPE June 20142014 Pure Pure Mathematics U1 P1
View more...
Comments