Download CAESAR II Quick Reference Guide...
Version 5.10 CAESAR II Quick Reference Guide
Copyright © 1985-2008 COADE, Inc. All Rights Reserved.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
1
CAESAR II Quick Reference Guide Version 5.10 The CAESAR II Quick Reference Guide is intended to aid users in quickly identifying needed information and to resolve common questions and problems. This Reference Guide is distributed with each copy of the software and users are urged to copy the Reference Guide as necessary. Comments and suggestions concerning CAESAR II, the User Guide, or the Quick Reference Guide are always welcome. Users with problems, questions, or suggestions can contact the COADE Development/Support staff at:
[email protected].
CAESAR II Quick Reference Guide Table of Contents CAESAR II Quick Reference Guide Version 5.10.......................................................................1 CAESAR II Software ..............................................................................................2 CAESAR II Pipe Stress Seminars ...........................................................................2 System Requirements ..............................................................................................3 Troubleshooting.......................................................................................................3 CAESAR II Interfaces .............................................................................................3 Piping Codes............................................................................................................4 Restraints .................................................................................................................5 Setup File Directives List ........................................................................................6 List of Materials.....................................................................................................11 CAESAR II Intersection Types .............................................................................12 Code Stresses .........................................................................................................13 Node Locations on Bends......................................................................................24 CAESAR II Quality Assurance Manual ................................................................26 Mechanical Engineering News ..............................................................................26 Additional COADE Software Programs................................................................26
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
2
Quick Reference Guide Version 5.10
CAESAR II Software CAESAR II is an advanced PC based tool for the engineer who designs or analyzes piping systems. CAESAR II uses input spreadsheets, on-line help, graphics, and
extensive error detection procedures to facilitate timely operation and solution. CAESAR II is capable of analyzing large piping models, structural steel models, or combined models, both statically and dynamically. ASME, B31, WRC, and rotating equipment reports combine to provide the analyst with a complete description of the piping system’s behavior under the applied loading conditions. Additional technical capabilities such as out-of-core solvers, force spectrum analysis (for water hammer and relief valve solutions), time history, and large rotation rod hangers provide the pipe stress engineer with the most advanced computer based piping program available today. CAESAR II is continuously enhanced to incorporate new technical abilities, to provide additional functionality, and to modify existing computation procedures as the piping codes are updated. A complete list of the most recent changes to CAESAR II can be found in the Chapter 1 of the User Guide. Users wanting software sales are urged to contact the COADE Sales staff at: Phone:281-890-4566
E-mail:
[email protected]
FAX: 281-890-3301
Web: http://www.coade.com/product_overview.asp?varflag=CAESARII
CAESAR II Pipe Stress Seminars COADE offers seminars periodically to augment the Engineers knowledge of CAESAR II and Pipe Stress Analysis. The general seminar is held in our Houston
office and covers five days of Statics. Twice yearly we also cover five days of Statics and three days of Dynamics. These seminars emphasize the piping codes, static analysis, dynamic analysis, and problem solving. Custom seminars held at client locations are also available. For additional seminar details, please contact the COADE Support staff at: seminars @coade.com.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
3
System Requirements CAESAR II requires Windows 2000, or Windows XP Professional, with a
minimum graphic card capability of 1024x768 resolution. However, for more efficient usage of the software, higher graphics resolutions are necessary. Usually any hardware capable of running these operating systems will be sufficient to run CAESAR II. For effective use of CAESAR II, COADE recommends as a minimum configuration: 2+ Ghz processor 1+ Gbytes of RAM 1280x1024 graphics resolution or better 256+ Mbytes of video RAM Windows 2000 or Windows XP Professional Please note that Windows XP Home Edition, Windows Vista Professional and Windows Vista Home Edition are not supported.
Troubleshooting For troubleshooting and problem solving issues, refer to the CAESAR II Frequently Asked Questions (FAQ) located on the COADE Website. To access the FAQ: (http://www.coade.com/product_faq.asp?varflag=CAESARII&varflagmaster=). CAESAR II Interfaces There are several external interfaces which allow data transfer between CAESAR II and other software packages. Users can access these interfaces via the Tools menu on the CAESAR II Main Menu. CADWorx
requires AUTOCAD
AUTOCAD
DXF Output
COMPUTER VISION
mainframe
INTERGRAPH
mainframe
CADPIPE
requires AUTOCAD
ISOMET
mainframe
PDMS
mainframe
PCF
Alias format
Users interested in these interfaces should contact COADE for further information. We anticipate other interfaces in the future keep users updated via the newsletter or revised documentation.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
4
Quick Reference Guide Version 5.10
Piping Codes The table below displays the Piping Code, publication and/or revision date. PIPING CODE
PUBLICATION
REVISION
ANSI B31.1
(2004)
December 15, 2006
ANSI B31.3
(2006)
May 31, 2007
ANSI B31.4
(2006)
October 20, 2006
ANSI B31.4 Chapter IX
(2006)
October 20, 2006
ANSI B31.5
(2001)
May 30, 2005
ANSI B31.8
(2003)
February 6, 2004
ANSI B31.8 Chapter VIII
(2003)
February 6, 2004
ANSI B31.11
(2002)
May 30, 2003
ASME SECT III CLASS 2
(2004)
July 1, 2005
ASME SECT III CLASS 3
(2004)
July 1, 2005
U.S. NAVY 505
(1984)
N/A
CANADIAN Z662
(6/2003)
N/A
CANADIAN Z662 Ch 11
(6/2003)
N/A
BS 806
1993, ISSUE 1, SEPTEMBER 1993
N/A
SWEDISH METHOD 1
2ND EDITION STOCKHOLM 1979
N/A
SWEDISH METHOD 2
2ND EDITION STOCKHOLM 1979
N/A
ANSI B31.1
(1967)
N/A
STOOMWEZEN
(1989)
N/A
RCC-M C
(1988)
N/A
RCC-M D
(1988)
N/A
CODETI
(2001)
June 2004
NORWEGIAN
(1999)
N/A
FDBR
(1995)
N/A
BS7159
(1989)
N/A
UKOOA
(1994)
N/A
IGE/TD/12
(2003)
N/A
DnV
(1996)
N/A
EN-13480
(12/2006)
Issue 9
GPTC/192
(1998)
N/A
PD 8010 Part 1&2
(2004)
N/A
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
5
Restraints No.
Restraint Type
Abbreviation
1
Anchor
A
2
Translational Double Acting
X,Y, or Z
3
Rotational Double Acting
RX, RY, or RZ
4
Guide, Double Acting
GUI
5
Double Acting Limit Stop
LIM
6
Translational Double Acting Snubber
XSNB, YSNB, ZSNB
7
Translational Directional
+X, -X, +Y, -Y, +Z, -Z
8
Rotational Directional
+RX, -RX, +RY, etc.
9
Directional Limit Stop
+LIM, -LIM
10
Large Rotation Rod
XROD, YROD, ZROD
11
Translational Double Acting Bilinear
X2, Y2, Z2
12
Rotational Double Acting Bilinear
RX2, RY2, RZ2
13
Translational Directional Bilinear
-X2, +Y2, -Y2, etc.
14
Rotational Double Acting Bilinear
-RX2, +RY2, - RY2, etc.
15
Bottom Out Spring
XSPR, YSPR, ZSPR
16
Directional Snubber
+XSNB, -XSNB, +YSNB, etc.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
6
Quick Reference Guide Version 5.10
Setup File Directives List The following list represents the possible directives which can be controlled by the user via the CAESAR II configuration file CAESAR.CFG. These directives can be changed by the user through the use of the CONFIGURE-SETUP program, accessed via Main Menu option #9. Directives are listed in groups corresponding to the configuration program's menu options. Geometry Directives GEOMETRY DIRECTIVES
CONNECT GEOMETRY THRU CNODES =
YES
34
MIN ALLOWED BEND ANGLE =
.5000000E+01
36
MAX ALLOWED BEND ANGLE =
.9500000E+02
37
BEND LENGTH ATTACHMENT PERCENT =
.1000000E+01
38
MIN ANGLE TO ADJACENT BEND PT =
.5000000E+01
39
LOOP CLOSURE TOLERANCE =
.1000000E+01
42
THERMAL BOWING HORIZONTAL TOLERANCE =
.1000000E-03
92
AUTO NODE NUMBER INCREMENT=
1000000E+02
109
Z AXIS UP
NO
129
USE PRESSURE STIFFENING =
DEFAULT
65
ALPHA TOLERANCE =
.5000000E-01
33
HANGER DEFAULT RESTRAINT STIFFNESS =
.1000000E+13
49
DECOMPOSITION SINGULARITY TOLERANCE =
.1000000E+11
50
BEND AXIAL SHAPE =
YES
51
FRICTION STIFFNESS =
.1000000E+07
45
FRICTION NORMAL FORCE VARIATION =
.1500000E+00
47
FRICTION ANGLE VARIATION =
.1500000E+02
48
FRICTION SLIDE MULTIPLIER =
.1000000E+01
46
ROD TOLERANCE =
.1000000E+01
59
ROD INCREMENT =
2000000E+01
58
Computation Control COMPUTATION CONTROL
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
7
COMPUTATION CONTROL
INCORE NUMERICAL CHECK =
NO
60
DEFAULT TRANSLATIONAL RESTRAINT STIFFNESS .1000000E+13
98
DEFAULT ROTATIONAL RESTRAINT STIFFNESS =
.1000000E+13
99
IGNORE SPRING HANGER STIFFNESS =
NO
100
MISSING MASS ZPA =
EXTRACTED
101
MINIMUM WALL MILL TOLERANCE =
.1200000E+02
107
WRC-107 VERSION =
MAR 79 1B1/2B1 119
WRC-107 INTERPOLATION =
LAST VALUE
120
INCLUDE_INSULATION_IN_HYDROTEST=
NO
147
AMBIENT TEMPERATURE =
70.00
135
BORDER PRESSURE =
NONE
136
COEFFICIENT OF FRICTION =
0.
140
INCLUDE SPRING STIFFNESS IN FREE THERMAL CASES =
NO
141
REDUCED INTERSECTION =
B31.1 POST1980
32
USE WRC329 =
NO
62
NO REDUCED SIF FOR RFT AND WLT
NO
53
B31.1 REDUCED Z FIX =
YES
54
CLASS 1 BRANCH FLEXIBILITY
NO
55
ALL STRESS CASES CORRODED =
NO
35
ADD TORSION IN SL STRESS =
DEFAULT
66
ADD F/A IN STRESS =
DEFAULT
67
OCCASIONAL LOAD FACTOR =
.000000E+00
41
DEFAULT CODE =
B31.3
43
B31.3 SUSTAINED CASE SIF FACTOR =
100000E+01
40
ALLOW USERS BEND SIF =
NO
52
USE SCHNEIDER =
NO
63
YIELD CRITERION STRESS =
MAX 3D SHEAR 108
SIFS and Stresses SIFS AND STRESSES
USE PD/4T = NO 64 www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
8
Quick Reference Guide Version 5.10
SIFS AND STRESSES
BASE HOOP STRESS ON =
NO
57
EN-13480 use in-plane/out-plane SIF
NO
133
LIBERAL ALLOWANCE =
YES
137
STREE STIFFENING DUE TO PRESS =
NO
138
B31.3 WELDING/CONTOUR TEE MEET B16.9 =
NO
139
IMPLEMENT _B31.3_APPENDIX_P
NO
144
IMPLEMENT_B31.3_CODECASE
NO
145
B31.3 Sec 319.2.3(c), Saxial
NO
146
PRESSURE VARIATION IN EXPANSION CASE DEFAULT =
DEFAULT
143
USE FRP SIF =
YES
110
USE FRP FLEXIBILITY =
YES
11
BS 7159 PRESSURE STIFFENING =
DESIGN STRAIN 121
FRP PROPERTY DATA FILE =
CAESAR.FRP
122
AXIAL MODULUS OF ELASTICITY
3200000E+07
113
RATIO SHEAR MOD : AXIAL MOD =
2500000E+00
114
AXIAL STRAIN : HOOP STRESS
1527272E+00
115
FRP LAMINATE TYPE =
THREE
116
FRP ALPHA =
.1200000E+02
117
FRP DENSITY =
.6000000E-01
118
EXCLUDE F2 FROM BENDING STRESS (UKOOA)
NO
134
PIPES
LIGHTCYAN
1
HIGHLIGHTS
GREEN
2
LABELS
GREEN
3
BACKGROUND
BLACK
5
FRP Properties FRP PROPERTIES
Plot Colors PLOT COLORS
AXES LIGHTRED 15 www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
9
PLOT COLORS
HANGER/NOZZLES
BROWN
16
RIGID/BENDS
LIGHTGREEN
17
NODES YELLOW
YELLOW
18
STRUCTURE
LIGHTRED
31
DISPLACED SHAPE
BROWN
30
STRESS > LEVEL 5
RED
24
STRESS > LEVEL 4
YELLOW
25
STRESS > LEVEL 3
GREEN
26
STRESS > LEVEL 2
LIGHTCYAN
27
STRESS > LEVEL 1
BLUE
28
STRESS < LEVEL 1
DARKBLUE
29
STRESS LEVEL 5
.3000000E+05
19
STRESS LEVEL 4
.2500000E+05
20
STRESS LEVEL 3
.2000000E+05
21
STRESS LEVEL 2
.1500000E+05
22
STRESS LEVEL 1
.1000000E+05
23
STRCT DBASE =
AISC89.BIN
70
VALVE & FLANGE =
CADWORX.VHD 90
EXPANSION JT DATABASE =
PATHWAY.JHD
91
PIPING SIZE SPECIFICATION =
ANSI
88
DEFAULT SPRING HANGER TABLE =
1
112
SYSTEM DIRECTORY NAME =
SYSTEM
123
UNITS FILE NAME =
.ENGLISH.FIL
124
LOAD CASE TEMPLATE =
.LOAD.TPL
142
ENABLE ODBC OUTPUT
NO
128
APPEND RE-RUNS TO EXISTING DATA
NO
126
ODBC DATABASE NAME
127
Database Definitions DATABASE DEFINITIONS
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
10
Quick Reference Guide Version 5.10
Miscellaneous Computations MISCELLANEOUS COMPUTATIONS
OUTPUT REPORTS BY LOAD CASE
YES
87
DISPLACEMENT NODAL SORTING
YES
89
DYNAMIC INPUT EXAMPLE TEXT
MAX
94
TIME HIST ANIMATE
YES
104
OUTPUT TABLE OF CONTENTS
ON
105
INPUT FUNCTION KEYS DISPLAYED
YES
106
MEMORY ALLOCATED
12
NA
USER ID " "
NA
DISABLE _UNDO
NO
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
128
Quick Reference Guide Version 5.10
11
List of Materials The CAESAR II Material Table contains 17 different isotropic materials. Properties and allowed temperature ranges for each isotropic material are listed below. Material No.
Material Name
Elastic Modulus
Poisson's Ratio
Pipe Density (lb./cu.in)
Temperature Range (deg. F)
1
Low Carbon Steel
29.5 E6
0.292
0.28993
-325
1400
2
High Carbon Steel
29.3 E6
0.289
0.28009
-325
1400
3
Carbon Moly Steel
29.2 E6
0.289
0.28935
-325
1400
4
Low Chrome Moly Steel 29.7 E6
0.289
0.28935
-325
1400
5
Med Chrome Moly Steel 30.9 E6
0.289
0.28935
-325
1400
6
Austenitic Stainless
28.3 E6
0.292
0.28930
-325
1400
7
Straight Chromium
29.2 E6
0.305
0.28010
-325
1400
8
Type 310 Stainless
28. 3 E6
0.305
0.28990
-325
1400
9
Wrought Iron
29.5 E6
0.300
0.28070
-325
1400
10
Grey Cast Iron
13.4 E6
0.211
0.25580
70
1000
11
Monel 67% Ni/30% Cu 26.0 E6
0.315
0.31870
-325
1400
12
K-Monel
26.0 E6
0.315
0.30610
-325
1400
13
Copper Nickel
22.0 E6
0.330
0.33850
-325
1400
14
Aluminum
10.2 E6
0.330
0.10130
-325
600
15
Copper 99.8% Cu
16.0 E6
0.355
0.32270
70
400
16
Commercial Brass
17.0 E6
0.331
0.30610
-325
1200
17
Leaded Tin Bronze 1
14.0 E6
0.330
0.31890
-325
1200
In addition CAESAR II supports material types 18 or 19 for cut short and cut long cold spring elements. Material number 20 activates the CAESAR II Orthotropic Material Model (i.e., Fiber-glass reinforced plastic pipe); the default coefficient of expansion is 12.0 E-6 in./in./°F. Material 21 indicates user-defined properties. Material numbers over 100 are from the Material Database and include the allowable stress and other piping code data.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
12
Quick Reference Guide Version 5.10
CAESAR II Intersection Types CAESAR II Type B31.3 Type
1 Reinforced
Notes
Reinforced Fabricated Tee Used to lower SIFs Not a fitting Modified pipe
2 Unreinforced
Unreinforced Fabricated Tee
Routine intersection Not a fitting Modified pipe Usually the cheapest
3 Welded Tee
Welding Tee
Usually size-on-size Governed by B16.9 Usually the lowest SIF Usually expensive
4 Sweepolet
Welded-in Contour Insert
Sit-in" fitting Forged fittings on a pipe
5 Weldolet
Branch Welded on Fitting
"Sit-on" fitting Forged fittings on a pipe
6 Extruded
Extruded Welding Tee
Seldom used Used for thick wall manifolds Extruded from straight pipe
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Sketch
Quick Reference Guide Version 5.10
13
Code Stresses Listed below are the Code Stress equations for the actual and allowable stresses used by CAESAR II. For the listed codes, the actual stress is defined by the left hand side of the equation and the allowable stress is defined by the right hand side. The CAESAR II load case label is also listed after the equation. Typically the load case recommendations made by CAESAR II are sufficient for code compliance. However, CAESAR II does not recommend occasional load cases. Occasional loads are unknown in origin and must be specified by the user. US Codes Longitudinal Pressure Stress - Slp Slp = PD0/4tn
code approximation
Slp = PDi2/(D02 - Di2)
code exact equation, CAESAR II default
Operating Stress - unless otherwise specified S = Slp + Fax/A + Sb
<
NA
(OPE)
Sl = Slp + 0.75 i Ma / Z
<
Sh
(SUS)
i Mc / Z
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Slp + 0.75 i Ma / Z + 0.75 i Mb / Z
<
k Sh
(OCC)
Sl = Slp + Fax/A + Sb
<
Sh
(SUS)
sqrt (Sb2 + 4 St2)
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Fax/A + Sb + Slp
<
k Sh
(OCC)
<
1.5 Sh
(SUS)
i Mc / Z
<
f (1.25 Sc + 0.25 Sh) + Sh -Sl
(EXP)
B1 * Slpmax + B2 * (Ma + Mb) / Z
<
1.8 Sh and < 1.5 Sy
(OCC)
B31.1
B31.3
Sb = [sqrt ( (iiMi)2 + (i0M0)2 )]/Z
ASME SECT III CLASS 2 & 3
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
14
Quick Reference Guide Version 5.10
B31.1 (1967) and Navy Section 505 Sl = Slp + sqrt (Sb2 + 4 St2)
<
Sh
(SUS)
sqrt ( Sb + 4 St )
<
f (1.25Sc + 0.25Sh + (Sh-Sl))
(EXP)
<
k Sh
(OCC)
<
0.9 (Syield)
(OPE)
2
2
Slp + sqrt (Sb + 4 St ) 2
2
B31.4 If FAC = 1.0 (fully restrained pipe) FAC | E dT -
SHOOP| + SHOOP
If FAC = 0.001 (buried, but soil restraints modeled) <
0.9 (Syield)
(OPE)
<
0.9 (Syield)
(OPE)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
(0.75) (0.72) (Syield)
(SUS)
2
sqrt ( Sb + 4 St )
<
0.72 (Syield)
(EXP)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
0.8 (Syield)
(OCC)
Fax/A -
SHOOP + Sb + SHOOP
(If Slp + Fax/A is compressive) If FAC = 0.0 (fully above ground) Slp + Fax/A + Sb + SHOOP (If Slp + Fax/A is compressive) 2
B31.4 Chapter IX Hoop Stress: Sh
(OPE, SUS, OCC)
F1 Sy
Longitudinal Stress: |SL| Equivalent Stress: Se
0.8 Sy
0.9 Sy
Where: Sy = specified minimum yield strength F1 = hoop stress design factor (0.60 or 0.72, see Table A402.3.5(a) of B31.4) Sh = (Pi – Pe) D / 2t SL= Sa + Sb or Sa - Sb, whichever results in greater stress value Se = 2[((SL - Sh)/2)2 + St2]1/2
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
(OPE, SUS, OCC) (OPE, SUS, OCC)
Quick Reference Guide Version 5.10
15
B31.5 Sl = Slp + Fax/A + Sb
<
Sh
(SUS)
sqrt (Sb + 4 St )
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
<
k Sh
(OCC)
2
2
Fax/A + Sb + Slp Sb = [sqrt ( (iiMi) + (i0M0) )]/Z 2
2
B31.8 B31.8 For Restrained Pipe (as defined in Section 833.1): For Straight Pipe:
Max(SL, SC)
< 0.9ST
(OPE)
Max(SL, SC)
< 0.9ST
(SUS)
SL
< 0.9ST
(OCC)*
< ST
(OCC) *
and SC
CAESAR II prints the controlling stress of the two SL = SP + SX + SB For All Other Components
SL
< 0.9ST
(OPE, SUS, OCC)
B31.8 For Unrestrained Pipe (as defined in Section 833.1): SL
< 0.75ST
(SUS, OCC)
SE
< f[1.25(SC + SH) – SL]
(EXP)
Where: SL
= SP + SX + SB
SP
= 0.3SHoop (for restrained pipe) = 0.5SHoop (for unrestrained pipe)
SX
= R/A
SB
= MB/Z (for straight pipe/bends with SIF = 1.0) = MR/Z (for other components)
SC MR Mt2]
= Max (|SHoop – SL|, sqrt[SL2 – SLSHoop + SHoop2]) = sqrt[(0.75iiMi)2 + (0.75ioMo)2 +
SE
= ME/Z
ME
= sqrt[(0.75iiMi)2 + (0.75ioMo)2 + Mt2]
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
16
Quick Reference Guide Version 5.10
B31.8 For Unrestrained Pipe (as defined in Section 833.1): Continued… S
= Specified Minimum Yield Stress
T
= Temperature Derating Factor
SH
= 0.33SUT
SC
= 0.33SU
SU
= Specified Minimum Ultimate Tensile Stress
B31.8 Chapter VIII Hoop Stress:
Sh
F1 S T
(OPE, SUS, OCC)
Longitudinal Stress:
|SL|
0.8 S
(OPE, SUS, OCC)
Equivalent Stress:
Se
0.9 S
(OPE, SUS, OCC)
Where: S = Specified Minimum Yield Strength F1= Hoop Stress Design Factor (0.50 or 0.72, see Table A842.22 of the B31.8 Code) T= Temperature Derating Factor (see Table 841.116A of the B31.8 Code) Note: The product of S and T (i.e. the yield stress at operating temperature) is required in SH of the CAESAR II Input.
Sh= (Pi – Pe) D / 2t SL = maximum longitudinal stress (positive tensile, negative compressive) Se = 2[((SL - Sh)/2)2 + Ss2]1/2 Ss = tangential shear stress GPTC Slp + 0.75i Ma/Z Sl = Slp+Sb Se = sqrt(Sb +4St ) 2
2
<
Syield
(OPE)
<
0.75(Sy)Ft
(SUS)
<
0.72 (Syield)
(EXP)
0.9 (Syield)
(OPE)
Note: GPTC is similar to B31.8 with noted changes.
B31.11 If FAC = 1.0 (fully restrained pipe) FAC | E
dT -
SHOOP| + SHOOP
<
If FAC = 0.001 (buried, but soil restraints modeled) Fax/A -
SHOOP + Sb + SHOOP
<
0.9 (Syield)
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
(OPE)
Quick Reference Guide Version 5.10
17
B31.11 Continued … (If Slp + Fax/A is compressive) If FAC = 0.0 (fully above ground) Slp + Fax/A + Sb + SHOOP
<
0.9 (Syield)
(OPE)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
(0.75) (0.72) (Syield)
(SUS)
sqrt ( Sb2 + 4 St2 )
<
0.72 (Syield)
(EXP)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
0.88 (Syield)
(OCC)
<
0.9 S * T
(OPE)
(If Slp + Fax/A is compressive)
International Codes Canadian Z662 If FAC = 1.0 (fully restrained pipe) |E
dT -
Sh| + Sh
If FAC = 0.001 (buried, but soil restraints modeled) <
S*T
(OPE)
<
S*T
(OPE)
Sl = 0.5Sh + Sb
<
S*F*L*T
(SUS, OCC)
SE = sqrt [Sb 2 + 4St2]
<
0.72 S * T
(EXP)
Slp + 0.75i Ma/Z
<
Sh
(SUS)
iMc/Z
<
f (1.25 Sc + .25 Sh) + Sh - Sl
(EXP)
Slpmax + 0.75i (Ma + Mb)/Z
<
1.2 Sh
(OCC)
|Fax / A -
Sh | + Sb + Sh
(If Fax / A -
Sh is compressive)
If FAC = 0.0 (fully above ground) |Slp + Fax / A| + Sb + Sh (If Slp + Fax / A is compressive)
RCC-M C & D
Stoomwezen Slp + 0.75i Ma/Z < iMc/Z <
f
(SUS)
fe
Slp + 0.75i (Ma + Mb)/Z <
(EXP) 1.2f
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
(OCC)
18
Quick Reference Guide Version 5.10
CODETI Sl = Slp + Fax/A + Sb
<
Sh
(SUS)
sqrt (Sb + 4St )
<
f [1.25 (Sl + Sh)] - Sl
(EXP)
<
Ksh
(OCC)
2
2
Slp + Fax/A + iMa/Z + iMb/Z Sb = [ Sqrt ((iiMi) + (i0M0) ] /Z 2
2
Norwegian (SUS)
2 PDi .75Ma SI = + 2 2 Z Eff(D0 D1 )
iMc/Z < Sh + Sr - Sl
(EXP)
.75i (Ma + Mb) PmaxDi2 + 2 2 Z Eff(D0 -Di )
(OCC)
M = sqrt (Mx2 + My2 + Mz2) Sr= Minimum of 1.25 Sc + 0.25 Sh; FrRs-F2; or Fr (1.25R1 + 0.25R2) The latter applies to temperatures over 370°C; 425°C for Austenitic stainless steel Fr= Cyclic reduction factor Rs= Permissible extent of stress for 7000 cycles R1= Minimum of Sc and 0.267 Rm R2= Minimum of Sh and 0.367 Rm Rm = Ultimate tensile strength at room temperature
FDBR
Sl = Slp + 0.75 i Ma / Z
<
Sh
(SUS)
i Mc / Z
<
f [ 1.25 (Sc+Sh) - Sl ]
(EXP)
Slp + 0.75 i Ma / Z + 0.75 i Mb / Z
<
k Sh
(OCC)
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
19
BS 7159 If Sx is tensile:
<
Sh
(OPE)
<
Sh*EH/EA
(OPE)
<
Sh*EH/EA
(OPE)
<
1.25Sh
(OPE)
2 2 sqrt (Sx + 4Ss )
and 2 2 sqrt (S + 4Ss )
or, if Sx is compressive: S +
x Sx
and Sx Sx =
( ) + [sqrt((i xi Mi ) 2 +(i xo M o )2 )] Z ( 4t )
P Dm
( ) - [sqrt((i xi Mi ) 2 +(i xo M o ) 2 )] - Fx A Z ( 4t )
P Dm
(If Fx/A > P(Dm)/(4t), and it is compressive) S =
=
=
( ) ( 2t )
for straight pipes
MP D m
( ) [sqrt((i i Mi )2 +(i + Z ( 2t )
MP D m
2 o M o ) )]
( ) + [sqrt((i xi Mi ) 2 +(i xo M o )2 )] Z ( 2t )
MP D m
for bends
for tees
Dm and t are always for the Run Pipe Eff = Ratio of E to Ex
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
20
Quick Reference Guide Version 5.10
UKOOA ab (f2/r) + PDm/ (4t) < (f1 f2 LTHS) / 2.0 Where: P = design pressure Dm = pipe mean diameter t = pipe wall thickness f1 = factor of safety for 97.5% lower confidence limit, usually 0.85 f2 = system factory of safety, usually 0.67 ab = axial bending stress due to mechanical loads r = a(0:1) / a(2:1) a(0:1) = long term axial tensile strength in absence of pressure load a(2:1) = long term axial tensile strength in under only pressure loading LTHS = long term hydrostatic strength (hoop stress allowable) BS 806 Straight Pipe fc
=
sqrt(F2 + 4fs2)
fs
=
Mt(d + 2t) / 4I
F
=
max (ft, fL)
ft
=
pd/2t + 0.5p
fL
=
pd2/[4t(d + t)] + (d + 2t)[sqrt(mi2 + mo2)] / 2I
<
SAOPE
<
SASUS
<
SAEXP
<
SAOPE
<
SASUS
<
SAEXP
Bends fc
=
sqrt (F2 + 4 fs2)
fs
=
Mt (d + 2t) /4I
F
=
max (ft, fL)
ft
=
r/I * sqrt[(miFTi)2 + (m0FTo)2]
fs
=
r/I * sqrt[(miFLi)2 + (m0FLo)2]
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
21
BS 806 Continued … Branch Junctions fcb
=
q * sqrt[fb2 + 4fsb2]
fb
=
(d + t)*p*m/(2t) + r/I*sqrt[(miFTL)2 + (moFTO)2]
Fsb
=
Mt (d + 2t) / 4I
q
= 1.0 except for operating cases = 5 or .44 bases on d2/d1 ratio in operating cases
m
=
<
SAOPE
<
SASUS
<
SAEXP
geometric parameter
EXP SA =
min[(H*Sproof ambient + H*Sproof design); (H*Sproof ambient + F)]
OPE SA =
Savg rupture at design temperature
SUS SA =
min[.8*Sproof, Screep rupture]
Det Norske Veritas (DNV) Hoop Stress: Sh
ns SMYS
Hoop Stress: Sh
nu SMTS
Longitudinal Stress: SL
n SMYS
Equivalent Stress: Se n SMYS Where: Sh
=
(Pi – Pe) (D – t) / 2t
ns
=
hoop stress yield usage factor Tables C1 and C2 of DNV
SMYS nu
= =
SMTS
specified minimum yield strength, at operating temperature hoop stress bursting usage factor Tables C1 and C2 of DNV
=
specified minimum tensile strength, at operating temperature
SL
=
maximum longitudinal stress
n
=
equivalent stress usage factor Table C4 of DNV
Se
=
[Sh2 + SL2 - ShSL + 3t2]1/2
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
22
Quick Reference Guide Version 5.10
EN-13480 <
Kfn
(SUS)
<
fn + fh
(EXP)
<
Kfn
(OCC)
EN-13480 Alternate Option due to primary loads
<
Kfn
(SUS)
<
fn + fh
(EXP)
<
Kfn
(OCC)
due to occasional loads
PD8010 Part 1 Hoop Stress
Sh< aeSy
(OPE, SUS, OCC)
Equivalent Stress
Se< 0.9Sy
(OPE, SUS, OCC)
Where: Sy
= specified minimum yield strength
e
= weld joint factor
a
= design factor
Sh Se www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
23
PD8010 Part 1 Continued … hoop stress using nominal dimensions
Shl ST = SL
Based on restrained/unrestrained status
SL for unrestrained piping SL for restrained piping If FAC = 1.0 (fully restrained pipe) 0.9 (Syield)
(OPE)
<
0.9 (Syield)
(OPE)
<
0.9 (Syield)
(OPE)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
(0.75) (0.72) (Syield)
(SUS)
sqrt ( Sb2 + 4 St2 )
<
0.72 (Syield)
(EXP)
(Slp + Sb + Fax/A) (1.0 - FAC)
<
0.8 (Syield)
(OCC)
FAC | E
dT - SHOOP| + SHOOP
<
If FAC = 0.001 (buried, but soil restraints modeled) Fax/A -
SHOOP + Sb + SHOOP
(If Slp + Fax/A is compressive) If FAC = 0.0 (fully above ground) Slp + Fax/A + Sb + SHOOP (If Slp + Fax/A is compressive)
PD8010 Part 2 Hoop Stress
Sh< fdhSy
(OPE, SUS, OCC)
Equivalent Stress
Se< fdeSy
(OPE, SUS, OCC)
Where: Sy
specified minimum yield strength
fdh
hoop stress design factor (See Table 2)
fde
equivalent stress design factor (See Table 2)
Sh= S e= ST =
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
24
Quick Reference Guide Version 5.10
Node Locations on Bends Bends are defined by the element entering the bend and the element leaving the bend. The actual bend curvature is always physically at the TO end of the element entering the bend. The element leaving a bend must appear immediately after the element defining (entering) the bend. The default bend radius is 1.5 times the pipe nominal OD. For stress and displacement output the TO node of the element entering the bend is located geometrically at the FAR point on the bend. The FAR point is at the weld line of the bend, and adjacent to the straight element leaving the bend. The NEAR point on the bend is at the weld line of the bend, and adjacent to the straight element entering the bend. The FROM point on the element is located at the NEAR point of the bend if the total length of the element as specified in the DX, DY and DZ fields is equal to: Radius * tan( Beta / 2 ) where “Beta” is the bend angle, and Radius is the bend radius of curvature to the bend centerline. Nodes defined in the Angle # and Node # fields are placed at the given angle on the bend curvature. The angle starts with zero degrees at the NEAR point on the bend and goes to “Beta” degrees at the FAR point of the bend. Angles are always entered in degrees. By default, nodes on the bend curvature cannot be specified within five (5) degrees of one another or within five degrees of the nearest end point. This and other bend settings may be changed through the Main Menu, Configure-Setup processor. When the FROM node on the element entering the bend is not at the bend NEAR point a node may be placed at the near point of the bend by entering an Angle # on the bend spreadsheet equal to 0.0 degrees. For more information see the following figure. When defining a bend element for the first time in the pipe spreadsheet, nodes are automatically placed at the near and mid point of the bend. The generated midpoint node number is one less than the TO node number on the element, and the generated near point node number is two less than the TO node number on the element. A near point should always be included in the model in tight, highly formed piping systems. The top-left figure below shows the points on the bend as they would be input. The top-right figure shows the actual geometric location of the points on the bend. The bottom-left figure shows the same geometry except that two nodes are defined on the bend curvature at angles of zero and forty-five degrees.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Quick Reference Guide Version 5.10
25
For an animated tutorial on modeling bends, select the ANIMATED TUTORIALS option on the Help menu.
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
26
Quick Reference Guide Version 5.10
CAESAR II Quality Assurance Manual The CAESAR II Quality Assurance Manual is intended to serve as a publicly available verification document. This manual discusses (briefly) the current industry QA standards, the COADE QA standard, a series of benchmark jobs, and instructions for users implementing QA procedures on their own hardware. The benchmark jobs consist of comparisons to published data by ASME and the NRC. Additional test jobs compare CAESAR II results to other industry programs. For additional information on the Quality Assurance Manual, please contact the sales department at
[email protected]. Mechanical Engineering News As an aid to the users of COADE software products, COADE publishes Mechanical Engineering News several times a year. This publication contains discussions on recent developments that affect users, and technical features illustrating modeling techniques and software applications. This newsletter is sent to all users of COADE software at the time of publication. Back issues can be acquired by contacting the COADE sales staff. Additional COADE Software Programs CADWorx Plant - An AutoCAD based plant design/drafting program with a bidirectional data transfer link to CAESAR II. CADWorx allows models to be created in ortho, iso, 2D or 3D modes. CADWorx template specifications, contained with
built in auto routing, auto iso, stress iso, auto dimensioning, complete libraries, center of gravity calculations, and bill of materials, provides the most complete plant design package to designers. CodeCalc - A program for the design or analysis of pressure vessel components. CodeCalc capabilities include: analysis of tubesheets, rectangular vessels, flanges, nozzles, Zick Analysis, and the standard internal/external thickness and pressure computations on heads, shells, and cones. API 579 calculations are also included. PV Elite - A comprehensive program for the design or analysis of vertical and horizontal vessels. Pressure Vessel Codes include ASME VIII-1 and VIII-2, PD:5500 and EN-13445. PVElite includes all of the CodeCalc functionality. TANK - A program for the design or rerating of API-650/653 storage tanks. The program includes API 650 Appendices A, E, F, M, P, and S, as well as API 653 Appendix B. Computations address: winds girders, conical roof design, allowed fluid heights, and remaining corrosion allowance. www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
Index
1
Quick Reference Guide Index A
I
Additional COADE Software Programs • 26 ASME SECT III CLASS 2 & 3 • 13
International Stresses • 17
B
List of Materials • 11
B31.1 • 13 B31.1 (1967) and Navy Section 505 • 14 B31.11 • 16, 17 B31.3 • 13 B31.4 • 14 B31.4 Chapter IX • 14 B31.5 • 15 B31.8 • 15 B31.8 Chapter VIII • 16 Bends • 20 Branch Junctions • 21 BS 7159 • 19 BS 806 • 20, 21 C CAESAR II Interfaces • 3 CAESAR II Intersection Types • 12 CAESAR II Pipe Stress Seminars • 2 CAESAR II Quality Assurance Manual • 26 CAESAR II Quick Reference Guide Version 5.10 • 1 CAESAR II Software • 2 Canadian Z662 • 17 Code Stresses • 13 CODETI • 18 Computation Control • 6 D Database Definitions • 9 Det Norske Veritas (DNV) • 21
L M Mechanical Engineering News • 26 Miscellaneous Computations • 10 N Node Locations on Bends • 24 Norwegian • 18 P Piping Codes • 4 Plot Colors • 8 R RCC-M C & D • 17 Restraints • 5 S Setup File Directives List • 6 SIFS and Stresses • 7 Stoomwezen • 17 System Requirements • 3 T Troubleshooting • 3 U UKOOA • 20 US Codes • 13
E EN-13480 • 22 F FDBR • 18 G Geometry Directives • 6 GPTC • 16
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete
COADE Inc. 12777 Jones Road Suite 480 Houston, Texas 77070 Phone: (281)890-4566 Fax: (281)890-3301 Email:
[email protected] Web: www.coade.com
CAESAR II Quick Reference Guide Version 5.10 Last Revised 111/2007
www.cadfamily.com EMail:
[email protected] The document is for study only,if tort to your rights,please inform us,we will delete