Cap 4 - Voltametría Cíclica
Short Description
Download Cap 4 - Voltametría Cíclica...
Description
Electroquímica Física e Interfacial: Voltamperometría Cíclica
4. Voltamperometría cíclica 4.1 ¿Qué es la voltamperometría cíclica?
Una de las técnicas más ampliamente utilizadas para analizar sistemas electroquímicos complejos que involucren por ejemplo reacciones electroquímicas consecutivas, reacciones en fase homogénea de especies electroactivas, procesos de pasivación, fenómenos de adsorción, etc, es la voltamperometría cíclica (VC).1 Esta técnica no es muy útil para hacer cuantificaciones precisamente por ser tan sensible a cambios en la concentración del electrolito, temperatura, limpieza del electrodo y a cambios de la estructura de la doble capa y de la organización cristalina de la superficie del electrodo en función del potencial. Pero esta sensibilidad a esta gran cantidad de parámetros es precisamente lo que la hace muy útil para estudiar procesos electroquímicos complejos. La VC en condiciones muy controladas podría servir para hacer análisis cuantitativo pero realmente es una de las técnicas electroanalíticas de más baja sensibilidad por distintas razones que se van a ir discutiendo a lo largo de este capítulo.
La VC consiste en hacer un cambio del potencial aplicado al electrodo de trabajo de una manera cíclica desde un extremo de potencial (Ei) hasta otro (Ef ) a una velocidad de barrido de potencial constante ( ν), que es dada en voltios por segundo (V s-1). De este modo el potencial (E) en función del tiempo (t) estará dado por las siguientes ecuaciones:
1
Methods: Fundamentals and Applications, Wiley, segunda A. J. Bard, L. R. Faulkner [2001]. Electrochemical Methods: edición, capitulo 6, New York, USA.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
[4.1]
durante el barrido catódico y
[4.2]
durante el barrido anódico.
Un voltamperograma cíclico es la gráfica de la corriente que pasa por el electrodo de trabajo en función del potencial aplicado con respecto a un electrodo de referencia tantos ciclos como se desee. Para calcular la corriente en función del potencial se sigue un procedimiento similar al descrito para hallar la corriente en función del tiempo durante un salto de potencial, como fue descrito en el capítulo 3. La única diferencia es que ahora la condición de frontera sobre la superficie del electrodo, para resolver las ecuaciones diferenciales que describen el cambio de la concentración en un punto dado en función del tiempo, es diferente. En la tabla siguiente hacemos un resumen de las ecuaciones diferenciales que hay que resolver y las respectivas condiciones de frontera, donde kRed y kOx son las contantes de transferencia de carga relacionadas con el proceso de reducción y oxidación respectivamente. En el caso ideal estas constantes dependerán del potencial aplicado según las siguientes ecuaciones deducidas en el capítulo 2:
y
[4.3]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
[4.1]
durante el barrido catódico y
[4.2]
durante el barrido anódico.
Un voltamperograma cíclico es la gráfica de la corriente que pasa por el electrodo de trabajo en función del potencial aplicado con respecto a un electrodo de referencia tantos ciclos como se desee. Para calcular la corriente en función del potencial se sigue un procedimiento similar al descrito para hallar la corriente en función del tiempo durante un salto de potencial, como fue descrito en el capítulo 3. La única diferencia es que ahora la condición de frontera sobre la superficie del electrodo, para resolver las ecuaciones diferenciales que describen el cambio de la concentración en un punto dado en función del tiempo, es diferente. En la tabla siguiente hacemos un resumen de las ecuaciones diferenciales que hay que resolver y las respectivas condiciones de frontera, donde kRed y kOx son las contantes de transferencia de carga relacionadas con el proceso de reducción y oxidación respectivamente. En el caso ideal estas constantes dependerán del potencial aplicado según las siguientes ecuaciones deducidas en el capítulo 2:
y
[4.3]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
,0, 0 lim ,,
,0, 0 0 lim ,, 0
De acuerdo al balance de materia en la superficie del electrodo se debe cumplir la siguiente condición de frontera
, , 0 , Estas contantes cinéticas son función del potencial y por lo tanto van variando en función del tiempo para el caso de una VC. Un caso particular es cuando la constante de transferencia de carga global (k0) es muy grande, ya que podemos llegar a la siguiente expresión:
0
[4.4]
La anterior ecuación puede ser reescrita como:
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
[4.5]
La ecuación 4.5 finalmente resulta siendo la bien conocida ecuación de Nernst. Es importante recalcar que las concentraciones de las distintas especies sobre la superficie del electrodo (para x=0) van variando en el tiempo hasta llegar al caso límite dado por la ecuación de Nernst, pero esto no implica que durante una VC siempre se llegue a este caso límite. Si k0 es lo suficientemente pequeña no se llega al caso límite dado por la ecuación de Nernst, ya que la velocidad de barrido va a ser más rápida que la velocidad a la que el sistema tiende a las condiciones dadas por esta ecuación. Finalmente es importante anotar que las unidades de k0 son m s-1, lo que puede parecer extraño a primera vista!
En este momento se tiene toda la información necesaria para calcular la corriente en función del potencial aplicado. Pero en este punto nos encontramos con el inconveniente que no se puede encontrar una solución general que involucre distintas condiciones de frontera sobre la superficie del electrodo. De este modo para cada caso particular hay que hallar su propia solución. Para comenzar vamos a solucionar las ecuaciones diferenciales para el caso más simple, que es el caso de una reacción reversible electroquímicamente, que corresponde al caso donde k0 tiende a infinito y por lo tanto las concentraciones en la superficie del electrodo están dadas por la ecuación de Nernst. Al modificar la ecuación 4.5 para tener en cuenta la variación del potencial en el tiempo llegamos a la expresión 4.6. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
exp exp exp
[4.6]
En la ecuación anterior la primera exponencial se ha representado como una constante θ y la segunda como una función que depende del tiempo y de la velocidad de barrido. Por otro lado, al aplicar la transformada de Laplace a la ecuación diferencial que describen el cambio de la concentración de la especie O en función del tiempo y al tener en cuenta las dos primeras condiciones de frontera llegamos a la expresión 4.7.
∞
[4.7]
Para hallar el valor de γ utilizamos la relación que hay entre la corriente y el gradiente de concentración de O y la derivada con respecto a x de la ecuación anterior para así finalmente obtener la ecuación 4.8.
[4.8]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Al despejar γ de la ecuación 4.8 obtenemos:
[4.9]
De este modo, la trasformada de Laplace de la concentración de O sobre la superficie del electrodo estará dada por:
[4.10]
∞
Aplicando el operador inverso de Laplace a la ecuación anterior obtenemos:
∞
[4.11]
Para calcular la transformada inversa de la última expresión se utiliza el teorema de convolución (anexo 1), ya que se conocen las funciones cuyas transformas de Laplace se están multiplicando en el último paréntesis como se muestra a continuación:
y
[4.12] ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
[4.13]
Reemplazando la ecuación 4.13 en 4.11 obtenemos la expresión 4.14.
∞
[4.14]
Si se procede de manera análoga con la especie R se llega a la relación 4.15.
[4.15]
Si dividimos la ecuación 4.14 en 4.15 y utilizando la ecuación 4.6 obtenemos:
∞
[4.16]
Reagrupando términos transformamos la ecuación anterior en:
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
[4.17]
∞
Para simplificar la ecuación anterior vamos a realizar las siguientes sustituciones:
[4.18]
[4.19] donde
[4.20]
De este modo la ecuación 4.17 se transforma en:
1
[4.21]
∞
1 ∞
[4.22]
Si definimos la función X(z) como
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
[4.23]
∞
la ecuación 4.22 se nos reduce a la ecuación 4.24.
1
[4.24]
Como vemos el lado izquierdo de la ecuación anterior se puede calcular para un tiempo determinado, o en otras palabras el valor de la integral se conoce pero no la función X(z). Estas ecuaciones se conocen con el nombre de integrodiferenciales. La ventaja de esta última ecuación fue el de haber reducido un sistema de cuatro variables (dos concentraciones, x y t) a tan solo una, el tiempo (o la variable muda z). Esta ecuación fue resuelta por Nicholson y Shain por métodos numéricos 2 mediante el procedimiento que se describe a continuación. En primer lugar se escoge un valor arbitrario δ lo suficientemente pequeño y expresamos σt como mδ, donde m es un contador que solo puede tomar valores enteros positivos. Por otra parte se hace nuevamente un cambio de variable del siguiente modo:
2
[4.25]
R. Nicholson, I. Shain, Anal. Chem. 36 (1964) 707. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Al definir la ecuación 4.24 de acuerdo a las nuevas variables obtenemos la ecuación 4.26.
1
[4.26]
Que se puede simplificar para obtener la ecuación 4.27.
1 √ √
[4.27]
Para eliminar la indeterminación cuando λ =m, de la integral del lado derecho de la ecuación anterior, se puede integrar por partes de la siguiente forma:
√ 2√ |0 2√
[4.28]
o
√ 2 0 √ √
[4.29]
La ecuación anterior escrita en función de diferencias finitas, y aproximando la integral de la derecha a una sumatoria, nos queda igual a: ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
√ √ 1 2√ 0 ∑
[4.30]
Reemplazando la ecuación 4.29 en 4.26 llegamos a la ecuación 4.31.
1 2√ √ 0 ∑ √ 1
[4.31]
La ecuación anterior nos permite calcular los valores de “X” en función de “m”. Recuerde que “i” representa en este punto tan solo un número entero. A manera de ejemplo vamos a determinar los valores de X para el caso de una reacción reversible, donde hay una transferencia de un electrón y donde los coeficientes de difusión tanto de R como de O son iguales (ξ=1). Por otro lado podemos suponer que X(0) es igual a cero, aproximación que es válida si comenzamos el cálculo a un potencial lo suficientemente positivo para que esté alejado de E0. Al realizar las manipulaciones algebraicas adecuadas de la ecuación 4.31 se pueden calcular los valores de X en función de m utilizando las siguientes ecuaciones:
0 0 1 √
[4.32] [4.33]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
∑ √ √ √ 1
para m ≥ 2
[4.34]
Si además suponemos que E0 es igual a cero, el potencial inicial del barrido es 0.3 V, T=298, δ=0.01 y m=2000 se pueden calcular los valores de X(m) en función de m utilizando el programa
escrito en lenguaje C++ que se encuentra en el Anexo 2. Por otro lado el rango de potencial simulado (∆E) es determinado por las siguientes ecuaciones:
entonces
∆
[4.35]
Y el potencial en función de “i” estará dado por:
0.3 2.567410
[4.36]
En la Figura 4.1 se muestra el valor de X en función del potencial. Mediante una inspección de los datos podemos encontrar que el valor de X máximo es de 0.2518 y se encuentra a un potencial de -0.0284 V, que corresponde al potencial de pico (Ep). A partir de la ecuación 4.23 podemos determinar que la altura de pico (ip) en amperios es igual a:
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Figura 4.1. Valores de X en función del potencial calculado con el programa descrito en el
Anexo 2.
0.2518
∞
[4.37]
Y al reemplazar σ de acuerdo a la ecuación 4.19 llegamos a que la corriente de pico está dada por:
0.2518√ / ⁄ ⁄ ∞
[4.38]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
La dependencia de ip con la velocidad de barrido se utiliza como diagnostico de si la reacción está controlada por procesos difusivos, ya que si esto es así ip debe ser proporcional a la raíz
⁄
cuadrada de la velocidad de barrido (
). Por otro lado al determinar a partir de la Figura
4.1 el potencial al cual se obtiene una corriente igual a la mitad de la altura de pico (E p/2) se obtiene el valor de 0.0281 V. Como vemos E0 se encuentra más o menos a mitad de camino entre Ep y E p/2 y la diferencia entre Ep y E p/2, en valor absoluto, es igual a 56.5 mV. En general para cualquier proceso reversible esta diferencia va a estar dada por la ecuación 4.39.
/ 2.20
[4.39]
La deducción anterior tan solo se hizo para mostrar la dificultad que hay para resolver las ecuaciones diferenciales asociadas a la VC, inclusive para el sistema más simple. A partir de este punto vamos a optar por resolver las ecuaciones diferenciales iníciales por métodos numéricos como se hizo para hallar la corriente en función del tiempo cuando se realiza un salto de potencial (ver capítulo 3). Para comenzar se va a tomar una unidad de tiempo tk que va a ser igual a:
[4.40]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Por otro lado el intervalo de tiempo (∆t) para realizar la simulación numérica lo definimos como:
∆
[4.41]
Donde L es un número entero positivo que define la resolución del cálculo numérico. El tiempo de este modo estará dado por la ecuación 4.42.
∆
para k=0,1,2,3…kfinal
[4.42]
Donde k es un número entero positivo que varía desde cero, al inicio de la simulación, hasta un kfinal, cuando termina la simulación. Ahora definimos una nueva variable Enorm (llamada potencial normalizado) como:
[4.43]
Si suponemos que partimos de la especie oxidada, que es la que se va a reducir mediante un barrido catódico, entonces al reemplazar la ecuación 4.1 en la 4.43 obtenemos la ecuación 4.44.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
,
[4.44]
Si tenemos en cuenta las ecuaciones 4.40, 4.41 y 4.42 para reescribir la ecuación 4.44 llegamos a la expresión 4.45.
,
[4.45]
Para una simulación dada debemos calcular el valor de kfinal a partir de los potenciales extremos (Ei y Ef ) entre los cuales se pretende hacer la simulación. Dejamos al lector hacer las manipulaciones algebraicas necesarias para llegar a la siguiente expresión:
[4.46]
La condición de frontera sobre la superficie del electrodo escrita en forma de diferencias finitas, en función de Enorm y las concentraciones adimensionales estará dada por la siguiente ecuación:
, , 0, 1 0, 1 ∆
[4.47]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Como las concentraciones en el tiempo k+1 no se conocen se hace la siguiente aproximación:
,, 0, 1 0, ∆
[4.48]
De la ecuación anterior se despeja f O(0,k+1) teniendo en cuenta que f R(0,k+1) es igual a 1f O(0,k+1). A partir de este punto se procede de manera análoga como se hizo en el capítulo 3 para calcular los perfiles de concentración de O y R tanto en función de la distancia desde el electrodo como del tiempo, y con estos últimos datos se calcula la corriente en función del tiempo. Para hacer la simulación hay que utilizar las mismas constantes dadas en el capítulo 3 y las nuevas constantes Ei, Ef , E0 y el valor del producto de k0∆x/DO, que puede ser llamado kt (que es una constante de transferencia de carga adimensional). Los demás parámetros nuevos se calculan a partir de estas constantes.
Es importante que el lector se dé cuenta que la velocidad de barrido, ∆x y ∆t no se introducen para hacer la simulación. Lo que quiere decir es que los resultados obtenidos no son para un caso específico sino para una familia de casos donde la única diferencia entre ellos es un factor de escala dado por los valores de las constantes anteriores. Teniendo en cuenta las consideraciones anteriores y el programa en C++ desarrollado en el capítulo anterior para el caso de un salto de potencial se pueden simular los voltamperogramas cíclicos para varias situaciones experimentales. Se deja a los lectores la implementación del programa. A partir de este punto
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
vamos a mostrar una serie de simulaciones para ver los voltamperogramas que se obtienen para distintos casos.
En primer lugar vamos a ver el voltamperograma que se obtiene para el caso en el que la constante de transferencia de carga es muy grande, o en otras palabras se cumple la ecuación de Nernst sobre la superficie del electrodo. La Figura 4.2 muestra el voltamperograma para este caso. En primer lugar hay que recalcar que las reacciones de oxidación como de reducción ocurren a todos los potenciales (ecuación 4.3) lo que cambia es la velocidad a la que ocurren estas reacciones en función del potencial. De este modo cuando estudiamos un proceso de reducción de una especie O partiendo de un potencial lo suficientemente positivo con respecto a Eo, al inicio de la simulación no se observan corrientes faradáicas significativas. A medida que el potencial se acerca a Eo la corriente empieza a subir debido a que se empieza a reducir la especie O a una velocidad mayor a la que se oxida la especie R formada sobre la superficie del electrodo. En este punto se dice que la reacción está controlada principalmente por procesos cinéticos sobre la superficie del electrodo.
En la Figura 4.3 muestra el perfil de concentración en función del potencial y la distancia del electrodo (representada por el contador j) para el caso de una VC para un sistema reversible electroquímicamente. En esta figura se puede observar que al inicio del experimento (parte izquierda del diagrama 3D) la concentración de O es constante desde la superficie del electrodo hasta el interior de la solución. Este perfil va cambiando a medida que el potencial disminuye; la concentración de la especie O sobre la superficie del electrodo va disminuyendo y la capa de ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
difusión va aumentando. Estos dos últimos aspectos hacen que la velocidad de la reacción de reducción vaya disminuyendo a pesar del hecho que la constante cinética asociada a esta reacción va aumentando a medida que el potencial se hace más catódico, o varia hacia el lado negativo (analizar ecuación 4.3). Cuando la concentración de la especie O se hace cero sobre la superficie del electrodo los procesos de transporte de materia pasan a controlar la velocidad de la reacción de reducción y llegamos a una situación similar a la de un salto de potencial explicada en el capítulo 3, donde la corriente empieza a disminuir en función del tiempo, o en este caso del potencial, de acuerdo a la ecuación de Cottrell. Los efectos anteriores son los que llevan a la formación de un máximo de corriente en el voltamperograma cíclico.
Figura 4.2. Voltamperograma cíclico para un sistema reversible donde hay una trasferencia de
un electrón.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
En el barrido anódico (de potenciales bajos a altos) observamos un comportamiento similar al descrito anteriormente para la especie O, pero ahora analizado desde el punto de vista de la especie R que se forma sobre la superficie del electrodo a partir de O. De este modo, en los voltammeperogramas se pueden identificar una onda catódica y una anódica (o también llamados picos catódicos o anódicos). La altura de los picos (ip) se mide como se muestra en la Figura 4.2. Para el caso de reacciones reversibles esta altura debe ser la misma y estar dada por la ecuación 4.38. Si bien ip depende de la concentración analítica de la especie O la VC no se utiliza para hacer cuantificaciones ya que son muy pocos las reacciones reversibles, y además las corrientes capacitivas dependen de la velocidad de barrido y de una amplia gama de factores que son muy difíciles de controlar experimentalmente (ver teoría de la doble capa eléctrica).
En la Figura 4.3 se observa que la capa de difusión crece en función del tiempo (recuerde que el potencial depende del tiempo, ecuaciones 2.1 y 2.2) y, además, que el perfil de concentraciones al final del ciclo completo (parte derecha del grafico 3D, Figura 4.3) no es el mismo que al inicio de la simulación. En este punto sobre la superficie del electrodo hay un gradiente de concentración negativo que produce una corriente neta anódica (analice las corrientes al inicio y después de terminar un ciclo completo en la Figura 4.2).
La separación de pico anódico y catódico depende de varios factores. En primer lugar si la reacción es reversible, la separación de pico va a ser afectada por el potencial Ef (Figura 4a) y por el número de electrones transferidos (Figura 4b). A medida que Ef está más alejado de E0 la separación de picos se hace más pequeña, aun que es claro que este efecto es muy pequeño (∼4 ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
mV). Por otro lado el número de electrones transferidos si tiene un efecto significativo en la separación de picos, y es evidente que a medida que “n” aumenta la separación de picos se hace mucho más pequeña. Una ecuación muy aproximada que relaciona la separación de picos (∆Ep) con el número de electrones transferidos (n) es la ecuación 4.49.
∆ 2.3
[4.49]
Figura 4.3. Perfil de concentración en función del potencial y la distancia del electrodo (j) para
el caso de una VC para un sistema reversible electroquímicamente.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
a
b
Figura 4.4. a) Efecto del potencial final en la forma de los voltamperogramas y en la separación
de picos. b) Efecto del número de electrones transferidos simultáneamente (n) en el voltamperograma cíclico para un proceso reversible.
a
b
Figura 4.5. a) Efecto de la constante de transferencia de carga (kt) en el voltamperograma cíclico
para sistemas donde se transfiere un electrón y α es igual a 0.5. b) Efecto de la variación de α cuando la constante de transferencia de carga es constante.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
La Figura 4.4b muestra además que cuando la corriente está completamente controlada por los procesos de transporte no hay una diferencia significativa entre los distintos voltamperogramas, lo que es de esperarse ya que “n” tan solo tiene influencia en las constantes de velocidad, pero una vez la concentración de la especie O sobre la superficie del electrodo llegue a ser cero ya no tiene ninguna influencia en el gradiente de concentración.
Cuando la constante de transferencia de carga es lo suficientemente pequeña, para que las concentraciones de las distintas especies eletroactivas sobre la superficie del electrodo no estén determinadas por la ecuación de Nernst, se dice que la reacción es irreversible desde el punto de vista electroquímico. La Figura 4.5a muestra el efecto de disminuir la constante de transferencia de carga adimensional (kt) en los voltamperogramas. Es claro que a medida que kt se hace más pequeña los picos se separan, se hacen más anchos y la altura de pico disminuye. Por otro lado el efecto del parámetro de simetría α tan solo tiene alguna influencia en la forma de los voltamperogramas cuando la constante de transferencia de carga es pequeña (¿por qué?). La Figura 4.5b muestra que cuando α es igual a 0.5 los picos son simétricos, cuando es mayor que 0.5 se favorece la reacción de reducción y cuando es menor se favorece la reacción de oxidación.
4.2 Efecto de las corrientes capacitivas y de la caída óhmica en los voltamperogramas cíclicos
4.2.1 Efecto la caída óhmica
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
b
a
Figura 4.6. a) Esquema de una celda electroquímica de tres electrodos y b) del circuito
equivalente con el que se puede modelar aproximadamente esta celda.
Cuando fluye corriente a través de la celda electroquímica hay una caída de potencial (∆EΩ=RIΩ) entre el electrodo de referencia (RE) y el electrodo de trabajo (WE), que depende de la conductividad del electrolito, la distancia entre los dos electrodos y la intensidad de la corriente que fluye entre el contraelectrodo (CE), también conocido como electrodo auxiliar, y el electrodo de trabajo. Si asumimos que el electrodo de referencia es idealmente no polarizable, el potencial que controla el potenciostato (que es V de la Figura 4.6b) va a estar dado por:
Ω
[4.50]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Donde VRE es la caída de potencial debida al electrodo de referencia, que a su vez es igual a la suma de las caídas de potencial a través de ZRE y RRE. En condiciones experimentales óptimas VRE es constan te. De este modo para poder controlar adecuadamente la caída de potencial sobre el electrodo de trabajo hay que hacer que el producto iRΩ sea pequeño. La caída óhmica (iRΩ) depende de los siguientes factores: •
La corriente y la distribución de las líneas equipotenciales en el electrolito. La corriente y el potencial en los distintos puntos del electrolito depende de la geometría de la celda electrolítica y de la posición de los distintos electrodos. Al cambiar el tamaño o la forma del electrodo de trabajo se cambia la distribución de líneas equipotenciales (Figura 4.7).
•
La posición del electrodo de referencia con respecto al electrodo de trabajo. Entre más cerca estén estos dos electrodos uno del otro la caída iRΩ va a ser
������ ���� ������������ ��� ���������
��������� �� �� ������������
más pequeña.
•
La conductividad del electrolito. Entre más alta sea la conductividad del electrolito más baja será la caída óhmica (ya que RΩ tiende a cero).
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
4.2.2 El efecto de las corrientes capacitivas
Si en la Figura 4.6b suponemos que no hay procesos faradáicos, y por lo tanto la impedancia faradáica sobre el electrodo de trabajo (Zfarad. WE) no existe, el circuito equivalente donde se va a aplicar un potencial conocido es una resistencia (RΩ) en serie con el condensador de la doble (Cdl). Si sometemos este circuito simple a una variación lineal del potencial en función del tiempo (E=Ei – νt) entonces la corriente en función del potencial estará dado por la ecuación 4.51.
|| 1
[4.51]
Como ejercicio se deja al lector la deducción de la ecuación anterior. La Figura 4.8 y la ecuación 4.51 muestran que cuando RΩ es relativamente baja las corrientes capacitivas hacen que la línea base de los voltamperogramas se desplace alejándose de cero. Observe que las corrientes capacitivas en un amplio rango de potencial son proporcionales a la velocidad de barrido. Si hacemos la relación de |iC| sobre ip obtenemos:
⁄ || .√ /⁄ ⁄ /⁄
[4.52]
∞
∞
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
De la ecuación anterior es claro que el efecto de las corrientes capacitivas va a ser mayor en la medida que la velocidad de barrido y Cdl aumenten. Por otro lado su efecto en los voltamperogramas va a ser menor en la medida que la concentración analítica de la especie activa, el número de electrones transferidos y su coeficiente de difusión sean mayores. Por otro lado en la Figura 4.8b se observa que a medida que RΩ aumenta la corriente empieza a depender linealmente del potencial, o en otras palabras a tener un comportamiento óhmico. Se deja al lector que demuestre que a medida que RΩ tiende a infinito la pendiente del voltamperograma tiende a 1/ RΩ.
a
b
Figura 4.8. Comportamiento de las corrientes capacitivas en función del potencial. a) Variación
con la velocidad de barrido (RΩ=1x103; Cdl=1x10-5 F) y b) con la resistencia RΩ ( ν=1 V s-1; Cdl=1x10-5 F).
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Es claro que los voltamperogramas pueden verse distorsionados significativamente si las condiciones experimentales no son las óptimas para disminuir el efecto de las corrientes capacitivas y de la caída óhmica. Además es evidente que a medida que el área expuesta del electrodo sea más pequeña (la capacitancia del electrodo es proporcional al área), la conductividad del electrolito sea mayor y el electrodo de referencia esté más cerca del electrodo de trabajo los voltamperogramas van a ser más parecidos a los esperados teóricamente. Sin embargo hay que tener en cuenta que la zona más próxima al electrodo de trabajo es donde el gradiente de potencial en las distintas direcciones es mayor, y cualquier variación de la distancia entre el WE y el RE genera grandes cambios en la caída óhmica.
4.3 Voltamperogramas experimentales
La Figura 4.9 muestra varios voltamperogramas para el caso de la oxidación de ferroceno, que en algunas condiciones experimentales se puede asumir como un sistema electroquímico reversible, a distintas velocidades de barrido sobre un electrodo de carbón vítreo. Para tomar estos voltamperogramas es necesario pulir el electrodo sucesivamente con partículas de diamante desde 5µm hasta 1µm de diámetro y lavar el electrodo entre cada pulida con agua ultrapura y ultrasonido. Después es necesario realizar una activación electroquímica del electrodo utilizando una solución de KOH 0.5 M y barriendo desde -1 V hasta 2 V vs Ag/AgCl durante veinte ciclos a 100 mV s-1. Después se debe hacer un salto de potencial en la misma solución desde el potencial de circuito abierto hasta 2 V por 30 segundos. El procedimiento anterior se realiza para oxidar la superficie del electrodo y general grupos funcionales superficiales ricos en oxigeno que ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
permiten realizar la transferencia de carga de una manera más eficiente y posiblemente evitan la adsorción del ferroceno. El electrodo después debe ser lavado con agua ultrapura y sonicado por 5 minutos más. Finalmente, el electrodo debe ser lavado en ecetonitrilo antes de ser introducido a la celda electroquímica que tiene 0.001M de ferroceno y NaClO4 0.1M en acetonitrilo. La solución anterior debe estar completamente libre de agua para que esta no interfiera en las medidas electroquímicas y la solución debe ser desgasificada con Ar o N2 99.999% para retirar el oxigeno del medio, ya que el oxígeno se reduce a los potenciales de trabajo dando lugar a reacciones químicas acopladas y corrientes faradaicas indeseables. Recuerde que tan solo se quiere estudiar la oxidación de ferroceno. Es importante recordar que una vez activado el electrodo este no debe ser polarizado a potenciales extremos en acetonitrilo, ya que este procedimiento desactiva la superficie nuevamente. Para este caso, el electrodo solo puede ser polarizado entre -0.3 y 0.3 V en acetonitrilo (Figura 4.9) si se quiere obtener voltamperogramas característicos de sistemas electroquímicos reversibles. 0.5 0.4 0.3 ) 0.2
2 -
m c A 0.1 m ( J 0.0
-0.1 -0.2 -0.3 -0.3
-0.2
-0.1
0
0.1
0.2
0.3
E vs Ag/AgCl (V)
Figura 4.9. Voltamperogramas para la oxidación de ferroceno 1 mM sobre un electrodo de
carbón vítreo. Electrolito soporte NaClO4 0.1 M en acetonitrilo seco y desgasificado. Se observan los voltamperogramas para las velocidades de barrido de 25, 50,75 y 100 mV s-1. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
En la Figura 4.9 se observa que la separación de picos aumenta con la velocidad de barrido. Esto es causado por la caída óhmica que fue explicada en la sección 4.2.1. Este comportamiento también se observa cuando la contante de transferencia de carga es baja, por tanto es común que los experimentalistas confundan sistemas con constantes de transferencia de carga bajas con la presencia de una caída óhmica apreciable. Para
evitar este problema es necesario trabajar
con equipos que sean capaces de hacer compensación óhmica o realizar experimentos de espectroscopia de impedancia para determinar la resistencia entre el electrodo de referencia y el de trabajo. Finalmente, la dependencia de la altura de pico con la raíz cuadrada de la velocidad de barrido se aprecia claramente.
��� ���
�
���
�
��� ) � �
�
���
� � ��� � � ( � ���
���� ���� ���� ���� ����
����
����
�
���
���
���
� �� �������
Figura 4.10. Voltamperogramas obtenidos en NaClO4 0.1M en acetonitrilo seco y desgasificado
sobre un electrodo de carbón vítreo a 25 mV s-1. Se observan los tres primeros ciclos.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
La Figura 4.10 muestra que el electrolito soporte da un voltamperograma muy similar a los analizados en la Figura 4.8. El hecho que este inclinado es evidencia de que la caída óhmica es significativa. El cambio entre ciclo y ciclo posiblemente está relacionado con cambios en la estructura de la doble capa eléctrica en función del tiempo debido a cambios en la distribución de grupos funcionales oxigenados sobre la superficie. Utilizando la ecuación 4.51se puede estimar que la capacitancia de la doble capa eléctrica del electrodo de carbón vítreo es de aproximadamente 75 µF cm-2.
4.4 Efecto en los voltamperogramas cíclicos de la presencia de reacciones químicas en fase homogénea acopladas a reacciones electroquímicas
La presencia de reacciones químicas en fase homogénea acopladas a procesos electroquímicos en la interface electrodo electrolito es muy común debido al hecho que en la mayoría de los casos se forman radicales, o intermediarios, altamente reactivos por métodos electroquímicos que pueden reaccionar entre ellos mismos, con los reactivos o con el solvente. La mayoría de reacciones electroquímicas que involucran especies orgánicas dan lugar a reacciones químicas en fase homogénea.
Únicamente
algunos
complejos
de
coordinación
presentan
reacciones
electroquímicas reversibles sin que se observe reacciones químicas en fase homogénea, lo que es debido a la estabilidad de los distintos estados de oxidación del ion metálico central dada por los ligantes.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
4.4.1 Mecanismo EC
El mecanismo EC consiste en una reacción química en fase homogénea acoplada a una reacción electroquímica que ocurre en la interface electrodo-electrolito. Un ejemplo del mecanismo EC está dado por la siguiente secuencia de reacciones:
[4.53]
[4.54]
Este mecanismo de reacción se puede simular fácilmente si se utiliza un programa como el descrito en el Anexo 3.1 con las siguientes condiciones de frontera sobre la superficie del electrodo:
0 √ √ √ 0 0 √ 0 0 1 0 0
[4.55]
[4.56] [4.57]
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
El significado de las distintas constantes es el mismo, o sigue la misma lógica, que el descrito en el Capítulo 3 y Anexo 3.1. La constante Kc es la constante cinética adimensional de la reacción 4.54. Esta constante adimensional es función de la velocidad de barrido del potencial. Como se puede observar en la Figura 4.11 a medida que aumenta el valor de Kc va disminuyendo el pico de oxidación debido a que la concentración de la especie B en solución es cada vez menor. Por otro lado se observa que el pico de reducción se hace más pronunciado y el máximo se desplaza a potenciales cada vez más positivos. Como ejercicio para el lector se le recomienda que escriba el programa para simular los voltamperogramas característicos para un mecanismo EC. Este ejemplo nos permite mostrar como la VC puede ser útil para el estudio de mecanismos de reacción, ya que se puede determinar el tipo de mecanismo y las constantes cinéticas de un esquema de reacciones mediante la simulación de los voltamperogramas experimentales. Es importante anotar que los voltamperogramas, para este caso, dependen de la velocidad de barrido del potencial; a velocidades de barrido cada vez más altas se obtienen voltamperogramas cada vez más parecidos al esperado en ausencia de la reacción química en fase homogénea.
Figura 4.11. Efecto de la constante cinética (Kc) en el voltamperograma cíclico esperado para
un mecanismo de reacción EC cuando la reacción electroquímica es electroquímicamente reversible. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
4.4.2 Mecanismo ECE
Cuando hay una reacci�n electroqu�mica seguida de una reacci�n qu�mica en fase homog�nea que produce un producto que es electroqu�micamente activo decimos que tenemos un mecanismo ECE. Un ejemplo de mecanismo ECE es el siguiente: , ,
[4.58]
[4.59]
[4.60]
La Figura 4.12 muestra una simulación digital para el caso de un mecanismo ECE. En esta figura podemos observar que a medida que la constante cinética de la reacción química (reacción 4.59) crece, los picos correspondientes al segundo proceso de reducción (reacción 4.60) crecen al mismo tiempo hasta llegar a un máximo.
Por otro lado el primer pico de reducción,
correspondiente a la reacción 4.58, se comporta igual que lo hace para el mecanismo EC. En general cuando hay reacciones químicas acopladas se pierde simetría entre los picos de reducción y oxidación y hay un desplazamiento de los máximos que tan solo se puede calcular a partir de simulaciones digitales de los voltamperogramas.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Figura 4.12. Efecto de las constantes cinéticas Kc,f y Kc,b en el voltamperograma cíclico
esperado para un mecanismo de reacción ECE cuando la reacción electroquímica es electroquímicamente reversible. El E0 del primer proceso (reacción 4.58) es 0.2 V y para el segundo proceso (reacción 6.60) es -0.1 V.
4.4.3 Ejemplo de voltamperogramas cíclicos cuando hay reacciones químicas acopladas a reacciones electroquímicas: oxidación del alcohol piperonílico 3
El proceso de oxidación del 3,4-metilendioxi alcohol bencílico (alcohol piperonílico),3 es un proceso no solo de interés académico sino también industrial, ya que el principal producto de la oxidación suave de esta molécula es el piperonal, que es una molécula orgánica ampliamente utilizada en fragancias y en la síntesis de compuestos de interés comercial. El primer paso de la oxidación del alcohol piperonílico, posiblemente es la abstracción de un electrón del anillo 3
F. Cortés-Salazar, E. Avella-Moreno, M. T. Cortés, M. F. Suárez-Herrera, J. Electroanal. Chem.606 (2007) 1. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
aromático, para formar un radical catión, que rápidamente puede reaccionar con agua para formar un intermediario radical hidratado, el cual da origen al radical bencílico. El radical bencílico posteriormente es oxidado electroquímicamente, produciendo una especie hidratada que está en constante equilibrio con su respectivo aldehido.
El primer proceso electroquímico está drásticamente influenciado por el tipo de sustituyentes sobre el anillo aromático, ya que estos permiten, o no, estabilizar la carga positiva durante este paso. Las moléculas de agua no solo participan en el proceso de transferencia de carga sino que también lo hacen en la reacción química que da origen finalmente al aldehido. Según el anterior mecanismo, el proceso de oxidación del alcohol piperonílico y de producción del aldehido podría llevarse a cabo por un mecanismo ECCEC (Figura 4.13). La Figura 4.14 muestra que el primer paso del proceso de oxidación es irreversible electroquímicamente y el segundo paso de oxidación es parcialmente reversible. El primer paso de oxidación corresponde a la formación de un radical catión que reacciona con agua para estabilizarse y producir de este modo un radical neutro, que posteriormente es oxidado para producir el aldehído correspondiente.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Figura 4.13. Esquema de la oxidación electroquímica del alcohol Piperonílico.3
0.800x10-3
0.620x10-3
0.440x10-3
) A ( / I
0.260x10-3
0.080x10-3
-0.100x10-3 -0.750
-0.200
0.350
0.900
1.450
2.00
E Vs ECS / (V)
Figura 4.14. Voltamperograma cíclico obtenido para el alcohol piperonílico 1,11 x10-3 M. Se
observa el primer barrido. Velocidad de barrido 100 mV/s. Electrodo de trabajo Pt de 3 mm de diametro, electrodo de referencia SCE, contra electrodo Pt. Electrolito soporte hexafluorofosfato de tetrabutilamonio 0,1 M en Acetonitrilo. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
4.5 Voltamperogramas de monocapas adsorbidas y películas delgadas de especies electroactivas
4
En los últimos años el interés por las propiedades electroquímicas de monocapas adsorbidas o películas delgadas de especies electroactivas ha aumentado debido a la aplicación de este tipo de sistemas para el diseño de electrocatalizadores, biosensores, sistemas electroópticos, etc. En esta sección tan solo vamos a introducir los conceptos más simples que pueden describir este proceso y en el Capítulo 10 vamos a hacer un análisis más exhaustivo cuando hablemos de electrocatálisis.
Si tenemos una monocapa de una especie electroactiva químicamente unida al electrodo de trabajo, y si suponemos que la constante de transferencia de carga es muy grande, podemos asumir que el potencial en cualquier instante está relacionado con los recubrimientos de especie
Γ
Γ
electroactiva sobre la superficie del electrodo tanto en estado reducido ( ) como oxidado ( ). Así podemos escribir la ecuación de Nerst de la siguiente forma:
4
[4.61]
A. L. Eckermann, D. J. Feld, J. A. Shaw, T. J. Meade. Coord. Chem. Rev. 254 (2010) 1769. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Γ
Donde esta dado en mol cm-1 y
Γ
es el máximo recubrimiento del electrodo. Si realizamos
una voltamperometria cíclica a esta monocapa podemos calcular la corriente en función del potencial utilizando la siguiente ecuación:
[4.62]
La derivada del lado derecho de la ecuación 4.62 se puede calcular a partir de la ecuación 4.61 teniendo en cuenta que en una voltamperometría cíclica el potencial varía en función del tiempo de una manera lineal (
). De este modo llegamos a que la corriente (i) en función del
potencial (E) es igual a:
Γ
[4.63]
A partir de la ecuación anterior se ve claramente que las corrientes son proporcionales a la velocidad de barrido (ν )
y que los voltamperogramas obtenidos se componen de dos picos
simétricos en forma de campana como los observados en la Figura 4.15a. La corriente de pico está dada por la ecuación:
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Γ
[4.64]
La ecuación anterior permite determinar el recubrimiento superficial fácilmente mediante una gráfica de corriente de pico vs ν, si el área del electrodo y “n” son conocidos. La forma de pico es un diagnostico de la homogeneidad de los sitios redox sobre la superficie y puedes ser evaluada mediante la medida del ancho de pico a media altura (∆Ep/2), como se detalla en la ecuación 4.65. Valores de ∆Ep/2 que sean más pequeños o grandes que el valor teórico pueden ser atribuidos a efectos electrostáticos debidos a la presencia de especies vecinas cargadas alrededor del sitio redox activo.
∆/ 3.53 . 25
[4.65]
La Figura 4.15b muestra un ejemplo de los voltamperogramas esperados para especies electroactivas adsorbidas en la superficie del electrodo que presentan una reacción electroquímica reversible. En este caso se observa el par redox quinona/hidroquinona para dos compuestos distintos y por lo tanto se observa un desplazamiento de los potenciales estándar de reducción debido a diferencias estructurales entre la 5-hidroxinaftoquinona y el ácido antraquinona-2-sulfónico.5 Por otro lado películas delgadas de especies electroactivas sobre electrodos “inertes” pueden dar origen a señales similares a las de la Figura 4.15, pero en la
5
K. Shi, K. K. Shiu. J. Electroanal. Chem. 574 (2004) 63. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
mayoría de los casos se observa una separación entre los máximos del pico de reducción y de oxidación como se observa para películas delgadas de C60, Figura 4.17.
a
b
Figura 4.15. a) Voltamperograma esperado para una especie electroactiva que forma una
monocapa o una película delgada sobre la superficie del electrodo de trabajo y cuyo proceso de oxidoredución es reversible electroquímicamente. b) Voltamperogramas cíclicos para un electrodo de grafito pirolítico que ha sido modificado superficialmente con una capa adsorbida de (1) 5-hidroxinaftoquinona, (2) ácido antraquinona-2-sulfónico y (3) las dos especies anteriores están simultáneamente sobre el electrodo. El diámetro del electrodo es 3 mm, la velocidad de barrido fue de 100 mV/s y electrolito fue ácido sulfúrico 0.5 M. La imagen b fue tomada de J. Electroanal. Chem. 574 (2004) 63.
La molécula de C60 es muy interesante ya que su simetría hace que su LUMO este triplemente degenerado y que por ende presente seis estados de reducción estables6 como se observa en la Figura 4.16. La alta conductividad de cristales de C60 y sus propiedades electroaceptoras hacen
6
Q. Xie; E. Pérez-Cordero, L. Echegoyen. J. Am. Chem. Soc. 114 (1992) 3978. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
de este material una alternativa muy atractiva para la construcción de celdas solares, sensores electroquímicos, baterías, electrocatalizadores, etc.
Figura 4.16. Reducción de C60 en CH3CN/Tolueno a -10ºC usando (a) Voltametría cíclica.
Velocidad de barrido 100mV/s. (b) Voltametría diferencial de pulso. Pulso de 50 mV, ancho de pulso 50ms, 25mV/s. Imagen sacada de J. Am. Chem. Soc. 114 (1992) 3978.
Los voltamperogramas de películas delgadas de C60 o sus derivados7 muestran señales que son altamente irreversibles (Figura 4.17a) debido al hecho que para que ocurra la reducción se debe dar la compensación de carga eléctrica simultáneamente con el proceso de reducción, y esta tan solo se logra mediante el flujo de cationes (C+) y moléculas de solvente (S) al interior de la red cristalina del C60 sólido, como se muestra en la siguiente ecuación:
7
a) M. Rendón, M. E. Hyde, M. F. Suárez, A. Duarte-Ruiz, R. G. Compton, Synth. Met. 149 (2005) 99. b) F. Zhou, S. L. Yau, C. Jehoulet, D. A. Laude, Z. Gaun, A. J. Bard. J. Phys. Chem. 96 (1992) 4160. ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
a
b
Figura 4.17. a) Voltamperograma cíclico para una película de C60 sobre un electrodo de platino.
Se observa tan solo el primer proceso de reducción. Electrolito soporte TBABF4 0.1M en acetonitrilo. b) Estructura del C60.
� �
[4.66]
Debido a que se necesita energía, una distorsión de la red cristalina y un tiempo dado para el ingreso de los cationes al interior de la red cristalina se genera una histéresis durante los ciclos de oxido- reducción que hace que los picos no aparezcan uno sobre el otro, como es esperado para un sistema completamente reversible electroquímicamente. La disminución de la señal en función del número de ciclos en la Figura 4.17a es debido a la disolución parcial de la película, ya que el C60 en estado reducido es mas soluble que en estado neutro.
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
Anexo 4.1. Teorema de convolución de Laplace
Si F(s) y G(s) representan la trasformada de Laplace de f(t) y g(t) respectivamente, entonces el producto dado por H(s)=F(s)G(s) es la trasformada de Laplace de la convolución de f y g que se denota como h(t)=(f*g)(t) y que se define como:
o
[4.67]
Demostración
La siguiente prueba es válida únicamente para el caso especial donde “s” es un número real. Hay que recordar que en general s es una variable compleja. Si usamos las variables mudas de σ y τ (recuerde que estas dos variables en realidad son la misma) y la definición de la trasformada de Laplace podemos escribir la siguiente igualdad:
∞
∞
[4.68]
Que su vez puede ser expresada como ��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
∞
∞
[4.69]
Si realizamos el cambio de variable t=σ+τ y dt=dσ podemos reescribir la integral anterior como
[4.70]
[4.71]
∞
∞
∞
∞
Intercambiando el orden de la integración obtenemos
∞
[4.72]
Note que los límites de la integral entre paréntesis cambiaron. Si estamos integrando primero con respecto a τ y recordando que
τ
y σ (que es igual a t-τ) solo pueden tomar valores positivos
entonces τ no puede ser mayor a t. Por tanto τ solo puede tomar valores entre 0 y t. Rescribiendo la última ecuación llegamos a la expresión:
��
Electroquímica Física e Interfacial: Voltamperometría Cíclica
∞
[4.73]
La anterior ecuación muestra que la trasformada de Laplace de la convolución entre f y g es precisamente el producto entre F y G. Expresado en términos matemáticos llegamos a la siguiente relación fundamental,
[4.74]
o
[4.75]
Finalmente la convolución entre dos funciones tiene las siguientes propiedades :
Conmutativa
f*g=g*f
[4.76]
Distributiva
f*(g+h)=f*g+f*h
[4.77]
Asociativa
(f*g)*h=f*(g*h)
[4.78]
Cero
f*0=0
[4.79]
��
View more...
Comments