CALCULO 3 EXAMEN FINAL SEMAN 8.docx

December 16, 2018 | Author: jaime tenorio | Category: Integral, Mathematical Objects, Analysis, Linear Algebra, Calculus
Share Embed Donate


Short Description

Download CALCULO 3 EXAMEN FINAL SEMAN 8.docx...

Description

CB

Si la imagen no carga dar clic aquí

Seleccione una: a. C 1 Segmento de línea recta en el plano, de A(1,1) a B(2,4)  b. C 2 Trayectoria en el plano de A(1,1) a B(2,4) a lo la rgo de la parábola y=x^2 c. C 3 Segmento de línea recta en el plano, de A(1,1) a Q(2,1) seguida por la línea recta de Q(2,1) a A(1,1) d. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: C 3 Segmento de línea recta en el plano, de A(1,1) a Q(2,1) seguida por la línea recta de Q(2,1) a A(1,1)

Pregunta 2 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Para cual de las trayectorias se tiene que

∫C  y dx+2 x dy=232

Si la imagen no carga dar clic aquí

Seleccione una: a. C 1 Segmento de línea recta en el plano, de A(1,1) a B(2,4)  b. C 2 Trayectoria en el plano de A(1,1) a B(2,4) a lo la rgo de la parábola y=x^2 c. C 3 Segmento de línea recta en el plano, de A(1,1) a Q(2,1) seguida por la línea recta de Q(2,1) a A(1,1) d. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: C 1 Segmento de línea recta en el plano, de A(1,1) a B(2,4)

Pregunta 3 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Utilice el hecho de que la integral de línea es independiente de trayectoria en todo el  plano  xy  para calcular el valor de la integral ∫(1,−1)(0,0)(2 xe y) dx+( x2e y) dy Seleccione una: a. 1e

 b. e c. 2e d. 2e e. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: 1e

Pregunta 4 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Aplique alguno de los tres teoremas del cálculo vectorial (teorema de Green, teorema de Stokes o teorema de Gauss) para evaluar la integral de linea

∮C ( xy+e x2)dx+( x2−ln(1+ y))dy

Donde C  es el segmento de recta que va desde (0,0) a (π ,0) y de la curva  y=sin( x) con 0≤ x≤π  . Seleccione una: a. π 

 b. π 3 c. 2π  d. 5π  Retroalimentación

La respuesta correcta es: π 

Pregunta 5 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Aplique alguno de los tres teoremas del cálculo ve ctorial (teorema de Green, teorema de Stokes o teorema de Gauss) para evaluar el la integral de línea del campo

F( x, y)= x3 y2i+12 x4 y j a lo largo de la curva C 

Si la imagen no carga dar clic aquí

Seleccione una: a. 0  b. −12 c. -3 d. -2 e. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: 0

Pregunta 6 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Aplique alguno de los tres teoremas del cálculo vectorial (teorema de Green, teorema de Stokes o teorema de Gauss) para evaluar el la integral de línea del campo

F( x, y)= xy+ y2i+( x− y) j a lo largo de la curva C 

Si la imagen no carga dar clic aquí

Seleccione una: a. −760

 b. −260 c. 1360 d. −2360 e. Ninguna de las anteriores

Retroalimentación

La respuesta correcta es: −760

Pregunta 7 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Use una parametrización para encontrar el flujo

∫∫S F⋅n dS  a travéz de la superficie que consiste en la porción del plano

 x+ y+ z =2a que está encima del cuadrado , 0≤ y≤a en el plano  xy , dado por el campo de fuerza

0≤ x≤a

F=2 xyi+2 yz  j+2 xz k  Seleccione una: a. 136a4

 b. 16a4 c. 52a4 d. 92a4 e. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: 136a4

Pregunta 8 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Use una parametrización para encontrar el flujo

∫∫S F⋅n dS  a travéz de la superficie rectangular

 z =0 , 0≤ x≤2, 0≤ y≤3 con orientación positiva en dirección del vector k  dado por el campo de fuerza

F=−i+2 j+3k 

Seleccione una: a. 18  b. -20 c. -16 d. 14 e. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: 18

Pregunta 9 Correcta Puntúa 1,0 sobre 1,0

Marcar pregunta Enunciado de la pregunta

Use una parametrización para encontrar el flujo

∫∫S F⋅n dS  a travéz de la superficie de la esféra

 x2+ y2+ z 2=a2 en el primer octante con orientación positiva hacia el origen dado por el campo de fuerza

F= yi− x j+k  Seleccione una: a. / pi4a2

 b. / pi2a2 c. / pi3a2 d. 3/ pi4a2 e. Ninguna de las anteriores Retroalimentación

La respuesta correcta es: / pi4a2 Finalizar revisión Salta Navegación por el cuestionario

Navegación por el cuestionario Pregunta 1 Esta página Pregunta 2 Esta página Pregunta 3 Esta página Pregunta 4 Esta  página Pregunta 5 Esta página Pregunta 6 Esta página Pregunta 7 Esta página Pregunta 8 Esta página Pregunta 9 Esta página Mostrar una página cada vezFinalizar revisión

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF