Buku Rumus Sifir Matematik 2019

May 14, 2019 | Author: ஆனந்த ராஜ் முனுசாமி | Category: N/A
Share Embed Donate


Short Description

Info...

Description

PENDAHULUAN

Falsafah Pendidikan Kebangsaan (FPK) dan Falsafah Pendidikan Guru (FPG) menekankan kepada perkembangan potensi individu guru secara seimbang dan bersepadu dari segi jasmani, emosi, rohani dan intelek. Hasrat ini dapat dicapai menerusi pelaksanaan kurikulum pendidikan guru yang menyepadukan aspek-aspek pengetahuan, kemahiran ikhtisas dan amalan nilai keguruan.

Berasaskan kepada FPK dan FPG, matematik telah menjadi bidang ilmu yang dapat melatih minda supaya berfikir secara mantik dan bersistem dalam menyelesaikan masalah dan membuat keputusan. Sejajar dengan itu, buku Rumus Matematik dan Sifir Statistik ini telah diolah dan disusun semula dengan mengambil kira kesinambungan yang berterusan mengikut kursuskursus yang ditawarkan oleh Institut Pendidikan Guru Malaysia (IPGM). Buku ini diharapkan dapat menjadi bahan rujukan dan membantu siswa pendidik dalam menyelesaikan masalah matematik menerusi rumus-rumus penting dan sifir statistik yang disediakan.

Buku ini dibahagikan kepada enam tajuk utama iaitu Algebra, Geometri, Trigonometri, Kalkulus, Statistik dan Matematik Kewangan. Setiap tajuk pula dibahagikan kepada topik-topik kecil supaya proses pembelajaran dapat dilakukan dengan lebih mudah, teratur dan bermakna. Semoga buku ini dapat memberi manfaat kepada siswa pendidik di institut pendidikan guru.

i

 AHL I PANEL PENYEMAK AN SEMUL A

1.

Dr. Jong Cherng Meei IPG Kampus Pulau Pinang Pulau Pinang

2.

Dr. Teong Mee Mee IPG Kampus Pulau Pinang Pulau Pinang

3.

Dr. Lam Kah Kei IPG Kampus Tengku Ampuan Afzan Kuala Lipis, Pahang

4.

Dr. Ng Kok Fu IPG Kampus Sultan Abdul Halim Sungai Petani, Kedah

5.

Datin Hjh. Zaitun binti Othman IPG Kampus Pendidikan Islam Bangi, Selangor

6.

Pn. Manisah Mohd Shah IPG Kampus Pendidkan Teknik Nilai, Negeri Sembilan

7.

Pn. Lee Yen Ting Institut Pendidikan Guru Malaysia Kementerian Pendidikan Malaysia

ii

KANDUNGAN CONTENTS

Pendahuluan Preface

..………………………………………………………..

i

..………………………………………………………..

ii

 Ah l i Pan el Panel Members

1.

ALGEBRA  AL GEBRA

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 1.12

Indeks Indices ……………………………………………………. Logaritma Logarithm ………………………………………………… Surd Surd ………………………………………………………. Nombor Kompleks Complex Numbers ………………………………………. Nilai Mutlak  Absolute Value …………………………………………... Matriks Matrices ....................................................................... Punca Persamaan Kuadratik Roots of Quadratic Equation ........................................ Janjang Aritmetik  Arithmetic Progression ....................................... .......... Janjang Geometri Geometric Progression ................................................ Kembangan Binomial Binomial Expansion .....................................................  Algebra Linear Linear Algebra ............................................................. Ruang Vektor Vector Spaces .............................................................

iii

1 1 2 2 3 3 3 4 4 4 5 6

2.

GEOMETRI GEOMETRY

2.1 2.2 2.3 2.4 2.5 2.6 2.7

3.

Luas  Area ……………………………………………………….. Isipadu Volume ……………………………………………………. Sukatan Membulat Circular Measures ......…………………………………... Bulatan Circle …………………………………............................. Geometri Koordinat Coordinate Geometry .................................................. Transformasi: Pembesaran Transformation: Enlargement ...................................... Keratan Kon Conic Sections .............................................................

7 7 7 8 8 9 9

TRIGONOMETRI TRIGONOMETRY

3.1 3.2

4.

Identiti Trigonometri Trigonometric Identities………………………………..... Penyelesaian Segitiga Solution of Triangles …………………………………….

11 12

KALKULUS CALCULUS

4.1 4.2

Fungsi dan Had Functions and Limits …………………………………..... Petua L Hopital L Hopital s Rule .......................………………………… Pembezaan Differentiation………..………………………………….... Pengamiran Integration ………………………………………………... Luas di bawah Lengkung  Area under a Curve ……………………………………... Isi Padu Bungkah Perkisaran Volume of Solid of Revolution …………………………. ’

’    

4.3 4.4 4.5 4.6

13

’    

iv

13 13 15 16 16

5.

STATISTIK STATISTICS

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13

6.

Kebarangkalian Probability…………………………………………………. Ukuran Kecenderungan Memusat Measures of Central Tendency ………………………... Ukuran Kedudukan Measures of Position ………………………………........ Ukuran Serakan Measures of Dispersion ……………………………….... Pilih Atur Permutation …………………………………………….... Gabungan Combination ……………………………………………... Taburan Binomial Binomial Distribution ……………………………………. Taburan Normal Piawai Standard Normal Distribution ………………………….. Taburan Pensampelan Sampling Distribution …………………………………...  Anggaran Selang Interval Estimation ……………………………………… Pengujian Hipotesis Hypothesis Testing ……………………………………...  Analisis Varians  Analysis of Variance (ANOVA)…………………………. Regresi Linear Linear Regression………………………………………..

17 17 18 19 20 20 20 20 21 22 23 25 26

MATEMATIK KEWANGAN FINANCIAL MATHEMATICS

6.1 6.2 6.3 6.4 6.5 6.6

Faedah dan Diskaun Interest and Discount  ...................................................  Anuiti  Annuity ......................................................................... Pelunasan Pinjaman  Amortisation of Loan ............................... ..................... Dana Terikat Sinking Fund ................................................................  Aliran Tunai Cash Flow .................................................................... Nombor Indeks Index Number ..............................................................

v

27 28 28 29 29 30

7.

SIFIR STATISTIK STATISTICAL TABLES

7.1 7.2 7.3 7.4 7.5 7.6

Pekali Binomial Binomial Coefficients ………………………………….... Pekali Pilih Atur Permutation Coefficients .……………….……………… Sifir Taburan-F F-DistributionTables …………………………………….. Sifir Taburan Normal Piawai Standard Normal Distribution Table…….……………... Sifir Taburan Khi Kuasa Dua Chi-Square Distribution Table……….…………………. Sifir Taburan-t t-Distribution Table .……………………………………...

31 32 33 36 37 38

BIBLIOGRAFI BIBLIOGRAPHY

…………………………………………………..

vi

39

1.

ALGEBRA  ALGEBRA 1.1

Indeks Indices (i)

 a

(ii)

 a

(iii)

 a

(iv)

 a 

(v)

 a

,



 m

 m

 n

  a

  a

 m  n



1.2

  a

 m  n

 m  n

 a mn

 n





  a      b 

 n

 m

(vii)

  a

 n

 a

(vi)

 a 

 n

 n

  b      a 

 

 m

 a

 n

 n



 a

Logaritma Logarithm Bagi sebarang a, b, m, n   R dan a > 0, b > 0, m > 0, n > 0, For any a, b, m, n   R and a > 0, b > 0, m > 0, n > 0, (i)

log a  mn  log a  m  log a  n

(ii)

log a

(iii)

log a  m n

(iv)

log a  a



(v)

log a



(vi)

log a  m

(vii)

log a  b 

 m  n



log a  m





log a  n

 n log a  m

log b  m log b  a

 ,

 b

log b  a

1

1.3

Surd Surd (i)

 ab

 a

(ii)

 b

 a

(v)

 b

 a  b

 a

(iv)

 a





(iii)

1.4





 a  a  b

 a   b

 

 a



 b



  a 

b

 a   b  a   b

Nombor Komp leks Complex Numbers (i)

 a

 bi

 c

 di

 a

 c

(  b  d  )i

(ii)

 a

 bi

 c

 di

 a

 c

(  b

(iii)

 a

 bi  c

(iv) (v)

 di

 bd 

(  ad   bc  )i

  bi  ac   bd    bc   ad     i  c   di   c   d     c   d 

 a

Bentuk kutub nombor kompleks Polar form of complex numbers  x  iy  r  kos

(vi)

 ac



i sin



Pendaraban nombor kompleks dalam bentuk kutub Multiplication of complex numbers in polar form

 r  kos  i  sin    r (  kos   r  r  kos     i  sin  (vii)

 d  )i



i  sin

 )



Pembahagian nombor kompleks dalam bentuk kutub Division of complex numbers in polar form  r  kos

i  sin

 r (  kos

i  sin

 r  )

 r

2

 kos

i  sin

(viii)

Teorem De Moivre De Moivre's theorem

     1.5

Nilai Mutlak  Abso lu te Val ue (i)

 x



 jika  x 

 x

if 

(ii)  x

 jika  x 

  x

if 

1.6

1.7



 x



 x

Matriks Matrices (i)

  a  b   ,  A    c  d     

(ii)

 A 

 A   ad    bc

  d   b    ,  A   c  a  

 A 

Punca Persamaan Kuadr atik Roots of Quadratic Equation (i)

Jika   dan   ialah punca-punca suatu persamaan kuadratik, maka persamaan kuadratik tersebut ialah If   and    are roots of a quadratic equation, then the quadratic equation is

      (ii)

Jika ax If ax

 x 

2



2



bx  c

bx  c

 b 

 b 





0 , maka

0 , then

 ac

 a

3

1.8

Janjang Arit metik  Ar it hm eti c Pr og res si on (i)

T  n

(ii)

 d   T  n 

(iii)

 n

S n

1.9

 a



 n

 a

S n

 d 



S n





Janjang Geometri Geometric Progression (i)

T  n

(ii)

 r

(iii)

(iv)

(v)

1.10

T  n

T  n



 n

(iv)

 n   d 

  a 





S n

S n

S

ar

 n



T   n  T  n



 a  r 

 r

 a 



 r 







 r



 r

 a 

,

 n

 

 r

 n

,

 r 

,

 r



Kembangan Bin omial Binomial Expansion (i)

 a  b n   a

 n



 n

C   a

 n 

 b



 n

C   a

 n 

 b



... 

 n

C  r  a

 n  r

 r

 b



...   b n

  n    n    n    a n    a n   b    a n   b  ...    a n  r  b r  ...   b n           r 

4

(ii)

||  < 1  ∈  || < 1  ∈ 

Untuk For



1.11



 dan  and

,

(

 n

  x

,



  nx 

 n  n 



)

(

 x

  ... 

) ...( n   r  )

 n  n 



 x

 r

  ...   x

n

  ...  r

Alg ebra Linear Linear Algebra (i)

Jika A ialah matriks tak singular, maka If A is a non-singular (invertible) matrix, then (

(ii)

Jika A dan B ialah matriks-matriks tak singular  n x n, maka If A and B are n x n non-singular (invertible) matrices, then (

(iii)

)   =





Jika A ialah matriks tak singular, maka If  A is a non-singular (invertible) matrix, then (

(iv)

)   =



)

(

)

Petua Cramer Cramer’s Rule

Jika A ialah matriks tak singular  n x n, untuk sebarang  b dalam , penyelesaian unik bagi A x = b ialah If A is a non-singular  (invertible) n x n matrix, then for any b in , the unique solution of A x = b is

 

 ,

 x

(v)

Rumus songsangan Inverse formula Jika A ialah matriks tak singular n x n, maka If A is a non-singular (invertible) n x n matrix, then 

(vi)

=

Persamaan ciri Characteristic equation (

)

= nilai eigen/eigen value

,

5

1.12

Ruang Vektor Vector Spaces (i)

(ii)



ˆ



 kos





 xi  x

(iii)

(iv)



ˆ



 xi



 x





 y  y

 y

 y j



 x  x

 y j

 kos



=





 y



 x  x

k

  z

  z

6



 y  y



 z  z

2.

GEOMETRI GEOMETRY 2.1

2.2

2.3

Luas  Ar ea = b

×

(i)

Luas segi empat selari  Area of parallelogram

(ii)

Luas trapezium  Area of trapezium

(iii)

Luas permukaan melengkung silinder Curved surface area of cylinder

=

(iv)

Luas permukaan melengkung kon Curved surface area of cone

=

 r  r

(v)

Luas permukaan sfera Surface area of sphere

=

 r

=

 h

 a   b  h  r  h

Isi Padu Volume (i)

Isi padu silinder Volume of cylinder

=

(ii)

Isi padu kon Volume of cone

=

(iii)

Isi padu piramid Volume of pyramid

=

(iv)

Isi padu sfera Volume of sphere

=

 r  h

 r  h



 A   h

 r

Sukatan Membulat Circul ar Measures (i)

(ii)

Panjang lengkok,  Arc length, Luas sektor,  Area of sector,

 s   r

   dalam  

 A   r

7

radian in radians

   dalam  

radian in radians

  h



 r l 

2.4

Bulatan Circle (i)

(ii)

2.5

Panjang lengkok,  Arc length, Luas sektor,  Area of sector,

 s 

 A





 r



 r

Geometri Koor dinat Coordin ate Geometry (i)

  x   x  

Titik tengah, Mid-point,

 M   

  y     

 y ,

(ii)

Jarak antara dua titik, Distance between two points,

(iii)

Jarak serenjang dari titik  x1 , y1   ke garis lurus ax  by  c  0 Perpendicular distance from a point  x1 , y1  to a straight line

 d



 x



 x





 y



 y



ax  by  c  0



 ax



 a

(iv)

 by 



 c

 b

Koordinat-koordinat bagi titik P  x  y  yang membahagi dalam tembereng garis yang menghubungkan  A  x1 , y1  dan  B  x2 , y2  mengikut nisbah m : n Coordinates of a point P  x , y  that divides internally a line segment between  A  x1 , y1   and  B  x2 , y2  in the ratio of ,

m:n

  nx   mx      m   n (v)

 ,

  my  m   n

 ny

Luas segitiga  Area of triangle

    

 x

=

8

 y

  x

 y

  x

 y

   x

 y

  x

 y

  x

 y



2.6

2.7

Transform asi: Pembesaran Transformation: Enlargement (i)

Luas imej  Area of image

= k 2× luas objek = k 2× area of object

(ii)

Isi padu imej Volume of image

= k 3× isi padu objek = k 3× volume of object

Keratan Kon Conic Sections 2.7.1 Bulatan Circle Bentuk piawai bagi persamaan bulatan dengan pusat (h, k) dan  jejari r  Standard form of the equation of a circle with centre (h, k) and radius r 

 x  h   y  k 

 r



2.7.2 Parabola Parabola Bentuk piawai bagi persamaan parabola dengan bucu (h, k) Standard form of the equation of a parabola with vertex (h, k) (i)

 y

(ii)

 x

 k 





 h





 p( x h) 

 p( y k ) 

2.7.3 Elips Ellipse Bentuk piawai bagi persamaan elips dengan pusat (h, k) Standard form of the equation of an ellipse with centre (h, k)  x  h

 y  k

 a

 b

 y  k

 x  h

 a

 b

 ,

 a

9

 b ,  c 2

 a

 b

2.7.4 Hiperbola Hyperbola Bentuk piawai persamaan bagi hiperbola dengan pusat (h, k) Standard form of the equation of a hyperbola with centre (h, k) (i)

(ii)

(iii)

 x  h

 y  k

 a

 b

 y  k

 x  h

 b

 a

 ,

 c 2

 a

 b

Persamaan –persamaan asimptot Equations of asymptotes  y

 

 y

 

 b  a  a  b

 x  h   k  x  h  k

10

3.

TRIGONOMETRI TRIGONOMETRY 3.1

Identiti Trigon ometri Trigonometric Identities (i)

 sin

  kos

(ii)

 sek

(iii)

 kosek

(iv)

 sin  A   B   sin  A  kos  B   kos  A  sin B

(v)

 kos  A   B   kos  A  kos  B   sin  A  sin B

(vi)

 tan  A   B 

(vii)

 sin  A

(viii)

 kos  A   kos  A   sin  A



  tan



  kot





















 kos

 sin  A

(xi)

 kos  A   kos

 tan  A



  tan  A  A

 sin

 A

 kos



 kos

 A

 A

 A 

 A





 A

 sin

 sin



 tan

(xii)

A

 tan  A

(x)



 sin  A



 tan  A 



  tan  A  tan  B

 sin  A  kos  A

(ix)



 tan  A   tan  B

 tan

 A

11

3.2

  A   B    A   B    kos          

(xiii)

 sin  A   sin  B



 sin 

(xiv)

 sin  A   sin  B



 kos

(xv)

 kos  A   kos  B

(xvi)

 kos  A   kos  B    sin 

  A   B    A   B     sin             A   B    A   B    kos          



 kos 

  A   B    A   B    sin          

Penyelesaian Segiti ga Solution of Triangles 3.2.1 Petua Sinus Sine Rule  a  sin  A



 b

 c



 sin  B

 sin C 

3.2.2 Petua Kos inu s Cosine Rule  a

  b

  c



 bc  kos  A

 b

  a

  c



 ac  kos  B

 c

  a

  b



 ab  kos C 

3.2.3 Luas Segiti ga  Ar ea of Tri ang le

  bc  sin  A

  ac  sin  B



 ab  sin C 

  s s  a  s  b  s  c  , 12

 s 

 a  b  c 

4.

KALKULUS CALCULUS 4.1

Fungs i dan Had Functions and Limits

(i)

(ii)

(iii)

lim kos  x

lim  sin x    x 

lim

 sin  x 

 x

 x 

(iv)

  kos

lim



Petua L Hopital L Hopital s Rule lim  x  c

4.3

 x

 x

 x 

4.2



 x 

 f (  x )

lim



 g (  x )

 x  c

 f ' (  x  )  g' (  x  )

Pembezaan Differentiation (i)

(ii) (iii)

 d 

 x



 dx

 d   dx

 nx

 n



 ax   b  n   na  ax   bn 

  dy  dx

(iv)

 n

 y



u

 dv  dx

 du



v



u

 dx

u 

v

v

 dy  dx



 du  dx

 dv  dx

v

13

(v)

 y



 dy



 dx

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

  f  u ,

 dy  du

 →  d 

 dy



 d 

e

 x

 dx  d 

e



 dx

 x

ln  ax

 dx



e

 b  

 ax   b 

 sin  x

 dx  d 

 d   dx  d 



 kos  x

 dx

  a

 dx

 d   dx  d   dx  d   dx  d   dx

 ax  b

e

 ax   b 

 kos  x





 sin  x

 tan x   sek  x

 kosek  x

 dx

 d 

 a

 x

 dx  d 

 g  x

 dx



 x

ln  x



 du

 y

 dx

 d 



u

 sek  x



 

 kosek  x  kot  x

 sek  x  tan  x

 kot  x   kosek  x

 sin  ax   b    a  kos  ax   b

 kos  ax   b    a  sin  ax   b 

 tan  ax   b    a  sek  ax   b

14

(xx)

(xxi)

(xxii)

4.4

 d 

 sin n  ax   b    a n sin n   ax   b  kos  ax   b 

 dx  d 

 kos n  ax

 dx  d   dx



 b    a n kos n

 ax   b  sin  ax   b 



 tan n  ax   b    a n  tan n   ax   b  sek  ax   b 

Pengamiran Integration  x

 n 

(i)

 x

(ii)

  ax

(iii)

 ax   b n    ax   b  dx   a  n     c  ,

(iv)

  x  dx  ln  x   c

(v)

  ax   b dx   a ln  ax   b  c

 dx 

 n

 n

  c  , n  

 n 

 dx 

 ax

 n 

  c  ,

 n 

 n

 n

'

 f   x

(vi)

 f   x

 dx

l n  f 

 x

 c

(vii)

e

(viii)

e

(ix)



(x)

 sin  x  dx   kos  x   c

(xi)



 x

 dx

 kx

n

 e x   c

 dx 

e kx  k

  c



 kos  x  dx   sin  x   c  ;

 kos  kx  dx 

 ;

 sek  x  dx   tan  x   c  ;

15

 sin  kx

 sin  kx  dx  

 k

  c

 kos  kx

 sek  kx  dx 

 k  tan  kx  k

  c

  c

4.5

(xii)

 kosek

(xiii)

e  f   x  f '  x  dx

 x  dx

 kot  x

e  f 

x

 ;

 kosek

 c

(xiv)

∫     ∫  

(xv)

 tan x  dx  ln sek x  c

(xvi)

 kot  x  dx  ln sin x  c

(xvii)

 kosek x  dx   ln kosek x  kot  x  c

(xviii)

 sek  x  dx  ln sek x  tan x  c

Luas di bawah Lengkung  Ar ea un der a Cur ve (i)

 b

 A x

 y dx  a

(ii)

 b

 A y

 x dy  a

4.6

 c

Isi padu Bung kah Perki saran Volume of Solid of Revoluti on (i)

 b

V  x

 y  dx  a

(ii)

 b

V  y 

  x

 dy

 a

16

 kx  dx

 kot  kx  k

 c

5.

STATISTIK STATISTICS 5.1

Kebarangkalian Probability (i)

 

 P  A

   n  S 

 n  A 

 

(ii)

  P A   n

(iii)

  P ( E

i

)

i

(iv)

 P  A

(v)

Jika  A dan  B tak bersandar, maka If A and B are independent, then

'

1



 P  A   B

(vi)

 P  A

   P ( A)  P (B)

Jika A dan B peristiwa saling tak eksklusif, maka If A and B are not mutually exclusive events, then



 P  A   B

(vii)

   P  A   P  B   P  A   B

Jika A dan B peristiwa saling eksklusif, maka If A and B are mutually exclusive events, then



 P  A   B

(viii)

5.2



 P  A

 B





 P  B |  A

 P  A



 P  A   B

 P  B



 

 P  A

Ukuran Kecenderungan Memus at Measures of Central Tendency (i)

Min Aritmetik  Arithmetic Mean (a)

 x





 x

 n

(b)

 x 

  fx   f  17

 x   x a 

(c)

  fd    f 

   fd     (d)  x   x a      f   C      (ii)

(iii)

5.3

 N   F

Median Median

=  L

Mod Mode

=

 f  m

 d 

 L  d 



C   d 

Ukuran Keduduk an Measures of Position (i)

Kuartil Quartile  kn Q k

(ii)

 L

 f Q k

C  ,

 k

 ,  ,

C  ,

 k

 ,  ,  , ...,

Desil Decile  kn  D k

(iii)

 F

 L

 F

 f  D k

Persentil Percentile  kn  P k

 L

 f  P k

 F C  ,

18

 k

 ,  ,  , ...,

5.4

Ukuran Serakan Measures of Dispersio n (i)

Populasi Population  x

(a)

 N 

=

 N 

=



=

(d)

(ii)

 N 

 ─ 

 x

(b)

(c)



 x

 x

2

 N 

  f   x     f   f   x

 f   x

 f 

 f 

 f  d 

 f  d 

 f 

 f 

Sampel Sample (a)

(b)

 s

 x

 x

 n

 x

 x

 s  n

19

5.5

Pilih Atur Permutation  n!

 n

 P r



=

5.6

 n





 r !





 n  n 

 n 





 n  r 

Gabungan Combination

  n   n  n!    C  r   r ! n   r !   r 

5.7

Taburan Bino mial Binomial Distribution (i)

 E  X 

(ii)

Var  X 

(iii) (iv)

5.8



 np





npq

 npq

 P  X   x  



 n

C  x  p x q n



x

 ,

Taburan Normal Piawai Standard Normal Distributi on (i)

(ii)

 z

 t

 x

 x

 x  s

 ,

 n

20

 x



 ,  ,  , , n

5.9

Taburan Pensampelan Sampling Distribu tion 5.9.1 Bagi populasi tak terhingga atau dengan pengembalian For infinite population or with replacement; (i)

Min Mean  x

(ii)



Varians bagi min Variance for mean

 x



 n

(iii)

Ralat piawai min (Sisihan piawai bagi min) Standard error of the mean (SEM) (Standard deviation for mean)  x



 n

5.9.2 Bagi populasi terhingga atau tanpa pengembalian For finite population or without replacement (i)

Min Mean  x

(ii)

Varians bagi min Variance for mean

 x

(iii)





  N    n     n   N    

Ralat piawai min (sisihan piawai bagi min) Standard error of the mean (SEM)(standard deviation for mean)

 x

 N 



 N 



 n



 n

21

5.10

Anggaran Selang Interval Estimation (i)

Selang keyakinan 1     100% bagi Confidence interval 1     100% for

    x   z    (ii)

 ,  x

  z

 n

 s

 ,  x

  z

 is known

  jika



2

 tak diketahui dan



if



2

is not known and

 n

     n  

Selang keyakinan 1     100% bagi sampel kecil, n  30

   x   t   

 s  , n 

 ,  x

  t

 n

  jika

  if





2

2

 tak diketahui dan

is not known and

     n  

 s  , n

Selang keyakinan 1     100% bagi kadaran p Confidence interval 1     100% for proportion p

    p   z   

 pq ˆ   ˆ  

ˆ  

(v)

2

 s

Confidence interval 1     100% for small sample, n  30

(iv)



 diketahui

30

    x   z    (iii)

if

2

30

Confidence interval 1     100% for n 





     n  

Selang keyakinan 1    100% bagi n 

  jika

 , p   z ˆ  

 n

 pq  

  n   ˆ   ˆ  

Selang keyakinan 1     100% bagi populasi varians Confidence interval 1    100% for population variance 

(  n   ) s  R





(  n   ) s  L

22

5.11

Penguj ian Hipotesis Hypothesis Testing 5.11.1 Ujian Satu Sampel One-sample Test (i)

Ujian min Mean test  Apabila  2  diketahui When  2 is known  x  z





 n

 Apabila  2  tak diketahui when  2 is not known  x  z





 s  n

 Apabila when

 t 

 x 



 2

2

tak diketahui dan

is not known and



 s  n

(ii)

Ujian perkadaran Proportion test  p ˆ

 z



 p



 pq  n

(iii)

Ujian varians Variance test (  n



 )  s



23

n 

n 

30

30

5.11.2 Ujian Dua Sampel Two-sample Test (i)

Ujian perbezaan antara dua min populasi Test of the difference between two population means  z 

( x

)(

  x

)





 n

(ii)

 n

Ujian-t tak bersandar Independent t-test (a) Varians yang sama Equal variances assumed

 t



(  x



 x  )  ( 

S  p

 n

 n

(  n

dengan S  p dan  df   n



 )



 ) s  n



n

(  n

 ) s

 n



(b) Varians yang tidak sama Equal variances not assumed

 t



(  x



 x  )  (   s  n





 s

;

 n

  s  s        n  n    df     s       n    n    n  (iii)

 )

  s    n

    

Ujian-t bersandar Dependent t-test

 t 

 D

 N  D  (  D )  N   24

 df 



 N 



5.11.3 Ujian Hipot esis Khi Kuasa Dua Chi-square Hypot hesis Test (i)

Apabila jangkaan frekuensi adalah sama When expected frequencies are equal  E

(ii)

 n 

 k

 Apabila jangkaan frekuensi adalah tak sama When expected frequencies are not all equal

 E (iii)



 np

Ujian statistik Khi kuasa dua Chi-square Test Statistics  k

 i

( Oi   E i  )  E i

5.12  Analis is Vari ans  An aly si s o f Vari anc e (ANOVA) (i)

Ujian statistik ANOVA sehala (saiz sampel sama) Test statistic for one-way ANOVA (equal sample sizes)

 F (ii)



 ns x  s p

Ujian statistik ANOVA sehala (saiz sampel tak sama) Test statistic for one-way ANOVA (unequal sample sizes)

 F



  ni  x i   x     k    ni    s i    ni  

25

     

(iii)

Hasil tambah kuasa dua ANOVA  ANOVA Sum of squares



=

 SST 

 x 

 x   N 

T i

 SSB 

=

 SSW 

=

 x

 n i

 N 

 SST   –  SSB 

SSB

 df  B

 k  SSW 

 F =

 df W 





(k

 )



(N   k) 

 N    k

5.13

Regresi Linear Linear Regression (i)

Persamaan ramalan Prediction equation

 y   b o  b  x  b 

 b o (ii)

 n xy   x   y



 n x   x 

 y  b  x

Reja Residual

e = y -  ŷ (iii)

Pekali Korelasi Correlation coefficient

 r 

 n xy   x   y

 n x

 (  x )

26

  n  y



 (   y )



6.

MATEMATIK KEWANGAN FINANCIAL MATHEMATICS 6.1

Faedah dan Diskaun Interest and Discount (i)

Faedah mudah Simple interest

   (ii)

Diskaun mudah Simple discount

   (iii)

Faedah kompaun Compound interest

           (iv)

Nilai kini Present value

    (v)

Kompaun berterusan Continuous compounding

   (vi)

Diskaun kompaun Compound discount

    ( ) (vii)

Kadar faedah efektif Effective interest rate

       27

6.2

Anuiti  Annu it y (i)

Anuiti serta-merta Immediate annuity

         −       (ii)

Anuiti matang  Annuity due

+         −−       (iii)

Anuiti tertunda Deferred annuity

            [−  −+] (iv)

Anuiti dengan kompaun berterusan  Annuity with continuous compounding

           −         6.3

Pelunasan Pinjaman  Am or ti sat io n o f L oan

 −                 28

6.4

Dana Terikat Sinking Fund

     6.5

Alir an Tunai Cash Flow (i)

Nilai kini bersih Net present value



    ∑  =

(ii)

Kadar pulangan dalaman Internal Rate of Return (IRR)

 ×            (iii)

Harga belian bon Purchase price of bonds

−       − (iv)

Kadar inflasi Rate of inflation

   +  (v)

Kadar pulangan sebenar Real rate of return

        

29

6.6

Nombor Indeks Index Number (i)

Harga relatif Relative price  I  o , n

(ii)



 h o

Relatif rantai Chain relative  I i

(iii)

 h n





 ,i 

 hi  hi





Purata indeks relatif  Average relative index

  h   n    ho  I  

    

 N 

(iv)

Indeks harga relatif berpemberat Weighted relative price index  n

 I  w i

 I 



i

i  n

w

i

i

30

7. SIFIR STATISTIK

STATISTICAL TABLES 7.1

Pekali Bino mial

Binomial Coefficients Nilai-nilai

k

 n

C  k

  n     n    n !            k !  k  n  k  k !  n        

0

1

2

3

4

5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 210 231 253 276 300 325 351 378 406 435

1 4 10 20 35 56 84 120 165 220 286 364 455 560 680 816 969 1,140 1,330 1,540 1,771 2,024 2,300 2,600 2,925 3,276 3,654 4,060

1 5 15 35 70 126 210 330 495 715 1,001 1,365 1,820 2,380 3,060 3,876 4,845 5,985 7,315 8,855 10,626 12,650 14,950 17,550 20,475 23,751 27,405

1 6 21 56 126 252 462 792 1,287 2,002 3,003 4,368 6,188 8,568 11,628 15,504 20,349 26,334 33,649 42,504 53,130 65,780 80,730 98,280 118,755 142,506

6

7

8

9

10

11

12

13

14

15

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 7 28 84 210 462 924 1,716 3,003 5,005 8,008 12,376 18,564 27,132 38,760 54,264 74,613 100,947 134,596 177,100 230,230 296,010 376,740 475,020 593,775

1 8 36 120 330 792 1,716 3,432 6,435 11,440 19,448 31,824 50,388 77,520 116,280 170,544 245,157 346,104 480,700 657,800 888,030 1,184,040 1,560,780 2,035,800

1 9 45 165 495 1,287 3,003 6,435 12,870 24,310 43,758 75,582 125,970 203,490 319,770 490,314 735,471 1,081,575 1,562,275 2,220,075 3,108,105 4,292,145 5,852,925

1 10 55 220 715 2,002 5,005 11,440 24,3 10 48,620 92,378 167,960 293,930 497,420 817,190 1,307,504 2,042,975 3,124,550 4,686,825 6,906,900 10,015,005 14,307,150

31

1 11 66 286 1,001 3,003 8,008 19,448 43,758 92,378 184,756 352,716 646,646 1,144,066 1,961,256 3,268,760 5,311,735 8,436,285 13,123,110 20,030,010 30,045,015

1 12 78 364 1,365 4,368 12,376 31,824 75,582 167,960 352,716 705,432 1,352,078 2,496,144 4,457,400 7,726,160 13,037,895 21,474,180 34,597,290 54,627,300

1 13 91 455 1,820 6,188 18,564 50,388 125,970 293,930 646,646 1,352,078 2,704,156 5,200,300 9,657,700 17,383,860 30,421,755 51,895,935 86,493,225

1 14 105 560 2,380 8,568 27,132 77,520 203,490 497,420 1,144,066 2,496,144 5,200,300 10,400,600 20,058,300 37,442,160 67,863,915 119,759,850

1 15 120 680 3,060 11,628 38,760 116,280 319,770 817,190 1,961,256 4,457,400 9,657,700 20,058,300 40,116,600 77,558,760 145,422,675

1 16 136 816 3,876 15,504 54,264 170,544 490,314 1,307,504 3,268,760 7,726,160 17,383,860 37,442,160 77,558,760 155,117,520

7.2

Pekali Pilih Atur

Permutation Coefficients

2

 n !

 n

Nilai-nilai

 P r

3



 n



4



 r !

r

1

5

6

7

1

1

2

2

2

3

3

6

6

4

4

12

24

24

5

5

20

60

120

120

6

6

30

120

360

720

720

7

7

42

210

840

2,520

5,040

5,040

8

8

56

336

1,680

6,720

20,160

40,320

8

9

10

11

12

n

40,320

9

9

72

504

3,024

15,120

60,480

181,440

362,880

362,880

10

10

90

720

5,040

30,240

151,200

604,800

1,814,400

3,628,800

3,628,800

11

11

110

990

7,920

55,440

332,640

1,663,200

6,652,800

19,958,400

39,916,800

39,916,800

12

12

132

1,320

11,880

95,040

665,280

3,991,680

19,958,400

79,833,600

239,500,800

479,001,600

479,001,600

13

13

156

1,716

17,160

154,440

1,235,520

8,648,640

51,891,840

259,459,200

1,037,836,800

3,113,510,400

6,227,020,800

14

14

182

2,184

24,024

240,240

2,162,160

17,297,280

121,080,960

726,485,760

3,632,428,800

14,529,715,200

43,589,145,600

15

15

210

2,730

32,760

360,360

3,603,600

32,432,400

259,459,200

1,816,214,400

10,897,286,400

54,486,432,000

217,945,728,000

16

16

240

3,360

43,680

524,160

5,765,760

57,657,600

518,918,400

4,151,347,200

29,059,430,400

174,356,582,400

871,782,912,000

17

17

272

4,080

57,120

742,560

8,910,720

98,017,920

980,179,200

8,821,612,800

70,572,902,400

494,010,316,800

2,964,061,900,800

18

18

306

4,896

73,440

1,028,160

13,366,080

160,392,960

1,764,322,560

17,643,225,600

158,789,030,400

1,270,312,243,200

8,892,185,702,400

19

19

342

5,814

93,024

1,395,360

19,535,040

253,955,520

3,047,466,240

33,522,128,640

335,221,286,400

3,016,991,577,600

24,135,932,620,800

20

20

380

6,840

116,280

1,860,480

27,907,200

390,700,800

5,079,110,400

60,949,324,800

670,442,572,800

6,704,425,728,000

60,339,831,552,000

32

7.3

Sifi r Taburan-F

F-Distribution Tables

d 1

1

2

3

4

5

6

7

8

1

39.86 8.53 5.54 4.54 4.06 3.78 3.59 3.46 3.36 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 2.99 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.90 2.89 2.89 2.88 2.84 2.79 2.75 2.71

49.50 9.00 5.46 4.32 3.78 3.46 3.26 3.11 3.01 2.92 2.86 2.81 2.76 2.73 2.70 2.67 2.64 2.62 2.61 2.59 2.57 2.56 2.55 2.54 2.53 2.52 2.51 2.50 2.50 2.49 2.44 2.39 2.35 2.30

53.59 9.16 5.39 4.19 3.62 3.29 3.07 2.92 2.81 2.73 2.66 2.61 2.56 2.52 2.49 2.46 2.44 2.42 2.40 2.38 2.36 2.35 2.34 2.33 2.32 2.31 2.30 2.29 2.28 2.28 2.23 2.18 2.13 2.08

55.83 9.24 5.34 4.11 3.52 3.18 2.96 2.81 2.69 2.61 2.54 2.48 2.43 2.39 2.36 2.33 2.31 2.29 2.27 2.25 2.23 2.22 2.21 2.19 2.18 2.17 2.17 2.16 2.15 2.14 2.09 2.04 1.99 1.94

57.24 9.29 5.31 4.05 3.45 3.11 2.88 2.73 2.61 2.52 2.45 2.39 2.35 2.31 2.27 2.24 2.22 2.20 2.18 2.16 2.14 2.13 2.11 2.10 2.09 2.08 2.07 2.06 2.06 2.05 2.00 1.95 1.90 1.85

58.20 9.33 5.28 4.01 3.40 3.05 2.83 2.67 2.55 2.46 2.39 2.33 2.28 2.24 2.21 2.18 2.15 2.13 2.11 2.09 2.08 2.06 2.05 2.04 2.02 2.01 2.00 2.00 1.99 1.98 1.93 1.87 1.82 1.77

58.91 9.35 5.27 3.98 3.37 3.01 2.78 2.62 2.51 2.41 2.34 2.28 2.23 2.19 2.16 2.13 2.10 2.08 2.06 2.04 2.02 2.01 1.99 1.98 1.97 1.96 1.95 1.94 1.93 1.93 1.87 1.82 1.77 1.72

59.44 9.37 5.25 3.95 3.34 2.98 2.75 2.59 2.47 2.38 2.30 2.24 2.20 2.15 2.12 2.09 2.06 2.04 2.02 2.00 1.98 1.97 1.95 1.94 1.93 1.92 1.91 1.90 1.89 1.88 1.83 1.77 1.72 1.67

9

10

12

15

20

24

30

40

60

120

inf

62.26 9.46 5.17 3.82 3.17 2.80 2.56 2.38 2.25 2.16 2.08 2.01 1.96 1.91 1.87 1.84 1.81 1.78 1.76 1.74 1.72 1.70 1.69 1.67 1.66 1.65 1.64 1.63 1.62 1.61 1.54 1.48 1.41 1.34

62.53 9.47 5.16 3.80 3.16 2.78 2.54 2.36 2.23 2.13 2.05 1.99 1.93 1.89 1.85 1.81 1.78 1.75 1.73 1.71 1.69 1.67 1.66 1.64 1.63 1.61 1.60 1.59 1.58 1.57 1.51 1.44 1.37 1.30

62.79 9.47 5.15 3.79 3.14 2.76 2.51 2.34 2.21 2.11 2.03 1.96 1.90 1.86 1.82 1.78 1.75 1.72 1.70 1.68 1.66 1.64 1.62 1.61 1.59 1.58 1.57 1.56 1.55 1.54 1.47 1.40 1.32 1.24

63.06 9.48 5.14 3.78 3.12 2.74 2.49 2.32 2.18 2.08 2.00 1.93 1.88 1.83 1.79 1.75 1.72 1.69 1.67 1.64 1.62 1.60 1.59 1.57 1.56 1.54 1.53 1.52 1.51 1.50 1.42 1.35 1.26 1.17

63.33 9.49 5.13 3.76 3.10 2.72 2.47 2.29 2.16 2.06 1.97 1.90 1.85 1.80 1.76 1.72 1.69 1.66 1.63 1.61 1.59 1.57 1.55 1.53 1.52 1.50 1.49 1.48 1.47 1.46 1.38 1.29 1.19 1.00

d 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 60 120 inf

59.86 9.38 5.24 3.94 3.32 2.96 2.72 2.56 2.44 2.35 2.27 2.21 2.16 2.12 2.09 2.06 2.03 2.00 1.98 1.96 1.95 1.93 1.92 1.91 1.89 1.88 1.87 1.87 1.86 1.85 1.79 1.74 1.68 1.63

33

60.19 9.39 5.23 3.92 3.30 2.94 2.70 2.54 2.42 2.32 2.25 2.19 2.14 2.10 2.06 2.03 2.00 1.98 1.96 1.94 1.92 1.90 1.89 1.88 1.87 1.86 1.85 1.84 1.83 1.82 1.76 1.71 1.65 1.60

60.71 9.41 5.22 3.90 3.27 2.90 2.67 2.50 2.38 2.28 2.21 2.15 2.10 2.05 2.02 1.99 1.96 1.93 1.91 1.89 1.87 1.86 1.84 1.83 1.82 1.81 1.80 1.79 1.78 1.77 1.71 1.66 1.60 1.55

61.22 9.42 5.20 3.87 3.24 2.87 2.63 2.46 2.34 2.24 2.17 2.10 2.05 2.01 1.97 1.94 1.91 1.89 1.86 1.84 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.74 1.73 1.72 1.66 1.60 1.55 1.49

61.74 9.44 5.18 3.84 3.21 2.84 2.59 2.42 2.30 2.20 2.12 2.06 2.01 1.96 1.92 1.89 1.86 1.84 1.81 1.79 1.78 1.76 1.74 1.73 1.72 1.71 1.70 1.69 1.68 1.67 1.61 1.54 1.48 1.42

62.00 9.45 5.18 3.83 3.19 2.82 2.58 2.40 2.28 2.18 2.10 2.04 1.98 1.94 1.90 1.87 1.84 1.81 1.79 1.77 1.75 1.73 1.72 1.70 1.69 1.68 1.67 1.66 1.65 1.64 1.57 1.51 1.45 1.38

d 1

1

2

3

4

5

6

7

8

1

161.45 18.51 10.13 7.71 6.61 5.99 5.59 5.32 5.12 4.96 4.84 4.75 4.67 4.60 4.54 4.49 4.45 4.41 4.38 4.35 4.32 4.30 4.28 4.26 4.24 4.23 4.21 4.20 4.18 4.17 4.08 4.00 3.92 3.84

199.50 19.00 9.55 6.94 5.79 5.14 4.74 4.46 4.26 4.10 3.98 3.89 3.81 3.74 3.68 3.63 3.59 3.55 3.52 3.49 3.47 3.44 3.42 3.40 3.39 3.37 3.35 3.34 3.33 3.32 3.23 3.15 3.07 3.00

215.71 19.16 9.28 6.59 5.41 4.76 4.35 4.07 3.86 3.71 3.59 3.49 3.41 3.34 3.29 3.24 3.20 3.16 3.13 3.10 3.07 3.05 3.03 3.01 2.99 2.98 2.96 2.95 2.93 2.92 2.84 2.76 2.68 2.60

224.58 19.25 9.12 6.39 5.19 4.53 4.12 3.84 3.63 3.48 3.36 3.26 3.18 3.11 3.06 3.01 2.96 2.93 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.73 2.71 2.70 2.69 2.61 2.53 2.45 2.37

230.16 19.30 9.01 6.26 5.05 4.39 3.97 3.69 3.48 3.33 3.20 3.11 3.03 2.96 2.90 2.85 2.81 2.77 2.74 2.71 2.68 2.66 2.64 2.62 2.60 2.59 2.57 2.56 2.55 2.53 2.45 2.37 2.29 2.21

233.99 19.33 8.94 6.16 4.95 4.28 3.87 3.58 3.37 3.22 3.09 3.00 2.92 2.85 2.79 2.74 2.70 2.66 2.63 2.60 2.57 2.55 2.53 2.51 2.49 2.47 2.46 2.45 2.43 2.42 2.34 2.25 2.18 2.10

236.77 19.35 8.89 6.09 4.88 4.21 3.79 3.50 3.29 3.14 3.01 2.91 2.83 2.76 2.71 2.66 2.61 2.58 2.54 2.51 2.49 2.46 2.44 2.42 2.40 2.39 2.37 2.36 2.35 2.33 2.25 2.17 2.09 2.01

238.88 19.37 8.85 6.04 4.82 4.15 3.73 3.44 3.23 3.07 2.95 2.85 2.77 2.70 2.64 2.59 2.55 2.51 2.48 2.45 2.42 2.40 2.37 2.36 2.34 2.32 2.31 2.29 2.28 2.27 2.18 2.10 2.02 1.94

9

10

12

15

20

24

30

40

60

120

inf

d 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 60 120 inf

240.54 19.38 8.81 6.00 4.77 4.10 3.68 3.39 3.18 3.02 2.90 2.80 2.71 2.65 2.59 2.54 2.49 2.46 2.42 2.39 2.37 2.34 2.32 2.30 2.28 2.27 2.25 2.24 2.22 2.21 2.12 2.04 1.96 1.88

34

241.88 19.40 8.79 5.96 4.74 4.06 3.64 3.35 3.14 2.98 2.85 2.75 2.67 2.60 2.54 2.49 2.45 2.41 2.38 2.35 2.32 2.30 2.27 2.25 2.24 2.22 2.20 2.19 2.18 2.16 2.08 1.99 1.91 1.83

243.91 19.41 8.74 5.91 4.68 4.00 3.57 3.28 3.07 2.91 2.79 2.69 2.60 2.53 2.48 2.42 2.38 2.34 2.31 2.28 2.25 2.23 2.20 2.18 2.16 2.15 2.13 2.12 2.10 2.09 2.00 1.92 1.83 1.75

245.95 19.43 8.70 5.86 4.62 3.94 3.51 3.22 3.01 2.85 2.72 2.62 2.53 2.46 2.40 2.35 2.31 2.27 2.23 2.20 2.18 2.15 2.13 2.11 2.09 2.07 2.06 2.04 2.03 2.01 1.92 1.84 1.75 1.67

248.01 19.45 8.66 5.80 4.56 3.87 3.44 3.15 2.94 2.77 2.65 2.54 2.46 2.39 2.33 2.28 2.23 2.19 2.16 2.12 2.10 2.07 2.05 2.03 2.01 1.99 1.97 1.96 1.94 1.93 1.84 1.75 1.66 1.57

249.05 19.45 8.64 5.77 4.53 3.84 3.41 3.12 2.90 2.74 2.61 2.51 2.42 2.35 2.29 2.24 2.19 2.15 2.11 2.08 2.05 2.03 2.01 1.98 1.96 1.95 1.93 1.91 1.90 1.89 1.79 1.70 1.61 1.52

250.10 19.46 8.62 5.75 4.50 3.81 3.38 3.08 2.86 2.70 2.57 2.47 2.38 2.31 2.25 2.19 2.15 2.11 2.07 2.04 2.01 1.98 1.96 1.94 1.92 1.90 1.88 1.87 1.85 1.84 1.74 1.65 1.55 1.46

251.14 19.47 8.59 5.72 4.46 3.77 3.34 3.04 2.83 2.66 2.53 2.43 2.34 2.27 2.20 2.15 2.10 2.06 2.03 1.99 1.96 1.94 1.91 1.89 1.87 1.85 1.84 1.82 1.81 1.79 1.69 1.59 1.50 1.39

252.20 19.48 8.57 5.69 4.43 3.74 3.30 3.01 2.79 2.62 2.49 2.38 2.30 2.22 2.16 2.11 2.06 2.02 1.98 1.95 1.92 1.89 1.86 1.84 1.82 1.80 1.79 1.77 1.75 1.74 1.64 1.53 1.43 1.32

253.25 19.49 8.55 5.66 4.40 3.70 3.27 2.97 2.75 2.58 2.45 2.34 2.25 2.18 2.11 2.06 2.01 1.97 1.93 1.90 1.87 1.84 1.81 1.79 1.77 1.75 1.73 1.71 1.70 1.68 1.58 1.47 1.35 1.22

254.31 19.50 8.53 5.63 4.36 3.67 3.23 2.93 2.71 2.54 2.40 2.30 2.21 2.13 2.07 2.01 1.96 1.92 1.88 1.84 1.81 1.78 1.76 1.73 1.71 1.69 1.67 1.65 1.64 1.62 1.51 1.39 1.25 1.00

d 1

1

2

3

4

5

6

7

1

4052.18 98.50 34.12 21.20 16.26 13.75 12.25 11.26 10.56 10.04 9.65 9.33 9.07 8.86 8.68 8.53 8.40 8.29 8.18 8.10 8.02 7.95 7.88 7.82 7.77 7.72 7.68 7.64 7.60 7.56 7.31 7.08 6.85 6.63

4999.50 99.00 30.82 18.00 13.27 10.92 9.55 8.65 8.02 7.56 7.21 6.93 6.70 6.51 6.36 6.23 6.11 6.01 5.93 5.85 5.78 5.72 5.66 5.61 5.57 5.53 5.49 5.45 5.42 5.39 5.18 4.98 4.79 4.61

5403.35 99.17 29.46 16.69 12.06 9.78 8.45 7.59 6.99 6.55 6.22 5.95 5.74 5.56 5.42 5.29 5.18 5.09 5.01 4.94 4.87 4.82 4.76 4.72 4.68 4.64 4.60 4.57 4.54 4.51 4.31 4.13 3.95 3.78

5624.58 99.25 28.71 15.98 11.39 9.15 7.85 7.01 6.42 5.99 5.67 5.41 5.21 5.04 4.89 4.77 4.67 4.58 4.50 4.43 4.37 4.31 4.26 4.22 4.18 4.14 4.11 4.07 4.04 4.02 3.83 3.65 3.48 3.32

5763.65 99.30 28.24 15.52 10.97 8.75 7.46 6.63 6.06 5.64 5.32 5.06 4.86 4.69 4.56 4.44 4.34 4.25 4.17 4.10 4.04 3.99 3.94 3.90 3.85 3.82 3.78 3.75 3.73 3.70 3.51 3.34 3.17 3.02

5858.99 99.33 27.91 15.21 10.67 8.47 7.19 6.37 5.80 5.39 5.07 4.82 4.62 4.46 4.32 4.20 4.10 4.01 3.94 3.87 3.81 3.76 3.71 3.67 3.63 3.59 3.56 3.53 3.50 3.47 3.29 3.12 2.96 2.80

5928.36 99.36 27.67 14.98 10.46 8.26 6.99 6.18 5.61 5.20 4.89 4.64 4.44 4.28 4.14 4.03 3.93 3.84 3.77 3.70 3.64 3.59 3.54 3.50 3.46 3.42 3.39 3.36 3.33 3.30 3.12 2.95 2.79 2.64

8

9

10

12

15

20

24

30

40

60

120

inf

d 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 60 120 inf

5981.07 99.37 27.49 14.80 10.29 8.10 6.84 6.03 5.47 5.06 4.74 4.50 4.30 4.14 4.00 3.89 3.79 3.71 3.63 3.56 3.51 3.45 3.41 3.36 3.32 3.29 3.26 3.23 3.20 3.17 2.99 2.82 2.66 2.51

6022.47 99.39 27.35 14.66 10.16 7.98 6.72 5.91 5.35 4.94 4.63 4.39 4.19 4.03 3.89 3.78 3.68 3.60 3.52 3.46 3.40 3.35 3.30 3.26 3.22 3.18 3.15 3.12 3.09 3.07 2.89 2.72 2.56 2.41

35

6055.85 99.40 27.23 14.55 10.05 7.87 6.62 5.81 5.26 4.85 4.54 4.30 4.10 3.94 3.80 3.69 3.59 3.51 3.43 3.37 3.31 3.26 3.21 3.17 3.13 3.09 3.06 3.03 3.00 2.98 2.80 2.63 2.47 2.32

6106.32 99.42 27.05 14.37 9.89 7.72 6.47 5.67 5.11 4.71 4.40 4.16 3.96 3.80 3.67 3.55 3.46 3.37 3.30 3.23 3.17 3.12 3.07 3.03 2.99 2.96 2.93 2.90 2.87 2.84 2.66 2.50 2.34 2.18

6157.28 99.43 26.87 14.20 9.72 7.56 6.31 5.52 4.96 4.56 4.25 4.01 3.82 3.66 3.52 3.41 3.31 3.23 3.15 3.09 3.03 2.98 2.93 2.89 2.85 2.81 2.78 2.75 2.73 2.70 2.52 2.35 2.19 2.04

6208.73 99.45 26.69 14.02 9.55 7.40 6.16 5.36 4.81 4.41 4.10 3.86 3.66 3.51 3.37 3.26 3.16 3.08 3.00 2.94 2.88 2.83 2.78 2.74 2.70 2.66 2.63 2.60 2.57 2.55 2.37 2.20 2.03 1.88

6234.63 99.46 26.60 13.93 9.47 7.31 6.07 5.28 4.73 4.33 4.02 3.78 3.59 3.43 3.29 3.18 3.08 3.00 2.92 2.86 2.80 2.75 2.70 2.66 2.62 2.58 2.55 2.52 2.49 2.47 2.29 2.12 1.95 1.79

6260.65 99.47 26.50 13.84 9.38 7.23 5.99 5.20 4.65 4.25 3.94 3.70 3.51 3.35 3.21 3.10 3.00 2.92 2.84 2.78 2.72 2.67 2.62 2.58 2.54 2.50 2.47 2.44 2.41 2.39 2.20 2.03 1.86 1.70

6286.78 99.47 26.41 13.75 9.29 7.14 5.91 5.12 4.57 4.17 3.86 3.62 3.43 3.27 3.13 3.02 2.92 2.84 2.76 2.69 2.64 2.58 2.54 2.49 2.45 2.42 2.38 2.35 2.33 2.30 2.11 1.94 1.76 1.59

6313.03 99.48 26.32 13.65 9.20 7.06 5.82 5.03 4.48 4.08 3.78 3.54 3.34 3.18 3.05 2.93 2.83 2.75 2.67 2.61 2.55 2.50 2.45 2.40 2.36 2.33 2.29 2.26 2.23 2.21 2.02 1.84 1.66 1.47

6339.39 99.49 26.22 13.56 9.11 6.97 5.74 4.95 4.40 4.00 3.69 3.45 3.25 3.09 2.96 2.84 2.75 2.66 2.58 2.52 2.46 2.40 2.35 2.31 2.27 2.23 2.20 2.17 2.14 2.11 1.92 1.73 1.53 1.32

6365.86 99.50 26.13 13.46 9.02 6.88 5.65 4.86 4.31 3.91 3.60 3.36 3.17 3.00 2.87 2.75 2.65 2.57 2.49 2.42 2.36 2.31 2.26 2.21 2.17 2.13 2.10 2.06 2.03 2.01 1.80 1.60 1.38 1.00

7.4

Sifir Taburan Normal Piawai

Standard Normal Distribution Table

 () 0.0250

Contoh bacaan P(z > 1.96) = 0.0250

0

1 z 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

2.4

2.5 2.6 2.7 2.8 2.9 3.0 3.1

3.2

0

1

2

3

4

5

6

7

8

9

.5000 .4602 .4207 .3821 .3446 .3085 .2743 .2420 .2119 .1841 .1587 .1357 .1151 .0968 .0808 .0668 .0548 .0446 .0359 .0287 .0228 .0179 .0139 .0107

.4960 .4562 .4168 .3783 .3409 .3050 .2709 .2389 .2090 .1814 .1562 .1335 .1131 .0951 .0793 .0655 .0537 .0436 .0351 .0281 .0222 .0174 .0136 .0104

.4920 .4522 .4129 .3745 .3372 .3015 .2676 .2358 .2061 .1788 .1539 .1314 .1112 .0934 .0778 .0643 .0526 .0427 .0344 .0274 .0217 .0170 .0132 .0102

.4880 .4483 .4090 .3707 .3336 .2981 .2643 .2327 .2033 .1762 .1515 .1292 .1093 .0918 .0764 .0630 .0516 .0418 .0336 .0268 .0212 .0166 .0129

.4840 .4443 .4052 .3669 .3300 .2946 .2611 .2296 .2005 .1736 .1492 .1271 .1075 .0901 .0749 .0618 .0505 .0409 .0329 .0262 .0207 .0162 .0125

.4801 .4404 .4013 .3632 .3264 .2912 .2578 .2266 .1977 .1711 .1469 .1251 .1056 .0885 .0735 .0606 .0495 .0401 .0322 .0256 .0202 .0158 .0122

.4761 .4364 .3974 .3594 .3228 .2877 .2546 .2236 .1949 .1685 .1446 .1230 .1038 .0869 .0721 .0594 .0485 .0392 .0314 .0250 .0197 .0154 .0119

.4721 .4325 .3936 .3557 .3192 .2843 .2514 .2206 .1922 .1660 .1423 .1210 .1020 .0853 .0708 .0582 .0475 .0384 .0307 .0244 .0192 .0150 .0116

.4681 .4286 .3897 .3520 .3156 .2810 .2483 .2177 .1894 .1635 .1401 .1190 .1003 .0838 .0694 .0571 .0465 .0375 .0301 .0239 .0188 .0146 .0113

.4641 .4247 .3859 .3483 .3121 .2776 .2451 .2148 .1867 .1611 .1379 .1170 .0985 .0823 .0681 .0559 .0455 .0367 .0294 .0233 .0183 .0143 .0110

.00990

.00964

.00939

.00914 .00889

.00866

.00842

.00676 .00508 .00379 .00280 .00205 .00149 .00107

.00657 .00494 .00368 .00272 .00199 .00144 .00104

.00639 .00480 .00357 .00264 .00193 .00139 .00100

.000762

.000736

.000711

.00820 .00621 .00466 .00347 .00256 .00187 .00135 .000968

.000687

.00798 .00604 .00453 .00336 .00248 .00181 .00131 .000935

.000664

.00776 .00587 .00440 .00326 .00240 .00175 .00126 .000904

.000641

.00755

.00734

.00570 .00427 .00317 .00233 .00169 .00122

.00554 .00415 .00307 .00226 .00164 .00118

.00714 .00539 .00402 .00298 .00219 .00159 .00114

.000874

.000845

.000816

.000619

.000483

.000466

.000450

.000434

.000419

3.4

.000337 .000233 .000159 .000108 .000072 .000048

.000325 .000224 .000153 .000104 .000069 .000046

.000313 .000216 .000147 .000100 .000067 .000044

.000302 .000208 .000142 .000096 .000064 .000042

.000291 .000200 .000136 .000092 .000062 .000041

3.6 3.7 3.8 3.9

.000789

.000598

3.3

3.5

.00695 .00523 .00391 .00289 .00212 .00154 .00111

.000577

.000557

.000538

.000519

.000501

.000404 .000280 .000193 .000131 .000088 .000059 .000039

.000390 .000270 .000185 .000126 .000085 .000057 .000037

.000376 .000260 .000178 .000121 .000082 .000054 .000036

.000362 .000251 .000172 .000117 .000078 .000052 .000034

.000349 .000242 .000165 .000112 .000075 .000050 .000033

36

2

1.96

3

4

5

6

7

8

9

24 24 23 22 22 20 19 18 16 15 14 12 11 10 8 7 6 5 4 4 3 2 2 2 15 14 13 11 9 7 6 4 3 2 19 17 15 13 11 10 8 6 4 3

28 28 27 26 25 24 23 21 19 18 16 14 13 11 10 8 7 6 5 4 3 3 2 2 18 16 15 13 11 8 7 5 4 3 22 20 17 15 13 11 9 7 5 3

32 32 31 30 29 27 26 24 22 20 19 16 15 13 11 10 8 7 6 5 4 3 3 2 20 18 17 15 12 9 8 6 4 3 25 22 20 18 15 13 10 8 6 4

36 36 35 34 32 31 29 27 25 23 21 18 17 14 13 11 9 8 6 5 4 4 3 2 23 21 19 17 14 10 9 6 4 4 28 25 22 20 17 14 12 9 7 5

TOLAK

4 4 4 4 4 3 3 3 3 3 2 2 2 2 1 1 1 1 1 1 0 0 0 0 3 2 2 2 2 1 1 1 0 0 3 3 2 2 2 2 1 1 1 0

8 8 8 7 7 7 7 6 5 5 5 4 4 3 3 2 2 2 1 1 1 1 1 1 5 5 4 4 3 2 2 1 1 1 6 6 5 4 4 3 3 2 1 1

12 12 12 11 11 10 10 9 8 8 7 6 6 5 4 4 3 3 2 2 1 1 1 1 8 7 6 6 5 3 3 2 1 1 9 8 7 7 6 5 4 3 2 1

16 16 15 15 14 14 13 12 11 10 9 8 7 6 6 5 4 4 3 2 2 2 1 1 10 9 8 7 6 5 4 3 2 2 13 11 10 9 8 6 5 4 3 2

20 20 19 19 18 17 16 15 14 13 12 10 9 8 7 6 5 4 4 3 2 2 2 1 13 12 11 9 8 6 5 4 2 2 16 14 12 11 9 8 7 5 4 2

7.5

Sifir Khi Kuasa Dua

Chi-Square (  ) Table

0

v

0.995

0.990

0.975

0.950

0.900

0.100

0.050

0.025

0.010

0.005

1

0.000 0.010 0.072 0.207 0.412 0.676 0.989 1.344 1.735 2.156 2.603 3.074 3.565 4.075 4.601 5.142 5.697 6.265 6.844 7.434 8.034 8.643 9.260 9.886 10.520 11.160 11.808 12.461 13.121 13.787 20.707 27.991 35.534 43.275 51.172 59.196 67.328

0.000 0.020 0.115 0.297 0.554 0.872 1.239 1.646 2.088 2.558 3.053 3.571 4.107 4.660 5.229 5.812 6.408 7.015 7.633 8.260 8.897 9.542 10.196 10.856 11.524 12.198 12.879 13.565 14.256 14.953 22.164 29.707 37.485 45.442 53.540 61.754 70.065

0.001 0.051 0.216 0.484 0.831 1.237 1.690 2.180 2.700 3.247 3.816 4.404 5.009 5.629 6.262 6.908 7.564 8.231 8.907 9.591 10.283 10.982 11.689 12.401 13.120 13.844 14.573 15.308 16.047 16.791 24.433 32.357 40.482 48.758 57.153 65.647 74.222

0.004 0.103 0.352 0.711 1.145 1.635 2.167 2.733 3.325 3.940 4.575 5.226 5.892 6.571 7.261 7.962 8.672 9.390 10.117 10.851 11.591 12.338 13.091 13.848 14.611 15.379 16.151 16.928 17.708 18.493 26.509 34.764 43.188 51.739 60.391 69.126 77.929

0.016 0.211 0.584 1.064 1.610 2.204 2.833 3.490 4.168 4.865 5.578 6.304 7.042 7.790 8.547 9.312 10.085 10.865 11.651 12.443 13.240 14.041 14.848 15.659 16.473 17.292 18.114 18.939 19.768 20.599 29.051 37.689 46.459 55.329 64.278 73.291 82.358

2.706 4.605 6.251 7.779 9.236 10.645 12.017 13.362 14.684 15.987 17.275 18.549 19.812 21.064 22.307 23.542 24.769 25.989 27.204 28.412 29.615 30.813 32.007 33.196 34.382 35.563 36.741 37.916 39.087 40.256 51.805 63.167 74.397 85.527 96.578 107.565 118.498

3.841 5.991 7.815 9.488 11.070 12.592 14.067 15.507 16.919 18.307 19.675 21.026 22.362 23.685 24.996 26.296 27.587 28.869 30.144 31.410 32.671 33.924 35.172 36.415 37.652 38.885 40.113 41.337 42.557 43.773 55.758 67.505 79.082 90.531 101.879 113.145 124.342

5.024 7.378 9.348 11.143 12.833 14.449 16.013 17.535 19.023 20.483 21.920 23.337 24.736 26.119 27.488 28.845 30.191 31.526 32.852 34.170 35.479 36.781 38.076 39.364 40.646 41.923 43.195 44.461 45.722 46.979 59.342 71.420 83.298 95.023 106.629 118.136 129.561

6.635 9.210 11.345 13.277 15.086 16.812 18.475 20.090 21.666 23.209 24.725 26.217 27.688 29.141 30.578 32.000 33.409 34.805 36.191 37.566 38.932 40.289 41.638 42.980 44.314 45.642 46.963 48.278 49.588 50.892 63.691 76.154 88.379 100.425 112.329 124.116 135.807

7.879 10.597 12.838 14.860 16.750 18.548 20.278 21.955 23.589 25.188 26.757 28.300 29.819 31.319 32.801 34.267 35.718 37.156 38.582 39.997 41.401 42.796 44.181 45.559 46.928 48.290 49.645 50.993 52.336 53.672 66.766 79.490 91.952 104.215 116.321 128.299 140.169

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 40 50 60 70 80 90 100

37

7.6

Sifi r Taburan-t

t-Distri bution Table

α 

0.1

0.05

0.025

0.01

0.005

0.001

0.0005

3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.356 1.350 1.345 1.341 1.337 1.333 1.330 1.328 1.325 1.323 1.321 1.319 1.318 1.316 1.315 1.314 1.313 1.311 1.310 1.296 1.289 1.282

6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.697 1.671 1.658 1.645

12.706 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228 2.201 2.179 2.160 2.145 2.131 2.120 2.110 2.101 2.093 2.086 2.080 2.074 2.069 2.064 2.060 2.056 2.052 2.048 2.045 2.042 2.000 1.980 1.960

31.821 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764 2.718 2.681 2.650 2.624 2.602 2.583 2.567 2.552 2.539 2.528 2.518 2.508 2.500 2.492 2.485 2.479 2.473 2.467 2.462 2.457 2.390 2.358 2.326

63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947 2.921 2.898 2.878 2.861 2.845 2.831 2.819 2.807 2.797 2.787 2.779 2.771 2.763 2.756 2.750 2.660 2.617 2.576

318.309 22.327 10.215 7.173 5.893 5.208 4.785 4.501 4.297 4.144 4.025 3.930 3.852 3.787 3.733 3.686 3.646 3.610 3.579 3.552 3.527 3.505 3.485 3.467 3.450 3.435 3.421 3.408 3.396 3.385 3.232 3.160 3.090

636.619 31.599 12.924 8.610 6.869 5.959 5.408 5.041 4.781 4.587 4.437 4.318 4.221 4.140 4.073 4.015 3.965 3.922 3.883 3.850 3.819 3.792 3.768 3.745 3.725 3.707 3.690 3.674 3.659 3.646 3.460 3.373 3.291

df 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 60 120 ∞

38

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF