Calculus

December 22, 2016 | Author: tabtga | Category: N/A
Share Embed Donate


Short Description

Mathematics...

Description

Chapter 4

Mathematics

CHAPTER 4 Calculus Indeterminate form ,

,

,

,

,

,

, -

, 0.

Example: Plot y= [x] Here [x]

greatest integer not greater than x -2 x < -1 , y = -2 -1 x < 0 , y = - 1 0 x < 1 , y =0 1 x < 2 , y = 2

Various Plots

y

y

Y =ax 0 0  minimum

Maximum value

@x=2

= 16 – 60 +72 +11 = 39

Minimum value

@ x =3

= 54 – 135 +108 +11 =173 – 135 = 38

Example Show that maximum value of

is less than its minimum value.

Solution y= =

,

x=±1 =0+

THE GATE ACADEMY PVT.LTD. H.O.: #74, Keshava Krupa (third Floor), 30th Cross, 10th Main, Jayanagar 4th Block, Bangalore-11 : 080-65700750,  [email protected] © Copyright reserved. Web: www.thegateacademy.com Page 100

Chapter 4

At x = 1,

, =2

At x = -1,

Mathematics

minimum

= -2

maximum

Maximum value @ x = -1 = -1 +

= -2

Minimum value @ x= +1 =

= 2

1+

Example Find the maxima and minima of 5

5

Solution 5

5

5

5

x =0, 1, 3 6 |

= - 10

Maximum value = 1 – 5 + 5 – 1 = 0 |

= 90 > 0

Minimum value = |

+ 5 . 34 + 5 . 33 – 1 = -28

=0 6 |

= 30

Hence neither maxima, nor minima at point x = 0

Example Find the maxima and minima of 6

, in interval [-1, 1]

Solution 6

6

, √

x= Hence

=

= 1 +i : Monotonous function

THE GATE ACADEMY PVT.LTD. H.O.: #74, Keshava Krupa (third Floor), 30th Cross, 10th Main, Jayanagar 4th Block, Bangalore-11 : 080-65700750,  [email protected] © Copyright reserved. Web: www.thegateacademy.com Page 101

Chapter 4

Mathematics

Integration Reverse process of differentiation or the process of summation ∫ any continuous function.

defines the integral of

Standard Integral results 1. ∫ x dx

, n

2. ∫ dx

og x

3. ∫ e dx = e 4. ∫ a dx =

(prove it )

5. ∫ cos x dx

sin x

6. ∫ sin x dx

cos x

7. ∫ sec x dx

tan x

8. ∫ cosec x dx

cot x

9. ∫ sec x tan x dx

sec x

10. ∫ cosec x cot x dx 11. ∫ √ 12. ∫ 13. ∫

√ √

dx dx dx

cosec x

sin sec sec

x

14. ∫ cosh x dx

sinh x

15. ∫ sinh x dx

cosh x

16. ∫ sech x dx

tanh x

17. ∫ cosech dx

coth x

18. ∫ sech x tanh x dx

sech x

19. ∫ cosech x cot h x dx

cosech x

20. ∫ tan x dx

og sec x

21. ∫ cot x dx

og sin x

22. ∫ sec x dx

og sec x

23. ∫ cosec x dx

tan x = og tan ⁄

og cosec x



cot x = log tan

24. ∫ √

dx

og x

√x

a

= cosh

25. ∫ √

dx

og x

√x

a

= sinh

THE GATE ACADEMY PVT.LTD. H.O.: #74, Keshava Krupa (third Floor), 30th Cross, 10th Main, Jayanagar 4th Block, Bangalore-11 : 080-65700750,  [email protected] © Copyright reserved. Web: www.thegateacademy.com Page 102

Chapter 4 √

26. ∫ √a

x dx

sin

27. ∫ √a

x dx

√x

a

og x

√x

a

28. ∫ √x

a dx

√x

a

og x

√x

a

29. ∫

dx = tan

30. ∫

dx =

31. ∫

dx =

og

where x a

sin x

33. ∫ cos x dx

sin x

34. ∫ tan x dx

tan x

35. ∫ cot x dx

x

cot x

36. ∫ n x dx

x nx

x x

37. ∫ e

sin bx dx

a sin bx

b cos bx

38. ∫ e

cos bx dx

a cos bx

b sin bx

39. ∫ e [f x

Mathematics

f x ]dx

e f x

Method of finding Integrals: (A) (B) (C) (D)

Integration by INSPECTION Integration by TRANSFORMATION Integration by SUBSTITUTION Integration by PARTS

Integration by parts:

∫ u v dx

u. ∫ v dx



∫ v dx dx

I L A T E E

Selection of U & V Inverse circular (e.g. tan

x) Logarithmic

Exponential Algebraic Trigonometric

Note: Take that function as “u” which comes first in “ILATE” THE GATE ACADEMY PVT.LTD. H.O.: #74, Keshava Krupa (third Floor), 30th Cross, 10th Main, Jayanagar 4th Block, Bangalore-11 : 080-65700750,  [email protected] © Copyright reserved. Web: www.thegateacademy.com Page 103

Chapter 4

Mathematics

Some Other Important Formulae Area = ∫ y dx = Vo u e

∫ r d

π ∫ y dx=

∫ r sin d

cos x

sin x

cos x

cos x

sin x

sin x

sin x

cos x

cos x

cos x

Example ∫ sec x tan x dx = ? Solution = x =

x

∫ sec x tan x dx

∫ sec

tan

=

=

sec

Example ∫ sin

x dx

∫ . sin

= ∫ sin x . dx = sin x, x ∫ √ = x sin

x



= x sin

x

+ .

= x sin

x

x dx

. x dx /



. x dx

(z = 1 – x , dz = -2x dx )

/

/

x

/

Rules for definite integral 1)∫

=∫

2) ∫

=∫

+∫

a
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF