c7 Soln Manual

October 8, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download c7 Soln Manual...

Description

 

Problem 7.1 No solution provided

1

 

Problem 7.2 No solution provided

2

 

Problem 7.3 Answer the questions below.

a. Wh What at are com commo mon n for forms ms of ener energy? gy? Whi Which ch of tthes hesee aare re rrele elev vant ant to fluid mec mechanics hanics?? •

 Mechanical Energy = Energy that matter has because of its motion (i.e. kinetic energy) or its position.(potential energy associated with a spring; gravitational potential energy). Highly releva relevant nt to  fluid mechanics. Examples of KE include. —  KE in a river that is   flowing. KE in air that is being used to drive a wind turbine. turbi ne. KE in the mo moving ving ai airr in the throa throatt of a ven venturi. turi. —  Elastic potential energy associated with compression of a gas. Elastic potential energy associated with compression of water during water hammer. —  Gravitational potential energy associated with water stored behind a dam. Gravitational Gravi tational potenti potential al energy associated with w water ater in a stand pipe. Grav Grav-itational potential energy associated with water stored in a water tower for a municipal water supply.



 Other forms of energy include electrical energy, nuclear energy, thermal energy, an and d chem chemic ical al ener energy gy.. Ea Each ch of thes thesee fo form rmss of ener energy gy can be re rela late ted d to   fluid mechanics.

b. What is w work? ork? Giv Givee three exam examples ples tha thatt are relev relevant ant tto o   fluid mechanics. •

  In mechanics, work is done when a force acts on a body as the body moves throug thr ough h a dis distan tance. ce. Oft Often, en, the magn magnitu itude de of work is for force ce mu multi ltipli plied ed by the distance moved ( moved  (W  W    =  F d). water in a river tumbles rock, theawater is exerting a force on the —  When rock because the rock is movinga through distance. —  When the heart contracts, the walls of the heart exert a force on the blood within wit hin the ch cham ambers bers of the heart heart,, the thereb reby y doi doing ng wo work rk (fo (force rce of wa wall ll x displacement of wall). —  When water   flows through a turbine in a dam, the water exerts a force on the turbine blade and the turbine blade rotates in response to this force.

c. Common units of power: horsepower and watts. d. Diff erences erences between power and energy •

 power is a rate (amount per time) whereas energy in an amount. 3

 





  diff erent erent primary dimensions: power (M (M L2 /T 3 )  and Energy (M (M L2/T 2 ).   diff erent erent units units:: pow power er has units of horsepow horsepower, er, watts watts,, etc.; energy has units of  Joules, ft-lbf, Btu, cal, etc.

4

 

Problem 7.4 Apply the grid method to each situati Apply situation on described below. Not Note: e: Unit cancel cancellati lations ons are not shown in this solution. a) Situation: A pump operates for 6 hours. Cost = C  =  C    = $0 $0..15 15/ / kW  ·   h. P  = P  = 1 hp, t  = 6 h. Find: Amount of energy used (joules). Cost of this energy ($’s). Solution:

∆E   

=   P ∆t  =

µ ¶µ ¶µ 1 hp 1.0



E  =  = 1. 61

Cost   =   C ∆E   = =

 ×

µ

6h 1.0

745.7 W 745. 1.0 hp

7

¶µ ¶µ ¶   J W  ·   s

3600s h

 10 J

  0.15 kW  ·   h

¶µ

1. 611  ×  107 J 1.0

¶µ

  kW  ·   h 3.6  ×  106 J



Cost = Cost  = $0 $0..67 b) Situation: A motor is turning the shaft of a centrifugal pump. T  = T  = 100 100 lbf  lbf   ·   in, in, ω  = 850 rpm. 850  rpm. P   P   =  T ω. Find: Power in watts. P    =   T ω 100 100 lbf  lbf   ·   in = 1.0

µ

¶µ

850  rev 850 rev min

P  = P  = 1010 1010 W

¶µ

2π rad 1.0  rev

c) Situation: A turbine produces power. P  = P  = 7500 7500 ft lbf  lbf / s. Find: Covert the power to watts and hp. 5

¶µ

1.0min 60 s

¶µ

  1.0 m 39 39..37in

¶µ

4.448N lbf 

¶µ ¶  W  ·   s J

 

Solution:

P    =

P    =

µ

¶µ

75 7500 00 ft ·   lbf  s

P   P   = 10 10..2 kW 75 7500 00 ft ·   lbf  s

µ

P   P   = 13 13..6 hp

6

¶µ



  s  ·   W 0.73 7376 76 ft ·   lbf    s  ·   hp 550ft  ·   lbf 



 

7.5: PROBLEM DEFINITION Situation: Water is being sprayed out a spray bottle. Find: Estimate the power (watts) required. PLAN 1. Acquire data from a spray bottle. 2. Find Find pow power er usi using ng   P   P   =   ∆W/∆t, where   ∆W  W    is the amount of work in the time interval   ∆t. SOLUTION 1. Data: •

 Ten sprays took approximately 15 seconds.



  Deflecting the trigger involves a motion of   ∆x  = 1.0 in = 00..0254m 0254m..



 The force to deflect the trigger was about F  about  F  =  = 3 lb  which is about 15 about  15 N.

2. Power: P    = =

  ∆W 

  F  (N   ( N ∆x)  =   = ∆t ∆t

µ

(15N)(10 sprays (15N)(10  sprays)) (0 (0..0254m 0254m//spray spray)) 15 s

0.25 W  (estimate)

7

¶µ ¶   W  ·   s N  ·   m

 

7.6: PROBLEM DEFINITION Situation: A water pik is producing a high-speed jet. d  = 3 mm,  V 2  = 25 25 m/ s.

Find: Minimum electrical power (watts). Assumptions: Neglect energy losses in the mechanical system—e.g. motor, gears, and pump. Neglect all energy losses associated with viscosity. Neglect potential energy changes because these are very small. Properties: Water (10 Water  (10 C) ,  Table A.5:   ρ  = 1000 1000 kg/ kg/ m3 . ◦

PLAN Balance electrical power with the rate at which water carries kinetic energy out of  the nozzle. SOLUTION   Amo Amount unt of kineti kineticc energy that lea leaves ves the nozzle Power

= =

Each interval of time

V  2   ∆m 22

∆t

where ∆m  is the mass that has  fl owed out of the nozzle for each interval of time ( time  (∆t) . ˙  = ρA Since the mass per time is mass   flow rate:   (∆m/∆t  =  m  =  ρA2 V 2 )   mV  ˙ 22 Power   = 2   ρA2 V 23 = 2 Exit area  π

 ×

¡

 ×

2

3



¢

A2   = 4 3.0  10 m = 7.07  ×  10 6 m2 8



 

Thus:

  (1000 (1000 kg/ kg/ m3 ) (7 (7..07  ×  10 Power = Power  = 2

6



m2 )(25m )(25m// s)3   = 55 55..2 W

P   P   = 5555.2 W REVIEW Based on Ohm’s law, the current on a U.S. household circuit is about:   I   I   =   P /V  /V    = 55. 55.2 W/115V = 0. 0.48 A.

9

 

7.7: PROBLEM DEFINITION Situation: A small wind turbine is being developed. D  = 1.25 m,  V   V    = 1155  mph = 6 =  6..71 m/ s. Turbine efficiency:   η=20%.

Find: Power (watts) produced by the turbine. Properties: Air (10 (10 C,  0  0..9 bar bar = 90 kP kPaa), R ),  R =  = 287 287 J/ kg  ·   K. ◦

PLAN Find the densi Find density ty of air us using ing th thee idea gas la law. w. The Then, n,   find the kinetic energy of the wind and use 20% of this value to   find the power that is produced. SOLUTION Ideal gas law ρ =

  p

RT   90 90,, 000 Pa = (287J// kg   ·  K) (10 + 2273) (287J 73) K 3 = 1.108kg 108kg// m Kinetic energy of the wind Rate of KE

  Amo Amount unt of ki kinetic netic ener energy gy Interval of time   ∆mV 2 /2 = ∆t =

where   ∆m  is the mass of air that   flows through a section of area   A   =   πD 2 /4   for each unit of time  time   (∆t) .   Since the mass for each interv interval al of time is mass   flow rate: 10

 

(∆m/∆t =  m ˙  = ρAV   =  ρAV ))   mV  ˙ 2 2   ρAV 3 = 2

Rate of KE   =

The area is   (1 (1..108kg 108kg// m3 ) π (1 (1..25m)2 /4 (6 (6..71 m/ s)3 Rate of KE = KE  = 2

¡

¢

Rate of KE = KE  = 205 205 W Since the output power is 20% of the input kinetic energy: energy: P   P   = (0 (0..2)(205W) P   P   = 4411.0 W REVIEW The amount of energy in the wind is di ff use use (i.e. sprea spread d out). For thi thiss situat situation, ion, th thee wind turbine provides enough power for approximately one 40 watt light bulb.

11

 

Problem 7.8 No solution provided.

12

 

7.9: PROBLEM DEFINITION Situation: This is a linear velocity distribution in a rectangular channel.

Find: Kinetic energy correction factor:   α SOLUTION ¯   =  V max V   V  and V   V    =  V max max/2   and maxy/d Kinetic Kinet ic energy correctio correction n facto factorr  1 α = d = 1 d

 d

V max maxy 3 dy [( [(V  V max / 2) d ] max

Z  Z  µ ¶ 0  d

3

2y d

0

α  = 2  =  2

13

dy

 

7.10: PROBL PROBLEM EM DEFINITION Situation: Velocity distributions (a) through (d) are shown in the sketch.

Find: Indicate whether α whether  α  is less than, equal to, or less than unity. SOLUTION a)   α = 1.0 b)   α >  1.  1.0 c)   α >  1.  1.0 d)   α >  1.  1.0

14

 

7.11: PROBL PROBLEM EM DEFINITION Situation: There is a linear velocity distribution in a round pipe.

Find: Kinetic energy correction factor:   α SOLUTION Kinetic Kinet ic energy correctio correction n facto factorr  1 α  = A Flow rate equation

3

Z  µ ¶ V  ¯ V 

A

V    =   V m − (

dA

 r )V m r0

V    =   V m(1 − (  r )) r0 Q =

Z  Z  Z 

  V dA

  r0

=

V  V (2 (2πrdr πrdr))

0   r0

=

0

r )2 )2πrdr πrdr r0 r2 )]dr [r − ( )]dr r0

V m(1 −   r0

= 2πV m

Z  0

Integrating yields

0

Q   = 2πV m[( [(rr 2 /2) − (r3 /(3 (3rr0 ))]0r 2 Q   = 2πV m[(1 [(1//6) 6)rr0 ] Q   = (1 (1//3) 3)V  V mA Thus V  V    =

  Q   V m  = 3 A

Kinetic Kinet ic energy correctio correction n facto factorr 3  r   1   r V m(1 − r ) α = 2πrdr A 0 ( 13 V m)   54 54π π  r  r 3 = (1 − ( )) rdr πr 02 0 r0

Z  ∙ 0

0

0



α  = 2.7 15

¸

 

7.12: PROBL PROBLEM EM DEFINITION Situation: There is a linear velocity distribution in a round pipe.

Find: Kinetic energy correction factor:   α SOLUTION Flow rate equation V    =   kr

  r0



Q =

V (2 V (2πrdr πrdr))

0   r0

2πk πkrr 2dr

= = ¯  = V  = =



  20πkr πk r03 3  Q A 2 kπr kπ r03 3 πr 02  2 kr0 3

Kinetic Kinet ic energy correctio correction n facto factorr 3

α =   1 A   1 α = A

Z  µ ¶ Z  µ ¶ Z  µ ¶ µ ¶ A   r0

0

V  ¯ V 

dA

  kr 2 kr 0 3

  (3 (3//2)3 2π   r α = (πr 02 ) 0 5   27 27//4   r0 α = r02 5r03 α =   27 20

16

0

3

2πrdr

 r r0

3

rdr

 

7.13: PROBL PROBLEM EM DEFINITION Situation: The velocity distribution in a pipe with turbulent   flow is given by n

 y r0

V  = V max max

µ¶

Find: Derive a formula for α for  α  as a function of  n.  n . Find α Find  α  for  for n  n =  = 1/7. SOLUTION Flow rate equation V  V max max

=

n

 y r0

r0

=

r

= 1

r0

r r0

n

V dA

Q =

Z Z  µ ¶ − Z  µ − ¶ A   r0

=

n

µ ¶ µ −¶ µ− ¶ n

r r0

V max max 1

0

2πrdr

  r0

= 2πV max max

r r0

1

0

n

rdr

Upon integration 2 Q  = 2πV max maxr0

∙µ   1

n+1

¶ − µ ¶¸  1 n+2

Then ¯   =   Q/ V  Q/A A  = 2V max max =

∙µ   1

n+1

  2V max max (n + 1)(n 1)(n + 2)

¶ − µ ¶¸  1 n+2

Kinetic Kinet ic energy correctio correction n facto factorr  1 α = A

n

3

Z  ⎡⎣ ³ − ´ ⎤⎦   r0

V max max 1

 r r0

2V max max (n+1)( +1)(n n+2)

0

Upon integration one gets  1 a  = 4

h

[(n [(n+2)( +2)(n n+1)]3 (3 (3n n+2)(3 +2)(3n n+1)

17

i

2πrdr

 

If  n =  n  = 1/7, then  1 α = 4

3

" £ # ¤ ¡ ¡ ¢ ¢¡ ¡ ¢ ¢ ( 17  + 2)( 17  + 1) 3 17 + 2 3 17 + 1

α = 1.06

18

 

7.14: PROBL PROBLEM EM DEFINITION Situation: The velocity distribution in a rectangular channel with turbulent   flow is given by V /V max y/d))n max  = (y/d Find: Derive a formula for the kinetic energy correction factor. Find α Find  α  for  for n  n =  = 1/7. SOLUTION Solve for q  for  q   first in terms of  u  u max   and and d  d  d

q  =  =



 d

V dy = dy  =

0

y d

Z  ³ ´ V max max

0

n

  V max max dy = dy  = n d

Integrating: n+1

µ ¶∙ ¸ µ ¶

V max y n+1 dn n+1 V max d n maxd = n+1   V max maxd = n+1

q    =

d 0



Then

max ¯   =   q   =   V max V   V  d n+1

Kinetic Kinet ic energy correctio correction n facto factorr α =   1 A  1 = d

Z  µ ¶ Z  " ¡ ¢ # Z  A

 d

0

3

V  ¯ V 

dA

n

y   V max max d V max max/(n + 1)

  (n + 1)3 = d3n+1

3

 d

y 3n dy

0

Integrating   (n + 1)3   d3n+1 α = d3n+1 3n + 1



3

a  =   (3nn+1) +1 19

¸

 d



dy

0

y ndy

 

When n When  n =  = 1/7   (1 + 1/7)3 α = 1 + 3/ 3/7 α  = 1.05

20

 

7.15: PROBL PROBLEM EM DEFINITION Situation: Turbulent   flow in a circular pipe. r  = 3.5 cm cm.. Find: Kinetic energy correction factor:   α. SOLUTION Kinetic Kinet ic energy correctio correction n facto factorr  1 α  = A The integral is evaluated using 3

Z  µ ¶ A

V  ¯ V 

dA   '

1 ¯3 V 

3

Z  µ ¶ A

X i

V  ¯ V 

dA

µ

vi + vi π(ri2 − ri2 1 ) 2 −

1



3



Result Results. velocity y is 24.3 24.322 m/s and the kinetic energy corre correction ction facto factorr is 1.19. s. The mean velocit

21

 

Problem 7.16 Answer the questions below.

a. What is the conceptual meaning of the   first law of thermodynamics for a system? •

 The law can be written for —  energy (amount) with units such as joule, cal, or BTU. —  rate of energy (amount/time) with units such as watts, J/s, or BTU/s.





 Meaning (rate form):

⎧⎨ net rate of energy ⎫⎬ ⎧⎨ entering system − at time t time  t ⎩ ⎭ ⎩

˙   =   dE  Q˙ −  W  dt net rate of work net rate of change in energy done by system of matter in system = at time t time  t during time t time  t

⎫⎬ ⎧⎨ ⎭ ⎩

 Meaning (amount form):

⎫⎬ ⎭

Q − W    = ⎫⎬ ⎧⎨E net change in energy ⎫⎬ ⎧⎨ net amount of energy ⎫⎬ ⎧⎨ net amount of work − ⎩ done by system ⎭ = ⎩ of matter in system ⎭ system ⎭ ⎩ entering during time t during time t during time t   ∆

 ∆

 ∆

b. What is   flow work? How is the equation for   flow work derived? •

 Flow work is work done by forces associated with pressure.



  Eq. for   flow work is derived by using the de finition of work:   W  W    = F   · d.

c. What is shaft work? How is shaft work diff erent erent than   flow work? •

 Shaft work is any work that is not   flow work.



 Shaft work diff ers ers from   flow work by the physical origin of the work: —   flow work is done by a force associated with pressure. —  shaft work is done by any other force.

22

 ∆

 

Problem 7.17 Answer the questions below.

a. What is head? How is head related to energy? To power? •



 Head is a way of characterizing energy or power or work.  Head is the ratio of (energy of a   fluid particle)/(weight of a   fluid particle) at a point in a   fluid   flow ow.. —  examp  example: le: KE of a fluid particle divided by its weight gives "velocity head": velocity head = ( =  (mV  mV 2 /2) / (mg mg)) =  V  2 /(2 (2gg )



 Head is related to power by P   P   =  mgh ˙

b. What is head of a turbine? •

 Head of a turbine is a way of describing the work (or power) that is done on the turbine blades by a   flowing   fluid: P turbine turbine  =

  ∆W turbine turbine ∆t

  =  mgh ˙ t

c. How is head of a pump related to power? To energy? P pump pump   =

  ∆W pump pump ∆t

˙  p   =  mgh

d. What is head loss? •





  Conversion of mechanical energy in a   flowing   fluid to thermal energy via the action of viscous stresses.   Mec Mechanic hanical al energy is gener generally ally useful. The therma thermall energ energy y that is generated is generally not useful because it cannot be recovered and used productively.   The the therm rmal al ene energy rgy usu usuall ally y hea heats ts the   fluid uid.. Thi Thiss is ana analog logous ous to fric frictio tional nal heating.

23

 

Problem 7.18 Answer the questions below. a. What are the  fi ve main terms in the energy equation (7.29)? What does each term mean? See the text and   figure that follow Eq. (7.29). b. How are terms in the energy equation related to energy? To power? •

  Each Each term in the energ energy y equation equation is a "head ter term" m" wit with h units of leng length. th. To relate head, power, energy, and work use: P   P   =

  ∆W 

  ∆E 

∆t

∆t

 =

  =  mgh ˙

c. What assumptions are required to use Eq. (7.29)? •

  The   flow is steady.



 The control volume has one inlet port and one exit port.



  The   fluid density is the same at all spatial locations.

How is the energy equation similar to the Bernoulli equation? List three similarities. How is the energy equation diff erent erent from the Bern Bernoulli oulli equat equation? ion? List thre threee di ff ererences. Similarities: •

 Both equations involve head terms.



 Both equations are applied from a "location 1" to a "location 2."



  There are some simila similarr terms (all terms in the Bernou Bernoulli lli equatio equation n appear in the energy equation).

Diff erences: erences: •





 The energy equation applies to viscous or inviscid   flow whereas the Bernoulli equation applies only to inviscid   flow ow..   The energy equation includes terms for w work ork of a pump and turbine; these terms do not appear in the Bernoulli equation.  The energy equation includes head loss, whereas the Bernoulli equation lacks any term to account for energy loss.

24

 

Problem 7.19 Situation: Flow in a pipe. Find: Prove that   fluid in a constant diameter pipe will   flow from a location with high piezometric head to a location with low piezometric head. Assumptions: No pumps or turbines in the pipeline. Steady   flow ow.. SOLUTION The energy equation (7.29).  p1 V 12   p2 V 22   + α1   + z1 + h p  =   + α2   + z2 + ht  + hL γ  γ  2g 2g Term-by-t erm-by-term erm analysis: •

 In a constant diameter pipe, KE terms cancel out.



 No machines means that h that  h p  = h  =  h t  = 0.

Energy equation (simplified form):

µ

¶ µ



 p1  p2   + z1   =   + z2 + hL γ  γ  h1   =   h2 + hL

Since section 1 is upstream of section 2, and head loss is always positive, we conclude that h that  h 1  > h2 . Th This is m mea eans ns ttha hatt   fluid   flows from high to low piezometric head.

25

 

7.20: PROBL PROBLEM EM DEFINITION Situation: Water   flows in a vertical pipe. L  = 10 10 m,  p A  = 10 kP kPaa.  pB   = 98. 98.1kPa 1kPa..

Find: Direction of   flow in a pipe: (a) Upward. (b) Downward. (c) No   flow ow.. PLAN 1. Calculate the piezometric head h head  h  at A and B., 2. To determine   flow direction, compare the piezometric head values. Whichever location has the larger value of   of   h  is upstream. If the h the  h  values are the same, there is no   flow ow.. SOLUTION 1. Piezometric head:   pA   + zA  = hA   = γ  hB   =   pB  + zB   = γ 

µ µ

 10000 kP  10000 kPaa 9810N// m3 9810N  98100 kP kPaa 9810N// m3 9810N

2. Since h Since  h A  > hB ,  the correct correct se selec lectio tion n is (b) .

26

¶ ¶

+ 10 10 m = 11 11..02 m + 0 = 10 10 m

 

7.21: PROBL PROBLEM EM DEFINITION Situation: Water   flowing from a tank into a pipe connected to a nozzle. α  = 1.0,  D B  = 40cm. 40cm. D0  = 20cm, 20cm,  z 0  = 0 m. zB   = 3.5 m,  z r  = 5 m.

Find: 3

(a) Discharge in pipe (m /s). (b) Pressure at point B (kPa). Assumptions: γ  =   = 9810 9810 N/ m3 . PLAN 1. Find velocity at nozzle by applying the energy equation. 2. Find discharge by applying Q applying  Q =  = A  A oV o 3. Find the pressure by applying the energy equation. SOLUTION 1. Energy equation (point 1 on reservoir surface, point 2 at outlet)  preser.  V r2   poutlet  V 02   +   + zr   =   +   + z0 γ  γ  2g 2g 2  V  0+0+5 = 0+ 0 2g V 0   = 9.90 90 m/s  m/s 2. Flow rate equation Q   =   V 0A0

π = 9.90 m/ s  ×  ( )  ×  (0  (0..20m)2 4 Q  = 0.311 311 m  m 3 /s 27

 

3. Energy equation (point 1 on reservoir surface, point 2 at B) 0+0+5=

  pB  V B2   +   + 33..5 γ  2g

where 3

48   m/s V B   =   V  Q =   0.311m / s 2   = 22..48 (π/ π/4) 4)  ×  (0.  (0.4 m) B V B2   = 0.312m 2g  pB   − 5 − 3.5 = 0.312 γ   pB   = 86 86..4   kP kPa a

28

 

7.22: PROBL PROBLEM EM DEFINITION Situation: Water drains from a tank into a pipe. x  = 10ft, 10ft,  y  = 4 ft.

Find: Pressure at point A point  A  (psf). Velocity at exit (ft/s). Assumptions: α2  = 1 PLAN To   find pressure at point A, apply the energy equation between point A and the pipe exit. Then, then ap apply ply energy equ equatio ation n betwe between en top of tank and the exit. SOLUTION Energy equation (point A to pipe exit). V A2 V 22  pA   p2   + zA + αA   + h p  =   + z2 + α2   + ht + hL γ  γ  2g 2g A 2 (continuity);   p2   = 0-gage; Term -gage;   (zA − zB ) =   y;   h p   = 0, ht  = 0by , hLterm  = 0.analysis:   Thus   V    =   V    (continuity); 

 pA   =   −γy =   −62 62..4lbf / ft3 × 4 ft  pA  =  −250 250 psf   psf  Energy equation (1= top of tank; 2 = pipe exit)  p1 V 2   p2 V 2   + z1 + α1 1   + h p  =   + z2 + α2 2   + ht  + hL γ  γ  2g 2g 2 z1  =   V 2   + z2

2g

29

 

Solve for velocity at exit V 2   = =

p  p 

2g (z1 − z2 )

2  ×  32  32..2 ft/ ft/ s2 × 14ft

V 2  = 30 30..0 ft/ ft/ s

30

 

7.23: PROBL PROBLEM EM DEFINITION Situation: Water drains from a tank into a pipe. x  = 10 10 m,  y  = 4 m.

Find: Pressure at point A point  A  (kPa). Velocity at exit (m/s). Assumptions: α1  = 1. PLAN 1. Fin Find d pre pressu ssure re at poin pointt A by apply applying ing the ener energy gy equat equation ion betw between een point A and the pipe exit. 2. Find velocity at the exit by applying the energy equation between top of tank and the exit. SOLUTION 1. Energy equation (section A to exit plane):  pA V 2   p2 V 2   + zA + αA A   + h p  =   + z2 + α2 2   + ht + hL γ  γ  2g 2g Term by term analysis:   V A   =   V 2   (continuity);  (continuity);   p2   = 0-gage; -gage;   (zA − zB ) =   y;   h p   = 0, ht  = 0,   h˙ L  = 0.   Thus  pA   =   −γy (1..5 m)  pA   =   − 9810N 9810N// m3 (1

¡

 pA  =

¢

−14 14..7kPa

31

 

2. Energy equation (top of tank to exit plane): V 12 V 22  p1   p2   + α1   + z1 + h p   =   + α2   + z2  + ht  + hL γ  γ  2g 2g 2   V  z1   = 2   + z2 2g V 2   = =

p  p 

2g (z1 − z2 ) 2  ×  9.  9.81 m/ s2 × 11  11..5 m

V 2  = 15 15..0 m/ s

32

 

7.24: PROBL PROBLEM EM DEFINITION Situation: Water is pushed out a nozzle by a pump. Q  = 0.1 m3 / s,  D 2  = 30 30 cm cm.. Dn  = 10cm, 10cm,  z n  = 7 m. z1  = 1 m,  z 2  = 2 m.

Find: Pressure head at point 2. SOLUTION Flow rate equation to   find nd V   V n  (velocity at nozzle) V n   =

  0.10 m3 / s   Q =   = 12 12..73 73 m/s  m/s An (π/4) π/4)  ×  (0  (0..10m)2

V n2   = 8.26 26 m  m 2g Flow rate equation to   find nd V   V 2   Q   0.10 m3 / s V 2   = =   = 11..41 41 m/s  m/s A2 (π/ π/4) 4)  ×  (0  (0..3 m)2 V 22   = 0.102 102 m  m 2g Energy equation  p2   + 00..102 + 2 = 0 + 8. 8.26 + 7 γ   p2  = γ 

1133.2  m

33

 

7.25: PROBL PROBLEM EM DEFINITION Situation: Oil moves through a narrowing section of pipe. DA  = 20 20 cm cm,,  D B  = 12cm. 12cm. L  = 1 m,  Q =  Q  = 0.06 m3/ s.

Find: Pressure diff erence erence between A between  A   and and B  B.. Properties: S   = 00..90. 90. SOLUTION Flow rate equation   Q A1 = 1.910 910m/s m/s

V A   =

2

µ¶

20 V B   = × V A 12 = 5.31 31 m/s  m/s Energy equation  pA − pB   = 1γ  +  + (ρ/ ( ρ/2)( 2)(V  V B2 − V A2 ) (0..9) +  pA − pB   = (1) 9810N 9810N// m3 (0

¡

¢

µ

900kg/ m3 900kg/ 2

 pA − pB   = 19 19..9kPa

34



((5..31 m/ s)2 − (1 ((5 (1..91 m/ s)2 )

 

7.26: PROBL PROBLEM EM DEFINITION Situation: Gasoline   flows in a pipe that narrows into a smaller pipe. Q  = 5 ft3 / s,  p 1  = 18 18 psig.  psig. hL  = 6 ft,   ∆z  = 12 ft. ft. 2 A1  = 0.8 ft ,  A 2  = 0.2 ft2.

Find: Pressure at section 2 (psig). Properties: S   = 00..90. 90. Water, Table A.5:   γ  =  = 62 62..4lbf / ft3 . PLAN Apply   flow rate equation and then the energy equation. SOLUTION Flow rate equation: V 1   =

 5   Q =   = 66..25ft 25ft// s 0.8 A1

V 12   =   (6 (6..25ft 25ft// s)2   = 00..60 6066 66 ft 2g 2(32.2 ft/ 2(32. ft/ s2 )  5   Q = V 2   =  = 25ft/ 25ft/ s 0.2 A2 V 22   (25ft/ (25ft/ s)2   = 99..705ft   = 2(32..2 ft/ 2(32 ft/ s2 ) 2g Energy equation:  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + 6 γ  2g γ  2g 18lbf / in2 × 14  1444 in2 / ft2   p2 0.8  ×  62  62..4lbf / ft3   + 00..6066ft 6066ft + 12ft = 0.8  ×  62  62..4lbf / ft3   + 99..70 7055 ft + 0 ft + 6 ft  p2   = 2437  psfg 35

 

 p2  = 16 16..9  psig

36

 

7.27: PROBL PROBLEM EM DEFINITION Situation: Water   flows from a pressurized tank, through a valve and out a pipe.  p1  = 100 kP kPaa,  z 1  = 8 m.  p2  = 0 kP kPaa, z2  = 0 m. hL  = K   =  K L V   , V   ,  V 2  = 10 m/ s.  2

2g

Find: The minor loss coefficient cient (  (K  K L) . Assumptions: Steady   flow ow.. Outlet   flow is turbulent so that α that  α 2  = 1.0. V 1 ≈ 0.

Properties: Water (15 Water  (15 C) C),, Table A.5:   γ  =   = 9800 9800 N/ m3 . ◦

PLAN Apply the energy equation and then solve the resulting equation to   find the minor loss coefficient. SOLUTION Energy equation (section 1 on water surface in tank; section 2 at pipe outlet) V 12 V 22  p1   p2   + α1   + z1 + h p  =   + α2   + z2 + ht  + hL γ  γ  2g 2g Term by term analysis: •

 At the inlet.   p1  = 100 kP kPaa,  V 1 ≈ 0,  z 1  = 8 m



 At the exit , p ,  p 2  = 0 kP kPaa, V 2  = 10 10 m/ s, α2  = 1.0.



 Pumps and turbines.   h p  = h  =  h t  = 0



V  2

  Head loss.   hL  = K   =  K L 2g

37

 

(1)

 

Eq. (1) simplifies to V 22 V 22  p1   + z1   =   α2   + K L 2g 2g γ  (100,, 00 (100 0000 Pa) (10m// s)2 (10m   (10m/ (10m/ s)2  + 8 m =  + K L 2 3 2 2 (9 (9..81 m/ s ) (9 (9800 800 N/ m ) 18 (9. .81 m/+s K  )  (5. 18..2 m = (25. 5(9 .09 097 7 m) L (5.097m) Thus K L  = 2.57 REVIEW

1. The mi minor nor lo loss ss coefficient cient (  (K  K L  = 2.57) 57) is  is typical of a valve (this information is presented in Chapter 10). 2. The hea head d at the inle inlett

 p1   + z1  = γ 

³ ³ ³

this energy goes to head loss

22 22..2 m  repre  represent sentss av availa ailable ble energy energy.. Mos Mostt of 

V  2 K L 22g   = V 2 2

´ ´ ´

17 17..1 m .   The remai remainder nder is carrie carried d as

kinetic energy out of the pipe α2 2g   = 5.1 m .

38

 

7.28: PROBL PROBLEM EM DEFINITION Situation: Water   flows from a pressurized tank, through a valve and out a pipe. Q  = 0.1 ft3 / s,   ∆z  = 10ft. 10ft.  p2  = 0  psig  psig,, D  = 1 in. hL  = K   =  K L V  .  2

2g

Find: Pressure in tank (psig). PLAN Apply the energy equation and then solve the resulting equation to give pressure in the tank. SOLUTION Energy equation (from the water surface in the tank to the outlet)  p1  V 12   p2  V 22   +   + z1  =   +   + z2 + hL γ  γ  2g 2g   V 22  p1   6V 22   =   + hL z1  = 10 γ  2g 2g −  −   0.1 ft3/ s   Q = V 2   = 188.33 33 ft/s  ft/s 2 = 1  1 A2 (π/ π/4) 4)  ft

¡ ¢ 12 2

  6(18. 6(18.33ft 33ft// s)  p1   =   − 10ft = 21. 21.3  ft γ  64 64..4 ft2/ s2  p1   = 62 62..4lbf / ft3 × 21  21..3 ft = = 1329  1329 psfg  p1  =  9.23 psig

39

 

7.29: PROBL PROBLEM EM DEFINITION Situation: Water   flows from an open tank, through a valve and out a pipe. A  = 9 cm2 ,   ∆z  = 11 11 m.  p1  = p  =  p2  = 0 kP kPaa. V  hL  = 5 .  2

2g

Find: Discharge in pipe. Assumptions: α  = 1. PLAN Apply the energy equation from the water surface in the reservoir (pt. 1) to the outlet end of the pipe (pt. 2). SOLUTION Energy equation:

2

2

1 2 2 1 2 L  pγ 1  +  V  2g   + z  =   pγ   +  V  2g   + z  + h

Term by term analysis:  p1   = 0;   p2  = 0 z2   = 0;   V 1   ' 0 The energy equation becomes.   V 22 z1   =   + hL 2g   V 22 V 22 V 22 11 m =  + 5  = 6 2g 2g 2g 2g 2 V 2   = 6 (11) V 2   =

µs  ¶ µ

2  ×  9  9..81 m/ s2 6

V 2   = 5.998 998 m/s  m/s



(1 (111 m)

Flow rate equation Q   =   V 2 A2

¡ ¢µ

= (5 (5..998m 998m// s) 9 cm2 = 5. 3982  ×  10

3  m

10 4 m2 cm2

3



Q  = 5.40  ×  10 40

s 3



m3 / s





 

7.30: PROBL PROBLEM EM DEFINITION Situation: A microchannel is designed to transfer   fluid in a MEMS application. D  = 200 μm,  L =  L  = 5 cm. Q  = 0.1  μ  μL L/ s.   32 32μLV  μLV  hL  =  . 2

γD

Find: Pressure in syringe pump (Pa). Assumptions: α  = 2. Properties: Table A.4:   ρ  = 799 799 kg/ kg/ m3 . PLAN Apply the energy equation and the   flow rate equation. SOLUTION Energy equation (locate section 1 inside the pumping chamber; section 2 at the outlet of the channel)  p1 V 2   =   hL + α2 γ  2g   32 32μLV  μLV  V 2 = γD 2   + 2 2g Flow rate The cross-sectional area of the channel is 3.14×10 10 7 l/s or 10 10 m3 /s. The   flow velocity is

8





 

m2.   A   flow rate of 0.1   μl/s is



 Q A   10 10 m3 / s = 3.14  ×  10 8 m2 = 0.318  ×  10 2 m/s

V    =







= 3.18 18 mm/s  mm/s Substituting the velocity and other parameters in Eq. (1) gives 41

(1)

 

 0..05  ×  0  0..318  ×  10   32  ×  1  1..2  ×  10 3 × 0  p1   =   γ  7, 850  ×  4  ×  (10 4 )2 = 0.0194 0194 m  m −



2



(0 (0..318  ×  10 2 ) 2  ×  9.  9.81 −

+ 2  ×

The pressure is  0.0194 0194 m  m  9..81 81   m/s2 × 0.  p1  = 799 kg/m 799  kg/m3 × 9  p1  = 152 Pa

42

2

 

7.31: PROBL PROBLEM EM DEFINITION Situation: Water   flows out of a   fire nozzle. V  V  =  = 40 40 m/ s,   ∆z  = 50 50 m. Ae /Ahose  = 1/4. hL  = 10 V  .  2

2g

Find: Pressure at hydrant. Assumptions: Hydrant supply pipe is much larger than the   firehose. Properties: Water, Table A.5, γ  A.5,  γ  =  = 9810 9810 N/ m3. PLAN Apply the energy equation. SOLUTION Energy equation   V 22  p1   + z1  =   + z2 + hL γ  2g where the kinetic energy of the   fluid feeding the hydrant is neglected. Because of the contraction at the exit, the outlet velocity is 4 times the velocity in the pipe, so the energy equation becomes   V 2  p1   V 2   = 2   + z2 − z1 + 10 γ  2g 16  ×  2  2gg

µ µ



1.625  V 2 + 50 γ  2g   1.625 2 =  (40 0 m / s) + 50 50 m 9810N/ 9810N/ m3   × (4 2 2  ×  9  9..81 m/ s = 1. 791  ×  106 Pa

 p1   =



 p1  = 1790 kP kPaa

43

 

7.32: PROBL PROBLEM EM DEFINITION Situation: Water   flows out of a syphon. L1  = L  =  L 2  = 3 ft. Q  = 2.8 ft3 / s,  D =  D  = 8 in.

Find: Pressure at point B point  B.. Assumptions: α  = 1. SOLUTION Flow rate equation V c   = V c   =

  Q A2   2.8 ft3 / s

(π/ π/4) 4)  × = 8.02 02 ft/s  ft/s

2  8  ft 12

¡ ¢

Energy equation (from reservoir surface to C  to  C ))  p1  V 12   pc  V c2   +   + z1   =   +   + zc + hL γ  2g γ  2g  (8.  (8 .02ft 02ft// s)2   + 0 + hL 0 + 0 + 3 ft = 0 + 64 64..4 ft2 / s2 hL   = 2.00 00 ft  ft Energy equation (from reservoir surface to B to  B)).   pB

 V B2

 ×

0 + 0 + 3 ft = γ   γ   + 2g   + 6 ft + ((33/4)

44

 2 ft ;   V B   = V C   = 8.02 02 ft/s  ft/s

 

 pB   = 3 − 1 − 6 − 1.5 = −5.5  ft γ   pB   =   −5.5 ft  ×  62  62..4lbf / ft3 =   −343 343 psfg  psfg  pB   = −2.38 38 psig  psig

45

 

7.33: PROBL PROBLEM EM DEFINITION Situation: A siphon transports water from one reservoir to another. zA  = 30 30 m,  z B  = 32 32 m. zC  = 27 27 m,  z D  = 26 26 m. D  = 25cm. 25cm. hp i p e   =   V 2pg .  2

Find: Discharge. Pressure at point B point  B.. Assumptions: α  = 2. PLAN Apply the energy equation from A to C, then from A to B. SOLUTION Head loss hp i p e

V  p2  = 2g

htotal

V  p2   =   hp i p e   + ho utlet   = 2 2g

Energy equation (from A to C) V  p2 0 + 0 + 30m = 0 + 0 + 27 m + 2 2g V  p   = 5.42 42 m/s  m/s

46

 

Flow rate equation Q   =   V  p A p = 5.42 m/ s   × (π/  (π/4) 4)  ×  (0.  (0.25m)2 Q  = 0.266 266 m  m 3 /s Energy equation (from A to B) V  p2   pB V  p2   +   + 3322 m + 00..75 30 m = 2g 2g γ   pB   =   −2 − 1.75  ×  1  1..497 497 m  m γ   pB   = −45 45..3  kPa, gage

47

 

7.34: PROBL PROBLEM EM DEFINITION Situation: A siphon transports water from one reservoir to another.  pv   = 1.23 kP kPaa,  p atm = 100kPa. 100kPa. Q  = 8  ×  10 4 m3 / s,  A =  A  = 10 4 m2 . hL,A B   = 11..8V 2 /2g. −





Find: Depth of water in upper reservoir for incipient cavitation. PLAN Apply the energy equation from point A to point B. SOLUTION Flow rate equation V    = =

 Q A   8  ×  10

4

m3 /s



1  ×  10 = 8 m/ s

4



m2

Calculations V 2   (8 m/ s)2   = 3.262m   = 2  ×  9  9..81 m/ s2 2g V 2 872 m  m hL,A B   = 1.8   = 5.872 2g →

Energy equation (from A to B; let z let  z  = 0  at bottom of reservoir)   pB  V B2  pA  V A2   +   + zB  + hL   +   + zA   = 100000γ Pa 2g 100000   γ 1230 12302Pga   + 0 + z   =   + 33..26 2622 m + 10 m + 5.872m A 9810N// m3 9810N 9810N/ m3 9810N/ 48

 

zA  =  depth  depth =  = 9.07 m

49

 

7.35: PROBL PROBLEM EM DEFINITION Situation: A reservoir discharges water into a pipe with a machine. d  = 6 in,  D =  D  = 12in. 12in. 12ft. ∆z1  = 6 ft,   ∆z2  = 12ft. 3 Q  = 10ft / s.

Find: Is the machine a pump or a turbine? Pressures at points A points  A  and  and B  B  (psig)  (psig).. Assumptions: Machine is a pump. α  = 1.0. PLAN Apply the energy equation between the top of the tank and the exit, then between point B and the exit,   finally between point A and the exit. SOLUTION Energy equation   V 22 z1 + h p  =   + z2 2g Assuming the machine is a pump. If the machine is a turbine, then h p  will be negative. The velocity at the exit is   10ft3 / s  Q = π V 2  = 50..93 93 ft/s  ft/s 2   = 50 A2  (0.  (0 . 5ft) 4 Solving for h for  h p  and taking the pipe exit as zero elevation we have h p  =

  (50 (50..93ft 93ft// s)2  ×

(6 + 12) ft = 22 22..3  ft

2

2  32  32..2 ft/ ft/ s Therefore the machine is a pump.

 − 50

 

Applying the energy equation between point B and the exit gives  pB   + zB   = z2 γ  Solving for p for  p B  we have  pB   =   γ (z2 − zB )  pB   =   −6 ft  ×  62  62..4lbf / ft3 = −374 374 psfg  psfg  pB   = −2.6  psig

Velocity at A V A  =

2

µ¶  6 12

 50..93ft  50 93ft// s = 12. 12.73 73 ft/s  ft/s

×

Applying the energy equation between point A and the exit gives  pA  V A2   V 22 γ   γ   + zA + 2g   = 2g so V 22 V A2  pA   =   γ    − zA − 2g 2g

µ

= 62 62..4lbf / ft3 ×

Ã



2

2

(50..93ft (50 93ft// s) − (12 (12..73ft 73ft// s)   2  ×  32  32..2 ft/ ft/ s2

= 1233  psfg  pA  =  8.56 psig

51

!

− 18

 

7.36: PROBL PROBLEM EM DEFINITION Situation: Water   flows through a pipe with a venturi meter. D  = 30cm, 30cm,  d =  d  = 15 cm cm..  patm = 100 kP kPaa,  H   H    = 5 m.

Find: Maximum allowable discharge before cavitation. Assumptions: α  = 1.0. Properties: ◦

Water (10 Water  (10 C) ,  Table A.5:   pv  = 2340 Pa, 2340  Pa, abs. SOLUTION Energy equation (locate 1 on the surface of the tank; 2 at the throat of the venturi)  p1  V 12   p2  V 22   +   + z1   =   +   + z2 γ  2g γ  2g   p2,vapor  V 22   +  + 0 0+0+5 = γ  2g  p2,vapor   = 2340 − 100 100,, 000 = −97 97,, 660 660 Pa  Pa gage Then V 22   97660 97660 Pa   = 5m +   = 14 14..97 97 m  m 2g 9790N// m3 9790N V 2   = 17 17..1  m/s Flow rate equation Q   =   V 2 A2 = 17 17..1 m/ s  × π/4 π/ 4  ×  (0.  (0.15m)2 Q  = 0.302 302 m  m 3 /s

52

 

7.37: PROBL PROBLEM EM DEFINITION Situation: A reservoir discharges to a pipe with a venturi meter before draining to atmosphere. D  = 40cm, 40cm,  d =  d  = 25 cm cm..  patm  = 100 kP kPaa,  h L  = 0.9V 22 /2  /2g.

Find: Head at incipient cavitation ( cavitation  ( m) m).. Discharge at incipient cavitation ( cavitation  ( m3 / s) s).. Assumptions: α  = 1.0. Properties: From Table A.5 p A.5  p v  = 2340 Pa, 2340  Pa, abs. PLAN First apply the energy equa First equation tion from th thee V Vent enturi uri sectio section n to the end of the pipe. Then apply the energy equation from reservoir water surface to outlet: SOLUTION Energy equation from Venturi section to end of pipe:  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + hL γ  2g γ  2g V 2  V  2  pvapor  V 12   = 0 + 2   + 00..9 2   + 2g 2g 2g γ   pvapor   = 2, 340 Pa 340  Pa abs. = abs. = −97 97,, 660 660 Pa  Pa gage Continuity Contin uity principle V 1 A1   =   V 2 A2   V 2 A2 V 1   = A1 = 2.56 56V  V 2 Then

V 22 V 12 2g   = 6.55 2g

Substituting into energy equation 53

 

V 22 V 22 −97 97,, 660 660//9, 790 + 6. 6.55   = 1.9 2g 2g V 2   = 6.49 49 m/s  m/s Flow rate equation Q   =   V 2 A2 = 6.49 m/ s  × π/ π/44  ×  (0.  (0.4 m)2 Q  = 0.815 815 m  m 3 /s Energy equation from reservoir water surface to outlet:   V 22 z1   =   + hL 2g V 22 H    = 1.9 2g H   = 4.08 08 m  m

54

 

7.38: PROBL PROBLEM EM DEFINITION Situation: A pump   fills a tank with water from a river. Dtank   = 5 m,  D pipe  = 5 cm. hL  = 10V  10V 22 /2  /2g ,  h p  = 20 − 4  ×  104Q2 .

Find: Time required to   fill tank to depth of 10 m. Assumptions: α  = 1.0. SOLUTION Energy equation (locate 1 on the surface of the river, locate 2 on the surface of the water in the tank).  p1  V 12   p2  V 22   +   + z1  =   +   + z2 + hL γ  γ  2g 2g but p but  p 1  = p  =  p2  = 0, z1  = 0, V 1  = 0, V 2   ' 0  0..  The energy equation reduces to 0 + 0 + 0 + h p  = 0 + 0 + (2 (2 m  m + h) + hL where h where  h =  =depth depth of water in the tank 20 − (4)(104 )Q2 =  h + 2 +

V 2  V  2   + 10 2g 2g

where V  where  V  2/2g  is the head loss due to the abrupt expansion. Then V 2 18 = (4)(10 )Q + 11   + h 2g 4

2

 Q A 2 V    11 Q2 11   =  = (1 (1..45)(105 )Q2 2 2g 2g A 18 = 1.85  ×  105 Q2 + h   18 − h Q2 = 1.85  ×  105   (18 − h)0.5 Q = 430 V    =

µ ¶ 55

 

But Q But  Q =  = A  A T dh/dt dh/dt where  where A  A T   =  tank area, so

dh/(18 dh/ (18 − h)0.5 Integrate:

dh   (18 − h)0.5   (18 − h)0.5 ∴  =  = dt (430)(π/ (430)( π/4)(5) 4)(5)2 8, 443 =   dt/ dt/88, 443

t −2(18 − h)0.5 = 8  , 443  +   const.

But t But  t =  = 0  when  when h  h =  = 0  so const.   = −2(18)0.5 .  Then t  = (180.5 − (18 − h)0.5 )(16 )(16,, 886) For or h  h =  = 10 m 10  m t   = (180.5 − 80.5)(16 )(16,, 886) = 23 23,, 880 880 s  s t  = 6.63 h

56

 

7.39: PROBL PROBLEM EM DEFINITION Situation: Water is   flowing in a horizontal pipe. D  = 0.15 m,  L =  L  = 60 60 m. V  V    = 2 m/ s. hL  = 2 m.

Find: Pressure drop (Pa). Pumping power (W). Properties: Water (15 (15 C), Table A.5:   γ  =   = 9800 9800 N/ m3 . ◦

PLAN 1. Find pressure drop using the energy equation. 2. Find power using the power equation. SOLUTION 1. Energy equation:  p1 V 12   p2 V 22   + α1   + z1 + h p  =   + α2   + z2 + ht  + hL γ  γ  2g 2g •

  let   ∆ p =  p  = p  p1 − p2



 KE terms cancel.



 Elevation terms cancel.



  h p  = h  =  h t  = 0 ∆ p

  =   γh L = 9800N/ 9800N/ m3 (2m)

¡

∆ p =  p =

¢

19 19..6 kPa

2. Power equation: ˙  p  = γ W   =  γQh Qh p  =  mgh ˙  p •

 The head of the pump must equal the head loss. 57

 



  Q  = V  =  V A  = (2 (2 m/ s) (π/ π/4)(0 4)(0..15m)2 = 0. 0 .0353m3 / s. ˙  p   =   γQh L W  9800N = m3

µ

¶¡

0.0353m3 / s (2m)

˙ W  p  = 692 692 W

¢

REVIEW The pump would need to supply about 0.9 hp to the water.

58

 

7.40: PROBL PROBLEM EM DEFINITION Situation: A fan is moving air through a hair dryer. ∆ p =  p  = 6 mm-H20 = 58 =  58..8 Pa Pa,, V  V  =  = 10 10 m/ s. D  = 0.044m 044m,,  η  = 60%. 60%.

Find: Electrical power (watts) to operate the fan. Assumptions: Air is at a constant temperature. Constant diameter:   D1  = D  =  D2  = 0.044m 044m.. Properties: Air (60 (60 C), Table A.3, γ  A.3,  γ    = 10 10..4 N/ m3 . ◦

PLAN 1. Find head loss using the energy equation. 2. Find power supplied to the air using the power equation. 3. Find electrical power using the efficiency equation. SOLUTION 1. Energy equation:  p1 V 12   p2 V 22   + α1   + z1 + h p  =   + α2   + z2 + ht  + hL γ  γ  2g 2g •

 locate section 1 just downstream of fan  fan   ( p1  = 58 58..8Pa) 8Pa);; section 2 at exit plane ( p2  = 0) .



 KE terms cancel.



 Elevation terms cancel.



  h p  = h  =  h t  = 0. hL  =   pγ 1  = 10   58 58. 8 Pa 10. .4.N / m3   = 5.65 m

59

59

 

2. Power equation: ˙  p  = γ ˙  p W   =  γQh Qh p  =  mgh •

 Assume that head supplied by the fan equals the head loss.



  Q  = V  =  V A  = (10 (10 m/ s) (π/ π/4)(0 4)(0..044m)2 = 0. 0 .0152m3 / s. fan   =   γQh L W  ˙ fan 10 10..4 N = m3 = 0.893W

µ ¶¡

3. Efficiency equation: P electrical electrical   =

0.0152m3 / s (5 (5..65m)

¢

  0.893W   P fan fan  = η 0.6

P electrical electrical  = 1.49 W REVIEW The electrical power to operate the fan ( fan  ( ≈ 1.5 W) W) is  is small compared to the electrical power to heat the air.

60

 

7.41: PROBL PROBLEM EM DEFINITION Situation: A pump supplies energy to a   flowing   fluid Q  = 5 ft3 / s, α = 1.0. DA  = 1.0 ft, ft, pA  = 5  psig. DB   = 00..5 ft ft,, pB   = 90 90 psig.  psig.

Find: Horsepower delivered by pump ( pump  ( hp) hp). PLAN Apply the   flow rate rate equatio equation, n, then the energy equati equation on from A to B. Then appl apply y the power equation. SOLUTION Flow rate equation:   Q   5 ft3 / s V A   = =   = 6.366ft 366ft// s AA (π/ π/4) 4)  ×  (1 ft) ft)2 V A2   (6 (6..366ft 366ft// s)2   = 0.6293 6293 ft   = 2  ×  (32  (32..2 ft/ ft/ s2 ) 2g   Q   5 ft3 / s V B   = =   = 25 25..47 47 ft/s  ft/s AB (π/ π/4) 4)  ×  (0  (0..5ft)2 2 B V 

2g

2

10..07ft   =   (25 (25..47ft 47ft// s) 2   = 10 2  ×  (32  (32..2 ft/ ft/ s )

Energy equation:

5  ×

Power equation:

 pA  V A2   pB  V  2   +   + zA + h p  =   + B   + zB γ  γ  2g 2g 144 144  + (0. (0 .6293) + 0 + h p  = 90  ×  + 10 10..07 + 0 62 62..4 62 62..4 h p  = 205. 205.6 ft

61

 

  Qγh p 550 3  205..6 ft   5 ft / s   × 62  62..4lbf / ft3 × 205 = 550 P  = P  = 117 117 hp P ( P (hp) hp) =  =

62

 

7.42: PROBL PROBLEM EM DEFINITION Situation: A pump moves water from a tank through a pipe. Q  = 8 m3 / s,  h L  = 7V 2 /2g . D  = 1 m.

Find: Power supplied to   flow ow (MW)  (MW).. Assumptions: α  = 1.0. PLAN Find power using the power equation. The steps are 1. Find velocity in the pipe using the   flow rate equation. 2. Find head of the pump using the energy equation. 3. Calculate power. SOLUTION 1. Flow rate equation  Q A   8 = π/4 π/ 4  ×  (  (11 m)2 = 10 10..2   m/s

V    =

2. Energy equation (locate 1 on the reservoir surface; locate 2 at the out of the pipe). V 12 V 22  p1   p2   + α1   + z1 + h p   =   + α2   + z2  + ht  + hL γ  2g γ  2g 2  V  V 2 0 + 0 + 40 + h p   = 0 +   + 20 + 7 2g 2g 2 2 V    (10. (10.2 m/ s)   = 5.30 30 m  m   = 2  ×  9  9..81 m/ s2 2g Then   V 2 V 2 40 + h p   =  + 20 + 7 2g 2g h p   = 8  ×  5  5..30 + 20 − 40 = 22 22..4  m

63

 

3. Power equation P    =   Qγh p = 8 ft ft3 / s  ×  98  9810 10 N/ m3 × 22  22..4 m P   P   = 11..76MW

64

 

7.43: PROBL PROBLEM EM DEFINITION Situation: An engineer is estimating the power that can be produced by a small stream. Q  = 1.4  cfs,  cfs, T   T    = 4400 F, H   =34 ft. ft. ◦

Find: Estimate the maximum power that can be generated ( generated  ( kW) W) if:  if: hL  = 0 ft,  η t  = 100%, 100%,  η g  = 100%. 100%. hL  = 5.5 ft ft,,  η t  = 70%, 70%,  η g  = 90%. 90%. PLAN To   find the head of the turbine   (h ), apply the energy equation from the t upper water water surface (sect (section ion 1) to the low lower er water sur surface face (secti (section on 2). To calcula calculation tion power, use P  use  P    =  η(  η (mgh  ˙ t ),  where  where η  η  accounts for the combined efficiency of the turbine and generator. SOLUTION Energy equation  p1 V 12   p2 V 22   + α1   + z1  =   + α2   + z2 + ht + hL γ  γ  2g 2g Term by term analysis  p1   = 0;   V 1 ≈ 0  p2   = 0;   V 2 ≈ 0 z1 − z2   =   H  Eq. (1) becomes H    =   ht  + hL ht   =   H  − hL Flow rate mg ˙   =   γQ = 62 62..4lbf / ft3 = 87 87..4lbf / s

¡

1.4 ft3 / s

¢¡

¢

 

(1)

65

 

Power (case a) P    = = = =

  mgh ˙ t   mgH  ˙ (87.4lbf / s)(34ft)(1 s)(34ft)(1..356J 356J/ / ft  ·  lbf) 4.02kW

Power (case b).  ˙ (H  − hL) P    =   η mg = (0 (0..7)(0 7)(0..9) (8 (877.4lbf / s)(34ft − 5.5ft)(1 5ft)(1..356J 356J/ / ft  ·  lbf) = 2.128kW

Power (case a) = 4.02 kW Power (case b) = 2.13 kW

REVIEW 1. In th thee idea ideall ca case se (c (cas asee a) a),, all all of the the el elev evat atio ion n head head is used used to ma mak ke pow power er.. When typical head losses and machine efficiencies are accounted for, the power production is cut by nearly 50%. 2. From Ohm’s la law, w, a pow power er of 2.13 kW will produce a current of about 17.5 amps at a vo volta ltage ge of 12 120V 0V.. Th Thus, us, the tur turbin binee wil willl pro provid videe eno enough ugh pow power er for about 1 typical typical househ household old circui circuit. t. It is unlikel unlikely y the turbine syste system m will be practical (too expensive and not enough power for a homeowner).

66

 

7.44: PROBL PROBLEM EM DEFINITION Situation: A pump draws water out of a tank and moves this water to a higher elevation. DA  = 8 in,  D C  = 4 in. V C 12ft/ s, P  = P  = 25hp. 25hp. C   = 12ft/ η  = 60%, 60%,

hL  =

2 C  2V  /2g.

Find: Height ( Height  (h h)above water surface. Assumptions: α  = 1.0. PLAN Apply the energy equation from the reservoir water surface to the outlet. SOLUTION Energy equation  p1 V 12   p2 V 22   + α1   + z1 + h p   =   + α2   + z2  + hL γ  γ  2g 2g 0 + 0 + 0 + h p   =

2 0+ + V   V c   +

2 2 V c 2V 

2g h + 2g V c2 h p   =   h + 3 2g

Velocity head

V c2  (12ft  (12ft// s)2   = 22..236 236   ft  = 64 64..4 ft/ ft/ s2 2g

Q   =   V C  C AC 

µ ¶Ã

= s = 1.047ft3/ s

π (4 (4//12ft)2 4

(1)

(2)

Flow rate equation

12ft

 

!

67

 

Power equation   Qγh p 550ηη 550   P  (550)   (550) η h p   = Qγ 

P   ( h hp p) =

  25hp(550)0. 25hp(550)0.6 1.047ft3 / s  ×  62  62..4lbf / ft3 = 126.3 ft  

=

Substitute Eqs. (2) and (3) into Eq. (1) V c2 h p   =   h + 3 2g 126..3 fftt =   h + (3  ×  2. 126  2. 236) ft h   = 119.6 ft

h  = 120 ft 120  ft

(3)

68

 

7.45: PROBL PROBLEM EM DEFINITION Situation: A pump draws water out of a tank and moves this water to a higher elevation. DA  = 20 20 cm cm,,  D C  = 10cm. 10cm. V C P  = 35kW. 35kW. C    = 3 m/ s, P  = η  = 60%, 60%, hL  =

2 2V C /2g.

Find: Height h Height  h  in meters. Assumptions: α  = 1.0. Properties: Water (20 (20 C), Table A.5:   γ  =   = 9790 9790 N/ m3 . ◦

SOLUTION Energy equation:  pA V A2   pC  V C 2   + αA   + zA + h p   =   + αC    + zC  + hL γ  γ  2g 2g  V c2 V c2 0 + 0 + 0 + h p   = 0 + 2g   + h + 2 2g V c2 h p   =   h + 3 2g Velocity head:

V c2   (3 m/ s)2   = 0.4587m  = 2 (9 (9..81 m/ s2 ) 2g

Flow rate equation: Q   =   V C  C   AC  π (0 (0..1 m)2 4

= (3 m m// s)

Ã

= 0.023 02356 56 m3 / s

!

 

(1)

69

 

Power equation:   Qγh p η   Pη h p   =  = P    =

Qγ 

 

35000W  ×  0.  0.6 3

3

  = 9911.05 m

(0 (0..02 0235 3566 m / s)(9790N s)(9790N// m )

Eq. (1): V c2 h   =   h p − 3  = (91. (91.05m) − 3 (0 (0..45 4587 87 m) 2g h  = 89 89..7 m

70

 

7.46: PROBL PROBLEM EM DEFINITION Situation: A subsonic wind tunnel is being designed. A  = 4 m2 ,  V  =  V  = 60 60 m/ s. V T  hL  = 0.025 2g .  2

Find: Power required ( required  ( kW) W).. Assumptions: α  = 1.0. Properties: ρ  = 1.2 kg kg// m3 . PLAN To   find power, apply the power equation. The steps are 1. Fin Find d the head of the pump by app applyi lying ng the ene energy rgy equa equatio tion n and the con contin tinuit uity y equation together. 2. Calculate power. SOLUTION 1. Finding head of the pump •

  Energy equation  p1  +  V 12   + z1 + h p   =   p2  +  V 22   + z2 + hL γ  2g γ  2g  V 22 V T 2 0 + 0 + 0 + h p   = 0 +  + 0 + 0. 0.025 2g 2g



 Continuity principle V T  T AT    =   V 2 A2   V T  T AT  V 2   = A2 =   V T   0.4 T   × 0. 2 V 2 V T 2 2g   = 0.16 2g

71

 



 Combining previous two equations   V T 2 (0 (0..185) 2g   (60m/ (60m/ s)2 (0 (0..185) = 2  ×  9  9..81 m/ s2

h p   =

h p   = 33 33..95 95   m 2. Power equation P    =   Qγh p = (V A) (ρg ρg)) h p = 60 m/ s  ×  4 m2

¡

1.2 kg/ kg/ m3 × 9.  9.81 m/ s2 (33 (33..95m)

¢¡

P   P   = 9955.9  kW

¢

72

 

7.47: PROBL PROBLEM EM DEFINITION Situation: A pumping system delivers water. zA  = 110ft, 110ft,  z B  = 200ft. 200ft. zC  = 110 ft, ft,  z D  = 90 ft. ft. 2

A  = 0.1 ft .

Find: Power delivered by pump ( pump  ( hp) hp). SOLUTION

0 + 0 + 110 + h p   = 0 + 0 + 200; 200;   h p  = 90 90 ft  ft   Qγh p P (hp) P (hp)   = 550 Q   =   V  j A j   = 0.10 10 V   V  j V  j   = 2g   × (200 − 110) 110) ft = 76 76..13 13 ft/s  ft/s 3 Q   = 7.613 613   ft /s Power equation

p  P    =   Qγh p   7.613ft3 / s  ×  62  62..4lbf / ft3 × 90 ft P    = 550 P   P   = 77 77..7  hp

73

 

7.48: PROBL PROBLEM EM DEFINITION Situation: A pumping system delivers water. zA  = 40 40 m,  z B  = 65 65 m. zC  = 35 35 m,  z D  = 30 30 m. 2

A  = 25 cm .

Find: Power delivered by pump ( pump  ( kW) kW). PLAN Apply the energ Apply energy y equation from the reserv reservoir oir wat water er surface to point B. Then apply the power equation. SOLUTION Energy equation  p  V  2   pB  V B2   +   + z + h p   =   +   + zB γ  2g γ  2g 0 + 0 + 40 + h p   = 0 + 0 + 65 65;;  h p  = 25 25 m  m Flow rate equation Q   =   V  j A j   = 25  ×  10



4



m2 × V  j

where V  where  V  j j   = 2g   × (65 − 35) = 24. 24.3  m/s  24..3 = 00..0607 0607 m  m 3 /s Q   = 25  ×  10 4 × 24 −

Power equation P    =   Qγh p P    = 0.0607m3 / s  ×  9  9,, 810N 810N// m3 × 25 m P   P   = 1144.9  kW

74

 

7.49: PROBL PROBLEM EM DEFINITION Situation: A pumping system pumps oil. L  = 1 mi,  D  = 1 ft. ft. Q  = 3500 gpm, 3500  gpm,   ∆z  = 200ft. 200ft. ∆

 p =  p  = 60 psi 60  psi.. Find: Power required for pump ( pump  ( hp) hp). Properties: γ  =  = 0.53lbf / ft3 . SOLUTION Energy equation h p  = z  =  z2 − z1 + hL Expressing this equation in terms of pressure γh p  = γ  =  γzz2 − γz 1 + ∆ ploss Thus pressure rise across the pump is γh p  = 53 53 lbf/ft  lbf/ft3 × 200  200   ft +60  ×  144  144 lbf/ft  lbf/ft2 = 19 19,, 240 240   psf  Flow rate equation Q   =   V   × A   ft3 /s Q   = 3500   gpm × 0  0..002228   = 77..80 80   cfs gpm Power equation ˙   =   Qγh p W  = 7.80 80 cfs  cfs  ×

19 19,, 240 240 psf   psf  550

˙  = 273 hp W  W  = 273  hp

75

 

7.50: PROBL PROBLEM EM DEFINITION Situation: Water is pumped from a reservoir through a pipe. V  Q  = 0.35 m3 / s,  h L  = 2 2g . z1  = 6 m,  z 2  = 10 10 m.  2 2

D1  = 40cm, 40cm,  D 2  = 10 10 cm cm..  p2  = 100 kP kPaa.

Find: Power (kW) that the pump must supply. Assumptions: α  = 1.0. Properties: Water (10 (10 C), Table A.5:   γ  =   = 9810 9810 N/ m3 . ◦

PLAN Apply the   flow rate equation, then the energy equation from reservoir surface to the 10 m elevatio elevation. n. Then app apply ly the pow power er equat equation. ion. SOLUTION Flow rate equation:  Q A   0.35 = (π/4) π/4)  ×  (0  (0..3 m)2 = 4.95 95 m/s  m/s

V    =

V 22   = 1.250 250 m  m 2g

76

 

Energy equation (locate 1 on the reservoir surface; locate 2 at the pressure gage)   1000 100000 00 Pa   + 11..25 m + 10 m + 2.0 (1 (1..25m) 9810N// m3 9810N h p   = 17 17..94 m

0 + 0 + 6 m + h p   =

Power equation: P    =   Qγh p = 0.35 m3 / s

¡

(17..94m) 9810N// m3 (17 9810N

¢¡

P   P   = 61 61..6 kW

¢

77

 

7.51: PROBL PROBLEM EM DEFINITION Situation: Oil is pumped through a pipe attached to a manometer   filled with mercury. Q  = 6 ft3 / s,   ∆h  = 46in. 46in. D1  = 12in, 12in,  D 2  = 6 in.

Find: Horsepower pump supplies (hp) supplies  (hp).. Assumptions: α  = 1.0. Properties: Table A.5:   S mercury 13..55 55.. mercury   = 13 S oil oil  = 0.88 PLAN Apply the   flow rate rate equa equati tion on,, then then the en ener ergy gy equ equat atio ion. n.

Th Then en app apply ly the pow power er

equation. SOLUTION Flow rate equation V 1122   2 V 12 /2g   V 6   V 62 /2  /2g  

  6 ft3 / s   Q = =   = 77..64ft 64ft// s A12 (π/ π/4) 4)  ×  (1 ft) ft)2 = 0.906 906 ft  ft = 4V 1122  = 30 30..56 56 ft/s  ft/s = 14 14..50 50 ft  ft

78

 

Energy equation

µ

¶−µ



 p6  p12   + z6   + z12   = γ  γ  2  p12  V 12   + z12 +   + h p   = γ  2g

µ



h p   = h p   =

  (13 (13..55 − 0.88) 46  ft 12 0.88  p6  V 62   + z6 + γ  2g 13 13..55  3.833 ft + 14 14..50ft − 0.906ft   − 1 × 3. 0.88 68 68..8  ft

¡ ¢

µ

¶¶

Power equation P (hp) P (hp)   =   Qγh p /550  62..4lbf / ft3   6 ft3 / s  × 0.88  ×  62 P    = 550 P   P   = 41 41..2  hp

¡

¢

 68..8 ft  68

×

79

 

7.52: PROBL PROBLEM EM DEFINITION Situation: Q  = 500 cfs, 500  cfs, η  η  = 90%. 90%. V  hL  = 1.5 2g , D  ,  D =  = 7 ft. z1  = 35 35 ft, ft,  z 2  = 0 ft.  2

Find: Power output from turbine. Assumptions: α  = 1.0. PLAN Apply the energy equation from the upstream water surface to the downstream water surface. surfa ce. Then ap apply ply the po power wer eq equatio uation. n. SOLUTION Energy equation:  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + hL + ht γ  2g γ  2g V 2 0 + 0 + 35 = 0 + 0 + 0 + 1.5   + ht 2g  Q   500ft3 / s V    =  =   = 12 12..99 99 ft/s  ft/s A (π/4) π/4)  ×  (7 ft) ft)2 V 2   = 2.621 621 ft  ft 2g ht   = 35 ft f t − 1.5 (2 (2..621 621 ft) ft) = 31 31..07 07   ft Power equation: equation: P (hp) P (hp)   = =

  Qγh t η 550   (500ft3 / s)(62 s)(62..4lbf / ft3 )(31 )(31..07ft  ×  0.  0.9) 550 P  = P  = 1590hp 1590 hp = 11..18MW

80

 

7.53: PROBL PROBLEM EM DEFINITION Situation: A hydraulic power system consists of a dam with an inlet connected to a turbine. H  =   = 15 15 m,  V 2  = 5 m/ s. Q  = 1 m3 / s.

Find: Power produced by turbine ( turbine  ( kW) W).. Assumptions: All head loss is expansion loss. 100% efficiency. PLAN Apply the energy equation from the upstream water surface to the downstream water surface. surfa ce. Then ap apply ply the po power wer eq equatio uation. n. SOLUTION Energy equation  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + hL + ht γ  γ  2g 2g  V 22 0 + 0 + 15 m 15  m   = 0 + 0 + 0 + ht  + 2g (5 m/ s)2 ht   = 15 15   m − 2  ×  9.  9.81 m/ s2 = 13 13..73 73   m Power equation P    =   Qγh t = (1 (1 m  m3 /s)(9810 /s)(9810 N/m  N/m3 )(13 )(13..73 73 m  m)) P  = P  = 135 kW 135  kW

81

 

7.54: PROBL PROBLEM EM DEFINITION Situation: A pump transfers SAE-30 oil between two tanks. Dtank  = 12 12 m,  D pipe  = 20 cm. V  hL  = 20 2g , h  ,  h p  = 60 60 m.  2

zA  = 20 20 m,  z B   = 1 m.

Find: Time required to transfer oil ( oil  ( h). h). PLAN Apply the energy equation between the top of the   fluid in tank A to that in tank B. SOLUTION Energy equation h p  + zA  = z  =  zB  + hL or h p  + zA  = z  =  zB  + 20

V 2 2g

Solve for velocity

 +

 V  2 2g

  2g (h p + zA − zB ) 21   2  ×  9  9..81 V 2 =   (60 + zA − zB ) 21 V    = 0.9666(60 + zA − zB )1/2

V 2 =

The sum of the elevations of the liquid surfaces in the two tanks is zA + zB   = 21 So the energy equation becomes

82

 

V  V    = 0.9666(81 − 2zB )1/2 Continuity Contin uity equation  (0.  (0 .2 m)2   Apipe dzB =  V    =   V  Atank dt (12m)2 = =

¡¡

2.778  ×  10 2.778  ×  10

4



4



¢¢

V  0.9666(81 − 2zB )1/2

= 2.685  ×  10 4(81 − 2zB )1/2 −

Separate variables dzB   = 2.685  ×  10 4 dt 1 / 2 (81 − 2zB ) −

Integrate

20ft

2.685  ×  10 4 dt

 =

(81 − 2zB )1/2

1

81

∆t −

Z  ¡−√  − ¢ ¡ p  − ´ ¡ ¡ Z 

³−p  −

dzB

81

2 (2 (20) 0) +

81

20ft 2zB 1 ft  

0

4

=

2.685  ×  10



2(1)   =

2.685  ×  10



2. 485 1 = 2.685  ×  10 ∆t   = 9256s



t  = 9260s = 2. 2.57 h

4

4

¢ ¢ ¢

∆t ∆t ∆t

83

 

7.55: PROBL PROBLEM EM DEFINITION Situation: A pump is used to pressurize a tank. Dtank   = 2 m,  D pipe  = 4 cm. hL  = 10 V 2g , h  ,  h p  = 50 50 m.  2

zA  = 20 20 m,  z B   = 1 m.  pT   = 4  3zt p0 ,  p 0  = 0 kP kPaa  gage  gage =  = 100 kP kPaa. −

Find: Write a computer program to show how the pressure varies with time. Time to pressurize tank to 300   kPa (s) . PLAN Apply the energy equation between the water surface at the intake and the water surface inside the tank. SOLUTION Energy equation   p2   + z2 + hL γ  Expressing the head loss in terms of the velocity allows one to solve for the velocity in the form h p + z1  =

V 2 =

  2g  pt (h p + z1 − zt −  ) γ  10

Substituting in values   3 1/2 ) 4 − zt The equation for the water surface elevation in the tank is 10..19 V  V    = 11..401(46 − zt − 10

∆zt  = V   =  V  A  A p ∆t =

At

 2500 V  ∆t

84

 

A computer program can be written taking time intervals and   finding the   fluid level and pressure in the tank at each time step. The time to reach a pressure of 300 kPa abs in the tank is 69 6988 sec second ondss or 111.6 1.6 min minute utes. s. A plot of how how the pres pressur suree vari aries es with time is provided. 350    )   a    P    k    (   e   r   u   s   s   e   r    P

300 250 200 150 100 50 0

200

400

Time (sec)

600

800

85

 

7.56: PROBL PROBLEM EM DEFINITION Situation: A pipe discharges water into a reservoir. Q  = 10 cfs, 10  cfs, D  D =  = 12 in. in.

Find: Head loss at pipe outlet (ft) outlet  (ft).. PLAN Apply the   flow rate equation, then the sudden expansion head loss equation. SOLUTION Flow rate equation  Q A   10ft3 / s = (π/ π/4) 4)  ×  (1 ft) ft)2 = 12 12..73 73 ft/s  ft/s

V    =

Sudden expansion head loss equation hL   =   V 2 /2g hL  =  2.52 ft

86

 

7.57: PROBL PROBLEM EM DEFINITION Situation: A pipe discharges water into a reservoir. Q  = 0.5 m3 / s,  D =  D  = 50cm. 50cm.

Find: Head loss at pipe outlet ( outlet  ( m) m).. PLAN Apply the   flow rate equation, then the sudden expansion head loss equation. SOLUTION Flow rate equation  Q A   0.5 ft3 / s = (π/ π/4) 4)  ×  (0.  (0.5ft)2 = 2.546 546 m/s  m/s

V    =

Sudden expansion head loss equation   V 2 hL   = 2g   (2 (2..546m 546m// s)2 = 2  ×

2  9  9..81 m/ s hL  = 0.330 330 m  m

87

 

7.58: PROBL PROBLEM EM DEFINITION Situation: Water   flows through a sudden expansion. D8  = 8 cm,  V 8  = 2 m/ s. D15  = 15 15 cm cm.. Find: Head loss caused by the sudden expansion  ( m) m).. PLAN Apply the continuity principle, then the sudden expansion head loss equation. SOLUTION Continuity principle: V 8 A8   =   V 1155A15   V 8 A8 V 1155   = = 2  × A15 Sudden expansion head loss:

 8

2

= 0.569 569 m/s  m/s

µ¶ 15

  (V 8 − V 1155)2 hL   = (2 (2gg )   (2 m/ s − 0.569m 569m// s)2 hL   = (2  ×  9  9..81 m/ s2 ) hL  = 0.104m

88

 

7.59: PROBL PROBLEM EM DEFINITION Situation: Water   flows through a sudden expansion. D6  = 6 in = 00..5 ft. ft. D12  = 12 in = 1 ft. Q  = 5  cfs. Find: Head loss PLAN Apply the   flow rate equation, then the sudden expansion head loss equation. SOLUTION Flow rate equation   Q   5 =   = 25 25..46 46 ft/s;  ft/s; A6 (π/ π/4) 4)  ×  (0.  (0.5ft)2  1 V 1122   = V 6  = 6.37 37 ft/s  ft/s 4 V 6   =

Sudden expansion head loss equation   (V 6 − V 1122)2 hL   = 2g   (25 (25..46ft 46ft// s − 6.37ft 37ft// s)2 = 2  ×  32  32..2 ft/ ft/ s2 hL  = 5.66 66 ft  ft

89

 

7.60: PROBL PROBLEM EM DEFINITION Situation: Two tanks are connected by a pipe with a sudden expansion. ∆z  = 10 10 m,  A 1  = 8 cm2 . A2  = 25 cm2 .

Find: Discharge between two tanks ( tanks  ( m3 / s) PLAN Apply the energy equation from water surface in A to water surface in B. SOLUTION Energy equation (top of reservoir A to top of reservoir B)   pB  V B2  pA  V A2   +   + zB  + ΣhL   +   + zA   = γ  γ  2g 2g 0 + 0 + 10 m = 0 + 0 + 0 + ΣhL

 

(1)

Let the pipe from A be called pipe 1. Let the pipe into B be called pipe 2 Then   (V 1 − V 2 )2  V 22   +   ΣhL  = 2g 2g Continuity principle: V 1A1   =   V 2 A2 (25cm2 )   V 2 A2 = V 2 V 1   =   = 33..125 125V  V 2 A1 (8cm2 ) Combine Eq. (1), (2), and (3):   V 2  2   (3 (3..125 125V  V 2 − V 2 )2  + 10 m = 2 (9 (9..81 m/ s2) 2 (9 (9..81 m/ s2 ) V 2   = 5.964m 964m// s Flow rate equation: Q   =   V 2 A2   1.0 m

2

= (5 (5..964m 964m// s)(25cm ) Q  = 0.0149m3 / s

µ

100cm

2



 

(2)

(3)

90

 

7.61: PROBL PROBLEM EM DEFINITION Situation: A horizontal pipe with an abrupt expansion. D40  = 40 40 cm cm,,  D 60  = cm cm.. 3 Q  = 1.0 m / s,  p 1  = 70 kP kPaa  gage. Find: Horizontal force required to hold transition in place ( place  ( kN) N).. Head loss ( loss  ( m) m).. Assumptions: α  = 1.0. Properties: Water, ρ Water,  ρ =  = 1000 1000 kg kg// m3 . PLAN Apply the   flow rate equation, the sudden expansion head loss equation, the energy equation, and the momentum principle. SOLUTION Flow rate equation   1.0 m3 / s   Q V 4400   = =   = 77..96 96   m/s A40 (π/ π/4) 4)  ×  (0  (0..40m)2 2 V 40   = 3.23 23 m  m 2g 2 4 V 6600   =   V 4400   × = 3.54 54 m/s  m/s 6 2 V 60

µ¶

2g   = 0.639 639 m  m Sudden expansion head loss equation 2   (V 4400 − V 60 60 ) hL   = 2g =   0.99 0.996 6m

Energy equation 2 2  p40  V 40   p60  V 60  +  +   =   + hL γ  γ  2g 2g

 p60   = 70 70,, 000 Pa + 9981 8100 N/ m3 (3 (3..23 − 0.639 − 0.99 996) 6) m = 85 85,, 647 647 Pa  Pa Momentum principle

91

 

Fx p 2 A2

p 1 A1

Substituting values

X

F x  =  m ˙ oV xx,o ˙ i V xx,i,i ,o −  m

70 70,, 000Pa  × π/ π/44  ×  (0.  (0.4 m)2 − 85 85,, 64 6477 Pa  × π/4 π/4  ×  (0  (0..6 m)2 + F x = 1000 kg/ m3 × 1  1..0 m3/ s  ×  (3.  (3.54 m/ s − 7.96 m/ s) The result is F x   =   −8796 + 24, 24, 216 − 4, 420 = 11 11,, 000 000 N  N F x  =  11.0 kN

92

 

7.62: PROBL PROBLEM EM DEFINITION Situation: Water   flows in a horizontal pipe before discharging to atmosphere. A  = 9 in2 ,  V    V   = 15 ft/ s. hL  = 3 ft.

Find: Force on pipe joint. Assumptions: α  = 1.0. Properties: γ  =  = 62. 62.4lbf / ft3 . PLAN Apply the momentum principle, then the energy equation. SOLUTION F j

Vx

 p1A1

 p2=0

Momentum Momen tum Equation F x   =   mV  ˙ o,x ˙ ii,x o,x −  mV  ,x 2

2

X

F  j  + p  +  p1 A1   =   −ρV x A + ρV x A F  j   =   − p1 A1 Energy equation

 p1  V 12   p2  V  2   +   + z1  =   + 2   + z2 + hL γ  γ  2g 2g  =  γh hL  p1 − p2  = γ  p1  = γ   =  γ (3) (3) = 187. 187.2  psfg   9 in2 ) F  j   = −187 187..2lbf / ft × ( 144in2 / ft2 F  j   = 11 11..7lbf  2



F  j   = 1111.7lbf  acting   acting to the left

x

93

 

7.63: PROBL PROBLEM EM DEFINITION Situation: An abrupt expansion dissipates high energy   flow ow.. D1  = 5 ft,  p 1  = 5  psig. V  V  =  = 25ft/ 25ft/ s,  D 2  = 10 ft.

Find: (a) Horsepower lost ( lost  ( hp) hp). (b) Pressure at section 2 ( 2  (psig psig)). (c) Force needed to hold expansion ( expansion  ( lbf) lbf).. Assumptions: α  = 1.0. Properties: Water, γ  Water,  γ    = 62 62..4lbf / ft3 . PLAN Find the head loss by applying the sudden expansion head loss equation,   first solving for   V 2   by applyin for applyingg the con contin tinuit uity y pri princip nciple. le. The Then n app apply ly the pow power er equat equation ion,, the energy equation, and   finally the momentum principle. SOLUTION Contin Continuity uity equation V 2   =   V 1

A1 A2

1 = 25 ft f t/ s 4 = 6.25 25 ft/s  ft/s

µ¶

Sudden expansion head loss equation (2gg ) hL   = (V 1 − V 2 )2 /(2   (25ft/ (25ft/ s − 6.25ft 25ft// s)2 hL   = 64 64..4 ft/ ft/ s2 = 5.46 46 ft  ft a) Power equation P (hp) P (hp)   =   Qγh/550 Qγh/550 Q   =   V A  = 25 ft/ ft/ s( s(π/ π/4)(5ft) 4)(5ft)2 = 490. 490.9  ft 3/s P    = (490.9 ft3 / s)(62 s)(62..4lbf / ft3 )(5 )(5..46) 46)//550 P  = P  = 304 hp

94

 

b) Energy equation  p1  V 12   +   + z1   γ  2g (5  ×  144) lb lbf  f / ft2  (2  (255 ft/ ft/ s)2     + 64 64..4 ft/ ft/ s2 62 62..4lbf / ft3  p2 /γ     p2  

= = = = =

  p2  V 22   +   + z2  + hL γ  2g  (6..25ft 25ft// s)2   p2  (6   + 55..46ft  + 64 64..4 ft/ ft/ s2 γ  15 15..18 18 ft  ft 15 15..18ft  ×  62  62..4lbf / ft3 947  psfg

 p2  =  6.58 psig c) Momentum equation m ˙   = 1.94 sl slug ug// ft3 × (π/  (π/4) 4)  ×  (5 ft) ft)2 × 25ft  25ft// s = 952.3  kg/s ˙ oV xx,o F x  =  m ,o

X−

 p1 A1

 m ˙ i V xx,i,i



 p2 A2 + F x  =  m ˙ (V 2 − V 1 )

(5lbf / in2 )( )(144 144 in2 / ft2 )( )(π/ π/4)(5ft) 4)(5ft)2 − (6 (6..58lbf / in2 )(1 )(144 44 in2 / ft2)( )(π/ π/4)(10ft) 4)(10ft)2 + F x = 952.3 kg kg// s  ×  (6  (6..25ft 25ft// s − 25ft 25ft// s) F x  =  42,400 lbf 

95

 

7.64: PROBL PROBLEM EM DEFINITION Situation: Rough aluminum pipe discharges water. L  = 50 50 ft ft,,  D =  D  = 6 in. W    = (1 W  (1..5lbf) L,  Q =  Q  = 6  cfs. hL  = 10 10 ft. ft.

Find: Longitudinal force transmitted through pipe wall ( wall  ( lb lbf) f).. Properties: Water, γ  Water,  γ    = 62 62..4lbf / ft3 . PLAN Apply the energy equation, then the momentum principle. SOLUTION 1

c.s.

2

 p1  V 12   p2  V 22   +   + z1  =   +   + z2 + hL γ  γ  2g 2g but V  but  V 1  = V   =  V 2   and and p  p 2  = 0.  Therefore  p1 /γ    =   −50 ft + 1100 ft  p1   =   −2496 2496 lbf/ft  lbf/ft2

96

 

Momentum principle

X

F y   =  mV  ˙ y,o ˙ y,i  = ρQ  ρQ((V 2y − V 1y ) y,o −  mV  y,i  =

− p1A1 − γAL − 2L + F wall wall  = 0

F wall wall   = 1.5L + γA 1 L − p1 A1 = 75 lbf + (π/4) π/4)  ×  (0  (0..5ft)2 (62 (62..4lbf / ft3 × 50ft − 2, 496lbf / ft3) = 75lbf + 122 122.5lbf 

£

F wall 198  lbf acting upward wall  = 198 lbf

¤

97

 

7.65: PROBL PROBLEM EM DEFINITION Situation: Water   flows in a bend. Q  = 5 m3 / s,  p =  p  = 650 kP kPaa. hL  = 10 10 m,  D =  D  = 80cm. 80cm. d  = 50cm. 50cm.

Find: Pressure at outlet of bend ( bend  ( kP kPa) a).. Force on anchor block in the x the  x-direction -direction (  ( kN kN)). Assumptions: α  = 1.0. PLAN Apply the energy equation, then the momentum principle. SOLUTION Energy equation

2 2  p50  V 50   p80  V 80  +  +   + z50  =   + z80 + hL γ  γ  2g 2g

where  p 50  = 650, where p 650, 000 000 Pa  Pa and z and  z 50  = z  =  z80 Flow rate equation   5 m3 / s   Q =   = 9.947 947 m/s  m/s A80 (π/4) π/4)  ×  (0  (0..8 m)2 2 V 80 /2g   = 5.04 04 m  m V 8800   =

Continuity Contin uity equation V 5500   =   V 8800   × (8  (8//5)2 = 25 25..46 46 m/s  m/s 2 V 50   = 33 33..04 04 m  m 2g hL   = 10 10 m  m

98

 

Then   650 650,, 000Pa  p80   =   + 33 33..04 − 5.04 − 10 γ  γ  (33..04 − 5.04 − 10 10)) m = 826 826,, 600 600 Pa  Pa  p80   = 650, 00 0000 Pa + 9, 810N 810N// m3 (33

¡

 p80  = 827 kPa

¢

Momentum principle

X

F x   =   mV  ˙ o −  mV  ˙ i  = ρQ  =  ρQ((V 80,x 80,x − V 50,x 50,x )

947m// s − 0.5 m  ×  25  25..46 m/ s)  p80A80 + p  +  p50 A50   × co  coss 60 + F x   = 1, 000kg 000kg// m3 × 5 m3 / s(−9.947m F x   =   −415 415,, 494 − 63 63,, 814 − 113 113,, 385 =   −592 592,, 693 N F x  =  -593 kN ◦

99

 

7.66: PROBL PROBLEM EM DEFINITION Situation: Fluid in a pipe   flows around an accelerated disk. U  =   = 10 10 m/ s,  D  = 5 cm. d  = 4 cm.

Find: Develop an expression for the force required to hold the disk in place in terms of  U, D, d, and ρ. and  ρ. Force required under given conditions  ( N) N).. Assumptions: α  = 1.0. Properties: ρ  = 1.2 kg kg// m3 . PLAN Apply the energy equation from section (1) to section (2), and apply the momentum principle. SOLUTION Control volume

U2

U1

Fdis disk k on fluid  fluid  Energy equation  ρU 12  ρU 22  p1 +   =   p2 + 2 2 2 2  p1 − p2   =   ρU 2  − ρU 1 2 2

100

 

but U 1 A1   =   U 2(π/4)( π/4)(D D2 − d2)   U 1 D2 U 2   = (D2 − d2 ) Then  p1 − p2  = Momentum principle for the C.V.

X

 

(1)

ρ   D4 2  − 1 U 1 2 (D2 − d2 )2

¸

³´ ∙

 

(2)

F x   =   m ˙ o U o −  m ˙ i U i  = ρQ  =  ρQ((U 2x − U 1x )

 p1 A − p2 A + F disk ρQ((U 2 − U 1 ) disk on   fl uid   =   ρQ ( p1 − p2 )A F fluid on disk   =   F d  = ρQ  =  ρQ((U 1 − U 2 ) + ( p Eliminate p Eliminate  p 1 − p2  by Eq. (2), and U  and  U 2  by Eq. (1):

µ

F d  = ρU  =  ρU A U 1 −

U 1 D2 (D2 − d2 ) 2

¶ µ ¶∙ h i

F d  =   ρU  8πD

+

2

ρU 2 2

¸

  D4  − 1 A (D2 − d2 )2

  1 (D2 /d2 −1)2

When U  When  U    = 10  m/s,  m/s, D  D =  = 5  cm,  cm, d  d =  = 4  cm and ρ and  ρ =  = 1.2  kg/m3   1.2 kg/ kg/ m3 × (1  (100 m/ s)2 × π   × (0  (0..05m)2   1 F d  = 8 ((0..05 m/0.04m)2 − 1)2 ((0



F d  = 0.372 N

¸

101

 

Problem 7.67 No solution provided.

102

 

Problem 7.68 Answer the following questions. a. What are three important reasons that engineers use the HGL and EGL? •

 Identify where head loss is occurring. •  Identify potential sites of cavitation. •

 Visualize how the energy equation is being satis fied.

b. Wh What at fac factor torss influenc uencee the mag magnit nitude ude of the HG HGL? L? Wh What at fact factors ors influence the magnitude of the EGL? •

 Since the HGL = HGL  = ( p/γ ) + z , the factors are: —  Pressure head  head   ( p/γ ), which is influenced by the pressure and the specific weight of the   fluid. —  Elevation head ( head  (zz ) .



 Since the EGL = EGL  = ( p/γ ) + z + (V  ( V 2 /(2 (2gg)), )), the factors are: —  Pressure head and elevation head (as described above). —   Velocity head   (V 2 /(2 (2gg )) ,  which is influenced by the   flow rate and pipe section area.

c. Ho How w are the EGL and HGL rel related ated to the piezo piezometer meter?? To the stagna stagnation tion tube? •



  When liquid   flows in a pipe, the HGL is coincident with the water level in a piezometer that is tapped into the pipe.   When liquid   flows in a pipe, the EGL is coincident with the water level in a stagnation tube that is tapped into the pipe.

d. How is the EGL related to the energy equation? • •

 The EGL involves three of the terms that appear in the energy equation.  The terms represent transport of energy across the control surface (PE + KE) plus   flow work at the control surface.

e. How can you use an EGL or an HGL to determine the direction of   flow ow?? •



  In a pipe of constant diameter, the   flow goes from locations of high EGL & HGL to locations of low HGL & EGL.  In a pipe of variable diameter,  fl ow goes from locations of high EGL to locations of low EGL.

103

 

7.69: PROBL PROBLEM EM DEFINITION Situation: A piping system with a black box shows a large EGL change at the box.

Find: What the black box could be. SOLUTION •





 Because the EGL slopes downward to the left, the   flow is from right to left.  fl



  the In the ”black box” is a device that remo removes ves energy from the owing uid because EGL drop.  Thus, there could either be a turbine, an abrupt expansion or a partially closed val alv ve. b, c, d.

7.70: PROBL PROBLEM EM DEFINITION Situation: A constant diameter pipe is shown with an HGL.

Find: Whether this system is possible, and if so under what conditions. SOLUTION Possible if the   fluid is being accelerated to the left.

104

 

7.71: PROBL PROBLEM EM DEFINITION Situation: Two tanks are connected by a pipe with a machine.

Find: (a) Direction of   flow ow.. (b) What kind of machine is at point A. (c) Compare the diameter of pipe sections. (d) Sketch the EGL. (e) If there is a vacuum at anywhere, if so where it is. SOLUTION (a) Flow is from right to left. (b) Machine is a pump. (c) Pipe CA is smaller because of steeper HGL (d)

EGL

(e) No vacuum in the system.

105

 

7.72: PROBL PROBLEM EM DEFINITION Situation: An HGL and EGL are shown for a   flow system.

Find: (a) Direction of   flow ow.. (b) Whether there is a reservoir. (c) Whether the diameter at E is uniform or variable. (d) Whether there is a pump. (e) Sketch a physical set up that could exist between C  between  C    and and D  D.. (f) Whether there is anything else revealed by the sketch. SOLUTION (a) Flow is from A from  A   to E  to E  because  because EGL slopes downward in that direction. (b) Yes, at D at  D,, because EGL and HGL are coincident there. (c) Uniform diameter because V  because  V  2 /2g  is constant (EGL and HGL uniformly spaced). (d) No, because EGL is always dropping (no energy added). (e)

(f) Nothing else.

106

 

7.73: PROBL PROBLEM EM DEFINITION Situation: Two tanks are connected by a uniformly tapered pipe.

Find: Draw the HGL and EGL. SOLUTION

EGL HGL

107

 

7.74: PROBL PROBLEM EM DEFINITION Situation: A system with an HGL and EGL is described in the problem statement.

Find: (a) Which line is HGL and which is EGL. (b) If pipes are the same size and which is smallest. (c) If and where pipe pressure falls below zero. (d) Point of max pressure. (e) Point of minimum pressure. (f) What is at point E. (g) Air pressure in the tank above or below atmospheric. (h) What is at point B. SOLUTION (a) Solid line is EGL, dashed line is HGL. (b) No; AB is smallest. (c) From B to C. (d) pmax  is at the bottom of the tank. (e) pmin  is at the bend C. (f) A nozzle. (g) above atmospheric pressure. (h) abrupt expansion.

108

 

7.75: PROBL PROBLEM EM DEFINITION Situation: Water flows from a tank through a pipe system before discharging through a nozzle. z1  = 100 100 m,  z 2  = 30 30 m. L1  = 100 100 m,  L 2  = 400 400 m. D1  = D  =  D2  = 60 60 cm cm,,  D jet  = 30cm. 30cm.

Find: (a) Discharge. (b) Draw HGL and EGL. (c) location of maximum pressure. (d) location of minimum pressure. (e) values for maximum and minimum pressure. SOLUTION Energy equation (locate 1 on the reservoir water surface; locate 2 at outlet of the nozzle).  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + hL γ  2g γ  2g  V 22

L

V  p2

µµ ¶¶µ ¶

2g 0 + 0 + 100 = 0 + 2g   + 30 + 0.014 D 2  V 2 500  V 22 100 = 0 +   + 30 + 0.014 2g 0.6 2g Continuity Contin uity equation V 2 A2   =   V  p A p A p V 2   =   V  p AL V 2   = 4V  p

109

 

Then V  p2 (16 + 11. 11.67) = 70 m 2g V  p   = 7.045 045 m/s  m/s V  p2 53 m  m 2g   = 2.53 Flow rate equation Q   =   V  p A p = 7.045m 045m// s  ×  (π/  (π/4) 4)  ×  (0  (0..60m)2 Q  = 1.99 m3 /s  pmin

EGL HGL 40.5 m  pmax max

  pmin V  p2 100m  V  p2 0.014  pmin   : 100 =   +  + 100 + 0. 2g γ  0.6 m 2g   pmin   + 100 + 3.33  ×  2  2..53 100 = γ 

µ ¶

 pmin =  -82.6 kPa, gage  pmin   = 40 40..5 m − 2.53 53 m  m γ   pmax  = 373 kPa

110

 

7.76: PROBL PROBLEM EM DEFINITION Situation: A reservoir discharges into a pipe. Find: Draw the HGL and EGL. SOLUTION

37.2 m 80 m 42.6 m

2000 m

111

 

7.77: PROBL PROBLEM EM DEFINITION Situation: Water discharges through a turbine. Q  = 1000 cfs, 1000  cfs, η  η  = 85%. 85%. hL  = 4 ft,  H   H  =  = 100ft. 100ft.

Find: Power generated by turbine ( turbine  ( hp) hp). Sketch the EGL and HGL. PLAN Apply the energy equation from the upper water surface to the lower water surface. Then apply the power equation. SOLUTION Energy equation  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + γ  γ  2g 2g 0 + 0 + 100 ft 100  ft   = 0 + 0 + 4  ft   + ht ht   = 96 96 ft  ft

X

hL + ht

Power equation P    = (Qγh t )(e )(eff .)   Qγh t η   1, 000ft3 / s  ×  62  62..4lbf / ft3 × 96 ft  ×  0.  0.85 P  P ((hp)   =  = 550 550 P  = P  = 9260 hp 9260  hp

EGL HGL

Turbine urbi ne

112

 

7.78: PROBL PROBLEM EM DEFINITION Situation: Water discharges from a reservoir through a pipe and out a nozzle. L V  hL  = 0.025 D  , D  ,  D  = 1 ft. 2g L  = 1000 1000 ft, ft,  D jet  = 6 in.  2

z1  = 100ft, 100ft,  z 2  = 60 ft. ft.

Find: (a) Discharge ( Discharge  (cfs cfs)) . (b) Draw the HGL and EGL. Assumptions: α  = 1.0. PLAN Apply the energy equation from the reservoir surface to the exit plane of the jet. SOLUTION Energy Energ y equat equation ion.. Let the v veloc elocit ity y in the 6 inch pipe be be V   V 6.   Let the vel velocity ocity in the 12 inch pipe be V  be  V 1122.  p1  V 12   p2  V 62   +   + z1   =   +   + z2 + hL γ  2g γ  2g

µ ¶

2 2 0 + 0 + 100 = 0 +  V 6   + 60 + 0.025 1000  V 12 2g 1 2g

Continuity Contin uity principle V 6 A6   =   V 1122A12 A12 V 6   =   V 1122 A6 122 V 6   =   V 1122 2   = 4V 12 12 6 V 62 V 2   = 16 12 2g 2g

113

 

Substituting into energy equation 2 V 12 40 fftt = (16 + 25) 2g 40ft 2 V 12  = 2  ×  32  32..2 ft/ ft/ s2 41 V 1122   = 7.927 927 ft/s  ft/s

µ ¶

Flow rate equation

µ ¶¡

¢

Q   =   V 1122A12 = (7 (7..927ft 927ft// s)( s)(π/ π/4)(1ft) 4)(1ft)2 Q  = 6.23 23 ft  ft 3 /s

EGL HGL

114

 

7.79: PROBL PROBLEM EM DEFINITION Situation: Water moves between two reservoirs through a contracting pipe. L V  hL  = 0.02 D  . 2g Dd  = 15cm, 15cm,  L d  = 100 100 m.  2

Lu  = 100 100 m,   Du  = 30cm. 30cm. z1  = 100 100 m,  z 2  = 60 60 m. Find: Discharge of water in system ( system  ( m3 / s) . PLAN Apply energy equation from upper to lower reservoir. SOLUTION Energy equation   p2  V 22  p1  V 12   +   + z2  +   +   + z1   = γ  γ  2g 2g 0 + 0 + 100m = 0 + 0 + 70 m +

X

hL   = 30 30 m  m

V 2 ) 2g 200 V u2 0.3 2g

X X

hL

hL

hL   =   .02  ×  (L/D  (L/D)( )( 30 = 0.02  ×

 V d2 + 1. 1.0 2g

µ ¶µ ¶ µ µ ¶ ¶ 100m + 0.02 0.15 m

 

(1)

Flow rate equation  Q   Q = Au (π/4) π/ 4)  ×  (0  (0..3 m)2   Q  Q = V d  = Ad (π/4) π/ 4)  ×  (0  (0..15m)2 V u  =

Substituting Eq. (2) and Eq. (3) into (1) and solving for Q for  Q  yields: Q  = 0.110m3 / s

 

(2)

 

(3)

115

 

7.80: PROBL PROBLEM EM DEFINITION Situation: Water is pumped from a lower reservoir to an upper one. z1  = 90 90 ft, ft,  z 2  = 140ft. 140ft. L1  = 1000 1000 ft, ft,  L 2  = 2000 2000 ft. ft. D1  = 8 in,  D 2  = 8 in. L V  Q  = 3  cfs,  cfs, h  h L  = 0.018 D 2g .  2

Find: (a) Power supplied to the pump ( pump  ( hp hp)). (b) Sketch the HGL and EGL. Properties: Water (68 (68 F), Table A.5:   γ  =  = 62 62..4lbf / ft3. ◦

PLAN Apply the   flow rate equation to   find the veloc velocit ity y. The Then n cal calcula culate te hea head d los loss. s. Nex Nextt apply the energy equation from water surface to water surface to   find the head the pump provides. provides. Fina Finally lly,, apply the power equa equation tion.. SOLUTION Flow rate equation  Q A   3.0 ft3 / s = (π/ π/4) 4)  ×  (8/  (8/12ft)2 = 8.594 594 ft/s  ft/s

V    =

Head loss hL   =

L V 2 0.018 D 2g

µ

V 2 2g

¶µ ¶ µ ¶ +

2

2

3000 00 ft   (8 (8..594ft 594ft// s)  +   (8 (8..594ft 594ft// s) = 0.018 30 8/12ft 2(32 2(32..2 ft/ ft/ s2 ) 2(32 2(32..2 ft/ ft/ s2)

= 94 94.. 04ft 116

 

Energy equation  p1 V 12   p2 V 22   + α1   + z1 + h p   =   + α2   + z2  + hL γ  γ  2g 2g 0 + 0 + 90 + h p   = 0 + 0 + 140 + 94 94..04 h p   = 144.0  ft Power equation P    =   Qγh p = 3.0 ft3 / s  ×  62  62..4lbf / ft3 × 14  1444 ft  ft lb lbf  f    ft  ·   lbf  = 26 269957 s 550hp  ·   s

µ



P   P   = 4499.0 hp EGL

EGL HGL

HGL

117

 

7.81: PROBL PROBLEM EM DEFINITION Situation: Water   flows between two reservoirs. D  = 1 m,  L =  L  = 300 300 m. H  =   = 16 16 m,  h =  h  = 2 m.  2

hL  =

L V  0.01 D 2g .

Find: (a) Discharge in pipe ( pipe  ( m3/ s) s).. (b) Pressure halfway between two reservoirs ( reservoirs  ( kPa) kPa).. PLAN To find the discharge, apply the energy equation from water surface A to water surface in in B.  B.   To  find the pressure at location P, apply the energy equation from water surface A  to location P  location  P .. SOLUTION Energy equation V 12 V 22  p1   p2   + α1   + z1 + h p   =   + α2   + z2 + hL γ  γ  2g 2g 0 + 0 + H    = 0 + 0 + 0 + 0.01  × 16 = 4V  p2 /2  /2g V  p   =

µ ¶

300  V  p2   + V  p2 2g 1 2g

√ 

4  ×  2  ×  9  9..81 = 8. 8.86 86 m/s  m/s

Flow rate equation Q   =   VA = 8.86  ×  (π/  (π/4) 4)  ×  12 Q  = 6.96 m3 /s Energy equation between the water surface in A in  A  and point P  point  P ::

118

 

  p p V  p2   +   − h + 0. 0.01  × 0 + 0 + H    = γ  2g V  p2   p p   − 2 + 2. 16 = 2.5 2g γ 

150m  V  p2 1m 2g

µ ¶

where V  where  V  p2 /2  /2g  = 4  m. Then  p p   =

9, 810N 810N// m3 (16 + 2 − 10)m

¢

¡

 p p  = 78 78..5  kPa 2

V /2g /2g=4 =4 m EGL HGL  p/γ

119

 

7.82: PROBL PROBLEM EM DEFINITION Situation: Two reservoirs are connected by a pipe with an abrupt expansion. L V  hL  = 0.02 D  , Q  ,  Q =  = 16 ft3 / s. 2g  2

Find: Elevation in left reservoir. Assumptions: α  = 1.0. PLAN Apply the energy equation from the left reservoir to the right reservoir. SOLUTION Energy equation   pR  V R2  pL  V L2   =   +   + zR + hL   +   + zL γ  γ  2g 2g   200  V 12 0 + 0 + zL   = 0 + 0 + 11 1100 + 0.02 1.128 2g   300  V 22  (V   ( V 1 V 2 )2  V 22 −2g   + 2g +0..02 1.596 2g   + +0

µ ¶

µ ¶

Flow rate equation

  Q A1   16ft3 / s   = 16 16 ft/s  ft/s = 1 ft2 V 2   = 8  ft/s V 1   =

Substituting into the energy equation   0.02   200 2 L z   = 110 + 2  ×  32  32..2 1.238 (16) + = 110 110 + 16. 16.58 + 0. 0.99 + 0. 0.99

µ

¶ ∙µ ¶

  300   (8ft/ (8ft/ s)2 (16ft// s 8 ft/ (16ft ft/ s)2 2 1.596 (8) + ( 64..4 ft/ ft/ s2 64 64..4− ft/ ft/ s2   ) + 64

µ ¶ ¸

120

 

zL  = 129 ft 129  ft 2

V 1 /2 g EGL HGL V1

V2

V22/2g

121

 

7.83: PROBL PROBLEM EM DEFINITION Situation: Water is pumped from a lower to an upper reservoir. L1  = 100 100 m,  L 2  = 1000 1000 m. D1  = 1 m,  D 2  = 50 cm cm.. η  = 74%, 74%,  Q =  Q  = 3 m3 / s. z1  = 150 150 m,  z 2  = 250 250 m.

Find: (a) Pump power (MW) power  (MW).. (b) Sketch the HGL and EGL. Assumptions: α  = 1.0. PLAN Apply the energy equation from the upper reservoir surface to the lower reservoir surface. SOLUTION Energy equation  p1  +  V 12   + z1 + h p   =   p2  +  V 22   + z2 + hL γ  2g γ  2g 0 + 0 + 150 + h p   = 0 + 0 + 25 2500 + Flow rate equation

L  V  2  V  2 0.018  + D 2g 2g

X µ¶

  3 m3 / s   Q = V 1   =   = 3.82 82 m/s  m/s A1 (π/ π/4) 4)  ×  (1 m)2 V 12   = 0.744 744 m  m 2g V 2   =   Q/ Q/A A2  = 4V 1  = 15 15..28 28 m/s  m/s V 22   = 11 11..9  m 2g

122

 

Substituting into the energy equation h p   = 250 m − 150 150m m + 00..018 = 541.6   m

∙µ 100m ¶ 1m

 0  0..744 744 m +

×

µ

1000m 5 cm

Power equation   Qγh p η   3 m3 / s  ×  9  9,, 810N 810N// m3 × 541  541..6 m = 0.74 P  = P  = 21.5 MW

P    =

11.9 m

h p=535 =535 m

0.794 m

EGL

HGL



¸

 11..9 m + 11.  11 11.9 m

×

123

 

7.84: PROBL PROBLEM EM DEFINITION Situation: Water   flows out of a reservoir into a pipe that discharges to atmosphere. L V  hL  = 0.018 D  , z  ,  z 1  = 200 200 m. 2g z2  = 185 185 m,  z pipe  = 200 200 m. D  = 30cm, 30cm,  L =  L  = 200 200 m. Find: (a) Water discharge in pipe ( pipe  ( m3 / s) . (b) Pressure at highest point in pipe ( pipe  ( kPa) kPa)..  2

Assumptions: α  = 1.0. PLAN First apply energy equation from reservoir water surface to end of pipe to   find the V  the  V  to calculate the   flow rate. rate. Then to so solve lve for th thee pressure mi midwa dway y along pi pipe, pe, apply the energy equation to the midpoint: SOLUTION Energy equation  p1  V 12   p2  V 22   +   + z1   =   +   + z2 + hL γ  γ  2g 2g  V  2 V 2 0 + 0 + 200 = 0 +  + 185 + 0. 0.02(200 02(200//0.30) 2g 2g V 2   = 15 14 14..33 2g V 2   = 1.047 2V  g   = 4.53 53 m/s  m/s Flow rate equation Q   =   VA = 4.53 m/ s  ×  (π/  (π/4) 4)  ×  (0  (0..30m)2 Q  = 0.320 m3 /s

124

 

Energy equation to the midpoint:  p1  V 12   pm  V m2   +   + z1   =  +   + zm + hL γ  2g γ  2g   pm  V m2 100  V 2  + 0 + 0 + 20 2000 =  + 200 + 0. 0.02 γ  2g 0.3 2g 2 V   pm/γ    =   − (1 + 6. 6.667) 2g = (−1.047)(7 047)(7..667) = −8.027 027 m  m  pm   =   −8.027 027γ  γ  =   −78 78,, 745 745 Pa  Pa

µ ¶

 pm  =

−78 78..7  kPa

µ ¶

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF