c Aa Fo c000x Chile Stg Foundation Design Calculations

Share Embed Donate


Short Description

Chile Steam turbine foundation design....

Description

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date :

C-AA-FO-xxxx Revision

A

9-Sep-14

STG FOUNDATION DESIGN CALCULATIONS

REV

Date

Page

Description

Prepared

Checked

Approved

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date :

A

9-Sep-14

C-AA-FO-xxxx Revision

A

9-Sep-14

Issued for Approval

J.G.CHO

Project No. : SP2715

CHILE KELAR PROJECT

R.SUTIL

C.M.AN

Issue Date :

09/09/14

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

Table of Contents

1.0 Design Information 1.1 Description 1.2 Design Code and Standard 1.3 Material Specification 1.4 Soil Condition 1.5 Design Criteria 1.6 Structural Analysis Program 2.0 Foundation Summary 2.1 Foundation Sketch 2.2 Mat and Pedestal Section View 2.3 Foundation Size Summary 2.4 Foundation/Machine Eccentricity Check 3.0 Loading Data and Load Combination 3.1 Foundation Loading Design Data 3.1.1 Gas Turbine 3.1.2 Generator 3.1.3 Load Compartment 3.1.4 Exhaust Diffuser 3.1.5 Inlet Plenum 3.1.6 Turbine Enclosure 3.1.7 Pipe Supports 3.1.8 Exhaust Acoustic Barrier Wall 3.1.9 Dynamic Load 3.2 Load Combination 3.2.1 Primary Load Case 3.2.2 Load Combination for Foundation Stability Check 3.2.3 Load Combination for Reinforcement Check (Ultimate Strength) 3.2.4 Load Combination for Deflection Check 4.0 Static Analysis 4.1 Methodology 4.2 Static Modelling 4.3 Static Support Condition (Spring Coefficient) 4.4 Static Analysis Applied Loading 4.5 Stability Check Summary 4.5.1 Soil Bearing Capacity Check 4.5.2 Settlement Check 4.6 Static Deflection Check 4.7 Design of Foundation 4.7.1 Mat Design 4.7.2 Pedestal Design 4.8 Reinforcement Summary/Sketch

3

5.0 Dynamic Analysis 5.1 Methodology 5.2 STG Farme foundation modelling in SAP 2000 5.3 Boundary conditions for dynamic analysis 5.3.1 Dynamic Soil Properties 5.3.2 Damping Ratio 5.4 Dynamic Loading and Dynamic requirement by STG Vendor (SKODA) 5.5 Definition of Steady state and Time History Analysis input functions 5.6 Free Vibration Analysis 5.6.1 Modal Analysis Results 5.6.2 Resonance Check 5.7 Mode Shapes of Foundation 5.8 Forced Vibration Analysis Steady State Analysis (0-3300 PRM) 5.90 Result Interpretation and Conclusion

Appendix A : Soil Subgrade Reaction Appendix B : Soil Bearing Capacity Appendix C : Dynamic Soil spring stiffness constants Appendix D : SAP Input Data (Static)(.s2k File) Appendix D : SAP Input Data (Dynamic)(.s2k File)

4

STG FOUNDATION DESIGN CALCULATIONS

Issue Date :

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

5.0

Dynamic Analysis

5.1

Methodology A 3-dimensional finite element model is developed for the Chile-Kelar STG foundation using the SAP 2000 . The model includes Plate Elements (Thick Shell) for mat foundation & Top Deck and Lin-Elements for Columns frame. Plate mesh will done in internally in sap2000 base on connecting elements and Nodes with maximum size =0.5m ( (Ref 5.2 for Model.) Support for STG Foundation is modeled by using Unit-area spring (Links) elements and the Soil spring constant and Damping are calculated as per elastic half space theory. (Refer: Annexure-C) Rotor Masses assumed as lumped mass at shaft level ,Condenser Mass is applied at its CG and linked with Bottom Raft by Rigid Links.SAP2000 automatically defines dynamic mass from Self weight of foundation at its CG. Shaft is idealized using rigid links and suitable constraints applied to link to the top deck. Dynamic Unbalance Forces are applied at nodes (shaft level) which are rigidly connected to Top Deck to evaluate amplitudes in 0 degree and 180 degree phase angles. Forced vibration analysis is done for following condition according to Vendor Input. Item

Frequency Separation

At Any Speed up to 110% Operating Speed

Range/value

Condition for which analysis performed.

3000 RPM

Performed Modal-Analysis ( by using Ritz Vector) For extracted Modes (45 modes) ,Achieved Mass participation is more than 99.99%.

Performed Steady state analysis in frequency domain in which max response All RPMs from 0 to shall be studied at all RPMs between 0 3300 RPM and 3300. (Direct Integration Method)

5

Issue Date :

5.2

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

STG foundation modeling in SAP 2000

RENDERED 3D VIEW

6

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

Model Showing Plate Meshing, Rigid Links at Shaft Level ,Soil Springs, Line elements

7

Issue Date : 5.3

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

Boundary conditions for dynamic analysis

5.3.1 Dynamic Soil Properties The following dynamic soil parameters using layered elastic half space theory are based on soil profile at Down hole tests Chile Project. Shear modulus of Soil (G) =

ν

=

0.37

2 Gsoil Poisson's ratio of soil (v) = = 302190.0 kN/m Refer Appendix-C for Soil Dynamic Impedance .

5.3.2 Damping Ratio - Concrete Dampin A 2% damping is used for all modes in the forced vibration analysis to represent the hysteretic damping of concrete . - Soil Damping = Refer Appendix-C for Damping Ratio Calculations.

8

Issue Date : 5.4

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

Dynamic Loading and Dynamic requirement by STG Vendor (SKODA) (REF: P2 of Doc. No. M-STG-GA-010 : Loading of TG turbine)

Turbine bearing (BNG-1) Turbine bearing (BNG-2) Turbine bearing (BNG-3) Generator bearing (BNG-4) Generator bearing (BNG-5)

= = = = =

Across Shaft 15.2 kN 81.8 kN 61.2 kN 35 kN 33.7 kN

Along the Shaft 5.3 kN 28.7 kN 21.4 kN 12.3 kN 11.8 kN

Forced vibration shall comply with the following criteria : (Page3 of Doc. No. C-STG-CA-001) Maximum Vibration amplitude (Velocity ) at level of Top Deck-concrete Surface shall below 1. Under operation (i.e. for frequencies Fo ± 10%, Fo being the operational frequency): max 2.8mm/s (effective speed), i.e. 4.0mm/s amplitude of the harmonic vibration 2. For all frequencies below Fo: max 7.0mm/s (effective speed), i.e. 10.0mm/s amplitude of the harmonic vibration Appendix D : VENDOR INPUT

9

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

Unbalance forces of turbine and Generator may be acting with random Distribution of relative Phase angles . For Dynamic Analysis following critical Two cases are considered Case 1 :

Generator-unbalance out of phase w.r.t Turbine-Unbalance = 0 degree

10

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14 SAP LOAD APPLICATION

11

Issue Date : Case 2:

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14 Generator-unbalance out of phase w.r.t Turbine-Unbalance = 180 degree

Time-History Load Function (SIN FUNCTION-Single Cycle with unit time period and unit force)

12

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

SAP LOAD APPLICATION

13

Err:501 C-AA-FO-xxxx

STG FOUNDATION DESIGN CALCULATIONS

Issue Date :

Revision

A

09/09/14

5.5) Definition of Steady state input functions. Steady state Input Function definition Dynamic forces for 3000 RPM and at any speed up to 3300 RPM at bearing locations are summarized below.

RPM

BNG1-V

BNG1-H

BNG2-V

BNG2-H

BNG3-V

BNG3-H

BNG4-V

BNG4-H

BNG5-V

BNG5-H

Amplitude (Dynamic Force) (kN)

0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 Below Operating

300

0.2

0.1

0.8

0.3

0.6

0.2

0.4

0.1

0.3

0.1 Below Operating

600

0.6

0.2

3.3

1.1

2.4

0.9

1.4

0.5

1.3

0.5 Below Operating

900

1.4

0.5

7.4

2.6

5.5

1.9

3.2

1.1

3.0

1.1 Below Operating

1200

2.4

0.8

13.1

4.6

9.8

3.4

5.6

2.0

5.4

1.9 Below Operating

1500

3.8

1.3

20.5

7.2

15.3

5.4

8.8

3.1

8.4

3.0 Below Operating

1800

5.5

1.9

29.4

10.3

22.0

7.7

12.6

4.4

12.1

4.2 Below Operating

2100

7.4

2.6

40.1

14.1

30.0

10.5

17.2

6.0

16.5

5.8 Below Operating

2400

9.7

3.4

52.4

18.4

39.2

13.7

22.4

7.9

21.6

7.6 Below Operating

2700

12.3

4.3

66.3

23.2

49.6

17.3

28.4

10.0

27.3

9.6 - 10% Operating

3000

15.2

5.3

81.8 28.7

61.2

21.4 35.0 12.3 33.7 11.8 Operating Speed

3300

18.4

6.4

99.0

74.1

25.9

34.7

42.4

14.9

40.8

Remarks

14.3 + 10% Operatin

SKODA Provided Unbalance force for 3000 RPM only and other Unbalance force values are calculated as per RPM Step in above Table .

14

Err:501 C-AA-FO-xxxx

STG FOUNDATION DESIGN CALCULATIONS

Issue Date :

Revision

A

09/09/14

Steady State input Function Definition in SAP2000 (0-3300 RPM)

140

120

Unbalance Force

100

BNG1-V BNG1-H BNG2-V

80

BNG2-H BNG3-V BNG3-H

60

BNG4-V BNG4-H BNG5-V

40

BNG5-H 20

0 0 BNG1-V BNG1-H

500

1000

1500

2000

2500

3000

3500

4000

represents Unbalance force across the shaft at bearing Point-1 represents Unbalance force along the shaft at bearing Point-1

Steady State input Unit-Function Definition in SAP2000 (0-3300 RPM)

15

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

16

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

SAP2000 - Steady State Load Case definition -For Phase angle = 0 degree

17

Issue Date :

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-xxxx Revision

A

09/09/14

Steady State Load Case definition -For Phase angle = 180 degree

Time factor= 1/f0 =1/50=0.02

18

Issue Date :

5.6

Err:501 C-AA-FO-xxxx

STG FOUNDATION DESIGN CALCULATIONS 09/09/14

Revision

A

Time factor= 1/f0 =1/50=0.02

Free Vibration Analysis Performed Modal-Analysis ( by using Ritz Vectors) and Achieved Mass participation is more than 99.99% for defined Number of modes (45) in sap2000. Modal Analysis definition in SAP2000

Direction Convention in SAP2000 X- Horizontal along the Shaft AY- Horizontal Across the Shaft Axis Z- Vertic

5.6.1 Modal Analysis Results Modes and Mass Participation Ratios (X,Y and Z Direction) Participation Participation Participation

Mode

Time Period

Hz

1 2 3 4 5 6 7 8 9 10 11

0.50 0.42 0.33 0.21 0.14 0.12 0.11 0.104 0.102 0.095 0.092

2.0 2.4 3.0 4.8 7.2 8.1 9.3 9.6 9.8 10.5 10.8

X%

Y%

Z%

0.00% 56.17% 0.00% 0.00% 0.07% 1.54% 0.16% 0.00% 39.57% 0.00% 0.00%

55.24% 0.00% 0.03% 0.02% 0.00% 0.00% 0.00% 21.78% 0.00% 19.52% 2.96%

0.00% 0.00% 0.00% 0.00% 93.79% 3.58% 0.00% 0.00% 0.00% 0.00% 0.00%

SumUX 0.0% 56.2% 56.2% 56.2% 56.2% 57.8% 57.9% 57.9% 97.5% 97.5% 97.5%

SumUY 55.2% 55.2% 55.3% 55.3% 55.3% 55.3% 55.3% 77.1% 77.1% 96.6% 99.5%

SumUZ 0.0% 0.0% 0.0% 0.0% 93.8% 97.4% 97.4% 97.4% 97.4% 97.4% 97.4%

19

Issue Date :

09/09/14

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-XXXX Revision

A

Appendix A : Soil Subgrade Reaction

20

21

Soil Subgrade Reaction from Geotechnical Report Foundation Parameters for Shallow Foundations (BH-?????????) Reduced Modulus of Subgrade Reaction (from Chapter 9.6, Foundation Analysis and Design by J.E. Bowles .p.502) Using Terzaghi Equation For rectangular footing on sitff clay or medium dense sand with dimensions of B X L equation (9-5) ks =

k1

where ks = k1 = m= L= B=

m + 0.5 1.5m

=

4.4

3.85 5.029

=

3.37

kg/cm3

=

33067.16 kN/m3

=

8010519

kN/m

desired value of subgrade reaction for the full-size (or prototype) foundation value obtained from a plate-load te= 4.4 kg/cm3 L/B = 3.35 length of foundation 28.50 m width of foundation = 8.50 m

LOCATION OF PLATE LOAD TEST FOR GAS TURBINE FOUNDATION

22

RESULT OF PLATE LOAD TEST

23

Issue Date :

09/09/14

STG FOUNDATION DESIGN CALCULATIONS

Err:501 C-AA-FO-XXXX Revision

A

Appendix B : Soil Bearing Capacity

24

25

Soil report data near GTG Area

Allowble soil bearing Capacity

= ???

kN/m2

The maximum load on soil supporting a GTG foundation shall not exceed 50% of the allowable bearing capacity of the soil during the normal operating conditions and shall not exceed 80% in extreme conditons. Hence, ● Allowable Soil Bearing Capacity for Normal Condition qa NORMAL : ??? x 50% = #VALUE! kN/m2 ● Allowable Soil Bearing Capacity for Extreme Condition qa EXTREME : ??? x 80% = #VALUE! kN/m2

26

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-XXXX Revision

9/9/14

Appendix C : Dynamic Soil Impedance

27

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-XXXX Revision

9/9/14

C.1 )Calculation of Soilfor Spring constant (Chapter 5,Foundation industrial machines,Handbook for practicing Engineers) Design of Structures and Foundation for Vibrating Machines, S. Arya, M. O’Neill Refer Geo Techniacal Report by GEOGRUPO,Seismic DownHole Test results (DIC_0811) Shear modulus of Soil (G 302190 kN/m2 Poisson's ratio of soil (v) 0.37 Refer Appendix:D for dynamic soil parameters received from HO Equivalent spring constant for rigid rectangular Footing

Eembedment coefficeients for spring constants ηx, ηz

Damping Ratio Dx ,DZ

28

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-XXXX Revision

9/9/14

29

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-XXXX Revision

9/9/14

Richart, Jr.) (Figure 4.1, S. Arya et. Al) where B L βz βx ηz ηx ro h αx ,αz Dx,Dz Dh Dxt Bx, Bz

=horizontal dimension (longitudinal) parallel to axia of rotation =horizontal dimension (transverse) =coefficients for footings (Figure 4.1, S. Arya et. Al) =coefficients for footings (Figure 4.1, S. Arya et. Al) =embedment coefficients for spring constants =embedment coefficients for spring constants =√(BL/π) =Depth of foundation bellow grade =Damping ratio embedment factors =Damping Ratio = material Damping = Limiting Damping = mass Ratio

30

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-XXXX Revision

9/9/14

Calculation of Vertical Spring Constant (Kz) L (m)

15

B (m) 30

L/B

βz

0.5

2.18

h (m) 3

ro (m) 11.97

ηz 1.0

Kz kN/m 2E+007

Calculation of Longitudinal Spring Constant (Kx) L (m)

15

B (m) 30

L/B

βx

0.5

1

h (m) 3

ro (m) 11.97

ηx 1.0

Kx kN/m 2E+007

Calculation of Transverse Spring Constant (Ky) L (m)

15

B (m) 30

L/B

βy

0.5

1

h (m) 3

ro (m) 11.97

ηy 1.0

Ky kN/m 2E+007

for conservative, use ηψ,ηz,ηx =1.0 instead of calculated value,

Calculation of Damping ratio (Vertical) αz

Weight ρ (kN) (kN/m 3)

1.3

84330

18

Bz

Dh

0.4304

0.05

Damping Limitin Damping ratio (Dz) g ratio Dampi ng (Dzt) 0.84 0.3 0.296413

Calculation of Damping ratio (Horizontal) αx

Weight ρ (kN) (kN/m 3)

1.7763 84330

18

Bz

Dh

0.54763

0.05

Damping Limitin Damping ratio (Dx) g ratio Dampi ng (Dxt) 0.5472748 0.1875 0.187527

31

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-XXXX Revision

9/9/14

C.2 )Dynamic soil Spring Constant and Damping Constant definiition in SAP2

32

DOCUMENT NUMBER

C-AA-FO-XXXX A

x C : Dynamic Soil Impedance

33

DOCUMENT NUMBER

C-AA-FO-XXXX A

industrial machines,Handbook for practicing

oundation for Vibrating Machines, S. Arya, M. O’Neill t by GEOGRUPO,Seismic DownHole Test results (DIC_08-

34

DOCUMENT NUMBER

C-AA-FO-XXXX A

35

DOCUMENT NUMBER

C-AA-FO-XXXX A

Richart, Jr.) (Figure 4.1, S. Arya et. Al)

al dimension (longitudinal) parallel to axia of rotation

36

DOCUMENT NUMBER

C-AA-FO-XXXX A

INPUT IN SAP2000

Kz kN/m/m2

49293.51

Kx kN/m/m2

39032.32

Ky kN/m/m2

39032.32

onservative, use ηψ,ηz,ηx =1.0 instead of calculated value,

Damping Factor kN-sec/m (per m2) 569.78

Damping Factor kN-sec/m (per m2) 320.77

37

DOCUMENT NUMBER

C-AA-FO-XXXX A

Constant and Damping Constant definiition in SAP2000

38

Doc. No.:

#REF! #REF!

Err:509

Rev. No. Date:

#REF! #REF!

Doc. No.:

#REF! #REF!

X (0,0) ORIGIN

Z

Reference axis for centroid

Rev. No. Date:

#REF! #REF!

Doc. No.:

#REF!

Rev. No. Date:

#REF!

#REF! #REF!

PILE ARRANGEMENT PLAN VIEW



Pile Center of Gravity Pile No. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30

N xpile zpile

X (mm) 0.750 0.750 0.750 2.950 2.950 2.950 5.150 5.150 5.150 7.350 7.350 7.350 9.550 9.550 9.550 11.750 11.750 11.750 14.000 14.000 14.000 16.250 16.250 16.250 18.450 18.450 18.450 20.650 20.650 20.650

Z (mm) 1.600 4.100 6.600 1.600 4.100 6.600 1.600 4.100 6.600 1.600 4.100 6.600 1.600 4.100 6.600 1.600 4.100 6.600 0.750 4.100 7.450 0.750 4.100 7.450 0.750 4.100 6.000 0.750 4.100 6.000

Pile No. P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45

X (mm) 22.920 22.920 22.920 25.220 25.220 25.220 27.520 27.520 27.520 29.820 29.820 29.820 32.120 32.120 32.120

= number of piles = center of gravity of pile group along X-direction = center of gravity of pile group along Z-direction

Z (mm) 0.750 4.100 7.450 0.750 4.100 7.450 0.750 4.100 7.450 0.750 4.100 7.450 0.750 4.100 7.450

= 45 Piles = 16.297 m = 4.036 m

Doc. No.:

#REF! #REF!

Rev. No. Date:

#REF! #REF!

Appendix C : Dynamic Soil spring stiffness constants

43

C.1 )Calculation of Soilfor Spring constant (Chapter 5,Foundation industrial machines,Handbook for practicing Engineers) Design of Structures and Foundation for Vibrating Machines, S. Arya, M. O’Neill Refer Geo Techniacal Report by GEOGRUPO,Seismic DownHole Test results (DIC_08-11) Shear modulus of Soil (G) 302190 kN/m2 Poisson's ratio of soil (v) 0.37 Equivalent spring constant for rigid rectangular Footing

Richart, Jr.) (Figure 4.1, S. Arya et. Al)

Eembedment coefficeients for spring constants ηx, ηz where L B βz βx ηz

=horizontal dimension (longitudinal) parallel to axia of rotation =horizontal dimension (transverse) =coefficients for footings (Figure 4.1, S. Arya et. Al) =coefficients for footings (Figure 4.1, S. Arya et. Al) =embedment coefficeients for spring constants

44

ηx ro h αx ,αz Dx,Dz Dh Dxt Bx, Bz

=embedment coefficeients for spring constants =√(BL/π) =Depth of foundation bellow grade =Damping ratio embedment factors =Damping Ratio = material Damping = Limiting Damping = mass Ratio

45

SAP INPUT Kz

Calculation of Vertical Spring Constant (Kz) L B L/B βz h ro ηz Kz (m) (m) (m) (m) kN/m kN/m/m2 28 8 3.5 2.25 1.35 8.44414 1.0604 2E+007 76468 Calculation of Longitudinal Spring Constant (Kx) L B L/B βx h ro ηx Kx Kx (m) (m) (m) (m) kN/m kN/m/m2 28 8 3.5 0.97 1.35 8.44414 1.1433 1E+007 61355 Calculation of Transverse Spring Constant (Ky) L B L/B βy h ro ηy Ky Ky (m) kN/m/m2 (m) (m) (m) kN/m 28 8 3.5 0.97 1.35 8.44414 1.1433 1E+007 61355 Note: Soil depth of 1 meter from FGL is neglected for Embedment effect in analysis.

Calculation of Damping ratio (Vertical) αz Weight ρ Bz Dh Dampin Limiting Dampin (kN) (kN/m3) g ratio Dampin g ratio (Dz) g (Dzt)

46

1.1569

16000

18 0.23252

0.05 1.01968 0.4033 0.40328

Calculation of Damping ratio (Horizontal) αx Weight ρ Bz Dh Dampin Limiting Dampin (kN) (kN/m3) g ratio Dampin g ratio (Dx) g (Dxt) 1.3983

16000

18 0.29585

0.05 0.58613 0.2551 0.25514

C.3) Dynamic soil Spring Constant defininition for Sensitivity Analysis (Ref Sec

Case 1 (+20%) Case 2 (-20%)

Factor 1.25 0.75

Kz 95585 57351

Kx 76694 46016

Ky 76694 46016

Damping

47

48

Err:501

GTG Foundation Design Calculations

Revision

Issue Date : 17/07/2013

Appendix D : SAP Input Data (Static)(.s2k File)

1

Err:501

GTG Foundation Design Calculations Issue Date : 17/07/2013

Revision

1

DOCUMENT NUMBER 2485-1-CV-CL-001

#REF!

GTG Foundation Calculation Sheet

Revision

#REF!

Calculation of Soil Spring constantmachines,Handbook for practicing (Chapter 5,Foundation for industrial Engineers) Refer Geo Techniacal Report by GEOGRUPO,Seismic DownHole Test results (DIC_08-11) Shear modulus of Soil (G) 302190 kN/m2 Poisson's ratio of soil (v) 0.43 Equivalent spring constant for rigid rectangular Footing

Richart, Jr.) (Figure 4.1, S. Arya et. Al)

Eembedment coefficeients for spring constants ηx, ηz where L B βz

=horizontal dimension (longitudinal) parallel to axia of rotation =horizontal dimension (transverse) =coefficients for footings (Figure 4.1, S. Arya et. Al)

βx ηz ηx ro h

=coefficients for footings (Figure 4.1, S. Arya et. Al) =embedment coefficeients for spring constants =embedment coefficeients for spring constants Input For Soil =√(BL/π) Springs in =Depth of foundation bellow grade SAP2000

Calculation of Vertical Spring Constant (Kz) L B L/B βz h* ro ηz Kz Kz (m) (m) (m) (m) kN/m kN/m/m2 27.8 8.2 3.39024 2.5 1.5 8.52 1.0602 2E+007 93071 Calculation of Longitudinal Spring Constant (Kx) L B L/B βx h ro ηx Kx Kx (m) (m) (m) (m) kN/m kN/m/m2 27.8 8.2 3.39024 0.95 1.5 8.52 1.1521 1E+007 62649 Calculation of Transverse Spring Constant (Ky) L B L/B βy h ro ηy Ky Ky (m) kN/m/m2 (m) (m) (m) kN/m 27.8 8.2 3.39024 0.95 1.5 8.52 1.1521 1E+007 62649 .

By and large, it has been generally agreed that embedment tends to reduce the dynamic amplitudes. The reduction in the a

Err:501

GTG Foundation Design Calculations

Revision

1

Page 53 of 200

Issue Date : 17/07/2013

GTG FOUNDATION CALCULATION SHEET

Project Title

: CCC Intergen Project

Location

: SLP

Client

:

Project No.

:

0

17/07/2013

Rev. No.

(M/D/Y)

BTG Revision Description

RPG

KWON

Prepared by Checked by Approved by

____________________________________________________

Page 54 of 200

____________________________________________________

DOCUMENT NUMBER

STG FOUNDATION DESIGN CALCULATIONS Issue Date:

C-AA-FO-xxxx Revision

9/9/14

Appendix D : VENDOR INPUT

55

DOCUMENT NUMBER

C-AA-FO-xxxx A

pendix D : VENDOR INPUT

56

RPM

BNG1-V BNG1-H BNG2-V BNG2-H BNG3-V 0 0 0 0 0 0 300 0.152 0.053 0.818 0.076 0.612 600 0.608 0.212 3.272 0.304 2.448 900 1.368 0.477 7.362 0.684 5.508 1200 2.432 0.848 13.088 1.216 9.792 1500 3.8 1.325 20.45 1.9 15.3 1800 5.472 1.908 29.448 2.736 22.032 2100 7.448 2.597 40.082 3.724 29.988 2400 9.728 3.392 52.352 4.864 39.168 2700 12.312 4.293 66.258 6.156 49.572 3000 15.2 5.3 81.8 7.6 61.2 3300 18.392 6.413 98.978 9.196 74.052 3600 21.888 7.632 117.792 10.944 88.128

BNG3-H BNG4-V BNG4-H BNG5-V BNG5-H 0 0 0 0 0 0.424 0.35 0.123 0.337 0.118 1.696 1.4 0.492 1.348 0.472 3.816 3.15 1.107 3.033 1.062 6.784 5.6 1.968 5.392 1.888 10.6 8.75 3.075 8.425 2.95 15.264 12.6 4.428 12.132 4.248 20.776 17.15 6.027 16.513 5.782 140 27.136 22.4 7.872 21.568 7.552 34.344 28.35 9.963 27.297 9.558 120 42.4 35 12.3 33.7 11.8 51.304 42.35 14.883 40.777 14.278 100 61.056 50.4 17.712 48.528 16.992

BNG1-V BNG1-H BNG2-V BNG2-H

80

BNG3-V BNG3-H

60

BNG4-V 40

BNG4-H BNG5-V

20

BNG5-H

0 0

500 1000 1500 2000 2500 3000 3500 4000

500 4000

BNG1-V BNG1-H BNG2-V BNG2-H BNG3-V BNG3-H BNG4-V BNG4-H BNG5-V BNG5-H

0.0000 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.0000 20.0000 22.0000 24.0000 26.0000 28.0000 30.0000 32.0000 34.0000 36.0000 38.0000 40.0000 42.0000 44.0000 46.0000 48.0000 49.0000 50.0000 51.0000 52.0000 54.0000 56.0000 58.0000 60.0000

JointPT1 JointPT2 JointPT3 JointPT4 JointPT5 JointPT6 JointPT7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0751 0.0752 0.0750 0.0750 0.0750 0.0011 0.0011 0.0425 0.0425 0.0190 0.0190 0.0375 0.0000 0.0000 0.0378 0.0377 0.0108 0.0109 0.0336 0.0001 0.0001 0.0453 0.0448 0.0101 0.0103 0.0399 0.0001 0.0001 0.0521 0.0513 0.0111 0.0115 0.0453 0.0001 0.0001 0.0687 0.0671 0.0157 0.0164 0.0583 0.0000 0.0001 0.0886 0.0855 0.0066 0.0077 0.0740 0.0001 0.0001 0.0624 0.0593 0.0262 0.0283 0.0457 0.0001 0.0002 0.1402 0.1312 0.0298 0.0272 0.0955 0.0002 0.0002 0.1290 0.1283 0.0301 0.0302 0.0954 0.0001 0.0000 0.2032 0.1898 0.0271 0.0208 0.1304 0.0001 0.0001 0.0974 0.0938 0.0115 0.0101 0.0820 0.0002 0.0001 0.2028 0.2018 0.1271 0.1236 0.1529 0.0000 0.0001 0.3893 0.3796 0.0764 0.0796 0.2559 0.0008 0.0009 0.6921 0.6601 0.1061 0.1070 0.4408 0.0010 0.0010 0.4026 0.4017 0.1838 0.1947 0.1726 0.0011 0.0013 0.2082 0.2040 0.1277 0.1435 0.1463 0.0007 0.0008 0.2544 0.2195 0.0816 0.1047 0.1742 0.0007 0.0005 0.2211 0.2632 0.0342 0.0429 0.1445 0.0009 0.0004 0.2505 0.2726 0.2402 0.2048 0.1133 0.0020 0.0014 0.4206 0.1009 0.8220 0.8926 0.1581 0.0039 0.0044 0.3046 0.2419 0.5060 0.6117 0.1017 0.0015 0.0032 0.3081 0.4272 0.3283 0.4703 0.2602 0.0011 0.0026 0.2237 0.2579 0.2026 0.5507 0.3042 0.0010 0.0022 0.2263 0.2261 0.1422 0.5641 0.2674 0.0008 0.0023 0.3057 0.3430 0.0354 0.6015 0.2680 0.0007 0.0023 0.4712 0.4992 0.2818 0.5125 0.2935 0.0005 0.0016 0.6000 0.6946 0.4585 0.3376 0.1259 0.0009 0.0017 0.4217 0.6290 0.7339 0.2214 0.3979 0.0011 0.0020 0.5644 0.5262 0.7632 0.2837 0.4195 0.0023 0.0033 1.2350 0.4070 1.0602 0.5811 1.5332 0.0027 0.0016 1.3829 1.5319 1.1174 1.3861 1.3766 0.0030 0.0010

0.0000 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.0000 20.0000 22.0000 24.0000 26.0000 28.0000 30.0000

JointPT1 JointPT2 JointPT3 JointPT4 JointPT5 JointPT6 JointPT7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1879 0.1880 0.2008 0.2008 0.1892 0.0013 0.0013 0.0313 0.0313 0.0209 0.0209 0.0304 0.0003 0.0003 0.0358 0.0356 0.0259 0.0258 0.0347 0.0002 0.0003 0.0464 0.0459 0.0349 0.0347 0.0448 0.0002 0.0002 0.0550 0.0540 0.0414 0.0410 0.0525 0.0002 0.0002 0.0753 0.0730 0.0549 0.0541 0.0703 0.0003 0.0003 0.1319 0.1261 0.0957 0.0944 0.1203 0.0005 0.0006 0.1940 0.1829 0.0925 0.0938 0.1706 0.0009 0.0013 0.0625 0.0567 0.0671 0.0632 0.0393 0.0003 0.0003 0.0387 0.0418 0.0262 0.0246 0.0435 0.0001 0.0000 0.1647 0.1526 0.0609 0.0679 0.1215 0.0001 0.0001 0.1980 0.1840 0.1211 0.1187 0.1787 0.0002 0.0004 0.0551 0.0525 0.0593 0.0542 0.0397 0.0005 0.0008 0.1745 0.1782 0.1500 0.1453 0.0612 0.0009 0.0011 0.1044 0.1070 0.0860 0.0783 0.0364 0.0007 0.0008

32.0000 34.0000 36.0000 38.0000 40.0000 42.0000 44.0000 46.0000 48.0000 49.0000 50.0000 51.0000 52.0000 54.0000 56.0000 58.0000 60.0000

0.2042 0.2192 0.2438 0.2312 0.3772 0.8066 0.5860 0.5270 0.3765 0.3971 0.4936 0.6399 0.7047 0.3945 0.4406 1.3262 1.5798

0.1823 0.1965 0.2502 0.3028 0.4102 0.3866 0.1005 0.3768 0.3047 0.2092 0.2528 0.4536 0.7315 0.6802 0.6201 0.4676 1.8036

0.1572 0.1727 0.2526 0.4084 0.9297 1.4793 0.6088 0.2539 0.0249 0.1432 0.3071 0.4421 0.4731 0.6457 0.6772 1.1690 1.2070

0.1462 0.1577 0.2266 0.3812 0.8971 1.5706 0.7159 0.4014 0.3382 0.2964 0.3225 0.3873 0.4005 0.5274 0.3317 1.0095 1.5804

0.1903 0.1970 0.2183 0.1933 0.2929 0.5377 0.0103 0.2828 0.3686 0.3351 0.3476 0.3991 0.2205 0.3809 0.2738 1.5369 1.3810

0.0002 0.0003 0.0009 0.0022 0.0049 0.0083 0.0031 0.0021 0.0016 0.0014 0.0014 0.0017 0.0024 0.0016 0.0035 0.0038 0.0041

0.0002 0.0002 0.0005 0.0014 0.0034 0.0074 0.0046 0.0033 0.0021 0.0020 0.0020 0.0020 0.0026 0.0021 0.0037 0.0013 0.0013

JointPT8 JointPT9 JointPT10 JointPT11 JointPT12 JointS1 JointS2 JointS3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0015 0.0015 0.0011 0.0011 0.0751 0.0751 0.0749 0.0007 0.0007 0.0007 0.0001 0.0001 0.0389 0.0236 0.0063 0.0004 0.0004 0.0004 0.0001 0.0001 0.0348 0.0217 0.0087 0.0004 0.0004 0.0004 0.0001 0.0001 0.0413 0.0246 0.0112 0.0003 0.0003 0.0003 0.0001 0.0001 0.0470 0.0252 0.0120 0.0003 0.0004 0.0003 0.0001 0.0001 0.0610 0.0270 0.0108 0.0003 0.0003 0.0003 0.0002 0.0002 0.0782 0.0225 0.0101 0.0006 0.0006 0.0005 0.0002 0.0001 0.0481 0.0151 0.0435 0.0005 0.0005 0.0004 0.0002 0.0001 0.1075 0.0369 0.0192 0.0003 0.0004 0.0004 0.0001 0.0000 0.1073 0.0189 0.0462 0.0003 0.0003 0.0003 0.0002 0.0002 0.1549 0.1736 0.0543 0.0005 0.0005 0.0004 0.0002 0.0002 0.0811 0.0502 0.0329 0.0010 0.0011 0.0008 0.0002 0.0001 0.1609 0.1081 0.0998 0.0014 0.0015 0.0011 0.0011 0.0007 0.2947 0.2723 0.1654 0.0012 0.0014 0.0012 0.0011 0.0007 0.5425 0.4295 0.0985 0.0005 0.0007 0.0006 0.0013 0.0011 0.2780 0.6191 0.1170 0.0002 0.0001 0.0002 0.0007 0.0008 0.1682 0.4043 0.0685 0.0007 0.0005 0.0002 0.0004 0.0005 0.2158 0.4099 0.0993 0.0008 0.0006 0.0002 0.0003 0.0008 0.2257 0.4496 0.1422 0.0014 0.0011 0.0003 0.0014 0.0009 0.2821 0.5307 0.2750 0.0011 0.0006 0.0005 0.0042 0.0009 0.3776 0.4732 0.5079 0.0010 0.0012 0.0002 0.0030 0.0004 0.1301 0.1498 0.2166 0.0014 0.0014 0.0004 0.0021 0.0007 0.0829 0.1691 0.0829 0.0009 0.0011 0.0006 0.0020 0.0005 0.1014 0.1335 0.0471 0.0011 0.0013 0.0006 0.0020 0.0005 0.0660 0.1370 0.0379 0.0015 0.0017 0.0006 0.0019 0.0004 0.0367 0.1266 0.0667 0.0021 0.0024 0.0006 0.0010 0.0002 0.0284 0.1198 0.1315 0.0025 0.0027 0.0005 0.0010 0.0007 0.0625 0.1453 0.1972 0.0026 0.0026 0.0003 0.0014 0.0014 0.2241 0.1955 0.2676 0.0019 0.0022 0.0013 0.0019 0.0021 0.0131 0.2324 0.1245 0.0052 0.0050 0.0023 0.0006 0.0026 0.6104 0.5445 0.3886 0.0042 0.0040 0.0021 0.0015 0.0027 1.2309 1.2893 0.3473

JointPT8 JointPT9 JointPT10 JointPT11 JointPT12 JointS1 JointS2 JointS3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0013 0.0013 0.0013 0.0013 0.1889 0.1931 0.1969 0.0004 0.0004 0.0004 0.0004 0.0004 0.0307 0.0278 0.0246 0.0003 0.0003 0.0003 0.0003 0.0003 0.0350 0.0311 0.0277 0.0002 0.0002 0.0002 0.0002 0.0003 0.0452 0.0383 0.0333 0.0002 0.0002 0.0002 0.0002 0.0002 0.0531 0.0405 0.0328 0.0001 0.0001 0.0001 0.0003 0.0003 0.0717 0.0443 0.0280 0.0003 0.0003 0.0002 0.0007 0.0006 0.1256 0.0440 0.0271 0.0017 0.0017 0.0013 0.0014 0.0010 0.1888 0.0493 0.2426 0.0007 0.0007 0.0005 0.0003 0.0001 0.0415 0.0387 0.0940 0.0004 0.0004 0.0004 0.0001 0.0001 0.0396 0.0722 0.0982 0.0003 0.0003 0.0003 0.0001 0.0002 0.1340 0.1083 0.0754 0.0006 0.0006 0.0004 0.0004 0.0004 0.1873 0.0945 0.1631 0.0017 0.0018 0.0011 0.0010 0.0004 0.0531 0.1017 0.3623 0.0014 0.0015 0.0010 0.0013 0.0009 0.0811 0.2910 0.2629 0.0001 0.0001 0.0001 0.0008 0.0008 0.0383 0.3813 0.0600

0.0005 0.0007 0.0014 0.0016 0.0031 0.0027 0.0007 0.0013 0.0012 0.0016 0.0021 0.0023 0.0024 0.0024 0.0022 0.0069 0.0058

0.0006 0.0006 0.0013 0.0014 0.0025 0.0017 0.0011 0.0014 0.0016 0.0021 0.0026 0.0028 0.0029 0.0026 0.0026 0.0068 0.0056

0.0004 0.0003 0.0000 0.0004 0.0004 0.0007 0.0002 0.0004 0.0004 0.0003 0.0005 0.0007 0.0007 0.0003 0.0019 0.0032 0.0030

0.0000 0.0001 0.0004 0.0013 0.0028 0.0065 0.0039 0.0024 0.0016 0.0014 0.0012 0.0010 0.0013 0.0009 0.0020 0.0025 0.0025

0.0003 0.0004 0.0002 0.0007 0.0008 0.0012 0.0003 0.0006 0.0002 0.0001 0.0002 0.0005 0.0010 0.0014 0.0027 0.0037 0.0039

0.1831 0.1985 0.2422 0.2950 0.5018 0.8113 0.3877 0.2649 0.2531 0.2125 0.1817 0.1682 0.1627 0.2064 0.1588 0.7695 1.4254

0.1236 0.2144 0.3334 0.4518 0.6668 0.7243 0.1979 0.0874 0.0591 0.0565 0.0733 0.0887 0.0874 0.2348 0.4971 1.0207 2.1645

0.1457 0.1349 0.0851 0.0493 0.3291 0.9655 0.6234 0.4384 0.3719 0.3353 0.3003 0.2427 0.1278 0.1525 0.1247 0.6225 0.1303

JointSA1 JointSB1 0.0000 0.0000 0.0749 0.0749 0.0023 0.0095 0.0057 0.0033 0.0080 0.0019 0.0088 0.0035 0.0071 0.0051 0.0081 0.0026 0.0337 0.0050 0.0168 0.0230 0.0392 0.0143 0.0525 0.0376 0.0302 0.0280 0.0969 0.1237 0.1377 0.1038 0.0839 0.1193 0.0995 0.1410 0.0582 0.0807 0.0866 0.0698 0.1251 0.0488 0.2378 0.0236 0.4671 0.1770 0.2253 0.1003 0.1261 0.0548 0.1425 0.0319 0.1404 0.0260 0.1465 0.0338 0.1431 0.0634 0.1536 0.1241 0.1807 0.1937 0.0346 0.0692 0.3353 0.4393 0.4251 1.0430

JointSA1 JointSB1 0.0000 0.0000 0.1976 0.1995 0.0239 0.0222 0.0272 0.0264 0.0331 0.0338 0.0334 0.0372 0.0307 0.0427 0.0190 0.0496 0.1936 0.0478 0.0832 0.0686 0.0855 0.0528 0.0690 0.0670 0.1451 0.0991 0.3063 0.1753 0.2249 0.1822 0.0602 0.0689

0.1330 0.1220 0.0791 0.0586 0.3026 0.8482 0.5360 0.3708 0.3411 0.3159 0.2972 0.2720 0.1797 0.1667 0.1509 0.6142 0.4756

0.1484 0.1486 0.1418 0.1488 0.2717 0.3503 0.1033 0.0247 0.0186 0.0259 0.0418 0.0968 0.1755 0.2730 0.1038 0.5802 1.5112

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF