Calculation of Pressure Traverse Using Beggs and Brill
Short Description
Download Calculation of Pressure Traverse Using Beggs and Brill...
Description
Calculation of Pressure Drop for a hilly terrain pipeline using Beggs & Brill correlation By
Oba Fred Ajubolaka G2011/MENG/PNG/FT/846
& Abiodun Benjamin Odunayo G2010/MENG/PNG/FT/804
MULTIPHASE FLOW IN PIPES
DEPARTMENT OF PETROLEUM & GAS ENGINEERING UNIVERSITY OF PORT HARCOURT AUGUST, 2012
Project Data: q
0
7140STB/ D
qg 25.7mmcf / D
g 0.70 0.83 40 API 0
P 425psia Ave.,T 90 F 550 R
d 12in.
Divide Pipeline into two sections Section 1: Rises 300ft., in one mile(5280 ft.) Section 2: Drops 300ft., in 3000ft.,
Solution 1.0
Section 1 Estimate Average Pressure,P let, P 30 psi P P P 425 30 / 2 410psia 2
2.0
Determine fluid properties from relevant correlation at 410psia and 90°F Determine Rs from:
P 100.0125 API Rs g 18 100.00091t
1.2048
Where, t=90°F , °API = 40, P =410 psia
Rs 0.70( 138.1468) 96.70scf / STB. Determine Bo from the correlation below: Bo 0.9759 0.00012 R s
Where, Rs =96.70scf/STB, t= 90°F
Bo =1.0457Bbl/STB
1.2
g 1.25t o
Z-Factor determination using standing & katz correlation Ppc66715.0 37.5 g g Ppc503.75 psia
T pc168325 12.5 g g
T pc394.28R P
pr
T
pr
But,
P Ppc
T T pc
410 0.81 503.75
550 1 .4 0 3 9 4.2 8
z = ƒ(Ppr, Tpr) = 0.93
Determination of oil viscosity, µo (d) Using the following correlations:
od
x
1 0x 1
3.0324.02023 g
10
t1.163
1 0.7 1 5Rs 1 0 00.515 b o od
b 5.4 4Rs 1 5 00.338
o
3.5 7cp
Where, t = 90°F, Rs =96.70scf/stb and g 0.70
Determine gas viscosity,µg (e) First we determine ρg 2.7
g
g
zT
P
2.7 0.70 410 1.52Ibm / ft 3 0.93 550
Using Lee et al Correlation
g 104 K
Y g X 62.4
Exp
M g 28.97
g
2 0.2 8Ib m / Ib m mo l
9.4 0.0 2M g T 1.5 K 2 0 9 1 9M g T 1 1 0.5 3
9 8 6 X 3 .5 0.0 1M g 5.5 0 T Y 2.4 0.2 X 1.3 0
g 0.01155cp
Determine surface tension σo and Bg (f) From the plot of Baker and Swerdloff at 40°API
od
28dynes/ cm
Correction factor of 70% , σo will be: o 2 8d yn es 7 0% 2 8 0.7 0 1 9d yn es/ cm
Bg is determined from z-factor, average pressure and temperature: 0.0283zT 0.0283 0.93 550 Bg 0.0353ft3 / scf p 410
3.0 Determine flowrates & Densities (g)
Gas density, g
(h)
gP
zT
2.7 0.70 410 1.52Ibm / ft3 0.93 550
Oil density, o
(i)
2.7
350 o 0.076Rs g 5.615Bo
Oil flowrate, q B 5.615
q o o o 86400
(j)
50,36Ibm / ft3
0.4852ft 3 / s
Gas flowrate,
q q B g R o s g q 10.218ft 3 / s g 86400
4.0 Determine superficial velocities Superficial velocity of liquid:
Vsl
qo 4qo 4 0.4852 0.618ft / s Ap 12 d 2
Superficial velocity of gas:
Vsg
qg Ap
4q g
d 2
4 1 0.2 1 8
12
1 3.0 0 9ft / s
Mixture velocity:
Vm Vsl Vsg 0.61813.009 13.627ft / s
5.0 Determine flow pattern No slip liquid holdup, Froude Number,
V 0.618 sl 0.0454 l
Vm
13.627
2 Vm 1 3.6 2 72 N 5.7 7 Fr 3 2.1 7 41 gd
Liquid Velocity Number, N 1.938V o lv sl o
0.25
50.36 1.9380.618 19 . 6
Modified Flow pattern equations:
0.25
L 316l 0.302 3160.04540.302 124.20 1
L 0.000925 2.468 1.91
l L3 0.101.452 8.91 l L4 0.56.738 5.59108 l 2
1.516 1.52
Flow Pattern Since, l 0.0 1 L , 2 N Fr L3 Flow pattern is Transition: transition pattern is between segregated and intermittent flow pattern
6.0 Determine HL for Segregated & Intermittent flow patterns Segregated Pattern Calculation: ab
0.9800.04540.4846 l H 0 0.188 L 0 . 0868 N 5.57 Fr
300ft ϴ1
5280ft
ϴ2 3000ft
Fig. 1.1 Schematic of the Pipeline as it rises and drops 300 3.25 5280
1 tan1
300 5.71 3000
2 tan1
Segregated HL Determination (contd) H
L1
H
L0
3 1.0 c sin 1.81 0.3 3 3sin 1.81 f g h C 1.0 l ln e N N Fr l lv e 0.0 1 1 f 3.7680 g 3.5390 h 1.6140 c 5.5 2 3 1.5 6 1 H
L 1 seg
H
L 0
0.1 8 8 1.5 6 1 0.2 9 3 5
Determine HL for Intermittent flow patterns
ab
L Nc Fr
0.8 450.0 45 40.5351 0.1 56 7 5.7 70.0173
Hl
L 0
Hl
L 1 int ermitte nt
H
L 0
f g h C 1.0 L lne N N L Lv Fr e 2.9 60 f 0.3050 g 0.4473 h 0.0978 c 0.1 21 6 1.0 12 4 H H 0.1 56 7 1.1.0 12 4 0.1 59 L 1 int er
L 0
HL for Transitional flow pattern Determine, A from: N 3 N Fr 8.9 1 5.7 7 A N3 N 2 8.9 1 1.9 1 A 0 .4 4 8 6 H
L 1 trans
H
L 1 trans
H
L 1 trans
AH
L 1 se g .
1 AH
L 1 Int.
0.4 4 8 60.2 9 3 5 1 .4 4 8 60.1 5 9 0 .2 1 9 3
7.0 Determine Actual & Non slip denties s LH
L
g
1 H L
s 5 0.3 60.2 1 9 3 1.5 21 0.2 1 9 3 s 1 2.2 3Ib m / ft 3 .
ns L L g 1 L
ns 5 0.3 60.0 4 5 4 1.5 21 0.0 4 5 4 ns 3.7 4Ib m / ft 3 .
8.0 Determine the friction factor, ƒtp. Determine Nre., µn, and ƒn: N
Re
1488
n LL
ns V m d
n g 1 L
1 0.0 4 5 4 n 3.5 70.0 4 5 4 0.0 1 1 5 5 n 0.1 7 3cp N
3.7 41 3.6 2 71
Re
1488
4.3 8 1 05
0.173
e / d o .o o o o6( a ssu mp tio n ) f
n
f N
R e ,e
/ d 0.0 2( mo o d y
ch a rt)
Determine the friction factor, ƒtp.(Contd) Determine y, s and ƒtp: y
L
H L 1 Trans
2
0.0 4 5 4
0.2 1 9 32
0.9 4 4
ln y
s
0.0 5 2 3 3.1 8 2ln y 0.8 7 2 5ln y 2 0.0 1 8 5 3ln y 4 s 0.2 4 2 f f f f
tp
e s e0.242 1.2 7 4
n
tp tp
1.2 7 4fn 1.2 7 4 0.0 2 0.0 2 5 4 8
9.0 Determine Pressure Gradient dP dP dP dP d L T d L f d L el d L acc. dP 0, d L acc. dP d L T
ftp ns V m 2 2g d c
g sin1 s
g
c
dP 1 2.2 33 2.1 7 4sin3.2 5 0.0 2 5 4 83.7 41 3.6 2 72 23 2.1 7 41 3 2.1 7 4 d L T dP 0.0 0 6 7 2p si / ft . d L T
10.0 Determine uphill Pressure Drop, ∆P For an horizontal distance of 0ne mile(5280ft.) Pressure drop will be: dP psi P L 0.00672 5280ft . ft . dL T P 35.48psi
Section 2 of Pipeline Fluid properties have been determined at average Pressure of 410psia and Temperature of 90°F. So we continue to with these properties for downhill calculations. We shall proceed to determining the Liquid holdups for segregated and intermittent flow patterns and there after determine the transition holdup. From that point we can determine the two phase Friction factor and move on to compute the pressure drop
Determine Liquid Holdup for Segregated flow pattern H
L 2 se g
H
L 0
300 2 ta n1 5.7 1 H
L 0
3000 0.1 8 8
f g Nh c 1 L ln e N L Lv Fr e 4.7 0 0f 0.3692 g 0.1 2 4 4 h 0.5056 c 1.7 7 0 6 1.0 c sin1.8 2 0.3 3 3sin3 1.8 2 0 .6 8 7 4 H H
L 2 se g L 2 se g
H
L 0
0.1 8 8 0.6 8 7 4
0.1 2 9 2
Determine Liquid holdup for Intermittent flow pattern. We have already determined Holdup for Intermittent flow pattern, HL(0) = 0.1567 in the uphill segment of pipeline c 1.7706 and is the same for both segregated and intermittent flow patterns in downhill. Hence, 0.6874 H
L 2 int .
H
H
L 2 int .
0.1567 0.6874 0.1077
L 0
2 H L Trans 0.1173 2
H L Trans AH L seg 1 AH L int . 2 2 2 H L Trans 0.44860.1292 1 0.44860.1077
Determine actual density of fluid on downhill H s
L
L
g
1 H L
50.360.1173 1.521 0.1173 s
7.25Ibm / ft 3 s
Determine 2-phase friction factor 4.38105 already det er min ed Re ln y s 0.0523 3.182 ln y 0.8725ln y e / d 0.00006 smooth pipe s 0.4699 ftp fn f N ,e / d 0.02 s 0.4699 N
y
Re
L
H L 2Tr .2
0.0454 0.11732
3.30
fn
e e
2 0.01853ln y 4
1.60
ftp 1.60 f n 1.60 0.02 0.032
Determine Pressure gradient dP dP dP dP dL T dL f dL el dL acc.
2 f Vm
dP tp ns 2 gc d dL T
g sin 5.71
s
gc
dP 0.0323.7413.6272 7.2532.174 sin5.71 232.1741 32.174 dL T dP 0.345 0.721 0.376psf / ft 0.002611psi / ft dL T
Determine Pressure Drop For an horizontal distance, L=3,000ft. dP L P d L T p si P 0.0 0 2 6 1 1 3,0 0 0ft ft P 0.0 0 2 6 1 1 3 0 0 0p si P 7.8 3p si
Total Pressure drop for both uphill & downhill
P P T
uphill
P
downhill
P 35.48 7.83 43psi T
P 43psi T
The Beggs and Brill Correlation is iterative. The calculated pressure drop is not equal to the estimated pressure drop, hence, the calculated pressure becomes our new estimated pressure drop and process is repeated to achieved the condition where, estimated pressure drop equals calculated pressure drop.
View more...
Comments