Calculation of Beam Deflection

August 21, 2017 | Author: api-3848892 | Category: Bending, Solid Mechanics, Acceleration, Materials, Structural Engineering
Share Embed Donate


Short Description

Download Calculation of Beam Deflection...

Description

〔Technical Data〕

〔Technical Data〕

Calculation of Deflection

Calculation of Beam Deflection Load bending moment diagram

1

Deflection (δ)

Load bending moment diagram

3

δmax.=

W  R 3EI

( ) 2 (σt)max.=(σr)max.=± 3P 3m+12 R 8mt

P (Uniform load)

Also, the central deflection δmax. can be expressed as follows: δmax.=

W  r

M

The circumferential stress σt and radial σr can be expressed as follows at the center.

t

M max.=W  R

2

Maximum stress, Maximum deflection

1.Disk receiving uniform load and having supported the perimeter

  r

δmax.

W

Bending moment (M)

δmax. (Deflection) R

Wherein, P:Load,R:Radius of plate,t:Plate thickness,

(Radius)   r w δ

M max.=

δmax.=

w  R4 8EI

E:Young's modulus,

2.Disk receiving uniform load and having been fixed to the perimeter

1 w  r 2 2

P (Uniform load) t

M

w  R2 2

W

δmax. (Deflection)

R

δ   r

M max.= M

4

1 W  R 4

δmax.=

W  R 48 EI

1 r 4 W 

W

R (Radius)

3

3.Disk receiving uniform load on the concentric circle having supported to the perimeter

P (Uniform load) 2r 0 R

p R

5

1 r 8 W  1 r 8 W 

δmax.=

2r

W  R3 192 EI

4.Disk receiving uniform load on the concentric circle having been fixed to the perimeter P (Uniform load)

w 

2r 0

  r

M

M max.= 1 8

1 w  R2 8

δmax.=

5 wR 4 384EI R

wr 2

5.Rectangular plate receiving uniform load and having supported the perimeter

w 

1 M max.= w  R2 12

  r 1 12 1 24

δmax.=

P (Uniform load)

wR 4 384 EI

wr 2 wr 2

X 2b

M

δmax. R (Radius)

6 δ

p

t

δ

t

M

1 W  R 8

0

2R

M max.=

7

O

Y

  r

Young's modulus σ E= ε (Vertical elastic modulus)

1 w  R2 8

δmax.=

w  R4 184.6EI

When the central deflection r0 is smaller than R, δmax. is expressed as follows: 3(m−1)(3m+1)PR δmax.= 2t3 4πEm 

2

Wherein, P:Total ただしP…同心円上の総荷重でP=π   load on the concentric circle. r 02p 1 R:Radius of plate, t:Plate thickness, E:Young's modulus, :Poisson's ratio m The peripheral stress can be expressed as follows: 3P r 0 2 σr=± 3P 1− r 0 2 σt =± 1− 2 2πt 2  2πmt 2 2R 2R2 2 ( ) and the central one is as follows: σt =σr=±3 m+1 2P log R + r 02 2πmt r 0 4R The central deflection δmax. can be expressed as follows:

δmax.≒

3(m−1)(7m+3)PR2 16πEm 2 t 3

Wherein, P:Total ただしP…同心円上の総荷重でP=π   load on the concentric circle. r 02p 1 R…Radius of plate, t…Plate thickness, E…Young's modulus …Poisson's ratio m The X-axis direction stress Pb2 (σx) max.=α 1 2 at center O can be expressed as follows: t The deflection Pb4 at the center O can be expressed as follows:δmax.=β1 Et 3 a/b

1.0

1.5

2.0

3.0

4.0



α1

1.150

1.950

2.440

2.850

2.960

3.000

β1

0.709

1.350

1.770

2.140

2.240

2.280

(σx)max.=α2

P (Uniform load)

1 wr 2 8 9 w 2 128 r

ε=Deflection I=Cross-sectional secondary moment σ=Rectangular stress

1 :Poisson's ratio m The central stress can be expressed as follows: 3(m+1)P m R m−1 r 02 (σt)max.=(σr)max.=± +log − 2πmt 2 m+1 r 0 m+1 4R2

6.Rectangular plate receiving uniform load and The stress to X-axis direction at the center A of the longer side can be expressed as follows: having been fixed to the perimeter Pb2 Pb4 δmax.=β2 2 Et

X A 2b

M

M max.=

The peripheral stress can be expressed as follows: 3PR2  3PR2 σt=± (σr)max.=± 4mt 2 4t 2 and the central one is as follows: 3(m+1)PR (σt)max.=σr=± 8mt 2 The central deflectionδmax. can be expressed as follows: 2−l)PR 4 3(m  δmax.= 16Em 2 t3 Wherein, P:Load,R:Radius of plate,t:Plate thickness,

E:Young's modulus

2a w 

δ

1113

δmax.

Uniform load

δ   r

1 :Poisson's ratio m

E:Young's modulus,

t

3

3(m−1)(5m+1) PR 4 16Em2 t 3

O A 2a

Y

t2

a/b

1.0   

1.5  

2.0  



α2

1.231

1.817

1.990

2.000

β2

0.221

0.384

0.443

0.454

E:Young's modulus

1114

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF