Building Design

June 30, 2018 | Author: Saunak Sharma | Category: Structural Analysis, Concrete, Structural Load, Beam (Structure), Stairs
Share Embed Donate


Short Description

Descripción: SAMPLE REPORT OF RCC BUILDING AS PER NEPAL BUILDING CODE...

Description

Residential Building At Rapti Municipality -08

Structural Analysis Report

.

Submitted by: Er. Saunak Sharma  NEC No. 11273 “CIVIL” Submitted to: Rapti Municipality

Owner: Anjana Pathak Date: 2074/01

Contents 1.

2. 3.

Project Detail .................................... ...................................................... ................................... .................................. ................... .. 3

1.2 Building Design Parameters ........................................................................................ 4 1.3 Materials ...................................................................................................................... 4 1.3.1 Concrete................................................................................................................ 4 1.3.2 Reinforcement ...................................................................................................... 4 1.4 Load Calculations ........................................................................................................ 4 1.4.1 Dead Load ............................................................................................................ 4 1.4.2 Superimposed Dead Loads .............................................. ................................................................................... ..................................... 4 1.4.3 Live Loads .................................................. ............................................................................................................ .......................................................... 5 1.4.4 Seismic Loads....................................................................................................... 5 1.5 Load Combination ....................................................................................................... 6 Structural Analysis........................ .......................................... ................................... .................................. ...................... ..... 7

2.1

3D modeling of the building ................................................... ........................................................................................ ..................................... 8

Design of Elements: ................................... ..................................................... .................................... ......................... ....... 15

3.1.1 3.1.2 3.1.3

Sample Design of Footing ........................................................ .................................................................................. .......................... 23 Slab Design......................................................................................................... 25 Staircase Design ................................................................................................. 28

Structural Analysis Report For Residence of Anjana Pathak

Page 1

Figure 1: Plan Of Building ......................................................................................................... 3 Figure 2: 3D Modeling of the building ...................................................................................... 8 Figure 3: Plan of the building b uilding............................................. ........................................................ 9 Figure 4: Elevation of the building b uilding........................................................ ........................................................................................... ................................... 10 Figure 5: Story Displacement along X-Direction..................................................................... X-Direction..................................................................... 12 Figure 6: Story Displacement along Y-Direction..................................................................... Y-Direction..................................................................... 12 Figure 7: Story Drift along X-Direction X-Direc tion ......................................................... ................................................................................... .......................... 13 Figure 8: Story Drift along Y-Direction Y-Direc tion ......................................................... ................................................................................... .......................... 13 Figure 9: Bending Moment along grid B-B ............................................................................. 14 Figure 10: Shear Force Diagram along Grid B-B .................................................................... 14 Figure 11: Reinforcement along grid C-C ..................................................... ............................................................................... .......................... 15 Figure 12: Reinforcement along grid 3-3 ................................................................................. 16 Figure 14: Beam column Capacity ratio................................................................................... 20 Figure 15: Beam column Capacity ratio................................................................................... 21 Figure 16: Beam column Capacity ratio................................................................................... 22 Table 1: Auto Seismic - NBC 105: 1994 ................................................................................... 6 Table 2: Modal Participating Mass Ratios: .............................................................................. 11 Table 3: Centers of Mass and Rigidity .................................................. ..................................................................................... ................................... 11

Structural Analysis Report For Residence of Anjana Pathak

Page 2

1.

Project Detail

 Name of the Project: Location : Type of Building:

Residence of Anjana Pathak

Rapti 08 The Building covers a plinth area of Ground floor 1125.77 sq.ft. The building has been designed for two no of storeys and stair cover. This report has been prepared as a part of the structural engineering analysis and design of  buildings.

Figure 1: Plan Of Building

Structural Analysis Report For Residence of Anjana Pathak

Page 3

1.2

Building Design Parameters

1.3

Materials

1.3.1

Concrete

1.3.2

Reinforcement

1.4

Load Calculations

1.4.1

Dead Load

The building consists of a RCC framed structure, which is essentially an assembly of cast-insitu-concrete beams and columns. Floors and roof consists of cast-in-place concrete slabs. Lateral load resisting system consists of bare frame elements only and the system has been designed to meet the ductility requirements of IS 13920 - 1993. For the design of the building, the Nepal Standard criteria for earthquake resistant NBC 105: 1994 have been referred to. All other factors related with the seismic design were also adopted as for Chitwan District of NBC 105:1994 and soil performance factor is based on the relevant  NBC code 105

Concrete is to conform to IS 456: Structural use of concrete. Unless noted otherwise concrete is to be normal-weight, with a typical dry density of 2400 kg/m3. Concrete is to achieve the 28-day cube strength as 20 N/mm2and 25 N/mm2.

Reinforcement bars are to be in accordance with IS 456: specification for carbon steel  bars for the reinforcement of concrete is to be in accordance with IS 1786: specification spe cification for high deformed steel bars for the reinforcement of concrete. The following design strengths are to be used for the design of concrete and reinforcement. Grade of Concrete : M20 Grade of steel : High Yield Fe 500 N/mm2

Dead loads are calculated on the basis of unit weights of the specified construction materials in accordance with NBC 102:1994. Reinforced concrete: 25 KN / m3 Brick work with plaster: 19.2 KN/m3 Sand/ cement screed: 20 KN/m2

1.4.2

Superimposed Dead Loads

Based on architectural drawing of the building, dead loads due to partition walls , floor finish and other special purpose services has been calculated.

Structural Analysis Report For Residence of Anjana Pathak

Page 4

1.4.3

1.4.4

Live Loads

The Live Load for building has been adopted as given NBC 103:1994 Loads for business bus iness and residential buildings. Room 2 kN/m2 For passage, staircase, balconies 3 kN/m2 For terrace 1.5 kN / m2 Seismic Loads

Lateral Seismic Load is computed as per NBC 105: 1994 The design base shear is computed as follows: VB = Cd * W W=Seismic weight of the building Cd=CZIK = 0.0792 Where, Z = Zone factor = 1.0 I = Importance factor = 1.0 K = Structural performance factor = 0.99 C = Basic seismic coefficient =0.08 T = Natural time period ETABS utilizes the following procedure to generate the lateral seismic loads. User provides seismic zone co-efficient and desired seismic load command. The structural period (T) is calculated manually and input in the software. W is obtained from the weight data provided by the user. 

 

The total lateral seismic load (base shear) is then distributed by the program among different levels of the structure 

Load parameter

a. Dead Load :- as per NBC 102:1994

 b. Live Load :- as per NBC 103:1994 c. Seismic Load: -as per NBC 105: 1994. 1. Zone Factor :- 1 2. Importance Factor :-1.00 3. Fundamental Time Period = 0.06*11.1252^0.75 = 0.365sec 4. Response Reduction Factor :-5 5. Seismic Coefficient (Ah ) :- 0.0792 6. Soil Type : II 7. Damping :-0.05 

Method of analysis : Seismic Coefficient Method of Analysis

Structural Analysis Report For Residence of Anjana Pathak

Page 5



Load combination: NBC 105: 1994



Concrete design Code : IS 456 : 2000



Ductile Detailing Code: IS 13920: 1993



Concrete Grade : M20



Reinforcement Grade : Fe500

Table 1: Auto Seismic - NBC 105: 1994

Load case

Dir.

EQX EQX

X

5

0.079 0.07922 II

1.0 1.0

3853. 3853.52 5218 18

305. 305.198 19899

EQY EQY

Y

5

0.079 0.07922 II

1.0 1.0

3853. 3853.52 5218 18

305. 305.198 19899

1.5

Damping Coeff. (%)

Coeff Used

Soil Type

Importance factor, (I)

Seismic weight (kN)

Base Shear (kN)

Load Combination

The load combination has been taken as given NBC 105: 1994. The said code has recommen ded the following load combination DL +1.3 LL ±1.25 EQ 0.9DL ± 1.25EQ DL ±1.25 EQ   

Design Assumptions

Concrete Grade, M20 fck = 20 MPa Steel Grade, Fe 500 fy = 500 MPa for all The concrete has been designed using limit state method based on IS 456 –2000. The detailing of reinforcement has been based on IS 13920 –1993 and where required require d Uniform Building Code of USA has been also referred to for detailing of reinforcement. The design has been based on the most critical load combination mentioned above. For the above loads and load combinations, the design of beams and columns is carried out by the ETABS. Seismic CoefficientMethod of Analysis was performed using NBC 105: 1994code. The design  base shear was compared with base bas e shear computed using fundamental period. Mass Source Load Multiplier DEAD 1 LIVE 0.25 WALL 1 FINISH 1 WT 1 Structural Analysis Report For Residence of Anjana Pathak

Page 6

2.

Structural Analysis

The analysis and design have been carried out using software called ETABS v16.0.3, which is a special purpose computer program developed specifically for building structures. It provides the Structural Engineer with all the tools necessary to create, modify, analyze, design, and optimize the structural elements in a building model. The building geometry based on architectural drawings been generated using above named software. The dead load, live load and lateral loads were supplied to the digital models as per standard code of practices. Several analysis run were performed to achieve the best result to meet the design and service requirements. For the analysis, following loading parameters were considered: i.

Self-weight of the frames and slabs

ii.

Floor finishing dead loads

iii.

Fixed wall loads as per architectural drawings

iv.

Staircase load

v.

Partition wall loads as per architectural drawings only.

vi.

Live loads

Structural Analysis Report For Residence of Anjana Pathak

Page 7

2.1

3D modeling of the building

i.

3D model of the building

ii.

Plan of the building

iii.

Elevation of the building

Figure 2: 3D Modeling of the building

Structural Analysis Report For Residence of Anjana Pathak

Page 8

Figure 3: Plan of the building

Structural Analysis Report For Residence of Anjana Pathak

Page 9

Figure 4: Elevation of the building

Structural Analysis Report For Residence of Anjana Pathak

Page 10

Table 2: Modal Participating Mass Ratios:

Case

Mode

Period

UX

UY

Sum UX

Sum UY

sec Modal

1

0.721

0.0084

0.7749

0.0084

0.7749

Modal

2

0.649

0.6772

0.0482

0.6856

0.8231

Modal

3

0.616

0.1908

0.0518

0.8763

0.8749

Modal

4

0.225

0.0001

0.02

0.8764

0.8948

Modal

5

0.201

0.0145

0.0001

0.8909

0.8949

Modal Modal

6

0.169

0.0003

0.00003643 0.00003643

0.8912

0.8949

Modal Modal

7

0.155 0.155

0.0000 0.00000419 04196 6

0.0057 0.0057

0.8912 0.8912

0.9006 0.9006

Modal

8

0.152

0.0046

0.0001

0.8958

0.9007

Modal Modal

9

0.135

0.0009

0.00000252 0.00000252

0.8966

0.9007

Modal

10

0.088

0.0369

0.0428

0.9335

0.9435

Modal

11

0.085

0.0487

0.0509

0.9822

0.9944

Modal

12

0.077

0.0178

0.0056

1

1

Table 3: Centers of Mass and Rigidity Rigi dity

Story

Diaphragm

Mass Mas s X

Mass Y

XCCM

YCCM

XCR

YCR

kg 72412.66

m 6.1623

m 8.0706

m 6.5962

m 8.5951

GF

D1

kg 72412.66

1F

D2

99874.71

99874.71

6.447

8.2949

6.6853

8.6062

2F

D3

53068.54

53068.54

6.5994

8.3399

6.8732

8.5958

TOP

D4

9022.15

9022.15

5.588

6.2484

5.8216

6.4381

Structural Analysis Report For Residence of Anjana Pathak

Page 11

Figure 5: Story Displacement along X-Direction

Figure 6: Story Displacement along Y-Direction

Structural Analysis Report For Residence of Anjana Pathak

Page 12

Figure 7: Story Drift along X-Direction

Figure 8: Story Drift along Y-Direction

Structural Analysis Report For Residence of Anjana Pathak

Page 13

Figure 9: Bending Moment along grid B-B

Figure 10: Shear Force Diagram along Grid B-B

Structural Analysis Report For Residence of Anjana Pathak

Page 14

3. Design of Elements:

The design of all structural elements is done using ‘Limit State Method’. All relevant Limit State is considered in design to ensure adequate safety and serviceability. The design includes design for durability, construction and use in service should be considered as a whole. The realization of design objectives requires compliance with clearly defined standards for materials, production, workmanship, and also maintenance and use of structure in service. This section includes all the design process of sample calculation for a single element as column, beam, slab and foundation.

Figure 11: Reinforcement along grid B-B

Structural Analysis Report For Residence of Anjana Pathak

Page 15

Figure 12: Reinforcement along grid 3-3

ETABS 2016 Concrete Frame Design IS 456:2000 Column Section Design

Structural Analysis Report For Residence of Anjana Pathak

Page 16

Column Element Details Type: Ductile Frame (Summary) Level

Element

Unique Name

Section ID

Combo ID

Station Loc

Length (mm)

LLRF

1F

C29

45

C-12X12

0.9DL+1.25EQX

0

3200.4

0.773

Section Properties b (mm)

h (mm)

dc (mm)

Cover (Torsion) (mm)

304.8

304.8

58

30

Material Properties Ec (MPa)

f ck ck (MPa)

Lt.Wt Factor (Unitless)

f y (MPa)

f ys ys (MPa)

22360.68

20

1

500

500

Design Code Parameters ɣC

ɣS

1.5

1.15

Axial Force and Biaxial Moment Design For Pu , Mu2 , Mu3 Design Pu kN

Design Mu2 kN-m

Design Mu3 kN-m

Minimum M2 kN-m

Minimum M3 kN-m

Rebar Area mm² mm²

Rebar % %

221.6137

-4.4323

44.797

4.4323

4.4323

763

0.82

Axial Force and Biaxial Moment Factors K Factor Unitless

Length mm

Initial Moment kN-m

Additional Moment kN-m

Minimum Moment kN-m

Major Bend(M3)

0.738645

2844.8

17.9188

0

4.4323

Minor Bend(M2)

0.834255

2844.8

-1.579

0

4.4323

Shear Design for Vu2 , Vu3 Shear Vu kN

Shear Vc kN

Shear Vs kN

Shear Vp kN

Rebar Asv /s mm² mm² /m  /m

Major, Vu2

31.0194

49.2594

30.0901

23.2253

337.85

Minor, Vu3

28.4325

49.2594

30.0901

28.4325

337.85

Joint Shear Check/Design

Major Shear, Vu2

Joint Shear Force kN

Shear VTop kN

Shear Vu,Tot kN

Shear Vc kN

Joint Area cm² cm²

Shear Ratio Unitless

N/A

N/A

N/A

N/A

N/A

N/A

Structural Analysis Report For Residence of Anjana Pathak

Page 17

Joint Shear Force kN

Shear VTop kN

Shear Vu,Tot kN

Shear Vc kN

Joint Area cm² cm²

Shear Ratio Unitless

N/A

N/A

N/A

N/A

N/A

N/A

Minor Shear, Vu3

(1.1) Beam/Column Capacity Ratio Major Ratio

Minor Ratio

N/A

N/A

Additional Moment Reduction Factor k (IS 39.7.1.1) Ag cm² cm²

Asc cm² cm²

Puz kN

Pb kN

Pu kN

k Unitless

929

7.6

1122.2153

302.9558

221.6137

1

Additional Moment (IS 39.7.1) Consider Ma

Length Factor

Section Depth (mm)

KL/Depth Ratio

KL/Depth Limit

KL/Depth Exceeded

Ma Moment (kN-m)

Major Bending (M3 )

Yes

0.889

304.8

6.894

12

No

0

Minor Bending (M2 )

Yes

0.889

304.8

7.786

12

No

0

 Notes:  N/A: Not Applicable  N/C: Not Calculated  N/N: Not Needed

ETABS 2016 Concrete Frame Design IS 456:2000 Beam Section Design (Envelope)

Beam Element Details Level

Element

Unique Name

Section ID

Length (mm)

LLRF

1F

B94

63

B-9X14

4089.4

1

Section Properties b (mm)

h (mm)

bf  (mm)

ds (mm)

dct (mm)

dcb (mm)

228.6

355.6

228.6

0

30

30

Material Properties Ec (MPa)

f ck ck (MPa)

Lt.Wt Factor (Unitless)

f y (MPa)

f ys ys (MPa)

22360.68

20

1

500

500

Design Code Parameters

Structural Analysis Report For Residence of Anjana Pathak

Page 18

ɣC

ɣS

1.5

1.15

Flexural Reinforcement for Major Axis Moment, Mu3 End-I Rebar Area mm² mm²

End-I Rebar %

Middle Rebar Area mm² mm²

Middle Rebar %

End-J Rebar Area mm² mm²

End-J Rebar %

Top (+2 Axis)

218

0.27

174

0.21

209

0.26

Bot (-2 Axis)

174

0.21

174

0.21

174

0.21

Flexural Design Moment, Mu3 End-I Design Mu kN-m

End-I Station Loc mm

Top (+2 Axis)

-32.2226

152.4

Combo

DL+1.3LL-1.25EQX

Bot (-2 Axis)

5.9088

Combo

0.9DL-1.25EQY

Middle Design Mu kN-m

Middle Station Loc mm

0

2726.3

0.9DL-1.25EQY 1022.4

End-J Design Mu kN-m

End-J Station Loc mm

-30.963

3937

DL+1.3LL+1.25EQX

7.0603

2726.3

0

0.9DL-1.25EQY

3937

0.9DL-1.25EQY

Shear Reinforcement for Major Shear, Vu2 End-I Rebar Asv /s mm² mm² /m  /m

Middle Rebar Asv /s mm² mm² /m  /m

End-J Rebar Asv /s mm² mm² /m  /m

507.64

253.39

426.9

Design Shear Force for Major Shear, Vu2 End-I Design Vu kN

End-I Station Loc mm

Middle Design Vu kN

Middle Station Loc mm

End-J Design Vu kN

End-J Station Loc mm

48.8389

152.4

0.0259

2726.3

47.771

3937

DL+1.3LL-1.25EQY

0.9DL-1.25EQY

DL+1.3LL-1.25EQY

Torsion Reinforcement Shear Rebar Asvt /s mm² mm² /m  /m 369.23

Design Torsion Force Design Tu kN-m

Station Loc mm

Design Tu kN-m

Station Loc mm

5.6101

152.4

5.6101

1022.4

DL+1.3LL-1.25EQY

DL+1.3LL-1.25EQY

Structural Analysis Report For Residence of Anjana Pathak

Page 19

Figure 13: Beam column Capacity ratio

Structural Analysis Report For Residence of Anjana Pathak

Page 20

Figure 14: Beam column Capacity ratio

Structural Analysis Report For Residence of Anjana Pathak

Page 21

Figure 15: Beam column Capacity ratio

Structural Analysis Report For Residence of Anjana Pathak

Page 22

3.1.1 ISOLATED FOOTING

Sample Design of Footing Fck  

Fy

Df

palw

yt

20

500

1.83

150

16

d0

Provided footing size

200

Pu

Mux

Muy

Bc

Dc

Req. A

L

B

L

B

S

d

Bar dia

Spacing

(kN)

(kNM)

(kNM)

(mm)

(mm)

(M 2)

(Ft)

(Ft)

(Ft)

(Ft) (Ft)

(kN/M 2)

(mm)

(mm)

cm c/c

s

103

309

4.4032

3.2641

300

300

1.97

4.61 4.61

5.00

5.00

140.7

350

12

15.0

OK

OK  

104

268

‐0.013

‐1.694

300

300

1.71

4.29 4.29

5.00

5.00

115.4

350

12

15.0

OK

OK  

105

274

‐0.211

1.0666

300

300

1.74

4.33 4.33

5.00

5.00

119.6

350

12

15.0

OK

OK  

106

226

‐0.071

‐2.544

300

300

1.44

3.93 3.93

5.00

5.00

97.1

350

12

15.0

OK

OK  

107

336

‐1.412

3.0186

300

300

2.14

4.80 4.80

6.00

6.00

103.5

350

12

15.0

OK

OK  

108

450

2.3969

1.6862

300

300

2.87

5.56 5.56

6.00

6.00

136.9

350

12

15.0

OK

OK  

109

353

‐1.645

‐1.709

300

300

2.25

4.92 4.92

6.00

6.00

103.8

350

12

15.0

OK

OK  

110

454

2.3283

‐1.768

300

300

2.89

5.58 5.58

6.00

6.00

137.9

350

12

15.0

OK

OK  

111

305

‐3.583

‐3.356

300

300

1.94

4.57 4.57

5.00

5.00

125.5

350

12

15.0

OK

OK  

112

328

3.1037

‐1.175

300

300

2.09

4.74 4.74

5.00

5.00

146.4

350

12

15.0

OK

OK  

113

235

‐0.179

2.0354

300

300

1.50

4.01 4.01

5.00

5.00

104.6

350

12

15.0

OK

OK  

114

326

‐3.179

1.2334

300

300

2.08

4.73 4.73

5.00

5.00

142.4

350

12

15.0

OK

OK  

115

179

‐1.453

‐0.471

300

300

1.14

3.50 3.50

4.00

4.00

118.7

350

12

15.0

OK

OK  

116

174

1.562

‐0.255

300

300

1.11

3.45 3.45

4.00

4.00

122.3

350

12

15.0

OK

OK  

ID

Isolated Footing

Fck = Fy = Depth of Foundation (Df) = Allowable soil pressure (Palw) = yt Effective cover (d') = d0 = MODEL NODE Pu From Model Pu (KN) Mux (from model) Muy (from model) Width of column (Bc) Depth of column (Dc) Required Area Required Length

20 500 1.52 150 16 50 200

Structural Analysis Report For Residence of Anjana Pathak

m KN/m2

103 309.38 340.31 4.4032 3.2641 300 300 2.03 4.67

KN-m KN-m mm mm m2 ft

Page 23

Check for Shear

Required Breadth Provided Length of Foundation (Lf) Breadth of Foundation(Bf) Actual Bearing Capacity (S) BM/M Effective depth according to moment (d M) Assumed Deptrh (D) Bar dia Spacing Ast Effective depth due to tapper section (d)  p2  p3 BM2 BM3 K  percentage of tension steel (pt (p t %)

4.67

ft

5.00 5.00 154.00 28.84 82.80 350.00 12 26.93 4.20 263.23 152.07 154.00 28.48 28.84 40.00 0.16

ft ft KN/m2 mm mm mm cm c/c (cm2)/M (mm) KN/m2 KN/m2

One way shear

Vu Shear strength of M20 concrete (Tc>) Shear Stress (Tv)

81.84 0.30 0.20 Tc>Tv

N/mm2 N/mm2 OK

308.80 2.25 1.12 0.52 Tc'>Tv

m N/mm2 N/mm2 OK

Two Way shear

Vu Perimeter (b0) Shear strength of concrete (Tc' >) Shear Stress (Tv)

Description F1

d/2

6.50

size(ft)

D

L

B

(inch)

5.00

5.00

1 5 .0 0

d0

dia

spacing

(inch)

(mm)

(inch)

8

Structural Analysis Report For Residence of Anjana Pathak

14.00

11.00

Page 24

3.1.2

Slab Design

SLAB DESIGN 1. DESIGN DATA

Longer Span of the critical Slab (Ly) = Shorter Span of the critical Slab (Lx)= Grade of Concrete used (σck) = Width of slab, b = Grade of steel used (σy) = Unit weight of Marble= Unit weight of screed = Unit weight of plaster = Thickness of screed = Thickness of plaster = Assume Thickness of slab (D) = Effective depth of slab d=

4. 2 6 3. 9 8 20 1000 500 27 2 0. 4 2 0. 4 25 1 2. 5 125 105

m m N/mm2 mm N/mm2 kN/m3 kN/m3 kN/m3 mm mm mm mm

2. BENDING MOMENT COEFFICIENT

Type of slab Panal = Aspect Ratio of the slab Considered Ly/Lx = Bending Moment Coefficient Coeff for -ve moment, βx = Coeff for +ve moment, βx = Coeff for -ve moment, βy = Coeff for +ve moment, βy =

2 Adjescent Edge Discontinous 30

1.070

for 1.0 0. 0 4 7 0 0. 0 3 5 0 0. 0 4 7 0 0. 0 3 5 0

for 1.1 0.0530 0. 0 4 0 0

for 1.070 0.051 0. 0 3 9 0.047 0.035

3. LOAD CALCULATION

Dead load of slab = Dead load due to screed = Dead load due to plaster = Structural Analysis Report For Residence of Anjana Pathak

3.125 0.51 0.255

 

kN/m2

 

kN/m2

 

kN/m2

Page 25

Dead load due to Partition Wall = Live load at Slab = Total Load = Factored Design Load = Factored Design Load per meter =

1 2 6.89 10.335 1 0. 3 3 5

 

kN/m2

 

kN/m2

8.4 6.3 7. 7 5.7

 

kN‐m

 

kN‐m

 

kN‐m

 

kN‐m

 

kN/m2 kN/m2 kN/m

4. MOMENT CALCULATION

Design -ve moment for short span, Mx Design +ve moment for short span, Mx Design -ve moment for long span, My Design +ve moment for long span, My 5. CALCULATION OF REINFORCEMENT Design for -ve Reinforcement =

Along Short span Along Long span

192.4 175.8

mm2

Along Short span Along Long span

142.9 129.4

mm2

Minimum reinforcement required (Ast)=

1 8 7. 5

mm2

mm2

Design for +ve Reinforcement = mm2

Direction

Bar dia. Provided mm

Area Required mm2

Spacing Required mm

Spacing Provided mm

Area provided mm2

Shorter Support

8

192

250.00

125

401.92

Shorter Mid

8

143

267.95

125

401.92

Longer Support

8

176

267.95

150

334.93

Longer Mid

8

129

267.95

150

334.93

6. CHECK FOR SHEAR

Structural Analysis Report For Residence of Anjana Pathak

Page 26

Shear coefficient = Design Shear Force Vu =  Nominal shear stress (tv) = Percent tension steel (Pt) = Shear strength of M20 Concrete and 0.32% steel tc = Shear Strength Coefficient for(d Deflection Check ( as per IS 456:2000 ,Cl. 23.2)

Ast required =

1013.00 mm²

Ast,provided =

1056.79 mm²

fs =0.58x fy x Ast, required / Ast, provided (Cl.23.2.c & Fig.4)

128.53

Effective span = L =

3963 mm

Effective depth = d =

104 mm

Mu/bd^2

1.51

fs=

128.5 N/mm²

Mf

1.73

Modification factor factor ( α =26 for continuous slab & β = 1 for L
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF