BSS Integration

December 13, 2016 | Author: Jane Atillo | Category: N/A
Share Embed Donate


Short Description

BSS Integration...

Description

GSM/EDGE BSS, Rel. RG20(BSS), Operating Documentation, Issue 07

Integrate and configure

BSS Integration DN9812243 Issue 21-2 Approval Date 2011-11-24

Confidential

BSS Integration

The information in this document is subject to change without notice and describes only the product defined in the introduction of this documentation. This documentation is intended for the use of Nokia Siemens Networks customers only for the purposes of the agreement under which the document is submitted, and no part of it may be used, reproduced, modified or transmitted in any form or means without the prior written permission of Nokia Siemens Networks. The documentation has been prepared to be used by professional and properly trained personnel, and the customer assumes full responsibility when using it. Nokia Siemens Networks welcomes customer comments as part of the process of continuous development and improvement of the documentation. The information or statements given in this documentation concerning the suitability, capacity, or performance of the mentioned hardware or software products are given "as is" and all liability arising in connection with such hardware or software products shall be defined conclusively and finally in a separate agreement between Nokia Siemens Networks and the customer. However, Nokia Siemens Networks has made all reasonable efforts to ensure that the instructions contained in the document are adequate and free of material errors and omissions. Nokia Siemens Networks will, if deemed necessary by Nokia Siemens Networks, explain issues which may not be covered by the document. Nokia Siemens Networks will correct errors in this documentation as soon as possible. IN NO EVENT WILL Nokia Siemens Networks BE LIABLE FOR ERRORS IN THIS DOCUMENTATION OR FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, DIRECT, INDIRECT, INCIDENTAL OR CONSEQUENTIAL OR ANY LOSSES, SUCH AS BUT NOT LIMITED TO LOSS OF PROFIT, REVENUE, BUSINESS INTERRUPTION, BUSINESS OPPORTUNITY OR DATA,THAT MAY ARISE FROM THE USE OF THIS DOCUMENT OR THE INFORMATION IN IT. This documentation and the product it describes are considered protected by copyrights and other intellectual property rights according to the applicable laws. The wave logo is a trademark of Nokia Siemens Networks Oy. Nokia is a registered trademark of Nokia Corporation. Siemens is a registered trademark of Siemens AG. Other product names mentioned in this document may be trademarks of their respective owners, and they are mentioned for identification purposes only. Copyright © Nokia Siemens Networks 2011. All rights reserved

f

Important Notice on Product Safety This product may present safety risks due to laser, electricity, heat, and other sources of danger. Only trained and qualified personnel may install, operate, maintain or otherwise handle this product and only after having carefully read the safety information applicable to this product. The safety information is provided in the Safety Information section in the “Legal, Safety and Environmental Information” part of this document or documentation set.

The same text in German:

f

Wichtiger Hinweis zur Produktsicherheit Von diesem Produkt können Gefahren durch Laser, Elektrizität, Hitzeentwicklung oder andere Gefahrenquellen ausgehen. Installation, Betrieb, Wartung und sonstige Handhabung des Produktes darf nur durch geschultes und qualifiziertes Personal unter Beachtung der anwendbaren Sicherheitsanforderungen erfolgen. Die Sicherheitsanforderungen finden Sie unter „Sicherheitshinweise“ im Teil „Legal, Safety and Environmental Information“ dieses Dokuments oder dieses Dokumentationssatzes.

2

Id:0900d80580815d74 Confidential

DN9812243 Issue 21-2

BSS Integration

Table of contents This document has 146 pages. Summary of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

DN9812243

1

Overview of BSS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2

A interface protocol layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3

A interface configuration with TCSM2 and TCSM3i. . . . . . . . . . . . . . . . 13

4

ET indexes in BSC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 5.1 5.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.5 5.6 5.7 5.8 5.9 5.9.1 5.10

Creating the A interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the A interface ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the optical A interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the PWE interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating the transcoder devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating the TCSM3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating TCSM3i for combined BSC/TCSM installation . . . . . . . . . . . . Creating the TCSM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating Ater Connection to Multimedia Gateway . . . . . . . . . . . . . . . . . Creating the MTP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating the SCCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Creating the speech channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connecting the A over IP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activating and Configuring AoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SIGTRAN Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 6.1

Synchronising the A interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Enabling the Connectivity for Packet Synchronisation. . . . . . . . . . . . . . 99

7

Adding DN2, SSS, DMR and BBM to the service channel . . . . . . . . . 102

8 8.1 8.2

Creating the Abis interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Creating Packet Abis over IP/Ethernet interface . . . . . . . . . . . . . . . . . 105 Packet Abis Media Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9

Creating Gb over IP Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

10 10.1

Creating O&M over IP Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

11 11.1 11.1.1 11.2 11.2.1 11.2.1.1 11.3 11.3.1 11.3.1.1 11.3.2

Site Equipment Configuration Steps . . . . . . . . . . . . . . . . . . . . . . . . . . General configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Aggregated interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Create LAG interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VLAN definitions and interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Define VLAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Create VLAN interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Id:0900d80580815d74 Confidential

61 61 63 65 65 66 70 73 81 84 87 89 91 91 93

125 125 125 125 125 125 126 126 126 126

3

BSS Integration

4

11.3.2.1 11.4 11.4.1 11.4.1.1 11.4.2 11.4.3 11.4.3.1 11.4.3.2 11.4.4 11.4.4.1 11.4.5 11.5 11.5.1 11.5.1.1 11.6 11.6.1 11.6.1.1 11.7 11.7.1 11.7.1.1

Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Switch interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Interfaces towards the mcBSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Configure Loopback interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Configure Backbone/backhaul interface . . . . . . . . . . . . . . . . . . . . . . . . 128 Layer 3 backbone/backhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Layer 2 Ethernet backbone/backhaul . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Configure the interfaces between Site Equipment . . . . . . . . . . . . . . . . 129 Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Configure the interfaces towards the BSCLAN SWUs . . . . . . . . . . . . . 129 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Dynamic OSPF routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 HSRP/VRRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Configure HSRP/VRRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 BFD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Configuration of Bi-directional Forwarding Detection (BFD) for OSPF . 131 Steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12 12.1 12.2 12.3 12.4

Initialising base stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Creating LAPD links and a base station, and initialising the base station parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Attaching the BCF software build to the BCF . . . . . . . . . . . . . . . . . . . . 135 Attaching the BTS hardware database to the BTS . . . . . . . . . . . . . . . . 137 Taking the base station into use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 13.10 13.11

Testing BSS integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Testing local blocking of a TRX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Testing the supervision of the TCSM2 (ETSI/ANSI) . . . . . . . . . . . . . . . 141 Testing the supervision of the TCSM3i (ETSI/ANSI) . . . . . . . . . . . . . . 141 Testing IMSI Attach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Testing location updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Testing MS to MS call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Testing MS to MS call, B busy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Testing MS to MS call, A subscriber IMSI detach . . . . . . . . . . . . . . . . . 144 Testing successful handover: free TCHs . . . . . . . . . . . . . . . . . . . . . . . 144 Testing unsuccessful handover: no free TCHs . . . . . . . . . . . . . . . . . . . 145 Testing radio resource queuing in handover. . . . . . . . . . . . . . . . . . . . . 145

Id:0900d80580815d74 Confidential

DN9812243

BSS Integration

List of figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23

DN9812243

Three layers of CCS7/SS7 signalling between MSC and BSC . . . . . . . 12 A interface configuration example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Time slot allocation for full-rate traffic on Ater 2 Mbit/s interface with the TCSM2 (ETSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 A interface time slot allocation (ANSI) . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ET cartridges in the BSCC cabinet of BSC3i 1000 . . . . . . . . . . . . . . . . 38 ET cartridges in the BSCD extension cabinet of BSC3i 2000 . . . . . . . . 39 ET cartridges in the new delivery Flexi BSC . . . . . . . . . . . . . . . . . . . . . 40 ET cartridges in the upgraded Flexi BSC. . . . . . . . . . . . . . . . . . . . . . . . 41 GTIC cartridges in TCSM3i for combined BSC/TCSM installation . . . . 43 ET4C-B cartridges with GSWB and ET2A/ET2A-T(B)/ET2E-S/SC/ET2ET(B)/ET2E-TC(B) indexes in BSC3i 660 . . . . . . . . . . . . . . . . . . . . . . . . 56 ET4C-B cartridges with GSW1KB and ET4A/ET4E/ET4E-C indexes in BSC3i 660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 ET4C-B cartridges with GSW1KB and ET2A/ET2A-T(B)/ET2ES/SC/ET2E-T(B)/ET2E-TC(B) indexes in BSC3i 660 . . . . . . . . . . . . . . 58 ET5C cartridges and ET2E/ET2A indexes in BSC2i . . . . . . . . . . . . . . . 59 TCSM3i ET (ET16 or ETIP) units and transcoder units . . . . . . . . . . . . . 67 Configuration of the TCSM3i for combined BSC/TCSM installation . . . 70 TCSM2 rack and cartridges (ETSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 TCSM2 rack and cartridges (ANSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Ater interface with MGW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Multiplexed and non-multiplexed A interface with 8 kbit GSWB . . . . . . 89 Transmission equipment at Q1 service channel . . . . . . . . . . . . . . . . . 102 Abis interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 BTS software directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 The test arrangements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Id:0900d80580815d74 Confidential

5

BSS Integration

List of tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Table 21

Table 22 Table 23

Table 24 Table 25 Table 26 Table 27

6

Circuit types supported by the TCSM3i . . . . . . . . . . . . . . . . . . . . . . . . . 14 Allocation of different channels on the Ater-interface in the case of 16 kbit/s TRAU frame submultiplexing (circuit type G) . . . . . . . . . . . . . . . . . . . . . 14 Channel allocation for circuit type H on the Ater-interface . . . . . . . . . . . 15 Channel allocation for circuit type I on the Ater-interface . . . . . . . . . . . 16 ET indexes in BSC3i 1000/2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ET indexes in BSC3i 1000/2000 (ETSI ETS2, two active and two standby STM-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ET indexes in BSC3i 1000/2000 (ETSI ETS2, one active and one standby STM-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 ET indexes in BSC3i 1000/2000 (ANSI ETS2, two active and two standby OC-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 ET indexes in BSC3i 1000/2000 (ANSI ETS2, one active and one standby OC-3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ETIP and ET indexes in BSC3i 1000/2000 when transmission redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ETIP and ET indexes in BSC3i 1000/2000 when HW redundancy is in use 28 ETIP and ET indexes in new delivery Flexi BSC when transmission redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ETIP and ET indexes in upgraded Flexi BSC when transmission redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ETIP and ET indexes in new delivery Flexi BSC when HW redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ETIP and ET indexes in upgraded Flexi BSC when HW redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ET indexes in new delivery Flexi BSC when transmission redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ET indexes in upgraded Flexi BSC when transmission redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ET indexes in new delivery Flexi BSC cartridges when HW redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ET indexes in upgraded Flexi BSC cartridges when HW redundancy is in use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ET indexes in TCSM3i for combined BSC/TCSM installation . . . . . . . . 42 ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used . 47 ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used . 52 ET indexes with GSWB in BSCi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Default synchronisation ETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 TR3E/TR3A/TR3T roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Id:0900d80580815d74 Confidential

DN9812243

BSS Integration

Table 28 Table 29 Table 30 Table 31

DN9812243

Possible combinations of circuit pools (TCSM3i) . . . . . . . . . . . . . . . . . Possible combinations of circuit pools . . . . . . . . . . . . . . . . . . . . . . . . . TCSM3i capacity with four TR3E unequipped . . . . . . . . . . . . . . . . . . . Circuit pools and supported codecs (with SubChannel bit information) when using MGW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Id:0900d80580815d74 Confidential

69 78 81 82

7

BSS Integration

8

Id:0900d80580815d74 Confidential

DN9812243

BSS Integration

Summary of changes

Summary of changes Changes between document issues are cumulative. Therefore, the latest document issue contains all changes made to previous issues. Changes made between issues 21-2 and 21-1 The document is updated with the information on mcBSC. Chapter Overview of BSS integration has been modified. In chapter Creating the A interface, information on packet synchronisation, SIGTRAN creation, and AoIP has been added. In chapter Creating the Abis interface, information on packet abis media conversion, and Packet Abis has been added. New chapters Creating Gb over IP Interface, Creating O&M over IP Interface and Site Equipment Configuration Steps have been added. Changes made between issues 21-1 and 21-0 In chapter ET indexes in BSC, some sections have been modified and editorial changes have been done. Changes made between issues 21-0 and 20-0 The document is updated with the information on Flexi BSC, TCSM3i, Flexi Multiradio BTS, and BTSplus BTS. Chapters Overview of BSS integration, Creating the A interface, Synchronising the A interface and Initialising base stations have been modified. Changes made between issues 20-0 and 19-1 In chapter Overview of BSS integration, information on Multimedia Gateway and Flexi BSC has been added. In chapter A interface configuration with TCSM2 and TCSM3i, information on the ETIP1A plug-in unit, the Multipoint A interface and the Ater interface has been added. In chapter ET indexes in BSC, information on ETIP1-A plug-in unit, and ETIP and ET indexes in BSC3i 1000/2000 and Flexi BSC has been added. In chapter Creating the A interface, instructions for using ETIP plug-in unit has been added. Chapter Synchronising the A interface has been slightly modified. Changes made between issues 19-2 and 19-1 In chapter Creating the A interface, section Creating the SCCP, more information on using segmentation was added. Changes made between issues 19-1 and 19-0 Chapter Initialising base stations: added information on Flexi EDGE Base Station automatic unlock.

DN9812243

Id:0900d8058086ac41 Confidential

9

Overview of BSS integration

BSS Integration

1 Overview of BSS integration BSS integration instructions are intended to be used during the integration of the TCSMBSC-BTS system in the final location. The BSS integration testing can be started when the commissioning of the different network elements has been done. The purpose of the BSS integration tests is to ensure that the BSC, TCSM, and BTS operate correctly together in the GSM/GPRS/EDGE network. When the BSS integration tests have been performed, the base station subsystem can be taken into use. There are different product variants of the Base Station Controller: BSCi, BSC2i, BSC3i660, BSC3i 1000, BSC3i 2000, Flexi BSC and mcBSC. Flexi BSC has two variants: upgraded Flexi BSC and new delivery Flexi BSC. In the Flexi BSC, new HW elements CP1D-A ( New processor unit with multicore capability), ETP(Exchange Terminal for Packet Transmission for Packet Abis over TDM and Packet Abis over Ethernet) and ETP-A (Packet gateway for AoIP) are introduced to support 4200 TRX, Packet Abis over ETH or TDM and Packet gateway for AoIP. There are ETIP1-A plug in unit and ESB24-D plug-in unit. The ETIP1-A plug in unit provides one active and one protecting Gigabit Ethernet interface. The ETIP1-A is represented by two functional units: Exchange terminal for IP transmission unit ETIP and Ethernet Exchange Terminal unit (EET). The EET represents a functional unit of a physical GigE Ethernet interface. The ESB24-D plug-in unit is used with Ethernet based Message Bus (EMB) as a collector of EMB LANs from the CPU units in both new delivery and upgraded Flexi BSC. ESB24-D can also be used as a generic LAN switch in the new delivery Flexi BSC. The mcBSC (Multicontroller BSC) can be used in two ways. It can be used as a totally new BSC option for new installations with standalone multicontroller BSC modules. Thesecond one is - capacity can be flexibly extended for the existing installed Flexi BSC base using the new HW module implementation of the Multicontroller. In this case, mcBSC enables the evolution of installed Flexi BSCs towards multicontroller capability. Transcoding functionality is usually performed in a separate standalone network element (TCSM2/TCSM3i/mcTC), and the interface between the Base Station Control ler (BSC) and the transcoder (TC) is called Ater. As an alternative to standalone 2G transcoders MGW offers the Ater interface (2G transcoder) functionality. Thus transcod ing can be performed also by the transcoder located in the Multimedia Gateway (MGW).In creation of the Ater connection to the Multimedia Gateway, no configuration or controlling the TCSM is needed. The TCSM and the transcoder in the MGW are con figured differently in the BSC. For information, see Multimedia Gateway Product Docu mentation. The mcTC is used as a transcoding solution for standalone and combined mcBSC cases. TCSM2 and TCSM3i can be used in parallel with mcTC in combined mcBSC. Combined BSC/TCSM installation is also supported here. As a part of capacity upgrade for TCSM3i, IC209-A cabinet is used to allow the equipping of five full shelf wide transcoder cartridge. Cabling Cabinet is not equipped with E1 balanced interfaces if new Rear Cabling Modules are used. TC1C-A is the new cartridge for TCSM3i and ETP-A is the new Exchange Terminal for Packet Transport. The capacity in one S15 standalone TCSM3i cabinet is 14400 channels.The capacity of one S15 combined TCSM3i cabinet in full configuration is 16800 channels, but 16320 channels is the maximum capacity reached, due to the channel sales configuration step.

10

Id:0900d8058086ac4f Confidential

DN9812243

BSS Integration

Overview of BSS integration

Creating a connection to the network management system for BSC2i and BSC3i is described in the following documents: •

Integrating 2GBSS to NetAct in NetAct documentation

Creating a connection to the SGSN is described in SGSN Integration in SGSN documentation. Creating the connection in BSC is described in Enabling GPRS in BSC in BSC documentation. Creating a connection to the Cell Broadcast Centre is described in BSC-CBC Integration in BSC documentation. Creating TCP/IP connections through LAN switches for BSC3i is described in BSC Site IP Connectivity Guidelines in BSC documentation. For more information on the effects due to mcBSC, please check BSS21341: A over IP and BSS21454: Packet Abis over Ethernet in BSC documentation. Any detected fault should be reported with a Nokia problem report and the report should be sent to the Customer Service Centre. BSS integration procedure The main phases of the testing are executed in the order presented here. BSS integration consists of the following phases: 1. 2. 3. 4. 5.

Creating the A interface Synchronising the A interface Adding DN2, SSS, DMR and BBM to the service channel Creating the Abis interface Creating X.25 or LAN connections. See Integrating 2GBSS to NetAct in NetAct documentation (for BSC2i and BSC3i). 6. Initialising base stations 7. Testing BSS integration Test logs can be filled in during the testing. For more information on BSS integration, see also: • • •

DN9812243

A interface protocol layers A interface configuration with TCSM2 and TCSM3i ET indexes in BSC3i, BSC2i and BSCi

Id:0900d8058086ac4f Confidential

11

A interface protocol layers

BSS Integration

2 A interface protocol layers In the ETSI environment, the A interface is defined in accordance with CCITT#7 Signalling System. In the ANSI environment, the A interface is defined in accordance with ANSI SS7 Signalling System. Three protocol layers are used: the Message Transfer Part (MTP), the Signalling Connection Control Part (SCCP), and the BSS Application Part (BSSAP; with ETSI) or the Radio System Application Part (RSAP; with ANSI), as shown in the figure below.

MSC

TCSM

BSC

BSSAP / RSAP

BSSAP / RSAP

SCCP

SCCP Signalling links through connected

MTP

MTP

Figure 1

Three layers of CCS7/SS7 signalling between MSC and BSC

The MTP's task is to provide a reliable means of data transmission. It consists of a signalling link, a signalling link set, and a signalling route set. The SCCP complements the services of the MTP by providing connectionless and connection-oriented network services. It consists of SCCP subsystems. The BSSAP/RSAP uses the services of the MTP and the SCCP. It takes care of actual GSM/DCS-related interaction between the MSC and the BSS. Typical tasks of the BSSAP/RSAP are for example call control, location updates, handover management, and paging. It has no counterparts in terms of BSC MMI but is created along with the SCCP. Signalling transport over IP (SIGTRAN) contains several user adaptation layers, two of which are : the MTP3 User Adaptation Layer (M3UA) and the Q.921 User Adaptation Layer (IUA). M3UA is a protocol for supporting the transport of any SS7 MTP3-User signalling (for example, ISDN user part (ISUP) and Signalling Connection Control Part SCCP messages) over IP using the services of the Stream Control Transmission Protocol (SCTP). Also, provision is made for protocol elements that enable a seamless operation of the MTP3-User peers in the SS7 and IP domains. IUA is a protocol supporting the transport of Q.921 user signalling over IP. It uses the services of the SCTP. The IUA adaptation enables an MSS controlling a Private Automatic Branch Exchange (PBX) even if the MSS does not have Pulse Code Modulation (PCM) connectivity. For an overview, see Overview of BSS integration.

12

Id:0900d805808d7637 Confidential

DN9812243

BSS Integration

A interface configuration with TCSM2 and TCSM3i

3 A interface configuration with TCSM2 and TCSM3i The A interface configuration can be made in many different ways depending on the equipment, or capacity and redundancy requirements. For example, the transcoder can be either TCSM2 or TCSM3i. Likewise, it is possible to implement only one PCM, E1 (used in ETSI environment), or T1 (used in ANSI environment) line between the MSC and the BSC or to use several separate PCM lines for redundancy or capacity purposes. The following figure illustrates an A interface configuration example. With both TCSM2 and TCSM3i, the A interface is always multiplexed.

A interface

Ater interface

1 0

E1/T1 or IP/Ethernet or Int. PCM

TCSM unit

2 3 4

E1/T1 or STM-1/OC-3 or IP/Ethernet

BSC

MSC MSC MSC MSC

1

0

E1/T1 or IP/Ethernet or Int. PCM

TCSM unit

2 3 4

TCSM3i EQUIPMENT

E1/T1 or STM-1/OC-3 or IP/Ethernet

DN0626652

Figure 2

A interface configuration example

Signalling can also be performed using IETF signalling transmission (SIGTRAN). For more information, see SIGTRAN Configuration for the A Interface. Multipoint A Interface enables one BSC to be connected to several core network elements (MSCs or MSC Servers). Even though one core network element fails, the network can stay operational with reduced capacity. For more information, see Multipoint A Interface in BSC. TCSM3i for combined BSC/TCSM installation In combined BSC/TCSM installation, no E1 or T1 interfaces are used as Ater interfaces between the BSC and TCSM3i. Instead, internal serial broadband interfaces (SBI) or Hotlinks are used. STM-1/OC-3 or IP/Ethernet (GigE) interfaces are used as external A interfaces.

DN9812243

Id:0900d805805ceddf Confidential

13

A interface configuration with TCSM2 and TCSM3i

BSS Integration

In TCSM3i for combined BSC/TCSM installation with a Flexi BSC, a mixed ETS2 and ETIP1-A configuration (STMU and SET, and ETIP and EET units) is possible in A-interfaces.

TCSM3i Circuit type

Supported channels and speech coding algo- Capacity unit on Ater rithms interface

G

HR speech, FR speech, EFR speech, AMR-FR speech, AMR-HR speech, or AMR-WB speech

16 kbit/s

FR data traffic H

HR speech, FR speech, EFR speech, AMR-FR speech, AMR-HR speech, or AMR-WB speech

32 kbit/s

FR data traffic HSCSD max 2* FR data traffic I

HR speech, FR speech, EFR speech, AMR-FR speech, AMR-HR speech, or AMR-WB speech

64 kbit/s

FR data traffic HSCSD max 4* FR data traffic

Table 1

Circuit types supported by the TCSM3i

The TCSM3i uses an allocation with 16 kbit/s traffic channels for the use of HR speech, FR speech, EFR speech, AMR (FR and HR) speech traffic, and FR data traffic. An example is shown in the table below. Bits TS

2

3

4

5

6

7

8

01

LAPD

2

3

4

02

5

6

7

8

Channels of:

03

9

10

11

12

PCM1

04

13

14

15

16

05

17

18

19

20

06

21

22

23

24

07

1

2

3

4

08

5

6

7

8

Channels of:

09

9

10

11

12

PCM2

10

13

14

15

16

11

17

18

19

20

12

21

22

23

24

13

1

2

3

4

Table 2

14

1

Allocation of different channels on the Ater-interface in the case of 16 kbit/s TRAU frame submultiplexing (circuit type G)

Id:0900d805805ceddf Confidential

DN9812243

BSS Integration

A interface configuration with TCSM2 and TCSM3i

14

5

6

7

8

Channels of:

15

9

10

11

12

PCM3

16

13

14

15

16

17

17

18

19

20

18

21

22

23

24

19

1

2

3

4

20

5

6

7

8

Channels of:

21

9

10

11

12

PCM4

22

13

14

15

16

23

17

18

19

20

24

21

22

23

24

F

Table 2

Allocation of different channels on the Ater-interface in the case of 16 kbit/s TRAU frame submultiplexing (circuit type G) (Cont.) The basic requirement for high-speed circuit-switched data (HSCSD) data transmission capability is that the associated BSC is equipped with an 8 kbit/s switching network or Bit Group Switch. Channel allocations for TCSM3i configured to transmit the data exclusively at the maximum rate of 32 kbit/s (type H) and 64 kbit/s (type I) are shown in the following tables. The same allocations accept also speech channels (FR/EFR, HR) instead of data, allowing an optimised use of transmission capacity for mixed speech/data use. The capacity unit reserved for an HSCSD connection on the A-interface is: • •

8–32 kbit/s (4 bits of a timeslot) for a 2 × 16 kbit/s channel 8–64 kbit/s (an entire timeslot) for a 4 × 16 kbit/s channel Bits

TS

1

2

3

00 01

5

6

7

8

TS 0 LAPD

-

2

02

3

4

03

5

6

04

7

8

05

9

10

Channels of:

06

11

12

PCM1

07

13

14

08

15

16

09

17

18

10

19

20

11

21

22

Table 3

DN9812243

4

Channel allocation for circuit type H on the Ater-interface

Id:0900d805805ceddf Confidential

15

A interface configuration with TCSM2 and TCSM3i

BSS Integration

12

23

24

13

1

2

14

3

4

15

5

6

16

7

8

17

9

10

Channels of:

18

11

12

PCM2

19

13

14

20

15

16

21

17

18

22

19

20

23

21

22

24

23

24

F

Table 3

Channel allocation for circuit type H on the Ater-interface (Cont.)

Bits TS

1

2

3

4

00 01

6

7

8

TS 0 LAPD

-

02

2

03

3

04

4

05

5

06

6

07

7

08

8

09

9

10

10

11

11

Channels of:

12

12

PCM1

13

13

14

14

15

15

16

16

17

17

18

18

Table 4

16

5

Channel allocation for circuit type I on the Ater-interface

Id:0900d805805ceddf Confidential

DN9812243

BSS Integration

A interface configuration with TCSM2 and TCSM3i

19

19

20

20

21

21

22

22

23

23

24

24 F

Table 4

Channel allocation for circuit type I on the Ater-interface (Cont.)

TCSM2, ETSI Provided that the BSC is equipped with an 8 Kbit group switch (GSWB), four separate A interface lines can be put into one highway PCM, making it possible to have up to 120 full-rate speech channels in one highway PCM cable. In half-rate configuration the maximum number of speech channels is 210. The combination of half-rate and full-rate can also be used. The maximum efficiency is achieved if the recommendation for time slot allocation is followed (shown in the figure Time slot allocation for full-rate traffic on Ater 2 Mbit/s interface with the TCSM2 (ETSI)). Signalling channels, and possibly network management system connections, are always allocated beginning from the end of the frame. This optimises the number of the traffic channels available for the fourth tributary. This is due to the fact that only the time slots preceding the first signalling time slot can be used as speech channels in the fourth tributary. For example, if signalling links are allocated to time slots 31 and 27, only the time slots 25 and 26 are available for the fourth tributary - even if time slots 30, 29, and 28 are not used at all.

DN9812243

Id:0900d805805ceddf Confidential

17

A interface configuration with TCSM2 and TCSM3i

BIT-> TS->

Figure 3

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2

LAPD TCH.4 TCH.8 TCH.12 TCH.16 TCH.20 TCH.24 TCH.28 x TCH.4 TCH.8 TCH.12 TCH.16 TCH.20 TCH.24 TCH.28 x TCH.4 TCH.8 TCH.12 TCH.16 TCH.20 TCH.24 TCH.28

BSS Integration

3

4

5

6

7

8

LINK MANAGEMENT TCH.1 TCH.2 TCH.3 TCH.7 TCH.5 TCH.6 TCH.9 TCH.10 TCH.11 TCH.13 TCH.15 TCH.14 TCH.18 TCH.19 TCH.17 TCH.23 TCH.21 TCH.22 TCH.25 TCH.26 TCH.27 TCH.29 TCH.31 TCH.30 TCH.1 TCH.2 TCH.3 TCH.5 TCH.6 TCH.7 TCH.9 TCH.10 TCH.11 TCH.13 TCH.15 TCH.14 TCH.18 TCH.19 TCH.17 TCH.21 TCH.22 TCH.23 TCH.25 TCH.26 TCH.27 TCH.29 TCH.31 TCH.30 TCH.1 TCH.2 TCH.3 TCH.5 TCH.6 TCH.7 TCH.9 TCH.10 TCH.11 TCH.14 TCH.13 TCH.15 TCH.18 TCH.19 TCH.17 TCH.23 TCH.21 TCH.22 TCH.27 TCH.25 TCH.26 TCH.30 TCH.29 TCH.31 AUX1: selectable (TCH.1-3) AUX2: selectable (TCH.4-7) AUX3: selectable (TCH.8-11) AUX4: selectable (TCH.12-15) #7 signalling (TCH.16-19) #7 signalling (TCH.20-23) #7 signalling (TCH.24-27)

A-PCM 1

A-PCM 2

A-PCM 3

(A-PCM 4)

Time slot allocation for full-rate traffic on Ater 2 Mbit/s interface with the TCSM2 (ETSI)

TCSM2, ANSI Because of multiplexing, four A interface T1s can be put to one highway T1, making it possible to have up to 96 traffic channels between the transcoder and the BSC as shown in figure A interface time slot allocation (ANSI). However, one channel is required for the LAPD channel and normally one 64 kbit time slot is used for SS7 signalling. This leaves 91 channels for traffic.

18

Id:0900d805805ceddf Confidential

DN9812243

BSS Integration

A interface configuration with TCSM2 and TCSM3i

Trunk 1 TS 1 TS 2 TS 3 TS 4 TS 5 TS 6 TS 7 TS 8 TS 9 TS 10 TS 11 TS 12 TS 13 TS 14 TS 15 TS 16 TS 17 TS 18 TS 19 TS 20 TS 21 TS 22 TS 23 TS 24

1 2 3 4 5 6 7 8 TCH 2 TCH 3 TCH 4 TCH 5 TCH 6 TCH 7 TCH 8 TCH 9 TCH 10 TCH 11 TCH 12 TCH 13 TCH 14 TCH 15 TCH 16 TCH 17 TCH 18 TCH 19 TCH 20 TCH 21 TCH 22 TCH 23 TCH 24

Trunk 3 1 2 3 4 5 6 7 8 TS 1 TCH 1 TS 2 TCH 2 TS 3 TCH 3 TS 4 TCH 4 TS 5 TCH 5 TS 6 TCH 6 TS 7 TCH 7 TS 8 TCH 8 TS 9 TCH 9 TS 10 TCH 10 TS 11 TCH 11 TS 12 TCH 12 TS 13 TCH 13 TS 14 TCH 14 TS 15 TCH 15 TS 16 TCH 16 TS 17 TCH 17 TS 18 TCH 18 TS 19 TCH 19 TS 20 TCH 20 TS 21 TCH 21 TS 22 TCH 22 TS 23 TCH 23 TS 24 TCH 24

Figure 4

Trunk 2 1 2 3 4 5 6 7 8 TS 1 TCH 1 TS 2 TCH 2 TS 3 TCH 3 TS 4 TCH 4 TS 5 TCH 5 TS 6 TCH 6 TS 7 TCH 7 TS 8 TCH 8 TS 9 TCH 9 TS 10 TCH 10 TS 11 TCH 11 TS 12 TCH 12 TS 13 TCH 13 A Interface Highway T1 TS 14 TCH 14 (to MSC) (to BSC) TS 15 TCH 15 TS 16 TCH 16 TS 17 TCH 17 TS 18 TCH 18 TS 19 TCH 19 TS 20 TCH 20 TS 21 TCH 21 TS 22 TCH 22 TCSM2 TS 23 TCH 23 TS 24 TCH 24

Trunk 4 1 2 3 4 5 6 7 8 TS 1 TCH 1 TS 2 TCH 2 TS 3 TCH 3 TS 4 TCH 4 TS 5 TCH 5 TS 6 TCH 6 TS 7 TCH 7 TS 8 TCH 8 TS 9 TCH 9 TS 10 TCH 10 TS 11 TCH 11 TS 12 TCH 12 TS 13 TCH 13 TS 14 TCH 14 TS 15 TCH 15 TS 16 TCH 16 TS 17 TCH 17 TS 18 TCH 18 TS 19 TCH 19 TS 20 TCH 20 TS 21 TS 22 TS 23 TS 24 SS7

1

2

3

4

5

6

7

8

TS 1

LAPD

TCH 2

TCH 3

TCH 4

Trunk 1

TS 2

TCH 5

TCH 6

TCH 7

TCH 8

23 TCHs

TS 3

TCH 9

TCH 10

TCH 11

TCH 12

TS 4

TCH 13

TCH 14

TCH 15

TCH 16

TS 5

TCH 17

TCH 18

TCH 19

TCH 20

TS 6

TCH 21

TCH 22

TCH 23

TCH 24

TS 7

TCH 1

TCH 2

TCH 3

TCH 4

Trunk 2

TS 8

TCH 5

TCH 6

TCH 7

TCH 8

24 TCHs

TS 9

TCH 9

TCH 10

TCH 11

TCH 12

TS 10

TCH 13

TCH 14

TCH 15

TCH 16

TS 11

TCH 17

TCH 18

TCH 19

TCH 20

TS 12

TCH 21

TCH 22

TCH 23

TCH 24

TS 13

TCH 1

TCH 2

TCH 3

TCH 4

Trunk 3

TS 14

TCH 5

TCH 6

TCH 7

TCH 8

24 TCHs

TS 15

TCH 9

TCH 10

TCH 11

TCH 12

TS 16

TCH 13

TCH 14

TCH 15

TCH 16

TS 17

TCH 17

TCH 18

TCH 19

TCH 20

TS 18

TCH 21

TCH 22

TCH 23

TCH 24

TS 19

TCH 1

TCH 2

TCH 3

TCH 4

Trunk 4

TS 20

TCH 5

TCH 6

TCH 7

TCH 8

20 TCHs

TS 21

TCH 9

TCH 10

TCH 11

TCH 12

TS 22

TCH 13

TCH 14

TCH 15

TCH 16

TS 23

TCH 17

TCH 18

TCH 19

TCH 20

TS 24

SS7

A interface time slot allocation (ANSI)

For an overview, see Overview of BSS integration.

DN9812243

Id:0900d805805ceddf Confidential

19

ET indexes in BSC

BSS Integration

4 ET indexes in BSC In new delivery Flexi BSC both STM-1/OC-3 interfaces (optical) and IP/Ethernet (GigE) interfaces (optical or electrical) are supported in the whole cabinet wide cartridge mechanics together with E1/T1 interfaces. Cartridge mechanics is divided to sub cartridges, which are used same way as smaller cartridges in earlier delivered BSCs. In upgraded Flexi BSC one-cabinet configuration is supported with full range (16+16) of STM-1/OC-3 interfaces and IP/Ethernet (8 + 8 GigE) interfaces. In the upgraded Flexi BSC it is possible to extend the configuration with a second cabinet also to full support for 800 E1/T1 interfaces to earlier delivered BSCs. The Exchange Terminals (ETs) of the BSC3i 1000/2000 and the upgraded Flexi BSC are housed in GT6C-A and/or GT4C-A cartridges. One GT4C-A cartridge can contain up to eight ET plug-in units and a GT6C-A cartridge can contain up to four ET plug-in units. ET16 plug-in units can be installed to six ET cartridges with indexes ETC 0 to ETC 5 in BSC3i 2000. Additionally, ET16 units can also be equipped to GTIC cartridges to achieve a maximum of 800 E1/T1 interfaces amount in the two-cabinet configuration and 384 E1/T1 interface amount in the one-cabinet configuration. The ET16 and ETIP1-A units are installed to GTIC cartridge starting from the right in mixed ET16 or ETIP1-A and ETS2 equipping. In the incoming direction, the ET decodes the 2048 Mbit/s in European Telecommunications Standards Institute (ETSI) signal or 1544 Mbit/s American National Standards Institute (ANSI) signal of a circuit into data signals. In the outgoing direction, the ET receives a binary PCM signal from the switching network and generates the PCM frame structure. The resulting signal is converted into a line code (HDB3 in the ETSI environment, B8ZS or AMI in the ANSI environment) and transmitted further onto the 2048 Mbit/s (ETSI) or 1544 Mbit/s (ANSI) circuit. The ETS2 plug-in unit contains up to two active and two redundant optical STM-1/OC3 interfaces. All optical components have 2N redundancy for transmission protection. A maximum of 16 active optical interface can be achieved with 8 plug-in units, if two active interface per unit is used or with 16 plug-in units if one active interface is used per unit. The ETS2 units are equipped to GTIC cartridges in the first equipment cabinet. The GTIC cartridges can also be used for E1/T1 connectivity with ET16 units. The ETS2 unit is responsible for framing, mapping, and multiplexing of PCMs into channelised way in optical interfaces (VC12). One STM-1 interface consists of 63 E1s (ETSI) and one OC3 interface consists of 84 T1s (ANSI). PCMs are handled in the same way as ETs in the ET16 plug-in unit. Equipment protection for ETS2 (MSP 1 + 1 protective units) is provided if two STMU units (functional units for ETS2) are configured with consecutive indexes. For example, STMU-0 and STMU-1 comprise a pair of STMUs. Integrated E1/T1 over IP application software offers an integrated solution for BSC3i and TCSM3i based transcoders to send/receive TDM frame timeslots via a packetswitched network. Integrated E1/T1 over IP is based on the circuit emulation service over packet-switched networks (CESoPSN) technology and it is implemented in the ETIP1-A plug-in unit. The ETIP1-A can be equipped to the ETS2 and ET16 cartridges to replace the E1/T1 or STM-1/OC-3 unit. This improves the BSC connectivity. The operator has more alternatives to select transmission technology in different interfaces of the BSC environment. The ETIP-A plug-in unit can be used in the Abis and Ater interfaces in the BSC3i and in the A and Ater interfaces in TCSM3i based transcoders. The

20

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

capacity of one ETIP1-A plug-in unit in the BSC3i environment is 126 E1 PCMs or 168 T1 PCMs. ETC cartridge

Slot

ETs

ETC 0

01

512-527

02

528-543

03

544-559

04

560-575

01

576-591

02

592-607

03

608-623

04

624-639

01

1344-1359

02

1360-1375

03

1376-1391

04

1392-1407

05

1600-1615

06

1616-1631

07

1632-1647

08

1648-1663

01

1664-1679

02

1680-1695

03

1696-1711

04

1712-1727

05

1728-1743

06

1744-1759

07

1760-1775

08

1776-1791

01

1920-1935

02

1936-1951

03

1952-1967

04

1968-1983

05

1984-1999

06

2000-2015

07

2016-2031

08

2032-2047

01

1280-1295

02

1296-1311

ETC 1

ETC 2

ETC 3

ETC 4

ETC 5

Table 5

DN9812243

ET indexes in BSC3i 1000/2000

Id:0900d80580820876 Confidential

21

ET indexes in BSC

BSS Integration

Slot

STM-1 interface of ETS2

Optical interface

STMU index

ET numbers (ETSI)

Control PCM (TSLs)

0

0

0

64-126

640 (0-15)

0

1

0

64-126

640 (0-15)

1

0

0

192-254

640 (0-15)

1

1

0

192-254

640 (0-15)

0

0

2

320-382

640 (16-31)

0

1

2

320-382

640 (16-31)

1

0

2

448-510

640 (16-31)

1

1

2

448-510

640 (16-31)

0

0

4

1088-1150

641 (0-15)

0

1

4

1088-1150

641 (0-15)

1

0

4

1216-1278

641 (0-15)

1

1

4

1216-1278

641 (0-15)

0

0

6

1408-1470

641 (16-31)

0

1

6

1408-1470

641 (16-31)

1

0

6

1472-1534

641 (16-31)

1

1

6

1472-1534

641 (16-31)

0

0

16

1344-1406

896 (0-15)

0

1

16

1344-1406

896 (0-15)

1

0

16

1600-1662

896 (0-15)

1

1

16

1600-1662

896 (0-15)

0

0

18

1664-1726

896 (16-31)

0

1

18

1664-1726

896 (16-31)

1

0

18

1728-1790

896 (16-31)

1

1

18

1728-1790

896 (16-31)

0

0

20

1792-1854

897 (0-15)

0

1

20

1792-1854

897 (0-15)

1

0

20

1856-1918

897 (0-15)

1

1

20

1856-1918

897 (0-15)

GTIC 0 01

02

03

04

GTIC1 01

02

03

Table 6

22

ET indexes in BSC3i 1000/2000 (ETSI ETS2, two active and two standby STM-1)

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

STM-1 interface of ETS2

Optical interface

STMU index

ET numbers (ETSI)

Control PCM (TSLs)

04

0

0

22

1920-1982

897 (16-31)

0

1

22

1920-1982

897 (16-31)

1

0

22

1984-2046

897 (16-31)

1

1

22

1984-2046

897 (16-31)

Table 6

Slot

ET indexes in BSC3i 1000/2000 (ETSI ETS2, two active and two standby STM-1) (Cont.)

STM-1 interface of ETS2

Optical interface

STMU index

ET numbers (ETSI)

Control PCM (TSLs)

0

0

0

64-126

640 (0-15)

0

1

0

64-126

640 (0-15)

0

0

2

192-254

640 (16-31)

0

1

2

192-254

640 (16-31)

0

0

4

320-382

641 (0-15)

0

1

4

320-382

641 (0-15)

0

0

6

448-510

641 (16-31)

0

1

6

448-510

641 (16-31)

0

0

8

1088-1150

642 (0-15)

0

1

8

1088-1150

642 (0-15)

0

0

10

1216-1278

642 (16-31)

0

1

10

1216-1278

642 (16-31)

0

0

12

1408-1470

643 (0-15)

0

1

12

1408-1470

643 (0-15)

0

0

14

1472-1534

643 (16-31)

0

1

14

1472-1534

643 (16-31)

0

0

16

1344-1406

896 (0-15)

0

1

16

1344-1406

896 (0-15)

0

0

18

1600-1662

896 (16-31)

0

1

18

1600-1662

896 (16-31)

GTIC 0 01

02

03

04

05

06

07

08

GTIC1 01

02

Table 7

DN9812243

ET indexes in BSC3i 1000/2000 (ETSI ETS2, one active and one standby STM-1)

Id:0900d80580820876 Confidential

23

ET indexes in BSC

BSS Integration

Slot

STM-1 interface of ETS2

Optical interface

STMU index

ET numbers (ETSI)

Control PCM (TSLs)

03

0

0

20

1664-1726

897 (0-15)

0

1

20

1664-1726

897 (0-15)

0

0

22

1728-1790

897 (16-31)

0

1

22

1728-1790

897 (16-31)

0

0

24

1792-1854

898 (0-15)

0

1

24

1792-1854

898 (0-15)

0

0

26

1856-1918

898 (16-31)

0

1

26

1856-1918

898 (16-31)

0

0

28

1920-1982

899 (0-15)

0

1

28

1920-1982

899 (0-15)

0

0

30

1984-2046

899 (16-31)

0

1

30

1984-2046

899 (16-31)

04

05

06

07

08

Table 7

Slot

ET indexes in BSC3i 1000/2000 (ETSI ETS2, one active and one standby STM-1) (Cont.)

OC-3 interface of ETS2

Optical interface

STMU index

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

2048-2131

640 (0-15)

0

1

0

2048-2131

640 (0-15)

1

0

0

2132-2215

640 (0-15)

1

1

0

2132-2215

640 (0-15)

0

0

2

2216-2299

640 (16-31)

0

1

2

2216-2299

640 (16-31)

1

0

2

2300-2383

640 (16-31)

1

1

2

2300-2383

640 (16-31)

0

0

4

2384-2467

641 (0-15)

0

1

4

2384-2467

641 (0-15)

1

0

4

2468-2551

641 (0-15)

1

1

4

2468-2551

641 (0-15)

GTIC 0 01

02

03

Table 8

24

ET indexes in BSC3i 1000/2000 (ANSI ETS2, two active and two standby OC-3)

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

OC-3 interface of ETS2

Optical interface

STMU index

ET numbers (ANSI)

Control PCM (TSLs)

04

0

0

6

2552-2635

641 (16-31)

0

1

6

2552-2635

641 (16-31)

1

0

6

2636-2719

641 (16-31)

1

1

6

2636-2719

641 (16-31)

0

0

16

2720-2803

896 (0-15)

0

1

16

2720-2803

896 (0-15)

1

0

16

2804-2887

896 (0-15)

1

1

16

2804-2887

896 (0-15)

0

0

18

2888-2971

896 (16-31)

0

1

18

2888-2971

896 (16-31)

1

0

18

2972-3055

896 (16-31)

1

1

18

2972-3055

896 (16-31)

0

0

20

3056-3139

897 (0-15)

0

1

20

3056-3139

897 (0-15)

1

0

20

3140-3223

897 (0-15)

1

1

20

3140-3223

897 (0-15)

0

0

22

3224-3307

897 (16-31)

0

1

22

3224-3307

897 (16-31)

1

0

22

3308-3391

897 (16-31)

1

1

22

3308-3391

897 (16-31)

GTIC1 01

02

03

04

Table 8

Slot

ET indexes in BSC3i 1000/2000 (ANSI ETS2, two active and two standby OC-3) (Cont.)

OC-3 interface of ETS2

Optical interface

STMU index

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

2048-2131

640 (0-15)

0

1

0

2048-2131

640 (0-15)

0

0

2

2132-2215

640 (16-31)

0

1

2

2132-2215

640 (16-31)

GTIC 0 01

02

Table 9

DN9812243

ET indexes in BSC3i 1000/2000 (ANSI ETS2, one active and one standby OC-3)

Id:0900d80580820876 Confidential

25

ET indexes in BSC

BSS Integration

Slot

OC-3 interface of ETS2

Optical interface

STMU index

ET numbers (ANSI)

Control PCM (TSLs)

03

0

0

4

2216-2299

641 (0-15)

0

1

4

2216-2299

641 (0-15)

0

0

6

2300-2383

641 (16-31)

0

1

6

2300-2383

641 (16-31)

0

0

8

2384-2467

642 (0-15)

0

1

8

2384-2467

642 (0-15)

0

0

10

2468-2551

642 (16-31)

0

1

10

2468-2551

642 (16-31)

0

0

12

2552-2635

643 (0-15)

0

1

12

2552-2635

643 (0-15)

0

0

14

2636-2719

643 (16-31)

0

1

14

2636-2719

643 (16-31)

0

0

16

2720-2803

896 (0-15)

0

1

16

2720-2803

896 (0-15)

0

0

18

2804-2887

896 (16-31)

0

1

18

2804-2887

896 (16-31)

0

0

20

2888-2971

897 (0-15)

0

1

20

2888-2971

897 (0-15)

0

0

22

2972-3055

897 (16-31)

0

1

22

2972-3055

897 (16-31)

0

0

24

3056-3139

898 (0-15)

0

1

24

3056-3139

898 (0-15)

0

0

26

3140-3223

898 (16-31)

0

1

26

3140-3223

898 (16-31)

0

0

28

3224-3307

899 (0-15)

0

1

28

3224-3307

899 (0-15)

0

0

30

3308-3391

899 (16-31)

0

1

30

3308-3391

899 (16-31)

04

05

06

07

08

GTIC1 01

02

03

04

05

06

07

08

Table 9

26

ET indexes in BSC3i 1000/2000 (ANSI ETS2, one active and one standby OC-3) (Cont.)

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

GbE interface

ETIP index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

64-126

2048-2131

640 (0-3)

192-254

2132-2215

64-126

2048-2131

192-254

2132-2215

320-382

2216-2299

448-510

2300-2383

320-382

2216-2299

448-510

2300-2383

1088-1150

2384-2467

1216-1278

2468-2551

1088-1150

2384-2467

1216-1278

2468-2551

1408-1470

2552-2635

1472-1534

2636-2719

1408-1470

2552-2635

1472-1534

2636-2719

1344-1406

2720-2803

1600-1662

2804-2887

1344-1406

2720-2803

1600-1662

2804-2887

1664-1726

2888-2971

1728-1790

2972-3055

1664-1726

2888-2971

1728-1790

2972-3055

1792-1854

3056-3139

1856-1918

3140-3223

1792-1854

3056-3139

1856-1918

3140-3223

1920-1982

3224-3307

1984-2046

3308-3391

1920-1982

3224-3307

1984-2046

3308-3391

GTIC 0 01

1 02

0

1 03

0 1

04

0 1

0 2

2 4 4

6 6

1 4

5 8 9

12 13

640 (0-3) 640 (16-19)

640 (16-19) 641 (0-3) 641 (0-3)

641 (16-19) 641 (16-19)

GTIC1 01

0 1

02

0 1

03

0

1 04

0 1

Table 10

DN9812243

16 16

18 18 20

20 22 22

32 33

36 37 40

41 44 45

896 (0-3) 896 (0-3)

896 (16-19) 896 (16-19) 897 (0-3)

897 (0-3) 897 (16-19) 897 (16-19)

ETIP and ET indexes in BSC3i 1000/2000 when transmission redundancy is in use

Id:0900d80580820876 Confidential

27

ET indexes in BSC

BSS Integration

Slot

GbE interface

ETIP index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

64-126

2048-2131

640 (0-3)

192-254

2132-2215

320-382

2216-2299

448-510

2300-2383

1088-1150

2384-2467

1216-1278

2468-2551

1408-1470

2552-2635

1472-1534

2636-2719

1344-1406

2720-2803

1600-1662

2804-2887

1664-1726

2888-2971

1728-1790

2972-3055

1792-1854

3056-3139

1856-1918

3140-3223

1920-1982

3224-3307

1984-2046

3308-3391

64-126

2048-2131

192-254

2132-2215

320-382

2216-2299

448-510

2300-2383

1088-1150

2384-2467

1216-1278

2468-2551

1408-1470

2552-2635

1472-1534

2636-2719

1344-1406

2720-2803

1600-1662

2804-2887

1664-1726

2888-2971

1728-1790

2972-3055

1792-1854

3056-3139

1856-1918

3140-3223

1920-1982

3224-3307

1984-2046

3308-3391

GTIC 0 01 02 03

04 05 06

07 08

0 0

0 0 0

0 0

2 4

6 9 11

13 15

4 8

12 18 22

26 30

640 (16-19) 641 (0-3)

641 (16-19) 642 (0-3) 642 (16-19)

643 (0-3) 643 (16-19)

GTIC1 01 02

03 04 05

06 07 08

Table 11

28

0 0

0 0 0

0 0 0

1 3

5 7 8

10 12 14

2 6

10 14 16

20 24 28

896 (0-3) 896 (16-19)

897 (0-3) 897 (16-19) 898 (0-3)

898 (16-19) 899 (0-3) 899 (16-19)

ETIP and ET indexes in BSC3i 1000/2000 when HW redundancy is in use

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

GbE interface

ETIP index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

64-126

2048-2131

392 (0-3)

192-254

2132-2215

64-126

2048-2131

192-254

2132-2215

1536-1598

2216-2299

1600-1662

2300-2383

1536-1598

2216-2299

1600-1662

2300-2383

1792-1854

2384-2467

1856-1918

2468-2551

1792-1854

2384-2467

1856-1918

2468-2551

1280-1342

2552-2635

1344-1406

2636-2719

1280-1342

2552-2635

1344-1406

2636-2719

1920-1982

2720-2803

1984-2046

2804-2887

1920-1982

2720-2803

1984-2046

2804-2887

768-830

2888-2971

832-894

2972-3055

768-830

2888-2971

832-894

2972-3055

1024-1086

3056-3139

1088-1150

3140-3223

1024-1086

3056-3139

1088-1150

3140-3223

512-574

3224-3307

576-638

3308-3391

512-574

3224-3307

576-638

3308-3391

GTIC 0 10

1 11

0

1 12

0 1

13

0 1

0 2

2 4 4

6 6

1 4

5 8 9

12 13

392 (0-3) 392 (16-19)

392 (16-19) 393 (0-3) 393 (0-3)

393 (16-19) 393 (16-19)

GTIC1 10

0 1

11

0 1

12

0

1 13

0 1

Table 12

DN9812243

16 16

18 18 20

20 22 22

32 33

36 37 40

41 44 45

384 (0-3) 384 (0-3)

384 (16-19) 384 (16-19) 385 (0-3)

385 (0-3) 385 (16-19) 385 (16-19)

ETIP and ET indexes in new delivery Flexi BSC when transmission redundancy is in use

Id:0900d80580820876 Confidential

29

ET indexes in BSC

BSS Integration

Slot

GbE interface

ETIP index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

64-126

2048-2131

640 (0-3)

192-254

2132-2215

64-126

2048-2131

192-254

2132-2215

320-382

2216-2299

448-510

2300-2383

320-382

2216-2299

448-510

2300-2383

1088-1150

2384-2467

1216-1278

2468-2551

1088-1150

2384-2467

1216-1278

2468-2551

1408-1470

2552-2635

1472-1534

2636-2719

1408-1470

2552-2635

1472-1534

2636-2719

1344-1406

2720-2803

1600-1662

2804-2887

1344-1406

2720-2803

1600-1662

2804-2887

1664-1726

2888-2971

1728-1790

2972-3055

1664-1726

2888-2971

1728-1790

2972-3055

1792-1854

3056-3139

1856-1918

3140-3223

1792-1854

3056-3139

1856-1918

3140-3223

1920-1982

3224-3307

1984-2046

3308-3391

1920-1982

3224-3307

1984-2046

3308-3391

GTIC 0 01

1 02

0

1 03

0 1

04

0 1

0 2

2 4 4

6 6

1 4

5 8 9

12 13

640 (0-3) 640 (16-19)

640 (16-19) 641 (0-3) 641 (0-3)

641 (16-19) 641 (16-19)

GTIC1 01

0 1

02

0 1

03

0

1 04

0 1

Table 13

30

16 16

18 18 20

20 22 22

32 33

36 37 40

41 44 45

896 (0-3) 896 (0-3)

896 (16-19) 896 (16-19) 897 (0-3)

897 (0-3) 897 (16-19) 897 (16-19)

ETIP and ET indexes in upgraded Flexi BSC when transmission redundancy is in use

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

GbE interface

ETIP index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

64-126

2048-2131

392 (0-3)

192-254

2132-2215

1536-1598

2216-2299

1600-1662

2300-2383

1792-1854

2384-2467

1856-1918

2468-2551

1280-1342

2552-2635

1344-1406

2636-2719

1920-1982

2720-2803

1984-2046

2804-2887

768-830

2888-2971

832-894

2972-3055

1024-1086

3056-3139

1088-1150

3140-3223

512-574

3224-3307

576-638

3308-3391

64-126

2048-2131

192-254

2132-2215

1536-1598

2216-2299

1600-1662

2300-2383

1792-1854

2384-2467

1856-1918

2468-2551

1280-1342

2552-2635

1344-1406

2636-2719

1920-1982

2720-2803

1984-2046

2804-2887

768-830

2888-2971

832-894

2972-3055

1024-1086

3056-3139

1088-1150

3140-3223

512-574

3224-3307

576-638

3308-3391

GTIC 0 10 11 12

13 14 15

16 17

0 0

0 0 0

0 0

2 4

6 9 11

13 15

4 8

12 18 22

26 30

392 (16-19) 393 (0-3)

393 (16-19) 394 (0-3) 394 (16-19)

395 (0-3) 395 (16-19)

GTIC1 10 11

12 13 14

15 16 17

Table 14

DN9812243

0 0

0 0 0

0 0 0

1 3

5 7 8

10 12 14

2 6

10 14 16

20 24 28

384 (0-3) 384 (16-19)

385 (0-3) 385 (16-19) 386 (0-3)

386 (16-19) 387 (0-3) 387 (16-19)

ETIP and ET indexes in new delivery Flexi BSC when HW redundancy is in use

Id:0900d80580820876 Confidential

31

ET indexes in BSC

BSS Integration

Slot

GbE interface

ETIP index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

64-126

2048-2131

640 (0-3)

192-254

2132-2215

320-382

2216-2299

448-510

2300-2383

1088-1150

2384-2467

1216-1278

2468-2551

1408-1470

2552-2635

1472-1534

2636-2719

1344-1406

2720-2803

1600-1662

2804-2887

1664-1726

2888-2971

1728-1790

2972-3055

1792-1854

3056-3139

1856-1918

3140-3223

1920-1982

3224-3307

1984-2046

3308-3391

64-126

2048-2131

192-254

2132-2215

320-382

2216-2299

448-510

2300-2383

1088-1150

2384-2467

1216-1278

2468-2551

1408-1470

2552-2635

1472-1534

2636-2719

1344-1406

2720-2803

1600-1662

2804-2887

1664-1726

2888-2971

1728-1790

2972-3055

1792-1854

3056-3139

1856-1918

3140-3223

1920-1982

3224-3307

1984-2046

3308-3391

GTIC 0 01 02 03

04 05 06

07 08

0 0

0 0 0

0 0

2 4

6 9 11

13 15

4 8

12 18 22

26 30

640 (16-19) 641 (0-3)

641 (16-19) 642 (0-3) 642 (16-19)

643 (0-3) 643 (16-19)

GTIC1 01 02

03 04 05

06 07 08

Table 15

32

0 0

0 0 0

0 0 0

1 3

5 7 8

10 12 14

2 6

10 14 16

20 24 28

896 (0-3) 896 (16-19)

897 (0-3) 897 (16-19) 898 (0-3)

898 (16-19) 899 (0-3) 899 (16-19)

ETIP and ET indexes in upgraded Flexi BSC when HW redundancy is in use

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

Slot

ET indexes in BSC

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

0

64-126

2048-2131

392 (0-15)

0

1

0

1

64-126

2048-2131

392 (0-15)

1

0

0

2

192-254

2132-2215

392 (0-15)

1

1

0

3

192-254

2132-2215

392 (0-15)

0

0

2

8

1536-1598

2216-2299

392 (16-31)

0

1

2

9

1536-1598

2216-2299

392 (16-31)

1

0

2

10

1600-1662

2300-2383

392 (16-31)

1

1

2

11

1600-1662

2300-2383

392 (16-31)

0

0

4

16

1792-1854

2384-2467

393 (0-15)

0

1

4

17

1792-1854

2384-2467

393 (0-15)

1

0

4

18

1856-1918

2468-2551

393 (0-15)

1

1

4

19

1856-1918

2468-2551

393 (0-15)

0

0

6

24

1280-1342

2552-2635

393 (16-31)

0

1

6

25

1280-1342

2552-2635

393 (16-31)

1

0

6

26

1344-1406

2636-2719

393 (16-31)

1

1

6

27

1344-1406

2636-2719

393 (16-31)

0

0

16

64

1920-1982

2720-2803

384 (0-15)

0

1

16

65

1920-1982

2720-2803

384 (0-15)

1

0

16

66

1984-2046

2804-2887

384 (0-15)

1

1

16

67

1984-2046

2804-2887

384 (0-15)

0

0

18

72

768-830

2888-2971

384 (16-31)

0

1

18

73

768-830

2888-2971

384 (16-31)

1

0

18

74

832-894

2972-3055

384 (16-31)

1

1

18

75

832-894

2972-3055

384 (16-31)

0

0

20

80

1024-1086

3056-3139

385 (0-15)

0

1

20

81

1024-1086

3056-3139

385 (0-15)

1

0

20

82

1088-1150

3140-3223

385 (0-15)

1

1

20

83

1088-1150

3140-3223

385 (0-15)

GTIC 0 10

11

12

13

GTIC1 10

11

12

Table 16

DN9812243

ET indexes in new delivery Flexi BSC when transmission redundancy is in use

Id:0900d80580820876 Confidential

33

ET indexes in BSC

BSS Integration

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

13

0

0

22

88

512-574

3224-3307

385 (16-31)

0

1

22

89

512-574

3224-3307

385 (16-31)

1

0

22

90

576-638

3308-3391

385 (16-31)

1

1

22

91

576-638

3308-3391

385 (16-31)

Table 16

Slot

ET indexes in new delivery Flexi BSC when transmission redundancy is in use (Cont.)

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

0

64-126

2048-2131

640 (0-3)

0

1

0

1

64-126

2048-2131

640 (0-3)

1

0

0

2

192-254

2132-2215

640 (0-3)

1

1

0

3

192-254

2132-2215

640 (0-3)

0

0

2

8

320-382

2216-2299

640 (16-19)

0

1

2

9

320-382

2216-2299

640 (16-19)

1

0

2

10

448-510

2300-2383

640 (16-19)

1

1

2

11

448-510

2300-2383

640 (16-19)

0

0

4

16

1088-1150

2384-2467

641 (0-3)

0

1

4

17

1088-1150

2384-2467

641 (0-3)

1

0

4

18

1216-1278

2468-2551

641 (0-3)

1

1

4

19

1216-1278

2468-2551

641 (0-3)

0

0

6

24

1408-1470

2552-2635

641 (16-19)

0

1

6

25

1408-1470

2552-2635

641 (16-19)

1

0

6

26

1472-1534

2636-2719

641 (16-19)

1

1

6

27

1472-1534

2636-2719

641 (16-19)

0

0

16

64

1344-1406

2720-2803

896 (0-3)

0

1

16

65

1344-1406

2720-2803

896 (0-3)

1

0

16

66

1600-1662

2804-2887

896 (0-3)

1

1

16

67

1600-1662

2804-2887

896 (0-3)

GTIC 0 01

02

03

04

GTIC1 01

Table 17

34

ET indexes in upgraded Flexi BSC when transmission redundancy is in use

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

02

0

0

18

72

1664-1726

2888-2971

896 (16-19)

0

1

18

73

1664-1726

2888-2971

896 (16-19)

1

0

18

74

1728-1790

2972-3055

896 (16-19)

1

1

18

75

1728-1790

2972-3055

896 (16-19)

0

0

20

80

1792-1854

3056-3139

897 (0-3)

0

1

20

81

1792-1854

3056-3139

897 (0-3)

1

0

20

82

1856-1918

3140-3223

897 (0-3)

1

1

20

83

1856-1918

3140-3223

897 (0-3)

0

0

22

88

1920-1982

3224-3307

897 (16-19)

0

1

22

89

1920-1982

3224-3307

897 (16-19)

1

0

22

90

1984-2046

3308-3391

897 (16-19)

1

1

22

91

1984-2046

3308-3391

897 (16-19)

03

04

Table 17

Slot

ET indexes in upgraded Flexi BSC when transmission redundancy is in use (Cont.)

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

0

64-126

2048-2131

392 (0-15)

1

0

0

2

192-254

2132-2215

392 (0-15)

0

0

2

8

1536-1598

2216-2299

392 (16-31)

1

0

2

10

1600-1662

2300-2383

392 (16-31)

0

0

4

16

1792-1854

2384-2467

393 (0-15)

1

0

4

18

1856-1918

2468-2551

393 (0-15)

0

0

6

24

1280-1342

2552-2635

393 (16-31)

1

0

6

26

1344-1406

2636-2719

393 (16-31)

0

0

9

36

1920-1982

2720-2803

394 (0-15)

1

0

9

38

1984-2046

2804-2887

394 (0-15)

0

0

11

44

768-830

2888-2971

394 (16-31)

1

0

11

46

832-894

2972-3055

394 (16-31)

0

0

13

52

1024-1086

3056-3139

395 (0-15)

1

0

13

54

1088-1150

3140-3223

395 (0-15)

GTIC 0 10

11

12

13

14

15

16

Table 18

DN9812243

ET indexes in new delivery Flexi BSC cartridges when HW redundancy is in use

Id:0900d80580820876 Confidential

35

ET indexes in BSC

BSS Integration

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

17

0

0

15

60

512-574

3224-3307

395 (16-31)

1

0

15

62

576-638

3308-3391

395 (16-31)

0

0

1

4

64-126

2048-2131

384 (0-15)

1

0

1

6

192-254

2132-2215

384 (0-15)

0

0

3

12

1536-1598

2216-2299

384 (16-31)

10

0

3

14

1600-1662

2300-2383

384 (16-31)

0

0

5

20

1792-1854

2384-2467

385 (0-15)

1

0

5

22

1856-1918

2468-2551

385 (0-15)

0

0

7

28

1280-1342

2552-2635

385 (16-31)

1

0

7

30

1344-1406

2636-2719

385 (16-31)

0

0

8

32

1920-1982

2720-2803

386 (0-15)

1

0

8

34

1984-2046

2804-2887

386 (0-15)

0

0

10

40

768-830

2888-2971

386 (16-31)

1

0

10

42

832-894

2972-3055

386 (16-31)

0

0

12

48

1024-1086

3056-3139

387 (0-15)

1

0

12

50

1088-1150

3140-3223

387 (0-15)

0

0

14

56

512-574

3224-3307

387 (16-31)

1

0

14

58

576-638

3308-3391

387 (16-31)

GTIC1 10

11

12

13

14

15

16

17

Table 18

Slot

ET indexes in new delivery Flexi BSC cartridges when HW redundancy is in use (Cont.)

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

0

0

64-126

2048-2131

640 (0-3)

1

0

0

2

192-254

2132-2215

640 (0-3)

0

0

2

8

320-382

2216-2299

640 (16-19)

1

0

2

10

448-510

2300-2383

640 (16-19)

0

0

4

16

1088-1150

2384-2467

641 (0-3)

1

0

4

18

1216-1278

2468-2551

641 (0-3)

GTIC 0 01

02

03

Table 19

36

ET indexes in upgraded Flexi BSC cartridges when HW redundancy is in use

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

04

0

0

6

24

1408-1470

2552-2635

641 (16-19)

1

0

6

26

1472-1534

2636-2719

641 (16-19)

0

0

9

36

1344-1406

2720-2803

642 (0-3)

1

0

9

38

1600-1662

2804-2887

642 (0-3)

0

0

11

44

1664-1726

2888-2971

642 (16-19)

1

0

11

46

1728-1790

2972-3055

642 (16-19)

0

0

13

52

1792-1854

3056-3139

643 (0-3)

1

0

13

54

1856-1918

3140-3223

643 (0-3)

0

0

15

60

1920-1982

3224-3307

643 (16-19)

1

0

15

62

1984-2046

3308-3391

643 (16-19)

0

0

1

4

64-126

2048-2131

896 (0-3)

1

0

1

6

192-254

2132-2215

896 (0-3)

0

0

3

12

320-382

2216-2299

896 (16-19)

10

0

3

14

448-510

2300-2383

896 (16-19)

0

0

5

20

1088-1150

2384-2467

897 (0-3)

1

0

5

22

1216-1278

2468-2551

897 (0-3)

0

0

7

28

1408-1470

2552-2635

897 (16-19)

1

0

7

30

1472-1534

2636-2719

897 (16-19)

0

0

8

32

1344-1406

2720-2803

898 (0-3)

1

0

8

34

1600-1662

2804-2887

898 (0-3)

0

0

10

40

1664-1726

2888-2971

898 (16-19)

1

0

10

42

1728-1790

2972-3055

898 (16-19)

0

0

12

48

1792-1854

3056-3139

899 (0-3)

1

0

12

50

1856-1918

3140-3223

899 (0-3)

0

0

14

56

1920-1982

3224-3307

899 (16-19)

1

0

14

58

1984-2046

3308-3391

899 (16-19)

05

06

07

08

GTIC1 01

02

03

04

05

06

07

08

Table 19

DN9812243

ET indexes in upgraded Flexi BSC cartridges when HW redundancy is in use (Cont.)

Id:0900d80580820876 Confidential

37

ET indexes in BSC

BSS Integration

BSCC CPETx

CPRJ45-A

PDFU

0

PDFU

0

0

3

6

MCMU MCMU 0 1 2

0

3 FTRB 0

ETC 1

ETC 0

CLOC

GSW2KB 1

6 GSW2KB 0

1

CPGO

8

CPETx

10

OMU

0 CPETx

6 FTRB 1

CPETx BCSU 0

3

BCSU 1

BCSU 2 CPETx

0

4 BCSU 3

8 BCSU 4

1 2 3

BCSU 5

4 4

0

8 FTRB 3

0 DN0671322

Figure 5

38

CLAC 0

LANU 1

5

LANU 0

FTRB 2

2

4

GTIC 0 6

GTIC 1

CPETx

4

9 FRONT VIEW

ET cartridges in the BSCC cabinet of BSC3i 1000

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

BSCD CPETx

CPETx

PDFU

0

PDFU 6 CLAC 1

0

1

10

0

3 FTRB 0 BCSU 6

3 0

ETC 4 6

LANU 2

2

ETC 3

4 BCSU 8

ETC 5

9 FTRB 1

LANU 3

ETC 2

6 BCSU 9

BCSU 7 8 BCSU 10

4 0

4 FTRB 2

8 FTRB 3

5 0 DN0671319

Figure 6

DN9812243

3 FRONT VIEW

ET cartridges in the BSCD extension cabinet of BSC3i 2000

Id:0900d80580820876 Confidential

39

ET indexes in BSC

BSS Integration

BSCC CPETx

CPETx

PDFU 1

PDFU 0

PDFU-B

PDFU-B

0

CPGO/ CPETx

CPRJ45-A

GSW2KB-A 0

GTIC 0

ETC 0

ETC 1

CLS 0

6

ETC 3

CLS 1

0

CPETx

1 0

3

GSW2KB-A 1

GTIC 1

ETC 2

3 FTRB 0

6

9 FTRB 1

BCSU 0

6

LANU 0

4

BCSU 1

CPETx

1

2

OMU

3 0

0

CPETx

MCMU 1

0

9

MCMU 0

2

6

CPETx

8

BCSU 3

3

BCSU 5

4 4 FTRB 2

6

LANU 1

0

BCSU 2

9 FTRB 3

BCSU 4

CPETx

BCSU 6 4

5 0 DN70590321

Figure 7

40

4

6

9

FRONT VIEW

ET cartridges in the new delivery Flexi BSC

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

BSCC CPGO T0.8

CPRJ45-A T0.4

CPETx T0.0

PDFU

PDFU 0

CLOC

LANU 1

CPETx

LANU 0

6

GSW2KB GSW2KB 1 0 1

10

8

6

3

MCMU 1

OMU

0

0

MCMU 0 2

CPETx 1

0

6

3 FTRB 0

FTRB 1

0

CPETx 2

BCSU 2

BCSU 1

BCSU 0 3

CPETx 3

8

4

BCSU 5

0

BCSU 4

BCSU 3 4

8 FTRB 3

GTIC 1

4

0 FTRB 2

CLAC 0

CPETx

GTIC 0

BCSU 6

4

5 9

6

4

DN70623936

Figure 8

0 Rear view

ET cartridges in the upgraded Flexi BSC

TCSM3i for combined BSC/TCSM installation The TCSM3i for combined BSC/TCSM installation refers to a way to configure TCSM3i by equipping TCSM3i with a BSC3i or Flexi BSC. The combined BSC/TCSM consists of one BSC3i 1000/2000/upgraded or new delivery Flexi BSC cabinet (also called master BSC) and one TCSM3i cabinet. Note that when two or more TCSM3i cabinets are used the master BSC needs to be BSC3i 1000 or Flexi BSC.

DN9812243

Id:0900d80580820876 Confidential

41

ET indexes in BSC

BSS Integration

The A interface is implemented by using the STM-1/OC-3 (SDH/SONET) or IP/Ethernet (GigE) interfaces instead of the ET16 (E1/T1) interface. Furthermore, the ET16 units in BSC's and TCSM3i's Ater interface are not used in this configuration. Two duplicated hotlink cables are used between the BSC and the TCSM3i cabinet. In this application each hotlink cable carries 48 2Mbit/s PCM lines. The capacity of one STM-1 interface is 63 E1 PCMs and one OC-3 interface 84 T1 PCMs. BSC software treats STM-1/OC-3 interfaces as normal E1/T1 PCM lines. The TCSM3i for combined BSC/TCSM installation with upgraded Flexi BSC brings some modifications to the structure of the BSC3i and TCSM3i: In BSC3i, the TCSA 0 cabinet replaces BCSU 6, the TCSA 1 cabinet replaces BCSU 5, and the TCSA 2 cabinet replaces BCSU 4 in the Group Switch GSW2KB. In TCSM3i, control PCM cables for STMUs/ETIPs both in the TCSA 0 and in the TCSA 1 cabinet are moved to other locations in the GSW2KB. Control PCM cables and control PCM allocations for STMUs/ETIPs in the TCSA 2 cabinet remain the same. In the TCSM3i for combined BSC/TCSM installation, the ETIP1-A plug-in unit is connected to the BSC GSW by a hotlink and it is controlled by a separate LAPD link. The capacity of one ETIP1-A plug-in unit in the TCSM3i for combined BSC/TCSM installation environment is 126 E1 PCMs or 168 T1 PCMs. Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

0

0

32

33923454

33923475

882 (0-15)

0

1

32

33923454

33923475

882 (0-15)

1

0

32

34563518

34763559

882 (0-15)

1

1

32

34563518

34763559

882 (0-15)

0

0

34

35203582

35603643

882 (16-31)

0

1

34

35203582

35603643

882 (16-31)

0

0

36

35843646

36443727

890 (0-15)

0

1

36

35843646

36443727

890 (0-15)

1

0

36

36483710

37283811

890 (0-15)

1

1

36

36483710

37283811

890 (0-15)

GTIC 2 05

06

GTIC3 05

Table 20

42

ET indexes in TCSM3i for combined BSC/TCSM installation

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

ET numbers (ETSI)

ET numbers (ANSI)

Control PCM (TSLs)

06

0

0

38

37123774

38123895

890 (16-31)

0

1

38

37123774

38123895

890 (16-31)

ET indexes in TCSM3i for combined BSC/TCSM installation (Cont.)

TCSA 0

TCSA 1

TCSA 2

CPGO PDFU 0

PDFU 1

1 0

GTIC 2 3 FTRB 0

GTIC 3 6

TC2C 0

GTIC 4

1

9 FTRB 1

0

TC2C 1

GTIC 5 3 FTRB 0

GTIC 6 6

GTIC 7

TC2C 2

TC2C 8

6

0

TC2C 9

TC2C 4

TC2C 5 6

Figure 9 Optical interface

STMU index

6

0 FTRB 3

TC2C 10

TC2C 11

5 0

9 FTRB 1

TC2C 13

TC2C 14

6 FTRB 2

5

6

GTIC 10

TC2C 15

4 0

FTRB 3

3 FTRB 0

GTIC 9

3

TC2C 3

FTRB 2

GTIC 8

TC2C 12

6

4 0

0

TC2C 7

3

4

1

9 FTRB 1

PDFU 1

6

2 0

3

PDFU 0

0 0

TC2C 6

6

CPGO

6

2 0

STM1/OC-3 interface of ETS2

PDFU 1

0

2

Slot

PDFU 0

0

6 CLAC 1

0

CLAC 2

0

CPGO

CLAC 3

Table 20

6 FTRB 2

FTRB 3

TC2C 16

TC2C 17

5 0

6

0

6

GTIC cartridges in TCSM3i for combined BSC/TCSM installation SET number

ET numbers (ETSI)

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

TCSA 0 cabinet GTIC 2

Table 21

DN9812243

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used

Id:0900d80580820876 Confidential

43

ET indexes in BSC

BSS Integration

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number

ET numbers (ETSI)

05

0

0

32

128

0

1

32

1

0

1

06

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

3392-3454 33923475

1280-1327 / 1664-1711

1586 (0-15) / 1714 (015)

129

3392-3454 33923475

1280-1327 / 1664-1711

1586 (0-15) / 1714 (015)

32

130

3456-3518 34763559

1280-1327 / 1664-1711

1586 (0-15) / 1714 (015)

1

32

131

3456-3518 34763559

1280-1327 / 1664-1711

1586 (0-15) / 1714 (015)

0

0

34

136

3520-3582 35603643

1280-1327 / 1664-1711

1586 (1631) / 1714 (16-31)

0

1

34

137

3520-3582 35603643

1280-1327 / 1664-1711

1586 (1631) / 1714 (16-31)

0

0

36

144

3584-3646 36443727

1536-1583 / 172817775

1594 (0-15) / 1722 (015)

0

1

36

145

3584-3646 36443727

1536-1583 / 172817775

1594 (0-15) / 1722 (015)

1

0

36

146

3648-3710 37283811

1536-1583 / 172817775

1594 (0-15) / 1722 (015)

1

1

36

147

3648-3710 37283811

1536-1583 / 172817775

1594 (0-15) / 1722 (015)

0

0

38

152

3712-3774 38123895

1536-1583 / 172817775

1594 (1631) / 1722 (16-31)

0

1

38

153

3712-3774 38123895

1536-1583 / 172817775

1594 (1631) / 1722 (16-31)

GTIC 3 05

06

TCSA 1 cabinet GTIC 5

Table 21

44

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used (Cont.)

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number

ET numbers (ETSI)

05

0

0

40

160

0

1

40

1

0

1 06

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

3776-3838 38963979

768-815 / 1408-1455

882 (0-15) / 1458 (0-15)

161

3776-3838 38963979

768-815 / 1408-1455

882 (0-15) / 1458 (0-15)

40

162

3840-3902 39804063

768-815 / 1408-1455

882 (0-15) / 1458 (0-15)

1

40

163

3840-3902 39804063

768-815 / 1408-1455

882 (0-15) / 1458 (0-15)

0

0

42

168

3904-3966 40644147

768-815 / 1408-1455

882 (16-31) / 1458 (1631)

0

1

42

169

3904-3966 40644147

768-815 / 1408-1455

882 (16-31) / 1458 (1631)

0

0

44

176

3968-4030 41484231

832-879 / 1472-1519

890 (0-15) / 1466 (0-15)

0

1

44

177

3968-4030 41484231

832-879 / 1472-1519

890 (0-15) / 1466 (0-15)

1

0

44

178

4032-4094 42324315

832-879 / 1472-1519

890 (0-15) / 1466 (0-15)

1

1

44

179

4032-4094 42324315

832-879 / 1472-1519

890 (0-15) / 1466 (0-15)

GTIC 6 05

06

0

0

46

184

4096-4158

43164399

832-879 / 1472-1519

890 (16-31) / 1466 (1631)

0

1

46

185

4096-4158

43164399

832-879 / 1472-1519

890 (16-31) / 1466 (1631)

TCSA 2 cabinet GTIC 8

Table 21

DN9812243

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used (Cont.)

Id:0900d80580820876 Confidential

45

ET indexes in BSC

BSS Integration

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number

ET numbers (ETSI)

05

0

0

48

192

0

1

48

1

0

1

06

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

4160-4222 44004483

1024-1071 / 1152-1199

1202 (0-15) / 1202 (015)

193

4160-4222 44004483

1024-1071 / 1152-1199

1202 (0-15) / 1202 (015)

48

194

4224-4286 44844567

1024-1071 / 1152-1199

1202 (0-15) / 1202 (015)

1

48

195

4224-4286 44844567

1024-1071 / 1152-1199

1202 (0-15) / 1202 (015)

0

0

50

200

4288-4350 45684651

1024-1071 / 1152-1199

1202 (1631) / 1202 (16-31)

0

1

50

201

4288-4350 45684651

1024-1071 / 1152-1199

1202 (1631) / 1202 (16-31)

0

0

52

208

4352-4414 46524735

1152-1199 / 1216-1263

1210 (0-15) / 1210 (015)

0

1

52

209

4352-4414 46524735

1152-1199 / 1216-1263

1210 (0-15) / 1210 (015)

1

0

52

210

4416-4478 47364819

1152-1199 / 1216-1263

1210 (0-15) / 1210 (015)

1

1

52

211

4416-4478 47364819

1152-1199 / 1216-1263

1210 (0-15) / 1210 (015)

0

0

54

216

4480-4542 48204903

1152-1199 / 1216-1263

1210 (1631) / 1210 (16-31)

0

1

54

217

4480-4542 48204903

1152-1199 / 1216-1263

1210 (1631) / 1210 (16-31)

GTIC 9 05

06

Table 21

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used (Cont.) *) The 1st Ater PCM area and Control PCM numbers are for GSW2KB in upgraded Flexi BSC. The 2nd Ater PCM areas and Control PCMs are for GSW2KB-A in new delivery Flexi BSC.

46

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

Slot

STM1/OC-3 interface of ETS2

ET indexes in BSC

Optical interface

STMU index

SET number

ET numbers (ETSI)

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

TCSA 0 cabinet GTIC 2 05

0

0

32

128

3392-3454 33923475

1280-1327 / 1664-1711

1586 (0-15) / 1714 (015)

1

0

32

130

3456-3518 34763559

1280-1327 / 1664-1711

1586 (0-15) / 1714 (015)

06

0

0

34

136

3520-3582 35603643

1280-1327 / 1664-1711

1586 (1631) / 1714 (16-31)

07

0

0

37

148

3584-3646 36443727

1536-1583 / 172817775

1587 (0-15) / 1715 (015)

1

0

37

150

3648-3710 37283811

1536-1583 / 172817775

1587 (0-15) / 1715 (015)

0

0

39

156

3712-3774 38123895

1536-1583 / 172817775

1587 (1631) / 1715 (16-31)

0

0

36

144

3584-3646 36443727

1536-1583 / 172817775

1594 (0-15) / 1722 (015)

1

0

36

146

3648-3710 37283811

1536-1583 / 172817775

1594 (0-15) / 1722 (015)

06

0

0

38

152

3712-3774 38123895

1536-1583 / 172817775

1594 (1631) / 1722 (16-31)

07

0

0

33

132

3392-3454 33923475

1280-1327 /1664-1711

1595 (0-15) / 1723 (015)

1

0

33

134

3456-3518 34763559

1280-1327 /1664-1711

1595 (0-15) / 1723 (015)

0

0

35

140

3520-3582 35603643

1280…132 7 /1664…171 1

1595 (1631) / 1723 (16-31)

08

GTIC 3 05

08

Table 22

DN9812243

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used

Id:0900d80580820876 Confidential

47

ET indexes in BSC

Slot

STM1/OC-3 interface of ETS2

BSS Integration

Optical interface

STMU index

SET number

ET numbers (ETSI)

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

TCSA 1 cabinet GTIC 5 05

0

0

40

160

3776-3838 38963979

768-815 / 1408-1455

882 (0-15) / 1458 (0-15)

1

0

40

162

3840-3902 39804063

768-815 / 1408-1455

882 (0-15) / 1458 (0-15)

06

0

0

42

168

3904-3966 40644147

768-815 / 1408-1455

882 (16-31) / 1458 (1631)

07

0

0

45

180

3968-4030 41484231

832-879 / 1472-1519

883 (0-15) / 1459 (0-15)

1

0

45

182

4032-4094 42324315

832-879 / 1472-1519

883 (0-15) / 1459 (0-15)

0

0

47

188

4096-4158 43164399

832-879 / 1472-1519

883 (16-31) / 1459 (1631)

0

0

44

176

3968-4030 41484231

832-879 / 1472-1519

890 (0-15) / 1466 (0-15)

1

0

44

178

4032-4094 42324315

832-879 / 1472-1519

890 (0-15) / 1466 (0-15)

08

GTIC 6 05

06

0

0

46

184

4096-4158

43164399

832-879 / 1472-1519

890 (16-31) / 1466 (1631)

07

0

0

41

164

3776-3838

38963979

768-815 / 1408-1455

891 (0-15) / 1467 (0-15)

1

0

41

166

3840-3902

39804063

768-815 / 1408-1455

891 (0-15) / 1467 (0-15)

0

0

43

172

3904-3966

40644147

768-815 / 1408-1455

891 (16-31) / 1467 (1631)

08

TCSA 2 cabinet GTIC 8 05

Table 22

48

0

0

48

192

4160-4222 44004483

1024-1071 / 1152-1199

1202 (0-15) / 1202 (015)

1

0

48

194

4224-4286 44844567

1024-1071 / 1152-1199

1202 (0-15) / 1202 (015)

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used (Cont.)

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

STM1/OC-3 interface of ETS2

Optical interface

STMU index

SET number

ET numbers (ETSI)

06

0

0

50

200

07

0

0

53

1

0

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

4288-4350 45684651

1024-1071 / 1152-1199

1202 (1631) / 1202 (16-31)

212

4352-4414 46524735

1152…119 9 / 12161263

1203 (0-15) / 1203 (015)

53

214

4416-4478 47364819

1152-1199 / 1216-1263

1203 (0-15) / 1203 (015)

0

0

55

220

4480-4542 48204903

1152-1199 / 1216-1263

1203 (1631) / 1203 (16-31)

0

0

52

208

4352-4414 46524735

1152-1199 / 1216-1263

1210 (0-15) / 1210 (015)

1

0

52

210

4416-4478 47364819

1152-1199 / 1216-1263

1210 (0-15) / 1210 (015)

06

0

0

54

216

4480-4542 48204903

1152-1199 / 1216-1263

1210 (1631) / 1210 (16-31)

07

0

0

49

196

4160-4222 44004483

1024-1071 / 1152-1199

1211 (0-15) / 1211 (015)

1

0

49

198

4224-4286 44844567

1024-1071 / 1152-1199

1211 (0-15) / 1211 (015)

0

0

51

204

4288-4350 45684651

1024-1071 / 1152-1199

1211 (1631) / 1211 (16-31)

08

ET numbers (ANSI)

GTIC 9 05

08

Table 22

ET indexes (ETS2) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used (Cont.) *) The 1st Ater PCM area and Control PCM numbers are for GSW2KB in upgraded Flexi BSC. The 2nd Ater PCM areas and Control PCMs are for GSW2KB-A in new delivery Flexi BSC.

DN9812243

Id:0900d80580820876 Confidential

49

ET indexes in BSC

BSS Integration

Slot

GbE ETIP interface index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

1280-1327 / 1664-1711

1586 (0-3) / 1714 (0-3)

1280-1327 / 1664-1711

1586 (0-3) / 1714 (0-3)

TCSA 0 cabinet GTIC 2 05

0

32

64

3392-3454 33923456-3518 3475 34763559

1

32

65

3392-3454 33923456-3518 3475 34763559

06

0

34

68

3520-3582 35603643

1280-1327 / 1664-1711

1586 (1619) / 1714 (16-19)

1

34

69

3520-3582 35603643

1280-1327 / 1664-1711

1586 (1619) / 1714 (16-19)

0

36

72

3584-3646 36443648-3710 3727

1536-1583 / 172817775

1594 (0-3) / 1722 (0-3)

1536-1583 / 172817775

1594 (0-3) / 1722 (0-3)

GTIC 3 05

37283811 1

36

73

3584-3646 36443648-3710 3727 37283811

06

0

38

76

3712-3774 38123895

1536-1583 / 172817775

1594 (1619) / 1722 (16-19)

1

38

77

3712-3774 38123895

1536-1583 / 172817775

1594 (1619) / 1722 (16-19)

TCSA 1 cabinet GTIC 5

Table 23

50

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

GbE ETIP interface index

EET number

ET numbers (ETSI)

05

0

80

3776-3838 38963840-3902 3979

40

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

768-815 / 1408-1455

882 (0-3) / 1458 (0-3)

768-815 / 1408-1455

882 (0-3) / 1458 (0-3)

39804063 1

40

81

3776-3838 38963840-3902 3979 39804063

06

0

42

84

3904-3966 40644147

768-815 / 1408-1455

882 (16-19) / 1458 (1619)

1

42

85

3904-3966 40644147

768-815 / 1408-1455

882 (16-19) / 1458 (1619)

0

44

88

3968-4030 41484032-4094 4231

832-879 / 1472-1519

890 (0-3) / 1466 (0-3)

832-879 / 1472-1519

890 (0-3) / 1466 (0-3)

GTIC 6 05

42324315 1

44

89

3968-4030 41484032-4094 4231 42324315

06

0

46

92

4096-4158 43164399

832-879 / 1472-1519

890 (16-19) / 1466 (1619)

1

46

93

4096-4158 43164399

832-879 / 1472-1519

890 (16-19) / 1466 (1619)

1024-1071 / 1152-1199

1202 (0-3) / 1202 (0-3)

1024-1071 / 1152-1199

1202 (0-3) / 1202 (0-3)

TCSA 2 cabinet GTIC 8 05

0

48

96

4160-4222 44004224-4286 4483 44844567

1

48

97

4160-4222 44004224-4286 4483 44844567

Table 23

DN9812243

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used (Cont.)

Id:0900d80580820876 Confidential

51

ET indexes in BSC

BSS Integration

Slot

GbE ETIP interface index

EET number

ET numbers (ETSI)

06

0

50

100

1

50

0

52

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

4288-4350 45684651

1024-1071 / 1152-1199

1202 (1619) / 1202 (16-19)

101

4288-4350 45684651

1024-1071 / 1152-1199

1202 (1619) / 1202 (16-19)

104

4352-4414 46524416-4478 4735

1152-1199 / 1216-1263

1210 (0-3) / 1210 (0-3)

1152-1199 / 1216-1263

1210 (0-3) / 1210 (0-3)

GTIC 9 05

47364819 1

52

105

4352-4414 46524416-4478 4735 47364819

06

0

54

108

4480-4542 48204903

1152-1199 / 1216-1263

1210 (1619) / 1210 (16-19)

1

54

109

4480-4542 48204903

1152-1199 / 1216-1263

1210 (1619) / 1210 (16-19)

Table 23

Slot

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when transmission redundancy is used (Cont.)

GbE ETIP interface index

EET number

ET numbers (ETSI)

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

1280-1327 / 1664-1711

1586 (0-3) / 1714 (0-3)

TCSA 0 cabinet GTIC 2 05

0

32

64

3392-3454 33923456-3518 3475 34763559

Table 24

52

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

GbE ETIP interface index

EET number

ET numbers (ETSI)

06

0

68

07

0

34

36

72

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

3520-3582 35603584-3646 3643

1280-1327 / 1664-1711

36443727

1536-1583 / 172817775

1586 (1619) / 1714 (16-19)

3648-3710 37283712-3774 3811

1536-1583 / 172817775

1587 (0-3) / 1715 (0-3)

1280-1327 /1664-1711

1594 (0-3) / 1722 (0-3)

3520-3582 35603584-3646 3643

1280-1327 /1664-1711

36443727

1536-1583 / 172817775

1594 (1619) / 1722 (16-19)

3648-3710 37283712-3774 3811

1536-1583 / 172817775

1595 (0-3) / 1723 (0-3)

768-815 / 1408-1455

882 (0-3) / 1458 (0-3)

3904-3966 40643968-4030 4147

768-815 / 1408-1455

41484231

832-879 / 1472-1519

882 (16-19) / 1458 (1619)

4032-4094 42324096-4158 4315

832-879 / 1472-1519

38123895 GTIC 3 05

0

33

66

3392-3454 33923456-3518 3475 34763559

06

07

0

0

35

37

70

74

38123895 TCSA 1 cabinet GTIC 5 05

0

38

76

3776-3838 38963840-3902 3979 39804063

06

07

0

0

40

42

80

84

883 (0-3) / 1459 (0-3)

43164399 GTIC 6

Table 24

DN9812243

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used

Id:0900d80580820876 Confidential

53

ET indexes in BSC

BSS Integration

Slot

GbE ETIP interface index

EET number

ET numbers (ETSI)

05

0

78

3776-3838 38963840-3902 3979

39

ET numbers (ANSI)

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

768-815 / 1408-1455

890 (0-3) / 1466 (0-3)

3904-3966 40643968-4030 4147

768-815 / 1408-1455

41484231

832-879 / 1472-1519

890 (16-19) / 1466 (1619)

4032-4094 42324096-4158 4315

832-879 / 1472-1519

891 (0-3) / 1467 (0-3)

1024-1071 / 1152-1199

1202 (0-3) / 1202 (0-3)

1024-1071 / 1152-1199

1202 (1619) / 1202 (16-19)

39804063 06

07

0

0

41

43

82

86

43164399 TCSA 2 cabinet GTIC 8 05

0

44

88

4160-4222 44004224-4286 4483 44844567

06

07

0

0

46

48

92

96

4288-4350 45684352-4414 4651 46524735

1152…119 9 / 12161263

4416-4478 47364480-4542 4819

1152…119 9 / 12161263

1203 (0-3) / 1203 (0-3)

1024-1071 / 1152-1199

1210 (0-3) / 1210 (0-3)

1024-1071 / 1152-1199

1210 (1619) / 1210 (16-19)

48204903 GTIC 9 05

0

45

90

4160-4222 44004224-4286 4483 44844567

06

0

47

94

4288-4350 45684352-4414 4651 46524735

Table 24

54

1152…119 9 / 12161263

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

Slot

GbE ETIP interface index

EET number

ET numbers (ETSI)

07

0

98

4416-4478 47364480-4542 4819

49

ET numbers (ANSI)

48204903

Table 24

Ater PCMs in GSW2KB / GSW2KBA*)

Control PCM (TSLs ) in GSW2KB / GSW2KBA *)

1152…119 9 / 12161263

1211 (0-3) / 1211 (0-3)

ET indexes (ETIP) in TCSM3i for combined BSC/TCSM installation with upgraded and new delivery Flexi BSC when HW redundancy is used

BSC3i 660 BSC3i 660 can have up to two ET4C-B cartridges in basic configuration. With the 256 PCM Bit Group Switch (GSWB), the two ET4C-B cartridges have space for 62 * (2*2) Mbit ET PCM's plug-in units in ETSI or 62 * (2*1.5) Mbit ET PCM's plug-in units in ANSI (32 pcs in ET4C 0, 30 pcs in ET4C 1). This makes it possible to have a maximum of 124 ET PCMs in one BSC3i 660. See figure ET4C-B cartridges with GSWB and ET2A/ET2A-T(B)/ET2E-S/SC/ET2E-T(B)/ET2E-TC(B) indexes in BSC3i 660. With the 1024 PCM Bit Group Switch (GSW1KB), the two ET4C-B cartridges have space for 64 * (4*2) Mbit ET PCM's plug-in units in ETSI or 64 * (4*1.5) Mbit ET PCM's plug-in units in ANSI (32 pcs in ET4C 0 and 32 pcs in ET4C 1). This makes it possible to have a maximum of 256 ET PCMs in one BSC3i 660. See figure ET4C-B cartridges with GSW1KB and ET4A/ET4E/ET4E-C indexes in BSC3i 660. With the GSW1KB Bit Group Switch it is also possible to mix ET2 and ET4 plug-in units in the BSC3i 660, so that each BSC3i 660 equipped with GSW1KB can have both ET2 and ET4 plug-in units with the restriction that one ET4C-B shelf must be equipped with either ET2 plug-in units or ET4 plug-in units. See figure ET4C-B cartridges with GSW1KB and ET2A/ET2A-T(B)/ET2E-S/SC/ET2E-T(B)/ET2E-TC(B) indexes in BSC3i 660.

DN9812243

Id:0900d80580820876 Confidential

55

ET indexes in BSC

BSS Integration

ET4C 0 00 01 02 03 04 05 06 07 08 09 10 11 GSWB:

BSCC TO

CPGO

CPRJ45

12 13 14 15

32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

CPGO

GSWB GSWB 0 1

CLS 0,1

PDFU-A PDFU-A PDFU-A PDFU-A 0 0 1 2 3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 BCSU 6

GSWB:

96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127

1

2

MCMU MCMU 0 1

OMU

FTRB 0

FTRB 1

BCSU 0

BCSU 1

BCSU 2

BCSU 3

BCSU 4

BCSU 5

ET4C 1 00 01 02 03 04 05 06 07 08 09 10 11

12 13 14 15

GSWB: 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191

3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 4

FTRB 2 ET4C 0

FTRB 3

GSWB: 224 226 228 230 232 234 236 238 240 242 244 246 248 250 225 227 229 231 233 235 237 239 241 243 245 247 249 251

ET4C 1

5

FRONT VIEW Figure 10

56

ET4C-B cartridges with GSWB and ET2A/ET2A-T(B)/ET2E-S/SC/ET2ET(B)/ET2E-TC(B) indexes in BSC3i 660

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

ET4C 0

24 416 417 418 419

25 420 421 422 423

26 424 425 426 427

27 428 429 430 431

ET4x

ET4x

ET4x

ET4x

ET4x

23 412 413 414 415

28 432 433 434 435

29 436 437 438 439

30 440 441 442 443

31 444 445 446 447 ET4x

22 408 409 410 411

ET4x

21 404 405 406 407

ET4x

20 400 401 402 403

316 317 318 319

ET4x

19 396 397 398 399

312 313 314 315

ET4x

ET4x

ET4x

18 392 393 394 395

308 309 310 311

ET4x

ET4x

17 388 389 390 391

ET4x

ET4x

ET4x

16 384 385 386 387

ET4x

300 301 302 303

ET4x

296 297 298 299

ET4x

292 293 294 295

ET4x

288 289 290 291

ET4x

FTRB 1

6

284 285 286 287

ET4x

6

3 FTRB 0

280 281 282 283

ET4x

0 2 0

276 277 278 279

ET4x

OMU

MCMU 0 MCMU 1

272 273 274 275

ET4x

8

6

304 305 306 307

268 269 270 271 ET4x

3

264 265 266 267

260 261 262 263

ET4x

0

BCSU 6

256 257 258 259

ET4x

1

9

12 13 14 15

ET4x

GSW1KB GSW1KB 0 1

6

PDFU-A 3

02 03 04 05 06 07 08 09 10 11

ET4x

3

PDFU-A 2

00 01

ET4x

0 0

PDFU-A 1

CLS 0,1

PDFU-A 0

8 CPGO

4 CPRJ45

GSW1KB

T0 0 CPGO

GSW1KB

BSCC

ET4C 1

0

4

8

320 321 322 323

328 329 330 331

368 369 370 371

BCSU 3

BCSU 4

BCSU 5

0

4

22 23 24 25 26 27 28 29 30 31

452 453 454 455

456 457 458 459

460 461 462 463

464 465 466 467

468 469 470 471

472 473 474 475

476 477 478 479

480 481 482 483

484 485 486 487

488 489 490 491

492 493 494 495

496 497 498 499

500 501 502 503 ET4x

ET4x

16 17 18 19 20 21 448 449 450 451

ET4x

380 381 382 383

ET4x

ET4x

ET4x

376 377 378 379

ET4x

ET4x

372 373 374 375

ET4x

ET4x

364 365 366 367

ET4x

ET4x

360 361 362 363

ET4x

ET4x

356 357 358 359

ET4x

ET4x

352 353 354 355

ET4x

ET4x

ET4x

ET4x

ET4x

504 508 505 509 506 510 507 511 ET4x

7

348 349 350 351

ET4x

0

344 345 346 347

ET4x

5

ET4C 1 (32oET4)

340 341 342 343

ET4x

ET4C 0 (32oET4)

336 337 338 339

ET4x

6

ET4x

8 FTRB 3

332 333 334 335

ET4x

4 0

FTRB 2

324 325 326 327

ET4x

12 13 14 15

ET4x

02 03 04 05 06 07 08 09 10 11

ET4x

00 01

ET4x

BCSU 2 GSW1KB

BCSU 1

GSW1KB

3

BCSU 0

FRONT VIEW Figure 11

DN9812243

ET4C-B cartridges with GSW1KB and ET4A/ET4E/ET4E-C indexes in BSC3i 660

Id:0900d80580820876 Confidential

57

ET indexes in BSC

BSS Integration

ET4C 0

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

FTRB 1

6

ET2x

6

3 FTRB 0

ET2x

0

384 386 388 390 392 394 396 398 400 402 404 406 408 410 412 414 385 387 389 391 393 395 397 399 401 403 405 407 409 411 413 415

ET2x

OMU

22 23 24 25 26 27 28 29 30 31

ET2x

8

6

MCMU 0 MCMU 1

2 0

ET2x

16 17 18 19 20 21

ET2x

3

BCSU 6

12 13 14 15

256 258 260 262 264 266 268 270 272 274 276 278 280 282 284 286 257 259 261 263 265 267 269 271 273 275 277 279 281 283 285 287

ET2x

0

9

PDFU-A 3

02 03 04 05 06 07 08 09 10 11

ET2x

GSW1KB GSW1KB 0 1

1

6

8

ET2x

3

PDFU-A 2

ET2x

PDFU-A 1

CPGO

ET2x

CPRJ45

GSW1KB:

4

GSW1KB:

PDFU-A 0

0 0

00 01

CPGO

0

CLS 0,1

T0

ET2x

BSCC

0

4

8

320 322 324 326 328 330 332 334 336 338 340 342 344 346 348 350 321 323 325 327 329 331 333 335 337 339 341 343 345 347 349 351

BCSU 3

BCSU 4

BCSU 5

0

4

448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 449 451 453 455 457 459 461 463 465 467 469 471 473 475 477 479

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x

ET2x ET2x

7

ET2x

0

ET2x

5

12 13 14 15

22 23 24 25 26 27 28 29 30 31

ET2x

(32oET2)

ET2x

ET4C 1

(32oET2)

ET2x

ET4C 0

ET2x

16 17 18 19 20 21

ET2x

6

02 03 04 05 06 07 08 09 10 11

ET2x

8 FTRB 3

ET2x

4 0

FTRB 2

ET2x

00 01

ET2x

BCSU 2 GSW1KB:

3

BCSU 1

GSW1KB:

ET4C 1 BCSU 0

FRONT VIEW Figure 12

ET4C-B cartridges with GSW1KB and ET2A/ET2A-T(B)/ET2ES/SC/ET2E-T(B)/ET2E-TC(B) indexes in BSC3i 660

BSC2i The BSC2i can have up to seven ET5C cartridges, each having space for 16 2Mbit ET PCM's plug-in units. This makes it possible to have a maximum of 112 2Mbit ET PCMs in one BSC2i; see the following figure.

58

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

ET indexes in BSC

ET5C2

BCBE

BCEE

PSA20_0 PSFP0

GSWB0 GSWB1

ET5C0 GSWB:

PSA20_2 PSFP2

PSA20_1 PSFP1

32 34 36 38 33 35 37 39

72 74 76 78 73 75 77 79

GSWB:

88 90 92 94 89 91 93 95

PSA20_3 PSFP3

C L A C 0

C L O C 0

GSWB:

ET5C3 MCMU0 GSWB:

GSWB:

BCSU4

48 50 52 54 49 51 53 55

W D D C 0

ET5C1 GSWB:

BCSU3

MCMU1

W D D C 1

OMU

BCSU5

BCSU7

BCSU0

40 42 44 46 41 43 45 47

56 58 60 62 57 59 61 63

BCSU1

ET5C5

GSWB:

80 82 84 86 81 83 85 87

GSWB:

96 98 100 102 97 99 101 103

BCSU6

BCSU8

ET5C4 GSWB:

104 106 108 110 105 107 109 111

GSWB:

112 114 116 118 113 115 117 119

BCSU2

ET5C6

ET5C7

ET5C8

GSWB:

120 122 124 126 121 123 125 127

GSWB:

136 138 140 142 137 139 141 143

GSWB:

224 226 228 230 225 227 229 231

GSWB:

240 242 244 246 241 243 245 247

GSWB:

128 130 132 134 129 131 133 135

GSWB:

144 146 148 150 145 147 149 151

GSWB:

232 234 236 238 233 235 237 239

GSWB:

248 250 252 254 249 251 253 255

Figure 13

ET5C cartridges and ET2E/ET2A indexes in BSC2i

BSCi In BSCi (used only in the ETSI environment), there can be seven ET1C cartridges and two ET5C cartridges. Each ET1C cartridge can contain eight ET1E plug-in units and each ET5C cartridge can contain eight ET2E plug-in units, making it possible to have up to 88 2Mbit ET PCMs in one BSCi.

DN9812243

Id:0900d80580820876 Confidential

59

ET indexes in BSC

BSS Integration

Cartridge

ET1

ET1

ET1

ET1

ET1

ET1

ET1

ET1

ET1

C0

C1

C2

C3

C4

C5

C6

C0

C1

PCM Index

32

40

48

56

72

80

88

96/97

112/113

33

41

49

57

73

81

89

98/99

114/115

34

42

50

58

74

82

90

100/101

116/117

35

43

51

59

75

83

91

102/103

118/119

36

44

52

60

76

84

92

104/105

120/121

37

45

53

61

77

85

93

106/107

122/123

38

46

54

62

78

86

94

108/109

124/125

39

47

55

63

79

87

95

110/111

126/127

Table 25

ET indexes with GSWB in BSCi For an overview, see Overview of BSS integration.

60

Id:0900d80580820876 Confidential

DN9812243

BSS Integration

Creating the A interface

5 Creating the A interface In this phase the MSC, the transcoder, and the BSC are configured to enable the MSC and the BSC to communicate properly with each other. For more information on connecting a BSC to other core network elements, see Multipoint A Interface in BSC. For an overview, see Overview of BSS integration.

5.1

Connecting the A interface ET Each A interface needs its own ET. The ETs used for the A interface must be the ones that supply synchronisation to the BSC's CLS units. There are three such ETs per BSC, and their default unit numbers are shown in the table below. It is possible to use any other ET for the synchronisation by changing the position of the corresponding synchronisation cable in the ET cartridge.

BSC type

ET type

GSW type

Default synchronisation ETs

BSCi

ET1E, ET1E-C, ET2E, ET2E-C, ET2E-S/SC, ET2ET(B), ET2E-TC(B)*

GSWB

32,33,34

BSC2i

ET2E/A, ET2E-C, ET2E-S/SC, ET2ET(B), ET2A-T(B), ET2E-TC(B)*

GSWB

ET2A, ET2E-S/SC, ET2E-T(B), ET2AT(B), ET2E-TC(B)*

GSWB

ET4A, ET4E, ET4EC

GSW1KB

BSC3i 1000, BSC3i 2000

ET16

GSW2KB

512, 576, 528, 592

Flexi BSC

ET16

GSW2KB-A

368, 640, 256, 624

BSC3i

Table 26

32,40,48 (only even ETs possible)

32, 96, 160, 224 (only even ETs possible)

Default synchronisation ETs *RoHS compliant ET2A-TB, ET2E-TB and ET2E-TCB units are created to the equipment database as ET2A-T, ET2E-T and ET2E-TC. Steps 1

Check that the ET is connected (WUP). ZWUP:; If the ET is already connected, it has a controlling BCSU (Base Station Controller Signalling Unit) and process info. The controlling process can be SC7PRB A interface, ABIPRB Abis interface, SI1PRB ISDN Abis interface, or ERATES Gb interface.

DN9812243

Id:0900d805808c8007 Confidential

61

Creating the A interface

BSS Integration

Example: ZWUP:32&33&36; EXECUTION STARTED

BSC

VAPPU

PCM 32 33 36

COMP BCSU 32H BCSU 32H BCSU 32H

TOTAL OF

PROC SC7PRB 01B1H ABIPRB 01BFH ERATES 010AH

INFO_1 ETPCM 0000H ETPCM 0000H ETPCM 0000H

2004-10-18

08:39:25

INFO_2 0000H 0000H 0000H

INFO_3 0000H 0000H 0000H

ADD_INFO PAGE VIRTUAL_PCMS 1280 1281 VIRTUAL_PCMS 1288 1295

1

3 PCM CIRCUITS

COMMAND EXECUTED

2

To implement this step, choose one of the following alternatives: a

If ET is already connected Then Check that the ET is in WO state and restart the ET (USU). The state of the ET can be changed with command USC. The ET must be restarted to ensure that the correct ET software is loaded into the unit. ZUSU:ET,,C=TOT; Note that all ET's in the same plug-in unit will be restarted concurrently.

b

If ET is not connected Then Connect the ET (WUC). ZWUC:ET,:,0:IF=A:BCSU,;

Parameter

Explanation

plug-in unit type

Type of the ET: ETSI: ET1E, ET1E-C, ET2E, ET2E-C, ET2E-S, ET2E-SC, ET2E-T*, ET2E-TC*, ET4E, ET4E-C, or ET16 ANSI: ET2A, ET2A-T*, ET4A, or ET16

*RoHS compliant ET2A-TB, ET2E-TB and ET2E-TCB units are created to the equipment database as ET2A-T, ET2E-T and ET2E-TC.

62

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

Note that you have to select the line interface (T1 or E1) in ET16 with a micro switch. For more information see ET16 C109519 in Jumper Settings of the Plug-in Units in BSC3i and in TCSM3i. If the controlling BCSU is not already in WO-EX state, the state of the BCSU must be changed to WO-EX. Once the BCSU's state is WO-EX, the state of the ET can be changed to WO-EX, too.

t

When using ET2E/A, ET2E-C, ET2E-S/SC, ET2E-T(B), ET2A-T(B), or ET2E-TC(B) plug-in units, connect the even-numbered ET before the odd-numbered. When using ET4A, ET4E, ET4E-C, or ET16 plug-in units, first connect the first logical ET of the cartridge.

3

Check and change the functional modes for the ET if needed. The status of the frame alignment mode must be the same at both ends of the PCM line. For ET1E cards the frame alignment mode is set by strapping. For ET2E/A, ET2E-C, ET2E-S/SC, ET2E-T(B), ET2A-T(B), ET2E-TC(B), ET4A, ET4E, ET4E-C, or ET16 the frame alignment mode is set by MML. The frame alignment mode strapping in them is used only during the unit restart when the software cannot be loaded for some reason. Steps a

Output the functional modes of the ET2E/A, ET2E-C, ET2E-S/SC, ET2E-T(B), ET2A-T(B), ET2E-TC(B), ET4A, ET4E, ET4E-C, or ET16 (ETSI: YEI, ANSI: YEH). • •

b

ETSI: ZYEI:ET,; ANSI: This means the values of the strappings to be programmed: ZYEH:,;

Change the functional mode if needed (ETSI: YEC, ANSI: YEG). • •

ETSI: ZYEC:ET,:NORM,; ANSI: Note that the T1 functional modes have to be the same at both ends of the T1 line. ZYEG:,:,,;

Further information Next, create the transcoder devices.

5.2

Connecting the optical A interface Purpose This section describes how to configure the A interface when STM-1/OC-3 optical transmission is used. STM-1/OC-3 interface is an optical interface to SDH network that

DN9812243

Id:0900d805808c8007 Confidential

63

Creating the A interface

BSS Integration

increases the connectivity of the network element. One STM-1 (ETSI) interface can carry 63 E1 PCMs and one OC-3 (ANSI) interface 84 T1 PCMs. STM-1/OC-3 interfaces are implemented with ETS2 plug-in units, each of which can handle two interfaces. For more information, see Configuring the STM-1/OC-3 interface in STM-1/OC-3 (SDH/SONET) Interface. Steps 1

Create the cartridge, functional unit, ET groups and plug-in units for the ET groups. For detailed instructions and commands, see Creating and managing ETS2s in Creating and Managing BSC Hardware.

2

Connect the ET (WUC). ZWUC:,:,:IF=:,:; Example: ETSI: ZWUC:ET,64&&126:ETS2,0:IF=A:BCSU,1:; ZWUC:ET,192&&254:ETS2,0:IF=A:BCSU,1:; ANSI: ZWUC:ET,2048&&2131:ETS2,0:IF=A:BCSU,1:; ZWUC:ET,2132&&2215:ETS2,0:IF=A:BCSU,1:;

3

Check the ET configuration (YAI). ZYAI:,:; Example: ZYAI:SET,0:;

4

Check the functional mode of exchange terminal (YEI or YEH). The mode should be the same at both ends of the connection. Check the current PDH frame alignment mode at the remote end of the connection and compare it to the current mode at the local end. In an ETSI environment, the default value of E1 frame alignment mode is CRC4. In an ANSI environment, the default value of T1 frame alignment mode is ESF . ETSI: ZYEI:; ANSI: ZYEH:;

64

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

5

Change the functional mode, if needed (YEC or YEG). ETSI: ZYEC:,:,:; ANSI: ZYEG:,:;

5.3

Connecting the PWE interface Purpose This section describes how to connect the A interface when IP/Ethernet (GigE) transmission is used. The IP/Ethernet interfaces are implemented with ETIP plug-in units. For more information, see Creating the unit connections in ETIP/PWT User Guide. When there is no existing IP/Ethernet based Ater interface connection between BSC and TCSM3i, the user needs to configure BSC and TCSM3i locally. When you do this for the first time use one of the Ater interface master TR3E/TR3A/TR3T plug-in units, otherwise remote connections are not possible later. Steps

1

Create the cartridge, functional unit, ET groups and plug-in units for the ET groups. For detailed instructions and commands, see Creating and managing ETIPs in Creating and Managing BSC Hardware.

2

Connect the ET (WUC). ZWUC:,:,:IF=:,:; Example: ETSI: ZWUC:ET,64&&126:ETIP1_A,0:IF=A:BCSU,1:; ZWUC:ET,192&&254:ETIP1_A,0:IF=A:BCSU,1:; ANSI: ZWUC:ET,2048&&2131:ETIP1_A,0:IF=A:BCSU,1:; ZWUC:ET,2132&&2215:ETIP1_A,0:IF=A:BCSU,1:;

5.4

Creating the transcoder devices In this phase the transcoder is configured. The transcoder is needed between the MSC and the BSC for speech compression. It compresses 64 kbit speech time slots coming from the MSC to 16 or 8 kbit speech time slots going to the BSC. Decompression is carried out in the opposite direction.

DN9812243

Id:0900d805808c8007 Confidential

65

Creating the A interface

BSS Integration

Choose one of the following procedures, depending on the type of TCSM and the type of configuration used.

5.4.1

Creating the TCSM3i Purpose When the standalone TCSM3i is created into the BSC hardware database, its functional unit is TCSM and both transcoder types are controlled by the BSC via the LAPD link. The TCSM3i software is also kept in the BSC hard disks from where it can be downloaded to the TCSM3i whenever necessary. One transcoder based on TCSM3i hardware consists of one TR3E (ETSI), TR3A (ANSI), or TR3T (ETSI or ANSI) plug-in unit and either one ET16 or one ETIP plug-in unit (as Ater interface). ETP-A unit for the Packet Transport is included in the stand alone TCSM3i, also mixed with ET16 and ETIP plug-in units (as A interface). In TCSM3i, both ET16 and ETIP plug-in units are equipped only with supervised TR3E/TR3A/TR3T units. When IP/Ethernet (GigE) connections are used as Ater interfaces, Ater PCM cablings are delivered in a general optional set for ETIP used as Ater interface. The ETIP1-A plug-in unit on the Ater interface is always HW protected, so an optional set for HW protection is always used in Ater interfaces for standalone TCSM3i with IP/Ethernet (GigE) interfaces One TCSM3i can handle a maximum of four TC-PCMs on the A interface when 16 Kbit/s submultiplexing is used on Ater interface. 8 Kbit/s Ater submultiplexing is not supported by the TCSM3i. One TCSM3i cabinet can contain up to 96 transcoder units in 6 cartridges as shown in the figure below. The same principles apply in both ET16 and ETIP configurations.

66

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

slots:

ETC 2

ETC 1

ETC 0 1

2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

1

2 3 4 5 6 7 8

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

1

5 9 13 17 19 21 23

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

E T 1 6

TC2C 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

2

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

E T 1 6

T R 3 E

T R 3 E

T R 3 E

5

4

3

T R 3 E

T R 3 E

T R 3 E

T R 3 E

6

T R 3 E

T R 3 E

T R 3 E

T R 3 E

7

T R 3 E

T R 3 E

T R 3 E

E T 1 6

E T 1 6

8

TC2C 3

TC2C 2 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

9

T R 3 E

T R 3 E

T R 3 E

T R 3 E

10

T R 3 E

T R 3 E

T R 3 E

T R 3 E

11

T R 3 E

T R 3 E

T R 3 E

E T 1 6

T R 3 E

T R 3 E

T R 3 E

T R 3 E

13

12

T R 3 E

T R 3 E

T R 3 E

14

T R 3 E

T R 3 E

T R 3 E

T R 3 E

15

T R 3 E

T R 3 E

T R 3 E

E T 1 6

E T 1 6

16

TC2C 5

TC2C 4 slots:

E T 1 6

1

1

slots:

E T 1 6

3 7 11 15 18 20 22 24

2 4 6 8 10 12 14 16

TC2C 0 slots:

E T 1 6

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

17 Figure 14

T R 3 E

T R 3 E

T R 3 E

18

T R 3 E

T R 3 E

T R 3 E

19

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

E T 1 6

T R 3 E

T R 3 E

T R 3 E

T R 3 E

21

20

T R 3 E

T R 3 E

22

T R 3 E

T R 3 E

T R 3 E

23

T R 3 E

T R 3 E

T R 3 E

T R 3 E

T R 3 E

E T 1 6

E T 1 6

24

TCSM3i ET (ET16 or ETIP) units and transcoder units

For more information on TCSM3i cabinet configurations, please refer TCSM3i cabinet configuration and capacity. As shown in the following table, a certain number of TR3E/TR3A/TR3T units act as masters who supervise the ET16 plug-in units. When the master TR3E/TR3A/TR3T plug-in units are taken into use, the ET16 plug-in units are also equipped. Slot number Role when using ET16

Role when using ETIP

1

Cartridge master

Cartridge master

2

Cabinet head master (only in cartridge 2.0)

Cabinet head master (only in cartridge 2.0)

3

-

Ater ETIP master

4

-

A ETIP master

Table 27

DN9812243

TR3E/TR3A/TR3T roles

Id:0900d805808c8007 Confidential

67

Creating the A interface

BSS Integration

Slot number Role when using ET16

Role when using ETIP

5

Master

Master

7

-

Ater ETIP master

8

-

A ETIP master

9

Master*

Master*

11

-

Ater ETIP master

12

-

A ETIP master

13

Master

Master

15

-

Ater ETIP master

16

-

A ETIP master

Table 27

TR3E/TR3A/TR3T roles (Cont.)

* acts as a cartridge master when two BSCs are connected to one cartridge To ensure that the TCSM3i capacity is fully exploited, its transcoding functions can be shared between several BSCs. This is achieved by connecting two BSCs to one TCSM3i cartridge. In this kind of configuration one BSC uses the first eight TR3E/TR3A/TR3T plug-in units and the other BSC the last eight TR3E/TR3A/TR3T plug-in units. Additional ET16 plug-in units must be installed to the TCSM3i for the second BSC Ater interface to the TCSM3i cartridge. For more information on configuring ETIP plug-in unit and creating the IP/Ethernet (GigE) configuration, see ETIP/PWT User Guide. Steps 1

Create the cabinet clock cartridge (WTC). ZWTC:, coordinate of cartridge>:P1;

2

Create the TCSM3i cabinet (WTJ). ZWTJ:TCSA,1D:AL=1D1-0-4R1,PDFU=4;

3

Create the TCSM and ET cartridges (WTC). ZWTC:,:P1;

4

Create the TCSM unit (WTU). ZWTU::; Note that the indexes of the BSC site ET and the TCSM have to be the same.

5

Create the TR3E/TR3A/TR3T plug-in units (WTP). ZWTP:TCSM,:,,::GENERAL,8,,,;

68

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

6

Create the ET16 or ETIP plug-in units (WTP). ZWTP:TCSM,:,0,1; (A interface ET) ZWTP:TCSM,:,1,17; (Ater interface ET)

7

Set the number of through connected channels (WGS). ZWGS::;

8

Create transcoder PCMs (WGC). ZWGC:,:POOL=:BCSU,; The table below shows which A-interface pools support which codecs and application software. Supported codecs and software Supported A-interface pools FR, HR, EFR, AMR, 14.4D, AEC, TFO, NS, TTY

1 (FR), 3 (DR), 5 (EFR&FR), 7 (EFR&DR), 20 (EFR&DR&D144), 23 (AMR), 28 (EFR&DR&AMR&D144)

FR, HR, EFR, AMR, HSCSD, 14.4D, AEC, TFO, NS, TTY

10 (HS2), 21 (HS2&D144)

FR, HR, EFR, AMR, HSCSD, 14.4D, AEC, TFO, NS, TTY

13 (HS4), 22 (HS4&D144), 32 (EFR&DR&AMR&HS4&D144)

AMR-WB

37,38,40

Table 28 9

Possible combinations of circuit pools (TCSM3i)

Connect the TR3E/TR3A/TR3T to the BSC (WUC). This command creates the LAPD link between the BSC and the TR3E/TR3A/TR3T. A circuit group DTCSM and the circuit to it are created at the same time. ZWUC:TCSM,:,;

10

Change the state of the TCSM3i to WO-EX (USC). This command automatically changes the state of the TCSM LAPD link to WO-EX. If the TCSM3i software does not exist or is different from that in the BSC, it is downloaded in this phase.

11

Check the state of the TCSM3i LAPD link (DTF). ZDTF:TCSM,:OMU; The transcoder has less PCM types than the BSC has pools. This results in the fact that when you are checking the PCM circuits from the transcoder end, the PCM types are different than the pools in the BSC.

DN9812243

Id:0900d805808c8007 Confidential

69

Creating the A interface

12

BSS Integration

Add through connected channels (WGA). ZWGA::;

13

Output and check the through connected channels (WGO). ZWGO::; Further information For more detailed information on the commands, see Configuring the TCSM3i in Creating and Managing the BSC Hardware.

5.4.2

Creating TCSM3i for combined BSC/TCSM installation The growing capacity of the BSC results in the increased transmission capacity between the BSC and the MSC. For example, the BSC3i 2000 has a capacity of 12000 erlangs. This means the user has to configure 99/124 PCM cables between the BSC and the transcoders, translating to 396/496 A-interface PCM cables. To avoid using such a huge number of PCM cables, synchronous transmission on optical media (cable) is introduced. In the ETSI environment, synchronous transmission is standardised by Synchronous Digital Hierarchy (SDH). Interface to optical media is called STM-N, where N defines the transmission speed. In ANSI environment synchronous transmission is standardised by SONET and interface is called OC-x, where x defines the transmission speed. One STM-1 interface can handle 63 E1 PCM's capacity and one OC-3 interface can handle 84 T1 PCM's capacity. Remote BSC is connected to master BSC by using traditional PCM cable Remote BSC (A)

Master BSC cabinet

TCSM3i cabinet

MSC

ET unit PCM cable ET unit STMU

STMU Remote BSC (B) TR3E PIU

STMU

Optical transmission Remote BSC (B) is connected to master BSC by using optical cable

Figure 15

g 70

Configuration of the TCSM3i for combined BSC/TCSM installation

For the details on TCSM3i combined upgrade procedure, please refer the SW Release documentation: BSC/TCSM HW implementation for combined installation.

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

TCSM3i for combined BSC/TCSM implements same transcoding functionality and features as standalone version. It is possible to distribute TCSM3i's capacity between several BSCs. The BSC3i which is combined or installed together with the TCSM3i is called the Master BSC. A Remote BSC is located away from the TCSM3i and its Ater PCMs are connected to TCSM3i cabinet via Master BSC's E1/T1 PCM lines, optical STM-1/OC-3, or IP/Ethernet (GigE) connections. 1. Creating TCSM unit to Master BSC The Master BSC must always be a BSC3i 1000, BSC3i 2000 or Flexi BSC. 2. Sharing TCSM3i for combined BSC/TCSM transcoding capacity to remote BSC A Remote BSC can be BSC3i 1000, BSC3i 2000, Flexi BSC, or even older models. If the remote BSC does not support IP/Ethernet (GigE) or optical interfaces, ET interfaces can be used. If the BSC in a combined BSC/TCSM installation is BSC3i 1000, it is possible to install up to three TCSM3i cabinets. With Flexi BSC there can only be one TCSM3i cabinet. The procedure below contains the ETSI command examples for creating the transcoder into the Master BSC. You can find more detailed information in the document BSC3i upgrade for combined BSC/TCSM in the release binder. Steps 1

Create the CLAB. ZWTC:CLAC_B,1D1-0:; ZWTU:CLAB,2:1D1-0; ZWTP:CLAB,2:CLAB_S,0,3; ZWTU:CLAB,3:1D1-0:; ZWTP:CLAB,3:CLAB_S,1,4;

2

Create the TCSA cartridge. ZWTJ:TCSA,1D:AL=1D1-0-3R1,PDFU=2;

3

Create the STMU or ETIP. a) Create the cartridge: ZWTC:GT4C_A,1D1-3:AL=1D1-0-2S3; b) Create the functional unit: ZWTU:,32:1D1-3; c) Create the plug-in unit: ZWTP:STMU,32:ETS2,0,5:LAPD,8,882,TSL,0&&15; or ZWTP:ETIP,32:ETIP1_A,0,5:LAPD,8,882,TSL,0&&3; d) Connect the plug-in unit: ZWUC:STMU,32:ETS2,0::BCSU,0; or ZWUC:ETIP,32:ETIP1_A,0::BCSU,0; e) Change the STMU state to WO-EX with the MML command USC.

DN9812243

Id:0900d805808c8007 Confidential

71

Creating the A interface

4

BSS Integration

Create the SBMUX. ZWTU:GSW,0:1D1-3:MAS=MCMU; ZWTU:GSW,1:1D1-6:MAS=MCMU; ZWTP:GSW,0,1D1-3:SBMUX_A,0,1; ZWTP:GSW,1,1D1-6:SBMUX_A,0,1; ZWTP:GSW,0,1D1-3:SBMUX_A,1,2; ZWTP:GSW,1,1D1-6:SBMUX_A,1,2;

5

Create the TCSM unit. a) Create the cartridge: ZWTC:TC2C_A,1D2-0:AL=1D1-0-2R3; b) Create the functional unit: ZWTU:TCSM,1280:1D2-0; c) Create the TR3E plug-in unit: ZWTP:TCSM,1280,1D2-0:TR3E,0,1::GENERAL,8,1280,TSL,1; d) Create a LAPD link to the TR3E plug-in unit: ZWUC:TCSM,1280:TR3E,0:; After this link is created, this event information is sent to NetAct.

6

Create the A-interface ET units into the STMU or ETIP. a) Create the functional units: ZWTU:ET,3392&&3454:1D1-3:UNIT=STMU,IND=32:IF=0; or ZWTU:ET,3392&&3454:1D1-3:UNIT=ETIP,IND=32; Note that the ET range in ANSI is from 3392 to 3475. b) Create the plug-in units into the ET unit: ZWTP:ET,3392&&3454:,0,5:ETT00,8,3392&&3454,TSL,0; c) Connect the ET units: ZWUC:ET,3392&&3454:,0:IF=A:BCSU,0; d) Change the ET state to WO-EX with the MML command USC.

7

Create transcoder configuration. a) Set the number of through connections. ZWGS:1280:1; b) Create the TC-PCM with the MML command WGC: ZWGC:1280,1:POOL=1:BCSU,1; ZWGC:1280,2:POOL=1:BCSU,4; ZWGC:1280,3:POOL=1:BCSU,5; ZWGC:1280,4:POOL=1:BCSU,6;

t

72

The fifth TC-PCM can be used in ANSI environment. c) Create the through connections. ZWGA:1280-30:1-24;

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

d) Change TCSM3i state from SE-NH to TE-EX with the MML command USC. e) The TR3E starts downloading its software from the BSC. After successfully downloading software, run the diagnostics with the MML command UDU and change the TCSM state to WO-EX with the command USC. 8

Create circuit group. ZRCC:TYPE=CCS,NCGR=ATERTEST,CGR=1:DIR=IN,NET=NA0,SPC=200,LSI=AI NA0;

9

Add circuit to CGR. ZRCA:CGR=1:ETPCM=1280,CRCT=1-1&&-31:CCSPCM=1; ZRCA:CGR=1:ETPCM=1280,CRCT=2-1&&-31:CCSPCM=2; ZRCA:CGR=1:ETPCM=1280,CRCT=3-1&&-31:CCSPCM=3; ZRCA:CGR=1:ETPCM=1280,CRCT=4-1&&-27:CCSPCM=4;

10

Change the circuit states. ZCEC: ETPCM=1280,CRCT=1-1&&-31:BL; ZCEC: ETPCM=1280,CRCT=1-1&&-31:WO; ZCEC: ETPCM=1280,CRCT=2-1&&-31:BL; ZCEC: ETPCM=1280,CRCT=2-1&&-31:WO; ZCEC: ETPCM=1280,CRCT=3-1&&-31:BL; ZCEC: ETPCM=1280,CRCT=3-1&&-31:WO; ZCEC: ETPCM=1280,CRCT=4-1&&-27:BL; ZCEC: ETPCM=1280,CRCT=4-1&&-27:WO; Further information For detailed instructions on how to configure the remote BSC, see Configuring TCMS3i for combined BSC/TCSM installation

5.4.3

Creating the TCSM2 The TCSM2 is a functional unit of the BSC. The BSC monitors the TCSM2 by using a LAPD link which is connected from the TCSM2's Transcoder Controller (TRCO) to the BSC's Operation and Maintenance Unit (OMU). The LAPD link is allocated to the 2 Mbit/s PCM frame (ETSI) or 1.5 Mbit/s T1 frame (ANSI) that carries the TCH/CCS7 between the MSC and the BSC. It is a 16 kbit/s link using the first two bits in time slot one (for ETSI, see figure Time slot allocation for full-rate traffic on Ater 2Mbit/s interface with the TCSM2 (ETSI) and for ANSI, figure A interface time slot allocation (ANSI)). In addition to monitoring, the LAPD link is also used for configuring, alarms, remote MMI sessions, and for software downloading to the TCSM2. The TCSM2 software is kept in the BSC's hard disks and consists of three modules; software for the TRCO units, for the ET2E/A, ET2E-C, ET2E-S/SC, ET2E-T(B), ET2AT(B), or ET2E-TC(B) units, and for the TR16 (ETSI) or TR12 (ANSI) units. These software modules are downloaded to the TCSM2 when necessary, that is when there is no software in the TCSM2 or it is different from that in the BSC.

DN9812243

Id:0900d805808c8007 Confidential

73

Creating the A interface

BSS Integration

One TCSM2 rack can contain up to eight transcoder units as shown in figures TCSM2 rack and cartridges (ETSI) and TCSM2 rack and cartridges (ANSI). Each transcoder unit consists of the transcoder cartridge and one ET cartridge having up to four ET2E/A, ET2E-C, ET2E-S/SC, ET2E-T(B), ET2A-T(B), or ET2E-TC(B) plug-in units. ET indexes and tracks: (higher part) ETs 0 and 1: track 0 ETs 2 and 3: track 1 ETs 4 and 5: track 2 ETs 6 and 7: track 3

ET1TC E E E E T T T T 2 2 2 2 E E E E

ET indexes and tracks: (lower part) ETs 0 and 1: track 4 tracks: ETs 2 and 3: track 5 ETs 4 and 5: track 6 ETs 6 and 7: track 7 Coordinates of the cartridges: ET 0: nnc120-01 nn = row ET 1: nnc120-13 c = rack ET 2: nnc120-49 ET 3: nnc120-61 TC1C 0: nnc088-01 TC1C 1: nnc088-37 TC1C 2: nnc058-01 TC1C 3: nnc058-37 TC1C 4: nnc030-01 TC1C 5: nnc030-37 TC1C 6: nnc002-01 TC1C 7: nnc002-37

0

1

2

3

E E E E T T T T 2 2 2 2 E E E E

tracks:

4

5

6

TCSM2 POWER INPUT BLOCK

0

1

2

3

(TCSM2 0) (TCSM2 2)

(TCSM2 4) (TCSM2 6)

(TCSM2 1) (TCSM2 3)

(TCSM2 5) (TCSM2 7)

7

TC1C 0

TC1C 1

TCSM2 0

TCSM2 1

TC1C 2

TC1C 3

TCSM2 2

TCSM2 3

TC1C 4

TC1C 5

TCSM2 4

TCSM2 5

TC1C 6

TC1C 7

TCSM2 6

TCSM2 7

TC1C T R C O

tracks:

T R 1 6

0 1

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

T R 1 6

2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 16

74

T R 1 6

P S C 1

15

TCSM2 rack and cartridges (ETSI)

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

ET indexes and tracks: (higher part) ETs 0 and 1: ETs 2 and 3: ETs 4 and 5: ETs 6 and 7:

ET1TC

track 0 track 1 track 2 track 3

ET indexes and tracks: (lower part) ETs 0 and 1: ETs 2 and 3: ETs 4 and 5: ETs 6 and 7:

tracks:

track 4 track 5 track 6 track 7

Coordinates of the cartridges: tracks:

ET 0: nnc120-01 nn = row ET 1: nnc120-13 c = rack ET 2: nnc120-49 ET 3: nnc120-61 TC1C 0: nnc088-01 TC1C 1: nnc088-37 TC1C 2: nnc058-01 TC1C 3: nnc058-37 TC1C 4: nnc030-01 TC1C 5: nnc030-37 TC1C 6: nnc002-01 TC1C 7: nnc002-37

E T 2 A 0

E T 2 A 1

E T 2 A 4

E T 2 A 5

E T 2 A 2 E T 2 A 6

E T 2 A 3 E T 2 A 7

TCSM2 POWER INPUT BLOCK

0

1

2

3

(TCSM2 0) (TCSM2 2)

(TCSM2 4) (TCSM2 6)

(TCSM2 1) (TCSM2 3)

(TCSM2 5) (TCSM2 7)

TC1C 0

TC1C 1

TCSM2 0

TCSM2 1

TC1C 2

TC1C 3

TCSM2 2

TCSM2 3

TC1C 4

TC1C 5

TCSM2 4

TCSM2 5

TC1C 6

TC1C 7

TCSM2 6

TCSM2 7

TC1C T R C O

tracks:

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

T R 1 2

P S C 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 17

TCSM2 rack and cartridges (ANSI)

The TCSM2 rack, transcoder and ET cartridges along with the plug-in units are created to the BSC's equipment database. It is important to create the configuration and especially the transcoder ETs correctly to the BSC since they are used to define the type and the number of the A interface PCMs (in ETSI) or T1s (in ANSI). This information is used by the transcoder when it configures its PCMs/T1s during restart. The procedure consists of the following phases: • • •

Configuring the hardware for the TCSM2 (steps 1–8) Connecting the TCSM2 functional units (steps 9–14) Configuring the TCSM2 (steps 15–16)

In this procedure, parameter unit index refers to the number of the ET in the BSC. Steps 1

Create the rack for TCSM2 (WTJ). ZWTJ:TC2E,:PSFP=2,PSA=2;

Parameter

Explanation

rack or cabinet coordinate

Coordinate of the TCSM2.

DN9812243

Id:0900d805808c8007 Confidential

75

Creating the A interface

2

BSS Integration

Create a cartridge for the TC1C (WTC). ZWTC:TC1C,:P1=;

Parameter

Explanation

cartridge coordinate

Coordinate of the transcoder unit. See figure TCSM2 rack and cartridges (ETSI) or TCSM2 rack and cartridges (ANSI).

3

Create the TCSM unit (WTU). ZWTU:TCSM,:;

Parameter

Explanation

cartridge coordinate

Coordinate of the transcoder unit. See figure TCSM2 rack and cartridges (ETSI) or TCSM2 rack and cartridges (ANSI).

4

Create transcoder controller plug-in unit, TRCO (WTP). ZWTP:TCSM,:TRCO,0,0::GENERAL,2,,TSL,1;

5

Create TR16/TR12 plug-in units (WTP). Two plug-in units are needed for each A interface PCM/T1: ZWTP:TCSM,:,,;

Parameter

Explanation

piu type

ETSI: TR16, ANSI: TR12.

piu index

Index of the TR16/TR12.

track

Track of the TR16/TR12. For the right values, see figure TCSM2 rack and cartridges (ETSI) or TCSM2 rack and cartridges (ANSI).

6

Create the ET1TC cartridge (WTC). ZWTC:ET1TC,;

Parameter

Explanation

cartridge coordinate

Coordinate of the ET1TC cartridge. See figure TCSM2 rack and cartridges (ETSI) or TCSM2 rack and cartridges (ANSI).

7

Create the unit ET1TC cartridge (WTU). ZWTU:TCSM,:;

76

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

Parameter

Explanation

coordinate of cartridge

Coordinate of the ET1TC cartridge. See figure TCSM2 rack and cartridges (ETSI) or TCSM2 rack and cartridges (ANSI).

8

Create ET2E/A, ET2E-C, ET2E-S/SC, ET2E-T, ET2A-T, or ET2E-TC plug-in units (WTP). ZWTP:TCSM,,:,,;

Parameter

Explanation

unit coordinates

Coordinate of the ET1TC cartridge.

piu type

ETSI: ET2E, ET2E-C, ET2E-S/SC, ET2E-T* or ET2E-TC*. ANSI: ET2A or ET2A-T*.

piu index

Index of the ET2E/A.

track

Track of the ET2E/A. For the right values, see figure TCSM2 rack and cartridges (ETSI) or TCSM2 rack and cartridges (ANSI).

*RoHS compliant ET2A-TB, ET2E-TB and ET2E-TCB units are created to the equipment database as ET2A-T, ET2E-T and ET2E-TC. 9

Check that the A interface ETs and the connectable plug-in units of the TCSM2 are connected in the right order. They should be connected in the following order: a) A interface ET. See Connecting the A interface ET. b) At least one ET of the TCSM2. c) TRCO of the TCSM2. The ETs of the TCSM2 must be connected in ascending order starting from ET number one. The highway PCM is not connected.

g 10

To delete the TCSM2, disconnect the units in reverse order.

Set the number of through connected channels (WGS). ZWGS::;

11

Create transcoder PCMs (WGC). ZWGC:,:POOL=:BCSU,;

DN9812243

Id:0900d805808c8007 Confidential

77

Creating the A interface

BSS Integration

Parameter

Explanation

pool type.

ANSI: NU = not used. Used in the first pool if the TCSM2A-C is in use.

controlling unit index

Index of the BCSU controlling the speech circuits.

The table below shows which A-interface pools support which codecs and application software. Supported codecs and software

Supported A-interface pools

Circuit type

FR, HR, EFR, AMR, 14.4D, HSCSD, AEC, TFO, NS, TTY

1 (FR)

G

2 (HR) 3 (DR) 5 (EFR & DR) 7 (EFR & DR) 20 (EFR & DR & D144) 23 (AMR) 10 (HS2)

H

21 (HS & D144) 13 (HS4)

I

22 (HS4 & D144)

Table 29

Possible combinations of circuit pools 12

Connect the TRCO to the BSC (WUC). This command creates the LAPD link between the BSC and the TCSM2. A circuit group DTCSM and the circuit to it are created at the same time. ZWUC:TCSM,:TRCO,0;

13

Change the state of the TCSM2 to WO-EX (USC). This command automatically changes the state of the TCSM LAPD link to WO-EX. If the TCSM2 software does not exist or is different from that in the BSC, it is downloaded in this phase.

14

Check the state of the TCSM2 LAPD link (DTF). ZDTF:TCSM,:OMU; The transcoder has less PCM types than the BSC has pools. This results in the fact that when you are checking the PCM circuits from the transcoder end, the PCM types are different than the pools in the BSC. The following execution printouts illustrate this: Example: Printout from the BSC (ETSI)

ZWGO:36; EXECUTION STARTED

78

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

ET_PCM TCSM-36

Creating the A interface

36 TCSM2

TC_PCM POOL TYPE 1 21 EFR&DR&HS2&D144 2 23 AMR 3 2 HR 4 22 EFR&DR&HS4&D144 THROUGH CONNECTIONS 36 - 31 1 - 16

ET_PCM_TSLS 1 && 16 17 && 24 25 && 28 29 && 30 NR64 = 1

COMMAND EXECUTED Example: Printout from the transcoder (ETSI) ZDDX:TCSM,36:"ZRD"; TCSM_036:LUC> ZRD /* TRANSCODER PCM TYPES */ GROUP SWITCH

GSWB

PCM

TYPE

PCM-1 PCM-2 PCM-3 PCM-4 PCM-5 PCM-6 PCM-7

EFR & FR & HR & HS2 & D144 AMR HR EFR & FR & HR & HS4 & D144 NU NU NU

/* COMMAND EXECUTED */ Example: Printout from the BSC (ANSI) ZWGO:32&&35; EXECUTION STARTED ET_PCM TCSM-32

32 TCSM2

TC_PCM POOL TYPE 1 NU 2 23 AMR 3 5 EFR&FR 4 21 EFR&FR&HS2&D144 THROUGH CONNECTIONS 32 - 24 2 - 24

ET_PCM_TSLS 1 && 6 7 && 12 13 && 22 NR64 = 2

ET_PCM TCSM-33

33 TCSM2

TC_PCM POOL TYPE 1 NU 2 13 EFR&FR&HS4 THROUGH CONNECTIONS 33 - 24 2 - 16

ET_PCM_TSLS 2 && 20 NR64 = 4

ET_PCM

DN9812243

34

TC_PCM POOL

TYPE

Id:0900d805808c8007 Confidential

ET_PCM_TSLS

79

Creating the A interface

BSS Integration

TCSM-34

TCSM2

1 5 2 10 3 13 THROUGH CONNECTIONS -

ET_PCM TCSM-35

35 TCSM2

THROUGH CONNECTIONS -

EFR&FR EFR&FR&HS2 EFR&FR&HS4

1 7 19 NR64

&& 6 && 18 && 23 = 1

COMMAND EXECUTED Example: Printout from the transcoder (ANSI-C) ZDDX:TCSM,32:"ZRD"; TCSM_032:LUC> ZRD /* TRANSCODER PCM TYPES */ GROUP SWITCH

GSWB

PCM

TYPE

PCM-1 PCM-2 PCM-3 PCM-4 PCM-5 PCM-6 PCM-7

NU AMR FR & EFR & D144 EFR & FR & HR & HS2 & D144 NU NU NU

/* COMMAND EXECUTED */ 15

Add through connected channels (WGA). ZWGA::;

16

Output and check the through connected channels (WGO). ZWGO::; Further information Next, create the MTP. Limitations in Multimedia Gateway (MGW) line card IW1S1 capacity When using TDM over STM-1 (IW1S1/IW1S1-A units) for user plane traffic, the capacity may be limited. The total IW1S1 capacity in U3B & U3C is 1602 timeslots. For more information on this limitation, see the section IW1S1 and IW1S1-A with MX622 capacity limitation for user plane traffic in Routing and Digit Analysis in MGW in the Multimedia Gateway Product Documentation.

80

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

Degradation of TCSM3i capacity can be totally avoided if SDH multiplexer is used between TCSM3i and MGW. The maximum capacity of TCSM3i in combined installation can not be fully used due to the limitation of MGW line card. A maximum of 7896 channels of the TCSM3i capacity can be used in ETSI environment. An alternative to overcome the ill effects of this limitation is to leave four TR3E plug-in units in every TC2C cartridge unequipped in the TCSM3i for combined BSC/TCSM. This results in the MGW supporting the TCSM3i with a maximum of 7680 channels in an ETSI installation.

Capacity

TR3E

TC2C

TR3E 1

120

120

TR3E 2

120

240

TR3E 3

120

360

TR3E 4

80

440

TR3E 5

0

440

TR3E 6

89

529

TR3E 7

120

649

TR3E 8

120

769

TR3E 9

93

862

TR3E 10

0

862

TR3E 11

58

920

TR3E 12

120

1040

TR3E 13

120

1160

TR3E 14

120

1280

TR3E 15

0

1280

TR3E 16

0

1280

TCSM3i Capacity

Table 30

5.5

7680

TCSM3i capacity with four TR3E unequipped

Creating Ater Connection to Multimedia Gateway Multimedia Gateway (MGW) implements the same base transcoding functionality and features as TCSM. However, MGW does not support the same pool set as the BSC. Furthermore, MGW and TCSM3i do not support 8kbit/s submultiplexing on Ater interface, but TCSM2 does. There is no O&M LAPD link between BSC and MGW so BSC does not control MGW at all. This means that the user is responsible for creating identical transcoder configurations to both BSC and MGW. Since there is no LAPD link, there is no need to equip TCSM functional unit into the BSC HW database.

DN9812243

Id:0900d805808c8007 Confidential

81

Creating the A interface

BSS Integration

BSC

BSC

NSS

Nokia or other MSC

TCSM Ater 8k/16k/32k/64k

A 64k/56k

Ater 16k/32k/64k

MGW

2G TC

RAN Figure 18

CN

Ater interface with MGW

Steps 1

Set the number of through connected channels (WGS). ZWGS::;

2

Create transcoder PCMs (WGC). ZWGC: ,:POOL=:BCSU, ; Pool number

Supported codecs

SubChannel

1

FR (Full Rate)

16 kbit/s

3

DR*

16 kbit/s

5

EFR (Enhanced Full Rate) & FR

16 kbit/s

7

EFR & DR*

16 kbit/s

10

HS2 (HSCSD max 2 x FR data) & EFR & DR*

32 kbit/s

13

HS4 (HSCSD max 4 x FR data) & EFR & DR*

64 kbit/s

Table 31

82

Circuit pools and supported codecs (with SubChannel bit information) when using MGW

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

Pool number

Supported codecs

SubChannel

20

EFR & DR & D144 (14.4 kbit/s data speed)*

16 kbit/s

21

HS2 & EFR & DR & D144*

32 kbit/s

22

HS4 & EFR & DR & D144*

64 kbit/s

23

AMR (HR AMR & FR AMR)

16 kbit/s

28

EFR & DR & AMR & D144*

16 kbit/s

32

EFR & DR & AMR & HS4 & D144*

64 kbit/s

37

AMR & FR AMR-WB

16 kbit/s

Table 31

g

Circuit pools and supported codecs (with SubChannel bit information) when using MGW (Cont.)

*DR means Dual Rate, that is, both GSM-FR (FR) and GSM-HR (HR, Half Rate) codecs are defined to be supported by the pool. However, in MGW, HR is an optional feature and is supported only if the user has purchased a separate HR licence; whereas FR is always supported. For more information, see Multimedia Gateway (MGW) Functional Description in Multimedia Gateway Product Documentation. Example: Printout of transcoder configurations

ZWGO:100:; EXECUTION STARTED ET_PCM

100

TC_PCM POOL 1 5 2 5 THROUGH CONNECTIONS -

TYPE EFR&FR EFR&FR

ET_PCM_TSLS 1 && 8 9 && 16

COMMAND EXECUTED Example: Setting the number of through connections ZWGS:100:2:; EXECUTION STARTED /*** TCSM NOT EQUIPPED THIS CONFIGURATION IS POSSIBLE ONLY WHEN TRANSCODING IS PROVIDED BY SOME OTHER DEVICE ***/ CONFIRM COMMAND EXECUTION: Y/N ? Example: Creating a TC_PCM ZWGC:100,:POOL=5:BCSU,5:; EXECUTION STARTED

DN9812243

Id:0900d805808c8007 Confidential

83

Creating the A interface

BSS Integration

/*** TCSM NOT EQUIPPED THIS CONFIGURATION IS POSSIBLE ONLY WHEN TRANSCODING IS PROVIDED BY SOME OTHER DEVICE ***/ CONFIRM COMMAND EXECUTION: Y/N ? Y ET_PCM

100

TC_PCM POOL 1 5

UPDATING FILES TO DISK. WAIT

TYPE EFR&FR

ET_PCM_TSLS 1 && 8

4 SECONDS.

COMMAND EXECUTED

5.6

Creating the MTP Steps

1

Create signalling links (NCC). It is strongly recommended to have at least two signalling links in the A interface. Furthermore, the links should not be controlled by the same Base Station Controller Unit (BCSU). ZNCC::,:BCSU,:;

Parameter

Explanation

parameter set number

ETSI: value 0 is recommended. ANSI SS7: value 2 must be used.

2

Create the local signalling point code (NRP). ZNRP:,,,SEP:STAND=:;

Parameter

Explanation

ss7 standard

ETSI: ITU-T is usually used. ANSI: ANSI is recommended.

number of spc subfields

ETSI: value 1 is usually used. ANSI: value 3 is usually used.

84

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

3

Create the signalling link set (NSC). To implement this step, choose one of the following alternatives: a

Create the signalling link set for the control plane directly to the MSS. ZNSC:,,:,; The signalling link code of the signalling link must be the same as the code of the corresponding link in the MSC. You can add up to four signalling links to the signalling link set. Repeat the last three parameters for each signalling link.

b

Create the signalling link set for the Ater interface transparently via the MGW to the MSC Server. ZNSC:,,:,; The parameters signalling network and signalling point code define the network element where the signalling link set leads to.

4

Add links to the signalling link set (NSA). This step is needed only if all the links were not added to the link set in the previous step. ZNSA:,,:,;

5

Create the signalling route set (NRC). To implement this step, choose one of the following alternatives: a

Create the signalling route set for the control plane directly to the MSS. ZNRC:,,,,,:,,,0;

Parameter

Explanation

parameter set number

Value 1 is recommended.

load sharing status

D is recommended.

restriction status

R is recommended.

b

Create the signalling route set for the Ater interface transparently via the MGW to the MSC Server. Direct connections: ZNRC:,,,,,:,,,0;

DN9812243

Id:0900d805808c8007 Confidential

85

Creating the A interface

BSS Integration

STP configurations: ZNRC:,,,,,:,,0;

6

Parameter

Explanation

parameter set number

Value 0 is recommended in STP configurations, value 1 for direct connections

load sharing status

D is recommended.

restriction status

N is recommended in STP configurations, R for direct connections.

Allow activation of the signalling links (NLA). ZNLA:;

7

Allow activation of the signalling route (NVA). To implement this step, choose one of the following alternatives: a

Allow activation of the signalling route for the control plane directly to the MSS. ZNVA:,:;

b

Allow activation of the signalling route for the Ater interface transparently via the MGW to the MSC Server. ZNVA:,:,;

8

Change signalling link states (NLC). ZNLC:,ACT:;

9

Change route set state (NVC). To implement this step, choose one of the following alternatives: a

Change route set state for the control plane directly to the MSS. ZNVC:,::ACT;

b

Change route set state for the Ater interface transparently via the MGW to the MSC Server. ZNVC:,:,:ACT;

Further information Next, create the SCCP.

86

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

5.7

Creating the SCCP The parameter values shown in the table apply in each step in this procedure.

Parameter

Explanation

subsystem number

ETSI: FE, ANSI: DE.

subsystem name

ETSI: BSSAP, ANSI: RSAP.

Steps 1

Create service (NPC). ZNPC:,03,SCCP:Y:Y,208,10F;

2

Define SCCP for the BSC's own signalling point (NFD). ZNFD:,,:,,,;

Parameter

Explanation

signalling point parameter set number

ETSI: value 1 is recommended. ANSI: no recommended value.

subsystem number

ETSI: FE, ANSI: DE.

subsystem name

ETSI: BSSAP, ANSI: RSAP.

subsystem parameter set number

ETSI: value 1 is recommended. ANSI: no recommended value.

3

Define SCCP for the MSC's or MSS's signalling point (NFD). ZNFD:,,:,,; See the previous step for recommended parameter values.

4

Modify broadcast status of SCCP signalling points (OBM). ZOBM:,,::Y;

Parameter

Explanation

subsystem number

ETSI: FE, ANSI: DE.

subsystem name

ETSI: BSSAP, ANSI: RSAP.

DN9812243

Id:0900d805808c8007 Confidential

87

Creating the A interface

5

BSS Integration

Modify the local broadcast status of SCCP subsystems (OBC). ZOBC:,,::Y;

Parameter

Explanation

subsystem number

ETSI: FE, ANSI: DE.

subsystem name

ETSI: BSSAP, ANSI: RSAP.

6

Change the SCCP state at BSC side (NGC). ZNGC:,:ACT;

7

Change the SCCP state at MSC side (NGC). ZNGC:,:ACT;

8

Change subsystem state at BSC side (NHC). ZNHC:,::ACT; The value of the parameter subsystem is BSSAP in ETSI and RSAP in ANSI.

9

Change subsystem state at MSC or MSS side (NHC). ZNHC:,::ACT; The value of the parameter subsystem is BSSAP in ETSI and RSAP in ANSI. Further information Segmentation has to be used when Inter-System Handover (ISHO) is active. Parameter 14 XUDT_USED determines whether the connectionless SCCP uses the segmentation. The recommended value is YES. Parameter 15 UDT_DENIED determines whether unit data (UDT) is sent as a single extended unit data (XUDT) message. The recommended value is NO. Parameter 26 LUDT_USED determines whether all messages are sent as long unit data (LUDT) messages without segmentation. The recommended value is NO. Parameter 27 CO_SEGM_USED determines whether the connection oriented SCCP uses the segmentation. The recommended value is YES. You can modify the values of SCCP signalling point parameter set with command ZOCM. For more instructions, see section Optimising SCCP configuration in Common Channel Signalling (MTP, SCCP and TC). Next, Creating the speech channels.

88

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

5.8

Creating the speech channels Speech circuits are used to carry the actual user data through the A interface. One circuit is needed for each ongoing call. With conventional hunting the circuit is chosen by the MSC which means the MSC has to know the circuits of the BSC and their status. That is why the circuits must be identified by both the MSC and the BSC. This is accomplished by using CICcodes. A CIC code consists of the CCSPCM and the time slot of the circuit. The CIC codes must be the same at both ends. Reversed Hunting can be activated here. The following instructions apply when activating it in a new BSC. If you want to change the BSC to use Reversed Hunting instead of normal hunting, see Activating and Testing BSS10005: Reversed Hunting. For more information on Reversed Hunting, see Circuit configuration on the A interface in Half Rate, and A interface circuit allocation in Radio Channel Allocation. Note that Multipoint A Interface cannot be used if Reversed Hunting is activated.

BSC GSWB

ETPCM 32

ET 32

Multiplexed A interface

Speech circuits

Non-multiplexed A interface

Figure 19

ET 34

ETPCM 34

Multiplexed and non-multiplexed A interface with 8 kbit GSWB

Steps 1

Create a circuit group (RCC). ZRCC:TYPE=CCS,NCGR=,CGR=:DIR=,NET=,SPC=,LSI=; Note that the circuit group name must have the same name as the one created for MSC. In addition the circuit group SPC must be the same peer entity (e.g. MSC/MSS) with which the BSC is carrying 3GPP 48.008 BSSAP signalling.

Parameter

Explanation

direction

To activate Reversed Hunting: OUT. If you do not want to activate Reversed Hunting: IN.

line signalling

DN9812243

DUMMY, AINA0, AINA1, AIIN0, AIIN1, DSS01.

Id:0900d805808c8007 Confidential

89

Creating the A interface

2

BSS Integration

Add circuits to the circuit group (RCA). If more speech circuits are needed they must be added to the previously created circuit group. •



3

ETSI: In multiplexed cases: ZRCA:NCGR=:ETPCM=,CRCT=,CRCTSTEP=1:CCSPCM=:; In non-multiplexed cases: ZRCA:CGR=1:ETPCM=,CRCT=:CCSPCM=:; Note that one to six (ETSI) or one to seven (ANSI) transcoder PCMs can be used towards the MSC if the BSC is equipped with the GSWB. The amount of PCMs and TSLs depends on channel types: 8 Kbit/s (HR), 16 Kbit/s, 32 Kbit/s (HS2), 64 Kbit/s (HS4, through connected signalling channels). The same transcoder unit can have PCMs of different types, and the channels can be of a multimode type. For more information, see the figures Time slot allocation for full-rate traffic on Ater 2Mbit/s interface with the TCSM2 (ETSI) and A interface time slot allocation (ANSI). ANSI: ZRCA:NCGR=,ETPCM=,CRCT=,CIC=,CICDIR=;

Activate Reversed Hunting (optional). If you do not want to activate Reversed Hunting, go to step 4. Steps a

Create route (RRC). ZRRC:EXT:ROU=,OUTR=AINTF,STP=1,NCGR=;

g

Route is created only if Reversed Hunting is used. The route number must be the same as the circuit group number. b

Activate circuit group (CRM). ZCRM:NCGR=:WO;

c

Create circuit group for null PCM and add circuits (RCC, RCA). ZRCC:TYPE=SPE,NCGR=,CGR=:FORMAT=0,HUNTED=N; ZRCA:NCGR=,CRCT=0–0&-1;

d

Activate Reversed Hunting (WOA). ZWOA:2,643,A;

90

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

4

Change the state of the speech circuits (CEC). Immediately after creation the circuits are in NU-US state. The state must be changed to WO-EX before the circuits can be used. ZCEC:ETPCM=,CRCT=:; ZCEC:ETPCM=,CRCT=:WO;

Parameter

Explanation

state

If Reversed Hunting is used: BA. If Reversed Hunting is not used: BL.

5.9

Connecting the A over IP Interface The “A over IP” feature uses Ethernet instead of TDM and IP based transport over Ethernet is used. The user traffic (U-plane connections) and the control traffic (C-plane connections) are handled over IP, where U-plane is connected to MGW and C-plane (SIGTRAN) is to MSC server (MSS). For more details on A over IP interface, see BSS21341: A over IP. The AoIP interface between the MSS/MGW and the mcBSC is implemented according to the 3GPP standards. Together with the signaling over IP (SIGTRAN), it offers an all IP transport towards the core network. The 3GPP has standardized AoIP, including two basic alternatives •



Transcoder located in the base station system (BSS) network (PCM coded speech (G7.11) is sent over IP stack) allowing optimized transcoder resource allocation within the BSS network. Transcoder located in core network (BSS is sending coded frames, for example GSM codecs like AMR, over A interface using IP stack)

For more details on connecting the AoIP interface, see Multicontroller Site IP Connectivity Guidelines and Creating and Managing mcBSC Hardware.

5.9.1

Activating and Configuring AoIP Steps for Flexi BSC

1

Create ETPC units. For the ETPA hardware creation steps, see Creating and Managing BSC Hardware.

2

SIGTRAN Creation. For step by step instruction on creation of SIGTRAN, see section 5.10.

3

Configure the messaging interface. ZD2C:M:BCSU,0::ETPC,0,0:::; (TC in BSS) ZD2C:M:BCSU,0:ETPA,0::; (TC in MGW)

DN9812243

Id:0900d805808c8007 Confidential

91

Creating the A interface

4

BSS Integration

ETPSIG-C Interface creation for ETPA. In ETPSIG-C interface creation where, TC is in BSS there are two restrictions. First of all Master BSC does not know the GW BSCU addresses of Remote BSC. On the other hand Remote BSC does not know IP address of destination ETPC. • • • •



ETPC unit is defined as functional unit under Master BSC. The IP address is created for ETPC, but only Master BSC knows it. ETPSIG-M creation between Master BSC and ETPC unit is created like normal ETPSIG-M connection. ETPSIG-C creation between Master BSC and ETPC unit is created like normal ETPSIG-C connection, but only one connection is created. ETPSIG-C creation between Remote BSC and ETPC from Master BSC. Operator must not give D-channel information for connection that does not exist in this BSC. Operator gives the address of GW BCSU in MML create command as parameter. The IP address of ETPC is got from IP management of Master BSC. ETPSIG-C creation between Remote BSC and ETPC from Remote BSC. Operator gives the address of ETPC computer unit in MML create command as parameter. The GW BCSU unit IP address is got from IP management of Remote BSC.

In ETPSIG-C interface creation where, TC is in MGW ensure that ETPSIG-M interface exists for ETPTA unit before establishing the ETPSIG-C interface. Each BCSU has a direct connection with the ETP unit, so there can be multiple ETPSIG-C interfaces for single ETPTA unit. ZD2C:C,0:BCSU,0:ETPA,0:; ZD2C:C,0:BCSU,1:ETPA,0:; 5

Activate the feature A over IP ZW7M:FEA=:ON:; Steps for mcBSc

1

Create ETMA units. For the ETMA hardware creation steps, see Creating and Managing mcBSC Hardware.

2

SIGTRAN Creation. For step by step instruction on creation of SIGTRAN, see section 5.10.

3

Configure the messaging interface. ZD2C:M:BCXU,0:ETMA,0::;

4

ETPSIG-C Interface creation for ETMA. From each ETMA unit ETPSIG-C connections is created to all WO-EX BCXU units. ZD2C:C,0:BCXU,0:ETMA,0:;

92

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

5

Activate the feature A over IP ZW7M:FEA=:ON:;

5.10

SIGTRAN Creation Signaling transport over IP (SIGTRAN) is a standardized way to carry SS7 signaling over an Internet Protocol (IP) backbone. SIGTRAN is configured with resilience functionality like SCTP multihoming together with heartbeat mechanism. Usage of redundant routes and duplicated backbone elements provide resilience for QoSaware IP network. Signaling is assigned to high priority class for IP routers and sufficient amount of transmission capacity is ensured for this high priority class. The following are the instructions for activating Sigtran A interface without migration from MTP.

g

In mcBSc, BCXU functional unit is used instead of BCSU. Steps

1

Create logical IP address to BCSUs (QRN). Assign an IP address to each available Ethernet interface. Multihoming functionality requires IP address allocation from separate subnets in the BCSU. ZQRN:BCSU,0::EL0:10.1.3.36,L,:28:UP::; ZQRN:BCSU,0::EL1:10.1.3.52,L,:28:UP::; ZQRN:BCSU,1::EL0:10.1.3.37,L,:28:UP::; ZQRN:BCSU,1::EL1:10.1.3.53,L,:28:UP::; Note that if the BCSU already has an IP address for BSC-BSC interface, the same address can be used for A interface.

2

Define default routes (QKC or QKM). The default route is configured either static route or local IP address based default gateway MML command. 1. Static route configuration (QKC) ZQKC:BCSU,0::10.1.3.32,28: 10.1.3.33:LOG:; ZQKC:BCSU,1::10.1.3.32,28: 10.1.3.33:LOG:; ZQKC:BCSU,0::10.1.3.48,28: 10.1.3.49:LOG:; ZQKC:BCSU,1::10.1.3.48,28: 10.1.3.49:LOG:; 2. Local IP address based default gateway configuration (QKM) ZQKC:BCSU,0::” 10.1.3.36”:” 10.1.3.33”:LOG:; ZQKC:BCSU,1::” 10.1.3.37”:” 10.1.3.33”:LOG:; ZQKC:BCSU,0::” 10.1.3.52”:” 10.1.3.49”:LOG:; ZQKC:BCSU,1::” 10.1.3.53”:” 10.1.3.49”:LOG:; Note that the recommended configuration is the Static route configuration (QKC).

DN9812243

Id:0900d805808c8007 Confidential

93

Creating the A interface

3

BSS Integration

Create an association set between the BSC and the MSC (OYC). An association set is created for A interface connection to the MSC. The BSC is created as a client and the association set is renamed to AMSC1. The client setting means that the BSC starts negotiation for association and the MSC is waiting for the negotiation. ZOYC:AMSC1:C::;

4

Add associations to the AMSC1 association set (OYA). Associations are created to the association set AMSC1. The controlling units of the association are WO-EX BCSU-0 and BCSU-1. The name of the parameter set is SS7. ZOYA:AMSC1:BCSU,0:SS7:; ZOYA:AMSC1:BCSU,1:SS7:;

5

Add SCTP transport addresses to the associations (OYP). Add source and destinations' IP addresses to the primary and secondary IP paths. ZOYP:M3UA:AMSC1,0:"10.1.3.36","10.1.3.52",:"10.16.143.71",26,"10.16.143.135",26,:; ZOYP:M3UA:AMSC1,1:"10.1.3.37","10.1.3.53",:"10.16.143.72",26,"10.16.143.136",26,:;

6

Activate the associations (OYS). Set the associations' state to ACT. ZOYS:M3UA:AMSC1,0:ACT:; ZOYS:M3UA:AMSC1,1:ACT:;

7

Create local signalling point. ZNRP:NA0,1326,LOCAL,:,::;

8

Create the IP signalling link set (NSP). The signalling link set is created to the NA0 network. The destination (MSCI) signalling point code is 201 and link id is 91. ZNSP:NA0,201,AMSC1:91:AMSC1:;

9

Create the signalling route set (NRC). Associations are created to the association set AMSC1. The controlling units of the association are WO-EX BCSU-0 and BCSU-1. The name of the parameter set is SS7. ZNRC:NA0,201,AMSC1,6,,:,,,7::::;

10

Allow the activation of the signalling link 91 (NLA). ZNLA:91:;

94

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Creating the A interface

11

Allow the activation of the signalling route (NVA). ZNVA:NA0,201:;

12

Activate the signalling link 91 (NLC). ZNLC:91,ACT:;

13

Activate the signalling route (NVC). ZNVC:NA0,201:,:ACT:;

14

Create SCCP service (NPC). ZNPC:NA0,3,SCCP:Y:Y,,,,:;

15

Add SCCP and the BSSAP subsystems (FE) to the BSC and the MSC signalling points (NFD). ZNFD:NA0,1326,1:FE,BSSAP,1,:; ZNFD:NA0,201,1:FE,,1,:;

16

Set the broadcast status of the Signalling Points (SPs) (OBM). ZOBM:NA0,1326,FE:NA0,201:Y:; ZOBM:NA0,1326,01:NA0,201:Y:;

17

Set the local broadcast status of SCCP subsystem (OBC). ZOBC:NA0,201,FE:NA0,FE:Y:; ZOBC:NA0,201,01:NA0,FE:Y:;

18

Change value of SCCP fault tolerant timer (OCM). Change SSP_FILTER_TIMER (11 seconds) and Q714_T_STAT_1ST (5 seconds) parameter values together with those filter transport breaks lasting maximum 6 seconds (the formula for masking the breaks is ‘transport break’ + Q714_T_STAT_1ST < SSP_FILTER_TIMER). ZOCM:1:25,110; ZOCM:1:8:50;

19

Activate the SCCP (NGC). ZNGC:NA0,201:ACT:;

20

Activate the BSC subsystems (NHC). ZNHC:NA0,1326:FE:ACT:;

DN9812243

Id:0900d805808c8007 Confidential

95

Creating the A interface

21

BSS Integration

Activate the MSC subsystems (NHC). ZNHC:NA0,201:FE:ACT:;

96

Id:0900d805808c8007 Confidential

DN9812243

BSS Integration

Synchronising the A interface

6 Synchronising the A interface For an overview, see Overview of BSS integration. Before you start The A and Ater interface transport has been connected into operation between the core Network and the BSC. In the BSC the user has to select the ETs that will be used as synchronisation inputs and install the synchronisation cables between the selected ETs and the clock unit. Normally three ETs are used for synchronisation. The synchronisation input with the highest priority (2M1) should be in the state CONNECTED and in use (USED INPUT). The other inputs (2M2 and 2M3) should be in the state CONNECTED. Steps 1

Check the state of the synchronisation (DRI). ZDRI; Expected outcome Normally, it gives the following output: CL1TG:

INPUT STATE USED INPUT PRIORITY ----- --------------- ---------- ---------2M1 CONNECTED 2M1 7 2M2 CONNECTED 6 2M3 CONNECTED 5 SYNCHRONISATION UNIT WORKING MODE ......... HIERARCHIC SYNCHRONISATION FUNCTION AUTOMATIC RETURN FROM PLESIOCHRONOUS OPERATION .......... ON SYNCHRONISATION UNIT 0 OSCILLATOR CONTROL WORD VALUE ....... 31896 FUNCTION AUTOMATIC USE OF REPAIRED INPUTS ........................ ON SYNCHRONISATION UNIT 1 OSCILLATOR CONTROL WORD VALUE ....... 31635 SYNCHRONISATION UNIT 0 OSCILLATOR CONTROL MODE ............. NORMAL SYNCHRONISATION UNIT 1 OSCILLATOR CONTROL MODE ............. NORMAL TIMER: SYNCHRONISATION SIGNAL MALFUNCTION TOLERANCE TIME ... 5 MIN TIMER: REPAIRED SYNCHRONISATION INPUT OBSERVATION TIME ..... 10 MIN COMMAND EXECUTED 2

Create or delete synchronisation inputs if necessary (DRC, DRD). ZDRC:; ZDRD:;

Parameter

Explanation

synchronization input

2M1, 2M2, 2M3

The number of possible synchronisation inputs depends on how many transport lines are connected between the core network and the BSC. The maximum number of A/Ater lines that can be used as synchronisation lines is 3 if CL1TG is used.

DN9812243

Id:0900d805808d74b2 Confidential

97

Synchronising the A interface

3

BSS Integration

Change the supervision timers for the inputs if necessary (DRS). Use the DRS command.

4

Check if there are any faults. The following steps include typical faults and instructions on how to correct them. Steps a

To implement this step, choose one of the following alternatives: 1

If The synchronisation units are not in synchronous operation mode. Then Force the synchronisation units to use a specific input (DRS). ZDRS::U=;

2

If The CL1TG will search the entire control range in order to lock the units to a certain input. Then Wait for the alarm to be cancelled (which may take a couple of minutes) and remove the forced use of input (DRS). ZDRS::U=OFF;

3

If Operation mode is not hierarchical. Then Check that the operation mode has been set to hierarchical (DRM). ZDRM:H;

4

If The settings of the ETs are not correct. Then Check the settings of the ETs. The TCL signal should be 8 kHz. In ET1E it is selected by strapping, but in other ET variants it is 8kHz permanently.

5

If The control words of both CL1TGs approach the values 0 to 65534. Then Check the connection. It is possible that the incoming circuit is connected to a loop.

5

Change the synchronisation inputs. Steps a

Disconnect the incoming signal from the first input. Expected outcome This will cause normal circuit alarms. After a time delay of more than the timer: SYNCHRONISATION SIGNAL MALFUNCTION TOLERANCE TIME allows, both syn-

98

Id:0900d805808d74b2 Confidential

DN9812243

BSS Integration

Synchronising the A interface

chronisation units will change to the second input. This can be seen in the LEDs of the CL1TG plug-in units and on the alarm printer: 2641 FAILURE IN SYNCHRONISATION SIGNAL 0630 SYNCHRONISATION SIGNAL CHANGED b

Disconnect the incoming signal from the second output. Expected outcome The results should be similar to the earlier ones.

6

Go to plesiochronous mode of operation. Disconnect the incoming signal from the third input (the last synchronisation input has been disconnected) in CL1TG. Expected outcome The synchronisation units will go to PLESIOCHRONOUS OPERATION mode. All synchronisation input indicators in the active CL1TG unit will extinguish, only the current indicator light is on. All 3/4 input indicators in the passive CL1TG unit are lit, but not the current indicator light. The alarm printer will print out the following: 2641 FAILURE IN SYNCHRONISATION SIGNAL 2631 OPERATION MODE CHANGED TO PLESIOCHRONOUS

7

Return to synchronous mode of operation. Return the circuits to their normal state one by one starting from the circuit with the lowest priority. Expected outcome The synchronisation units will synchronise themselves to the input 2M3/2M4 after a time delay of more than the timer REPAIRED SYNCHRONISATION INPUT OBSERVATION TIME. On the alarm printer the following alarms will be cancelled: 2641 FAILURE IN SYNCHRONISATION SIGNAL 2631 OPERATION MODE CHANGED TO PLESIOCHRONOUS

8

Check possible slips in the synchronous mode of operation (YMO). ZYMO:ET,:SLI; The observation begins daily at 00.00 and should normally show no slips.

9

Check oscillator adjustments. The CL1TG has no adjustments in the synchronous mode of operation.

6.1

Enabling the Connectivity for Packet Synchronisation Packet Timing and Synchronisation Unit (PTUM on mcBSC, and PTU on mcTC) based on BSAC-A module implements Ethernet Packet synchronisation IEEE1588v2 Precision Time Protocol (PTP) and Synchronous Ethernet (SyncE) for physical layer synchro-

DN9812243

Id:0900d805808d74b2 Confidential

99

Synchronising the A interface

BSS Integration

nisation. In mcBSC and mcTC, the unit operates in client (slave) mode. Combined IEEE1588v2 PTP modes with SyncE is also supported. The synchronisation Plug-in unit (PTUM) in Standalone mcBSC uses the following synchronisation sources: • • • •

2.048 / 1.544 MHz according to G703 PCM (E1 / T1) Ethernet according to IEEE 1588v2 Synchronous Ethernet for optical connections

Following external interface connections are supported by PTUM: • •

2 x RJ-45 for E1/T1/JT1 (framed/plain) clock based synchronisation 2 x SFP (Optical and Copper) for Timing over Packet and Synchronous Ethernet based synchronisation

The synchronisation Plug-in unit in mcTC (PTU) uses the following synchronisation sources: • •

Ethernet according to IEEE 1588v2 Synchronous Ethernet for optical connections

Following external interface connections are supported by PTU: •

2 x SFP (Optical and Copper) for Timing over Packet and Synchronous Ethernet based synchronisation

Steps 1

To set the role of PTUM (DYA). ZDYA:PTUM,0:I,C:LP=,RP=:;

2

To interrogate the role of PTUM (DYB). ZDYB:PTUM,0:I,C:LP=,RP=:;

3

To delete the role of PTUM (DYD).. ZDYD:PTUM,0:;

4

To modify the parameters of synchronization (DYM). ZDYM::PTUM,1:SFP,1:PRI=3;

5

To interrogate synchronization system information (DYI). ZDYI:REF;

6

To set system clock forced reference (DYS). ZDYS:MCBC,0:EXT,1:REL;

100

Id:0900d805808d74b2 Confidential

DN9812243

BSS Integration

Synchronising the A interface

7

To modify parameter of outgoing synchronization clock (DYR). ZDYR:PTUM,0:EXT,1:ACT=ENA,CLK=E1;

8

To display the information of outgoing synchronization clock (DYO). ZDYO;

DN9812243

Id:0900d805808d74b2 Confidential

101

Adding DN2, SSS, DMR and BBM to the service channel

BSS Integration

7 Adding DN2, SSS, DMR and BBM to the service channel The connection between the BSC and the managed equipment is established either through a BSC-BTS O & M link or a Q1 service channel. The possible equipment types at a Base Transceiver Station (BTS) site include Base Station Interface Equipment (BIE), Transmission Unit (TRU), Digital Microwave Radio Link (DMR), and other transmission equipment (TRE). All equipment with the same alarm unit type must have a unique index in the BSC concerned. All equipment in the same channel must have a unique address. DN2

The Q1 service channel comes in TSL31 bits 7-8 to the 2M port of the DN2 interface unit (IU2). The Q1 service channel is forwarded through an extra loop connection to the Control Unit (CU); either one port of the IU2 is connected to the 2M interface of the CU or two IU2 ports are connected together with a local cable. The supported baud rates of the service channel are 1200, 2400 and 4800.

SSS

The Supervisory Substation is located in the same rack with other transmission equipment, normally with the DN2. The Q1 service channel is forwarded to the SSS with a local cable.

DMR

The Digital Microwave Radio link cannot pick the Q1 service channel from a time slot. The Q1 service channel is forwarded to the DMR with a local cable from another source, normally DN2. The supported baud rates of the service channel are 1200, 2400, 4800, and 9600.

BBM

The Baseband Modem cannot pick the Q1 service channel from a time slot. The Q1 service channel is forwarded to the BBM through an Integrated Line Terminal (ILT) plug-in unit from the DN2.

TRE

Other types of transmission equipment, for example optical line equipment, are handled in the BSC with the common name Transmission Equipment (TRE). X.25/ LAN

Local Q1 bus

NetAct

MMI SYSTEM MML

Q1 ch

DN2

S S S

D M R

T R E

ILT BBM

TRE

Figure 20

Q1 ch

Transmission equipment at Q1 service channel

For an overview, see Overview of BSS integration.

102

Id:0900d805805cedeb Confidential

DN9812243

BSS Integration

Adding DN2, SSS, DMR and BBM to the service channel

Steps 1

Create the service channel (QWC). ZQWC:, [S | P def]:,,:,; If you want to utilise Q1 bus protection in BSC, you must create secondary channels for all the primary Q1 channels that are to be protected.

2

Add equipment to the service channel (QWA). ZQWA:CH=:DN2=:; ZQWA:CH=:BBM=:; ZQWA:CH=:DMR=:; ZQWA:CH=:SSS=:; ZQWA:CH=:TRE=:; Addresses have to be set locally to the equipment with a hand-held service terminal.

3

Change the state of the service channel (QWS). ZQWS::AL;

DN9812243

Id:0900d805805cedeb Confidential

103

Creating the Abis interface

BSS Integration

8 Creating the Abis interface For an overview, see Overview of BSS integration. In this phase, the ET is connected to the Abis interface to connect the base stations to the BSC (see the figure below). Abis interface

BSC BTS OMUSIG

ET

Figure 21

TRU

O M U

TRX 1

TRXSIG1 + 8 TCHs

TRX 2

TRXSIG2 + 8 TCHs

TRX 3

TRXSIG3 + 8 TCHs

Abis interface

Steps 1

Check that the ET is connected (WUP). The ET must be connected before it can be used. For how to check if the ET is already connected, see Connecting the A interface ET. Check that the ET is connected with the WUP command.

2

To implement this step, choose one of the following alternatives: a

If ET is already connected Then Check that the ET is in WO state and restart the ET (USU). The state of the ET can be changed with command USC. The ET must be restarted to ensure that the correct ET software is loaded into the unit. ZUSU:ET,,C=TOT;

b

If ET is not connected Then Connect the ET (WUC). ZWUC:ET,:,0:IF=ABIS:BCSU,;

104

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

Parameter

Explanation

plug-in unit type

Type of the ET: ETSI: ET1E, ET1E-C, ET2E, ET2E-C, ET2E-S, ET2ESC, ET2E-T*, ET2E-TC*, ET4E, ET4E-C, ET16, ETS2 or ETIP1_A ANSI: ET2A, ET2A-T*, ET4A, ET16, ETS2 or ETIP1_A.

*RoHS compliant ET2A-TB, ET2E-TB and ET2E-TCB units are created to the equipment database as ET2A-T , ET2E-T and ET2E-TC. Steps

3

a

Change the state of the BCSU to WO-EX.

b

Change the state of the ET to WO-EX.

Check and change the frame alignment mode (ETSI)/T1 functional mode (ANSI) for ET if needed. For more information about configuring the frame alignment mode/T1 functional mode, see Connecting the A interface ET.

8.1

Creating Packet Abis over IP/Ethernet interface The Packet Abis over IP/Ethernet enables bandwidth optimized connectivity to packet switched networks. Bandwidth savings are achieved through the removal of silence and idle frames, multiplexing and bandwidth sharing for circuit and packet switched user. The Packet Abis user plane is transported over UDP/IP and the control plane and management plane is transported over SCTP/IP. The physical interface supported is Ethernet. Activating and Configuring the Packet Abis over IP/Ethernet interface for Flexi BSC Prerequisites • To operate the feature, the license for the feature BSS21454: “Packet Abis over Ethernet” must be installed. • The IUA license must be installed. This is in order to be able to create the association set to OMUSIG and TRXSIG. The license code is 899. • IPv4 addresses and subnets are planned. • S15 level CPULAN and PCULAN configuration with L3 connectivity • The ETP plug-in unit is available and commissioned. Refer Creating and Managing BSC Hardware for details. • The PCU is available and configured to use Packet Abis. For details refer Activating and Testing BSS09006: GPRS. • Configure ESB24-D LAN device (using commands ZWT, ZUS, ZWY, ZW6 and ZYF). Three new LAN topologies, T8,T9 and T10 are introduced. • Flexi EDGE BTS with SW EX 4.0 or Flexi Multiradio BTS with SW EX4.1. The FIYA/ FIQA/ FIYB/ FIQB module required by BTS is available.

DN9812243

Id:0900d805808c82ab Confidential

105

Creating the Abis interface

1

BSS Integration

Check the license state of the features with the command W7I For Packet Abis over Ethernet: ZW7I:FEA,FULL:FEA=1533; For IUA: ZW7I:FEA,FULL:FEA=899;

2

If the license is not active, enter the following command to activate the license ZW7M:FEA=:ON;

3

Creating ETPSIG interface 1

Configure etpsig IP endpoints to the BCSUs In the BCSUs the etpsigs are terminated to the EL0 and El1 interfaces. The same IP endpoint is used for both etpsig-m and etpsig-c. ZQRA:BCSU,0::EL0::UP:; ZQRA:BCSU,0::EL1::UP:; ZQRA:BCSU,0::EL0,EL1:"10.0.1.1",26,L,ICM::;

2

Configure etpsig IP endpoints to the ETPEs Create the ETP network interfaces (IL0 and IL1) and bond them together. ETPE has to be in SE-NH state. ZQRA:UNIT IDENTIFICATION:PIU IDENTIFICATION:INTERFACE NAME:MAXIMUM TRANSMISSION UNIT:INTERFACE ADMINISTRATIVE STATE:; ZQRA:ETPE,0,0::IL0::UP; ZQRA:ETPE,0,0::IL1::UP; ZQRA:ETPE,0,0::BOND0,IL0,IL1,::UP:;

3

Configure ETPSIG IP addresses to the BOND created ETPSIG-M address type is Physical and the address attributes are Internal, Dynamic and Management. Dynamic means that ETPE gets the address from the OMU DHCP server during ETPE restart. If the ETPE is duplicated (equipment protection) both units of the pair need an etpsig-m address of it’s own. ZQRN:ETPE,0,0::BOND0:"10.0.1.14",26,P,IDM:; ETPSIG-C address type is Logical and the attributes are Internal, Control and Virtual. If the ETPE is duplicated (equipment protection) both units of the pair are using the same etpsig-c address. ZQRN:ETPE,0,0::BOND0:"10.0.1.30",26,L,ICV::;

4

Creating IUA messaging configuration The ETPE and BCSU IP end points that are configured are linked together. Select a GW BCSU for ETPE and create the etpsig-m: ZD2C:M::BCSU,0:ETPE,0,0::;

106

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

Create the etpsig-c with ZD2C between the ETPE and every BCSU, example: ZD2C:C,NOR::BCSU,0:ETPE,0,0::; ZD2C:C,NOR::BCSU,1:ETPE,0,0::; 5

Bring up ETPE to working state using the following commands ZUSC:ETPE,0,0:SE; ZUSC:ETPE,0,0:TE; ZUSC:ETPE,0,0:WO;

4

Configure IN0 interface IN0 is ETPE internal interface that connects the ETPE’s Octeon processor to the DSPs. This interface is needed for the ETPE - GSWB connctivity. To create the IN0 a subnet of size /24 has to be planned. The same subnet can be used for all the ETPE units of the BSC. Examples: ZQRA:ETPE,2,0::IN0::UP; ZQRN:ETPE,2,0::IN0,:"10.10.10.1",24,P,I:; Upon giving the first address of the subnet to be a base address, Octeon calculates and applies DSP core addresses as offset of this base address e.g. in the above example the base address 10.10.10.1 is given to the Octeon IN0 and octeon assigns IP addresses 10.10.10.11-10.10.10.16, 10.10.10.21-26,... 10.10.10.81-10.10.10.86 to the DSP cores.

5

Configure IM0 interface IM0 has to be configured if equipment protection is used. IM0 is an interface between the pair of ETPEs. Examples: ZQRA:ETPE,2,0::IM0::UP; ZQRN:ETPE,2,0::IM0,:"10.0.0.32",27,P,I:; ZQRA:ETPE,2,1::IM0::UP; ZQRN:ETPE,2,1::IM0,:"10.0.0.33",27,P,I:;

6

Creating PEP interface 1

Configure PEP link interface to the PCUs that have been selected for packet Abis use. Configure VLAN, IP address and add the PEP tag ZQRA:BCSU,2:PCU2E:12:VLAN220,22,IFETH0,:::; ZQRN:BCSU,2:PCU2E:12:VLAN220,:"10.0.2.1",24,L,I::; ZQRP:BCSU,2:PCU2E:12:VLAN220,:"10.0.2.1":TAG,"PEP":; This step is relevant only for PCU2-E. PCU2-E connects to the ETPE via the BSC internal LAN. PCU2-D connects to the ETPE with hdlc type of PEP-links via the GSWB so PCU2-D does not need an Abis IP addresses. Configure PEP link interface to the PCU2-Es that have been selected for packet Abis use. Configure VLAN,

DN9812243

Id:0900d805808c82ab Confidential

107

Creating the Abis interface

BSS Integration

IP address and add the PEP tag. The PEP VLAN is configured only to the IFETH0 of the PCU2-E. The PCU2-E adds the PEP VLAN automatically also to the IFETH1, although it’s not seen with the QRI MML command. 2

Configure PEP link interface to the ETPE BOND0. Configure VLAN, IP address and add the PEP tag ZQRA:ETPE,0,0::VLAN22,22,BOND0,; ZQRN:ETPE,0,0::VLAN22,:"10.0.2.1",24,L,I::; ZQRP:ETPE,0,0::VLAN22:"10.0.2.1":TAG,"PEP":;

3

Create ETP-PCU connection (PEP) link with command ZESK ZESK:ETP TYPE,ETP GROUP ID:UNIT TYPE,UNIT INDEX:PLUG-IN UNIT TYPE,PLUG-IN UNIT INDEX; ZESK:ETPE,4:BCSU,2:PCU,3;

7

Creating EEP interface 1

Configure EEP link IP endpoints to the ETPAs Configure EEP link interface to the ETPA BOND0. Configure VLAN, IP address and add the EEP tag. Example: ZQRA:ETPA,0::VLAN210,21,BOND0,::; ZQRN:ETPA,0::VLAN210,:"10.0.1.65",26,L,VI:; ZQRP:ETPE,0::VLAN210,:"10.0.1.65":TAG,"EEP":; Repeat this step with different IPv4 address for every ETPA.

2

Configure EEP link IP endpoints to the ETPEs Configure EEP link interface to the ETPE BOND0. Configure VLAN, IP address and add the EEP tag. Example: ZQRA:ETPE,0,0::VLAN210,21,BOND0,::; ZQRN:ETPE,0,0::VLAN210,:"10.0.1.66",26,L,VI:; ZQRP:ETPE,0,0::VLAN210,:"10.0.1.66":TAG,"EEP":; Repeat this step with different IPv4 address for every active ETPE.

3

Creatre ETPA-ETPE (EEP) connection Before creating the EEP link, the subnet of the BCFs that will be served by the ETPE must be noted. System creates the EEP link automatically when user creates the IP route connecting the ETPA to the BCF subnet. Example: ZQKC:ETPA,2::"x.x.x.x",yy:"10.0.1.65":PHY:; where x.x.x.x is the BCF subnet and yy is the BCF subnet mask.

108

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

8

Configure OMUSIG and TRXSIG IP endpoints to the BCSUs 1

Configure VLANs and IP addresses to every active BCSU: examples: ZQRA:BCSU,2::EL0::UP; Create EL0 and EL1 if already not existing ZQRA:BCSU,2::EL0::UP; ZQRA:BCSU,2::VLAN410,41,EL0,:; ZQRA:BCSU,2::VLAN411,41,EL1,:; ZQRA:BCSU,2::VLAN420,42,EL0,:; ZQRA:BCSU,2::VLAN421,42,EL1,:; ZQRA:BCSU,2::VLAN410,VLAN411:"a.b.c.70",28,L,::; (OMUSIG) ZQRA:BCSU,2::VLAN420,VLAN421:"a.b.c.86",28,L,::; (TRXSIG)

2

Create static route using the command ZQKC ZQKC:UNIT IDENTIFICATION:PIU IDENTIFICATION:DESTINATION IP ADDRESS, NETMASK:GATEWAY IP ADDRESS:ROUTE TYPE;

3

Create SCTP associations with OYX command for OMUSIG & TRXSIG ZOYX:::::; Transport protocol of OMUSIG and TRXSIG is SCTP. There are three default sctp parameter sets available: AFAST, AMEDI and ASATEL. AFAST corresponds to Packet abis over Ethernet. Example: ZOYX:TEST:IUA:S:BCSU,0:AFAST:4:;

4

Set IP address to the association with OYP command ZOYP:::,:,; Example: ZOYP:IUA:KUDO:"10.125.113.99",,49180:"10.125.117.21",24,,,49 180:;

g

The source IP address is OMUSIG or TRXSIG end point of the BCSU. The destination IP address is the BCF M-plane address (for OMUSIG) or C/U-plane address (for TRXSIG). The BCF’s SCF parameter minSctpPort defines the SCTP port used for the OMUSIG. The SCTP ports for TRXSIG are in following order: TRXSIG1 minSctpPort+1, TRXSIG2 minSctpPort+2, TRXSIG3 minSctpPort+3 and so on. The BCF Source and destination ports are the same. Refet toTable 7 Transport protocol and UDP port for Packet Abis in BSC for SCTP port number allocation. 5

Configure OMUSIG and TRXSIG DIffServ As default the OMUSIG and TRXSIG packet have DSCP value 0 meaning Best Effort. Based on Quality of Service policy the DSCP values may have to be changed.

DN9812243

Id:0900d805808c82ab Confidential

109

Creating the Abis interface

BSS Integration

The change is done with the CONFIGURE PORT-BASED CLASSIFICATION AND MARKING command Q8N. ZQ8N:PROTOCOL:: :DSCP VALUE; Example: The DSCP value of SCTP traffic between Source and Destination port 49152 is changed to AF11 (001010) (10 decimal): ZQ8N:132:49152,:49152,:10;

g

Each protocol is identified by a number in the MML interface. By entering “?”, the protocol mapping is displayed. In the example above, “132” stands for SCTP. The DSCP values should be defined for the SCTP ports used for OMUSIG and TRXSIG. To enable the DiffServ in the BCF also, the BSC level TRAFFIC TO DSCP MAPPING parameters ACP, AMP, CLKS, SS have to be configured. example: ZEEY:ACP=46; 6

Create D-channels with DWP command for OMUSIG & TRXSIG ZWDP::::::; Example: ZDWP:KUDO:BCSU,1:62,1:KUDO,0:;

7

Created SCTP association can be seen with the command ZOYV ZOYV:SCTP USER: SCTP ASSOCIATION IDENTIFICATION:MODE; ZOYV:IUA:NAME=KUDO:A:;

8

Association activation with command OYS ZOYS:; D-channel activation is not needed, once the association is activated the D-channel becomes active.

9

Configure ETPE Abis u-plane interface 1

Configure Abis PS and CS user plane IP endpoint to the ETPE. The same user plane endpoint is used for both CS and PS traffic. ZQRA:ETPE,2,0::EL0::UP; The EL0 represents both the SFPs. The transmission redundancy SFP switchover is built-in logic of the ETPE front end fpga. Creation of EL1 is not required. If VLAN tagging should be used create also the VLAN interfaces. One ETPE can terminate upto 30 VLANs ZQRA:ETPE,2,0::VLAN700,70,EL0,::UP; Configure the u-plane IP address either to the EL0 or to the VLAN, example: ZQRN:ETPE,2,0::VLAN700,:"a.b.d.4",28,L,:;

110

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

If L2 connectivity is used for the Abis u-plane the same VLAN id has to be given also during the BCF creation (ZEFC) or the BCF has to be modified to have the correct VLAN id (ZEFM). 2

Configure the u-plane UDP port ZEEY:,; The CS and PS u-plane packets are differentiated with the BSC level UDP port numbers. The CS and PS UDP port has to be different. BSC updates the u-plane port values to the BCFs during BCF restart (unlock). Example: ZEEY:CSUMP=49152,PSUMP=49154;

3

Configure the u-plane Diffserv The u-plane DiffServ is configured with the BSC level TRAFFIC TO DSCP MAPPING parameters ABIS U-PLANE CS TO DSCP MAPPING (AUCS) or ABIS U-PLANE PS TO DSCP MAPPING (AUPS). example: ZEEY:AUCS=46;

4

Configure the u-plane route Configure the user plane default gateway addresses. This step is needed if u-planes connect via L3 i.e a routed network. Example: ZQKM:ETPE,2,0::"a.b.d.4":"a.b.d.1":LOG:;

10

Configure Packet Abis over Ethernet related BCF SCF parameters The Packet Abis over Ethernet SCF parameters that have to be set are: • • •





• • •

DN9812243

mPlaneLocalIpAddress : This parameter provides the BTS IPv4 address used for Mplane. mPlaneRemoteIpAddress : This parameter provides the M-plane IPv4 address of BSC. mPlaneGatewayIpAddress : If the M-plane destination IP address belongs to another subnet, this IP address specifies the address that is used to route the Mplane traffic to the destination. It’s also quite often named as next hop IP address. mPlaneSubnetMask : This parameter provides the subnet mask related to the BTS IPv4 address for M-plane. The value specifies the amount of bits that are set in the mask value, e.g. 255.255.255.0 leads to a value of 24. cuPlaneGatewayIpAddress : If the CU-plane destination IP address belongs to another subnet, this IP address specifies the address that is used to route the CUplane traffic to the destination. It’s also quite often named as next hop IP address. mPlaneVlanId : This parameter provides M-plane traffic to VLAN identifier mapping. VLAN tagging can be disabled by setting the VLAN identifier value to 4095. cPlaneVlanId : This parameter provides C-plane traffic to VLAN identifier mapping. VLAN tagging can be disabled by setting the VLAN identifier value to 4095. minSctpPort : This parameter specifies the start of the local SCTP port space that can be used for each instance of the Abis interface. This SCTP port is used for OMUSIG and SCTP ports for TRXSIG are in following order

Id:0900d805808c82ab Confidential

111

Creating the Abis interface



11

BSS Integration

1. TRXSIG1 minSctpPort+1 2. TRXSIG2 minSctpPort+2 3. TRXSIG3 minSctpPort+3 SCTP parameters for the OMUSIG: minRTO, maxRTO, initRTO, periodSACK, hbInterval, maxRetransPath, maxRetrans Assoc, ackTimerIUA, bundlingEnabled.

Create BCF with the command EFC ZEFC:,,,,:,,,,,: : , , , , : , , , : , , , , : , , , , , , , , , ; Example for Packet Abis over Ethernet: ZEFC:311,E,,2:DNAME=O311,:::::ETPGID=0,BCUIP=10.125.113.32,SMCU P=24,BMIP=10.125.113.32,SMMP=24,VLANID=700::;

g 12

New Packet Abis parameters are shown to user if Packet Abis over TDM or Packet Abis over Ethernet licence is in ON or CONF state

Attach software package to BCF with command EWA ZEWA:::; ZEWA:311:NW:EX4_BL063:;

13

Activate the BCF with the software build with command EWV ZEWV::; ZEWV:311:NW:;

14

Output the BCF Software Attached ZEWO:311:;

15

Create BTS with EQC command. ZEQC:,,,,,,:, frequency band in use, cell number in BTS HW: network colour code, BTS

112

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

colour code: mobile country code, ,: , , , ,: ,,, ,,, ; Example for Packet Abis over Ethernet: ZEQC:BCF=20,BTS=1,SEGNAME=BIGCENTRUM020,NAME=CENTRUM1:CI=12,BAN D=900,CHW=0:NCC=2,BCC=4:MCC=111,MNC=22,LAC=34567:HOP=RF,UHOP=N, HSN1=3,HSN2=1:GENA=Y,PSEI=13; 16

Create HOC with command EHC ZEHC:,,,:,,,; ZEHC:BTS=311,:;

17

Create POC with command EHC ZEUC:,,,:,,,:,,,; ZEUC:BTS=311,:;

18

Create TRXs With ERC command ZERC: BTS identification, BTS name, transceiver identification: preferred BCCH TRX, E-TRX type, autoconfigure, GPRS enabled TRX, dynamic Abis pool id, DFCA indication: frequency, training sequence code, Abis speech circuit: D-channel telecom link set number, D-channel telecom link set name, Dchannel O&M link set number, D-channel O&M link set name: optimum RX level uplink,optimum RX level downlink, subslots for signalling, bit rate, combi link, TRX frequency type, direct access level, TRX half rate support, RF hopping allowed, RTSL type 0, RTSL type 1, RTSL type 2, RTSL type 3, RTSL type 4, RTSL type 5, RTSLtype 6, RTSL type 7: dual TRX usage, TRX shutdown group; Example ZERC:BTS=1,TRX=1::FREQ=99,TSC=4,PCMTSL=215:DNBR=23:CH0=MBCCHC,CH1=NOTUSED,CH2=CCCHE;

g

DN9812243

The parameters AC,DAP, PCMTSL, SIGN, BR, CL can not be given if packet abis is in use.

Id:0900d805808c82ab Confidential

113

Creating the Abis interface

19

BSS Integration

Unlock all created objects unlock BCF with EFS command ZEFS::U; unlock BTS with EQS command ZEQS::U; unlock TRX with ERS command ZERS:,:U; End Activating and Configuring the Packet Abis over IP/Ethernet interface for mcBSC Prerequisites • To operate the feature, the license for the feature BSS21454: “Packet Abis over Ethernet” must be installed. • The IUA license must be installed. This is in order to be able to create the association set to OMUSIG and TRXSIG. The license code is 899. • IPv4 addresses and subnets are planned. • The ETM plug-in unit is available and commissioned. Refer Creating and Managing mcBSC Hardware. • The PCUM is available and configured to use Packet Abis. For details refer Activating and Testing BSS09006: GPRS. • LAN topologies, SAT1 – SAT7 are introduced. • Flexi EDGE BTS with SW EX 4.0 or Flexi Multiradio BTS with SW EX4.1. The FIYA/ FIQA/ FIYB/ FIQB module required by BTS is available.

1

Check the license state of the features with the command W7I For Packet Abis over Ethernet: ZW7I:FEA,FULL:FEA=1533; For IUA: ZW7I:FEA,FULL:FEA=899;

2

If the license is not active, enter the following command to activate the license ZW7M:FEA=:ON;

3

Creating ETPSIG interface 1

Configure etpsig IP endpoints to the BCXUs In the BCXUs the etpsigs are terminated to the EL0 interface. The same IP endpoint is used for both etpsig-m and etpsig-c. ZQRA:BCXU,0::EL0::UP:; ZQRA:BCXU,0::VLAN20,20,EL0,::UP:; ZQRA:BCXU,0::VLAN20:"10.0.1.1",25,L,IMC:;

114

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

2

Configure etpsig IP endpoints to the ETMEs ZQRA:UNIT IDENTIFICATION:PIU IDENTIFICATION:INTERFACE NAME:MAXIMUM TRANSMISSION UNIT:INTERFACE ADMINISTRATIVE STATE:; ZQRA:ETME,0::IFETH0::UP:; ZQRA:ETME,0::IFETH1::UP:;

3

Configure ETPSIG IP addresses to the IFETH0 created ETPSIG-M address type is Physical and the address attributes are Internal, Dynamic and Management. Dynamic means that ETME gets the address from the OMU DHCP server during ETME restart. ZQRN:ETME,0::IFETH0:"10.0.1.14",25,P,DM:; ETPSIG-C address type is Logical and the attributes are Internal, Control and Virtual. ZQRN:ETME,0::IFETH0:"10.0.1.31",25,L,C::;

4

Creating IUA messaging configuration The ETME and BCXU IP end points that are configured are linked together. Select a GW BCXU for ETME and create the etpsig-m: ZD2C:M::BCXU,0:ETME,0,0::; Create the etpsig-c with ZD2C between the ETME and every BCXU, example: ZD2C:C,NOR::BCXU,0:ETME,0,0::; ZD2C:C,NOR::BCXU,1:ETME,0,0::;

5

Bring up ETME to working state using the following commands ZUSC:ETME,0,0:SE; ZUSC:ETME,0,0:TE; ZUSC:ETME,0,0:WO;

4

Creating PEP interface 1

Configure PEP link interface to the PCUMs that have been selected for packet Abis use. Configure VLAN, IP address and add the PEP tag ZQRA:PCUM,0::VLAN24,24,IFETH0,::UP; ZQRN:PCUM,0::VLAN24:"10.0.2.14",24,L,I::; ZQRP:PCUM,0::VLAN24:"10.0.2.14":TAG,"PEP":;

2

Configure PEP link interface to the ETME IFETH0. Configure VLAN, IP address and add the PEP tag ZQRA:ETME,4::VLAN24,24,IFETH0,::UP:; ZQRN:ETME,0::VLAN24:"10.0.2.1",24,L,I:; ZQRP:ETME,0::VLAN24:"10.0.2.1":TAG,"PEP":;

DN9812243

Id:0900d805808c82ab Confidential

115

Creating the Abis interface

3

BSS Integration

Create ETM-PCU connection (PEP) link with command ZESK ZESK:ETP TYPE,ETP GROUP ID:UNIT TYPE,UNIT INDEX:PLUG-IN UNIT TYPE,PLUG-IN UNIT INDEX; ZESK:ETME,4:BCXU,2:PCUM,3;

5

Creating EEP interface 1

Configure EEP link IP endpoints to the ETMAs Configure EEP link interface to the ETMA IFETH0. Configure VLAN, IP address and add the EEP tag. Example: ZQRA:ETMA,0::VLAN23,23,IFETH0,::UP:; ZQRN:ETMA,0::VLAN23:"10.0.1.142",25,L,I:; ZQRP:ETMA,0::VLAN23:"10.0.1.142":TAG,"EEP":; Repeat this step with different IPv4 address for every ETMA.

2

Configure EEP link IP endpoints to the ETMEs Configure EEP link interface to the ETME IFETH0. Configure VLAN, IP address and add the EEP tag. Example: ZQRA:ETME,0::VLAN23,23,IFETH0,::UP:; ZQRN:ETME,0::VLAN23:"10.0.1.129",25,L,I:; ZQRP:ETME,0::VLAN23:"10.0.1.129":TAG,"EEP":; Repeat this step with different IPv4 address for every active ETME.

3

Creatre ETMA-ETME (EEP) connection Before creating the EEP link, the subnet of the BCFs that will be served by the ETME must be noted. System creates the EEP link automatically when user creates the IP route connecting the ETMA to the BCF subnet. Example: ZQKC:ETMA,2::"x.x.x.x",yy:"10.0.1.65":PHY:; where x.x.x.x is the BCF subnet and yy is the BCF subnet mask.

6

Configure OMUSIG and TRXSIG IP endpoints to the BCXUs 1

Configure VLANs and IP addresses to every active BCXU: examples: ZQRA:BCXU,2::EL1::UP; ZQRA:BCXU,2::VLAN45,45,EL1,:; ZQRA:BCXU,2::VLAN44,VLAN44:"a.b.c.70",28,L,::; (OMUSIG) ZQRA:BCXU,2::VLAN45,VLAN45:"a.b.c.86",28,L,::; (TRXSIG)

2

Create static route using the command ZQKM ZQKM:UNIT IDENTIFICATION:PIU IDENTIFICATION:DESTINATION IP ADDRESS, NETMASK:GATEWAY IP ADDRESS:ROUTE TYPE;

116

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

3

Create SCTP associations with OYX command for OMUSIG & TRXSIG ZOYX:::::; Transport protocol of OMUSIG and TRXSIG is SCTP. There are three default sctp parameter sets available: SS7, AFAST, AMEDI and ASATEL. AFAST corresponds to Packet abis over Ethernet. Example: ZOYX:TEST:IUA:S:BCXU,0:AFAST:4:;

4

Set IP address to the association with OYP command ZOYP:::,,:,,,,; Example: ZOYP:IUA:KUDO:"10.125.113.99",,49180:"10.125.117.21",24,,,49 180:;

g

The source IP address is OMUSIG or TRXSIG end point of the BCXU. The destination IP address is the BCF M-plane address (for OMUSIG) or C/U-plane address (for TRXSIG). The BCF’s SCF parameter minSctpPort defines the SCTP port used for the OMUSIG. The SCTP ports for TRXSIG are in following order: TRXSIG1 minSctpPort+1, TRXSIG2 minSctpPort+2, TRXSIG3 minSctpPort+3 and so on. The BCF Source and destination ports are the same. Refer toTable 7 Transport protocol and UDP port for Packet Abis in BSC for SCTP port number allocation. 5

Create D-channels with DWP command for OMUSIG & TRXSIG ZWDP:::,:,; Example: ZDWP:KUDO:BCXU,1:62,1:KUDO,0:;

6

Created SCTP association can be seen with the command ZOYV ZOYV:SCTP USER: SCTP ASSOCIATION IDENTIFICATION:DISPLAY TYPE; ZOYV:IUA:NAME=KUDO:A:;

7

Association activation with command OYS ZOYS::::; ZOYS:IUA:OMUSIG:ACT:; D-channel activation is not needed, once the association is activated the D-channel becomes active.

DN9812243

Id:0900d805808c82ab Confidential

117

Creating the Abis interface

7

BSS Integration

Configure ETME Abis u-plane interface 1

Configure Abis PS and CS user plane IP endpoint to the ETME. The same user plane endpoint is used for both CS and PS traffic. ZQRA:ETME,0::IFETH0::UP:; ZQRA:ETME,0::VLAN700,70,IFETH0,::UP; Configure the u-plane IP address either to the VLAN, example: ZQRN:ETME,0::VLAN700:"a.b.d.4",28,L,:; If L2 connectivity is used for the Abis u-plane the same VLAN id has to be given also during the BCF creation (ZEFC) or the BCF has to be modified to have the correct VLAN id (ZEFM).

2

Configure the u-plane UDP port ZEEY:,; The CS and PS u-plane packets are differentiated with the BSC level UDP port numbers. The CS and PS UDP port has to be different. BSC updates the u-plane port values to the BCFs during BCF restart (unlock). Example: ZEEY:CSUMP=49152,PSUMP=49154;

3

Configure the u-plane Diffserv The u-plane DiffServ is configured with the BSC level TRAFFIC TO DSCP MAPPING parameters ABIS U-PLANE CS TO DSCP MAPPING (AUCS) or ABIS U-PLANE PS TO DSCP MAPPING (AUPS). example: ZEEY:AUCS=46;

4

Configure the u-plane route Configure the user plane default gateway addresses. This step is needed if u-planes connect via L3 i.e a routed network. Example: ZQKC:ETME,1:::"a.b.d.4":LOG:; ZQKM:BCXU,1::"a.b.d.4":"a.b.d.1":LOG:;

8

Configure Packet Abis over Ethernet related BCF SCF parameters The Packet Abis over Ethernet SCF parameters that have to be set are: • • •

118

mPlaneLocalIpAddress : This parameter provides the BTS IPv4 address used for Mplane. mPlaneRemoteIpAddress : This parameter provides the M-plane IPv4 address of BSC. mPlaneGatewayIpAddress : If the M-plane destination IP address belongs to another subnet, this IP address specifies the address that is used to route the Mplane traffic to the destination. It’s also quite often named as next hop IP address.

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface





• • •



9

mPlaneSubnetMask : This parameter provides the subnet mask related to the BTS IPv4 address for M-plane. The value specifies the amount of bits that are set in the mask value, e.g. 255.255.255.0 leads to a value of 24. cuPlaneGatewayIpAddress : If the CU-plane destination IP address belongs to another subnet, this IP address specifies the address that is used to route the CUplane traffic to the destination. It’s also quite often named as next hop IP address. mPlaneVlanId : This parameter provides M-plane traffic to VLAN identifier mapping. VLAN tagging can be disabled by setting the VLAN identifier value to 4095. cPlaneVlanId : This parameter provides C-plane traffic to VLAN identifier mapping. VLAN tagging can be disabled by setting the VLAN identifier value to 4095. minSctpPort : This parameter specifies the start of the local SCTP port space that can be used for each instance of the Abis interface. This SCTP port is used for OMUSIG and SCTP ports for TRXSIG are in following order 1. TRXSIG1 minSctpPort+1 2. TRXSIG2 minSctpPort+2 3. TRXSIG3 minSctpPort+3 SCTP parameters for the OMUSIG: minRTO, maxRTO, initRTO, periodSACK, hbInterval, maxRetransPath, maxRetrans Assoc, ackTimerIUA, bundlingEnabled.

Create BCF with the command EFC ZEFC:,,,,:,,,,,: : , , , , : , , , : , , , , : , , , , , , , , , ; Example for Packet Abis over Ethernet: ZEFC:311,E,,2:DNAME=O311,:::::ETPGID=0,BCUIP=10.125.113.32,SMCU P=24,BMIP=10.125.113.32,SMMP=24,,ETMEID=0,VLANID=700::;

g 10

New Packet Abis parameters are shown to user if Packet Abis over TDM or Packet Abis over Ethernet licence is in ON or CONF state Attach software package to BCF with command EWA ZEWA:::; ZEWA:311:NW:EX41F_BL112:;

DN9812243

Id:0900d805808c82ab Confidential

119

Creating the Abis interface

11

BSS Integration

Activate the BCF with the software build with command EWV ZEWV::; ZEWV:311:NW:;

12

Output the BCF Software Attached ZEWO:311:;

13

Create BTS with EQC command. ZEQC:,,,,,,:, frequency band in use, cell number in BTS HW: network colour code, BTS colour code: mobile country code, ,: , , , ,: ,,, ,,, ; Example for Packet Abis over Ethernet: ZEQC:BCF=20,BTS=1,SEGNAME=BIGCENTRUM020,NAME=CENTRUM1:CI=12,BAN D=900,CHW=0:NCC=2,BCC=4:MCC=111,MNC=22,LAC=34567:HOP=RF,UHOP=N, HSN1=3,HSN2=1:GENA=Y,PSEI=13;

14

Create HOC with command EHC ZEHC:,,,:,,,; ZEHC:BTS=311,:;

15

Create POC with command EHC ZEUC:,,,:,,,:,,,; ZEUC:BTS=311,:;

16

Create TRXs With ERC command ZERC: BTS identification, BTS name, transceiver identification: preferred BCCH TRX, E-TRX type, autoconfigure, GPRS enabled TRX, dynamic Abis pool id, DFCA indication: frequency, training

120

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating the Abis interface

sequence code, Abis speech circuit: D-channel telecom link set number, D-channel telecom link set name, Dchannel O&M link set number, D-channel O&M link set name: optimum RX level uplink,optimum RX level downlink, subslots for signalling, bit rate, combi link, TRX frequency type, direct access level, TRX half rate support, RF hopping allowed, RTSL type 0, RTSL type 1, RTSL type 2, RTSL type 3, RTSL type 4, RTSL type 5, RTSLtype 6, RTSL type 7: dual TRX usage, TRX shutdown group; Example ZERC:BTS=1,TRX=1::FREQ=99,TSC=4,PCMTSL=215:DNBR=23:CH0=MBCCHC,CH1=NOTUSED,CH2=CCCHE;

g 17

The parameters AC,DAP, PCMTSL, SIGN, BR, CL can not be given if packet abis is in use. Unlock all created objects unlock BCF with EFS command ZEFS::U; unlock BTS with EQS command ZEQS::U; unlock TRX with ERS command ZERS:,:U; End For more details on Packet Abis over IP interface, see BSS21454: Packet Abis over Ethernet,BSS21439: Packet Abis Sync. ToP IEEE1588v2,BSS30450: Packet Abis Synchronous Ethernet, and BSS21444: Packet Abis Security. For more details on connecting the Packet Abis over IP interface, see Multicontroller Site IP Connectivity Guidelines and Creating and Managing mcBSC Hardware.

8.2

Packet Abis Media Conversion Packet Abis Transport Media Conversion feature connects Flexi EDGE BTS or Multiradio GSM BTS using Packet Abis over TDM link to Flexi BSC or mcBSC using Packet Abis over Ethernet link. The mcBSC utilize only PA over Ethernet connectivity. The BTS sites are still connected via TDM lines. By using the Packet Abis Transport Media Conversion, BTS connected via PA over TDM can be connected to mcBSC. Steps

DN9812243

1

Packet Abis over TDM feature licence is installed and feature state is changed to ON or CONF.

2

Check license state.

Id:0900d805808c82ab Confidential

121

Creating the Abis interface

BSS Integration

3

Commission ETME units.

4

Commission BTS.

5

Configure Packet Abis related parameters, SCTP associations, and IP BSC IP configurations.

6

Create/Modify BCF.

7

Modify PAoTDM specific BSC parameters, if needed.

8

Connect ETM and PCUMs together.

9

Create BTSs and TRXs for Packet Abis BCF.

10

Enable GPRS for BTS.

11

Unlock BCF/BTS/TRX. For more information on Packet Abis Media Conversion, see BSS21440: Packet Abis over TDM, BSS21438 Packet Abis over Satellite, BSS21445 Packet Abis Congestion Reaction

122

Id:0900d805808c82ab Confidential

DN9812243

BSS Integration

Creating Gb over IP Interface

9 Creating Gb over IP Interface The Gb over IP interface offers UDP/IP stack as the transport method in the transmission network. It complies with the 3GPP 48.016 and 48.018 standards. The Gb over IP interface's subnetwork is constructed with a UDP/IP stack. When the Gb interface is based on IP, an NS-VC is a pair of UDP/IP addresses, one UDP/IP address is in BSS and the other UDP/IP address is in SGSN. That is, an NS-VC is composed of two IP endpoint addresses, one IP endpoint address is in BSS and the other IP endpoint address is in the SGSN. For more information on creating a Gb over IP interface, see Activating and Testing BSS10103: Gb over IP.

g

DN9812243

In mcBSC PCUM is also used as a PCU type.

Id:0900d805808c83cc Confidential

123

Creating O&M over IP Interface

BSS Integration

10 Creating O&M over IP Interface The O&M interface (Q3 interface) is the interface between NetAct and the mcBSC. The implementation of this interface is based on the O&M framework of the ITU-T and the International Standards Organization (ISO). The physical interface used is Ethernet. For more information on creating O&M over IP interface, see BSS30340: OSI over TCP/IP. In case of a standalone mcBSC, SNTP client is activated and configured to retrieve calendar time from NetAct.

10.1 1

Steps Activate the feature ZWOA:2,1354,A;

2

Configure the feature to use the NTP server address (NetAct) ZDCW:1,"":;

3

Check the functionality (Optional) After sufficient time, check that the SNTP feature is synchronised by listing the configuration with DCP command. There should be an asterisk (*) next to the configured NTP server's address indicating that it is being used as the calendar time source.

124

Id:0900d805808d753c Confidential

DN9812243

BSS Integration

Site Equipment Configuration Steps

11 Site Equipment Configuration Steps The chapter provides an overall introduction to steps required for configuring site equipment. For more details and step by step instruction on switch configuration, see Multicontroller Site IP Connectivity Guidelines, BSC Site IP Connectivity Guidelines and Creating and Managing mcBSC Hardware.

11.1 11.1.1 1

General configuration Steps Enter the Privileged EXEC configuration mode. This command mode allows the user to input commands to the switch.

11.2 11.2.1

Aggregated interfaces Create LAG interface For L3 routed LAG interfaces, a port-channel interface is created. Then, the physical interfaces in the LAG are added to the port-channel one-by-one. A L3 routed LAG is used between the two site equipment units. For L2 Ethernet LAG interfaces (mcBSC interface), the port-channel is not created separately but, is created as part of the configuration of the physical interfaces making up the LAG.

11.2.1.1

DN9812243

Steps

1

Create a port-channel interface in the 'Global configuration' mode.

2

Give a name for the interface.

3

Create a port-channel interface in the 'Global configuration' mode.

4

Define the interface as an L3 routed interface.

5

Configure an IP address for the interface.

6

Disable the sending of 'redirect commands' from the interface to the router clients.

7

Disable the local proxy ARP feature from the interface.

Id:0900d805808c82ac Confidential

125

Site Equipment Configuration Steps

8

11.3 11.3.1 11.3.1.1 1

BSS Integration

Exit the port-channel interface.

VLAN definitions and interfaces Define VLAN. Steps Define the internal VLAN allocation scheme of the multilayer switch. This step defines the end of the VLAN ID range (either ascending from 1006, or descending from 4094) from which the switch starts the numbering of its internal VLANs.

2

11.3.2 11.3.2.1

Configure the external mcBSC VLANs visible to the site equipment, and give a descriptive name.

Create VLAN interfaces. Steps

1

Create a logical VLAN interface for one of the VLANs.

2

Name the interface.

3

Define routable IP-addresses for the interfaces.

4

Disable the sending of 'redirect commands' to the router clients.

5

Disable the local proxy ARP feature.

6

Activate the interface.

7

Exit the interface.

11.4 11.4.1

Switch interface configuration Interfaces towards the mcBSC The type of interface towards the mcBSC may be gigabitethernet (1 Gbit/s interface) or tengigabitethernet (10 Gbit/s interface). The interfaces in LAG-interface are configured individually.

126

Id:0900d805808c82ac Confidential

DN9812243

BSS Integration

Site Equipment Configuration Steps

11.4.1.1

DN9812243

Steps

1

Enter the interface to be configured.

2

Name the interface.

3

Configure the L2-characteristics of the interface

4

Configure the interface as a VLAN Layer 2 interface.

5

Configure the interface to apply 802.1Q protocol.

6

Configure the VLANs allowed to pass through the interface.

7

Prevent the switch from engaging in protocol negotiation on this interface.

8

Configure the interface to filter out any spanning tree BPDUs that it may receive.

9

Configure the interface to filter out any spanning tree BPDUs that it may receive.

10

Enable the 'portfast' mode on the interface.

11

Add interface to the correct port-channel.

12

Activate the interface.

13

Disable speed negotiation on 10 Gbit/s interfaces.

14

Exit the interface configuration mode.

15

Enter the port-channel interface in 'Global configuration' mode.

16

Name the interface.

17

Activate the interface.

18

Exit the interface.

Id:0900d805808c82ac Confidential

127

Site Equipment Configuration Steps

11.4.2

BSS Integration

Configure Loopback interface In 'Global configuration' mode, configure a loopback interface for the switch.

11.4.3

Configure Backbone/backhaul interface Depending on the site solution, the site equipment interfaces towards the external network may be configured as either Layer 3 routed or Layer 2 Ethernet switched ports.

11.4.3.1

Layer 3 backbone/backhaul Steps

1

Enter the interface.

2

Ensure that the interface is in the 'routed-interface' status using 'no switchport' command.

3

Configure an IP address for the interface from a different subnet than the one to be used over the interface between the site equipment.

4

Disable the sending of 'redirect commands' to the router clients.

5

Disable the local proxy ARP feature.

6

Exit the interface.

11.4.3.2

Layer 2 Ethernet backbone/backhaul Steps

128

1

Enter the interface.

2

Ensure that the interface is in the L2-characteristics of the interface status using 'switchport' command.

3

Configure the interface as a VLAN Layer 2 interface.

4

Configure the interface to apply 802.1Q protocol (VLAN tagging).

5

Configure the VLANs allowed to pass through the interface.

Id:0900d805808c82ac Confidential

DN9812243

BSS Integration

Site Equipment Configuration Steps

6

Prevent the switch from engaging in protocol negotiation on this interface.

7

Exit the interface.

11.4.4 11.4.4.1

Configure the interfaces between Site Equipment Steps

1

Enter the interface.

2

Name the interface.

3

Define the interface as an L3 routed interface.

4

Add the interface to the port-channel created for site equipment interconnection. The 'active' mode enables the use LACP over the interface.

5

Activate the interface.

6

Exit the interface.

11.4.5

Configure the interfaces towards the BSCLAN SWUs In extension setups, the interfaces towards the BSCLAN are configured in the same manner as the L3 routed backbone/backhaul interfaces. The IP addresses for these interfaces are from the subnets defined at BSC for the SWU L3 interfaces.

11.5 11.5.1 11.5.1.1

DN9812243

Routing Dynamic OSPF routing Steps

1

Enable OSPF on the router, and give an ID for the OSPF process created.

2

Set the bandwidth reference metric for path cost calculation. This setting defines the metric for a bandwidth of 1 Mbit/s. Value 10000 translates into a metric of 1 for 10 Gbit/s interfaces, and 10 for 1 Gbit/s interfaces.

3

Set all interfaces as passive by default for the OSPF process being configured.

Id:0900d805808c82ac Confidential

129

Site Equipment Configuration Steps

4

Allow OSPF routing update messages to be forwarded to - and by - the L3 interfaces configured towards the backbone/backhaul and the second multilayer switch.

5

Add all subnets created above for the VLAN and the L3 interfaces to the OSPF area. The area number must be the same in all routers participating in the area. Depending on the network configuration, a new area may be created or the switch may be added to an existing area. Also the BSCLAN SWUs directly connected to the site equipment must be configured into the same area.

6

Specify an OSPF cost for each VLAN interface added into the OSPF area: the cost should be different at the two site routers.

11.6 11.6.1 11.6.1.1

130

BSS Integration

HSRP/VRRP Configure HSRP/VRRP Steps

1

Enter the VLAN interface for which HSRP/VRRP is configured.

2

Select HSRP version 2.

3

Enable HSRP protocol for the VLAN interface, and define the virtual HSRP/VRRP address shared by the site equipment.

4

Configure the time between transmission of 'Hello' packets, and the interval at the end of which the other routers consider this router to be down in the absence of received 'Hello' messages. Timer values for the Pabis VLAN should be 100 and 500 ms; for other VLANs the values should be 300 and 1000 ms.

5

For the primary HSRP instance configure the HSRP/VRRP priority as 200.

6

For the primary HSRP instance configure as 60 seconds the time which elapses after switch activation before the switch claims the HSRP/VRRP IP address ownership.

7

Exit the interface.

Id:0900d805808c82ac Confidential

DN9812243

BSS Integration

Site Equipment Configuration Steps

11.7 11.7.1

BFD Configuration of Bi-directional Forwarding Detection (BFD) for OSPF BFD is activated only on those site equipment interfaces which were above configured as L3-routed and added to the OSPF area created for the mcBSC traffic.

11.7.1.1

DN9812243

Steps

1

Enter the interface on which BFD is to be configured.

2

Enable OSPF BFD on the interface.

3

Configure the BFD timers and multiplier. The first parameter defines the BFD 'Hello' packet transmission interval; the second parameter the allowed reception interval; the third parameter defines the number of missed 'Hello' messages the switch allows before concluding that its peer has failed.

4

Exit the interface.

Id:0900d805808c82ac Confidential

131

Initialising base stations

BSS Integration

12 Initialising base stations Each base station has one LAPD link called OMUSIG (see figure Abis interface). It is connected to the Operation and Maintenance Unit (OMU) of the base station and used for O&M purposes like remote sessions to the BTS, software up- and downloading, transferring of alarms, and transferring of configuration information. Each TRX has one LAPD link called TRXSIG and up to eight traffic channels. There can be fewer traffic channels if some of the TRXs' radio interface time slots are used for signalling. The bit rate of the LAPD links can be either 16 or 64 kbit/s. Also 32 kbit/s is possible for TRX links. In this phase, the LAPD links are created and the base stations are created to the BSC's radio network database. In terms of BSC, a base station consists of BCF, BTSs, TRXs, and handover and power control parameters. The hardware database is attached only to Talk-family base stations. In the other types, the TEI of the TRX links is the same as the TRX number in the BSC. The TEI of the OMU links is always 1. In the case of Flexi EDGE base stations, the TRXSIG links and traffic channels data created in the BSC can be downloaded and used by the Flexi EDGE base station automatically. For more information, see Flexi EDGE BTS Commissioning in the Flexi EDGE Base Station Product Documentation. The following instructions apply to Talk-family, UltraSite EDGE, MetroSite, Flexi EDGE, Flexi Multiradio and BTSplus base stations. For an overview, see Overview of BSS integration.

12.1

Creating LAPD links and a base station, and initialising the base station parameters A LAPD link can be created either to a certain physical Base Station Controller Signalling Unit (BCSU) or to a logical BCSU address. When the link is created to a logical BCSU address the actual controlling unit may not necessarily be the one given in the command. The concept of logical BCSU address was introduced to eliminate the effect of BCSU switchovers to radio network planning. In terms of MMI commands, only the command name is different with logical BCSU addresses. It depends on the type of the BTS which links must be created. For more information, see Creating D channels on Abis interface. Steps

1

Create LAPD links (DSE). Create 16, 32 or 64 kbit LAPD links. Create the links for O&M signalling link (OMUSIG) and TRX signalling links (TRXSIG). If you are creating a 64kbit link, do not give . ZDSE::BCSU,:,:,,;

132

Id:0900d805807d4158 Confidential

DN9812243

BSS Integration

Initialising base stations

Parameter

Explanation

service access point identifier

62 for OMUSIG, 0 for TRXSIG.

terminal endpoint identifier

Must the same as defined in the BTS. Usually the same as the TRX number. For OMU link, the value is 1.

If logical BCSUs are used, use the DSL command with the same parameters. 2

Create a base control function (EFC). The base control function (BCF) is a logical counterpart of the actual base station. It is connected to the OMUSIG link created earlier. As a default, the operational state of the new BCF is 'Locked' (L). It is recommended that you first create the entire BCF site (BCF, BTS, and the TRXs) and unlock the TRXs and BTSs of the BCF, before you change the state of the BCF to 'Unlocked'. In the case of Flexi EDGE Base Station, the administrative state of BCF is also 'Locked' after creation, but it is created as 'Automatic Unlock Allowed' by default. It means that when the BTS site has been commissioned and it indicates the start up for the BSC, the BSC automatically changes the administrative state of the BCF to 'Unlocked'. •

All site types if it is being autoconfigured: ZEFC:,:DNAME=;

Further information The BCF parameters can be modified later with the EFM and EFT commands if needed. 3

Create a base transceiver station (EQC). A base transceiver station (BTS) is a logical counterpart of a sector in a base station site. It should not be confused with a base station even though they have the same abbreviation. ZEQC:BCF=,BTS=,NAME=,:CI=,BAND=:NCC=,BCC=:MCC=,MNC=,LAC=:; Further information The BTS parameters can be modified later with the EQE, EQF, EQG, EQH, EQJ, EQK, and EQM commands.

4

Create a transceiver (ERC). A transceiver (TRX) is a logical counterpart of the transmitter-receiver equipment in the base station. It is connected to the TRXSIG link created earlier. •

DN9812243

All site types if it is being autoconfigured: ZERC:BTS=,TRX=::FREQ=,TCS=,PCMTSL=:DNAME=:CH0=,SIGN=; Further information The TRX parameters can be modified later with the ERM command. 5

Create default power control parameters of the BTS (EUC). Each cell must have a power control parameter set. ZEUC:BTS=; Further information You can modify the power control parameters with the EUG, EUA, EUQ, and EUS commands.

6

Create default handover control parameters (EHC). Each cell must have a handover parameter set. ZEHC:BTS=; You can modify the handover control parameters with the EHG, EHA, EHS, EHQ, EHI, EHD, EHN, EHX, EHY, EHP commands.

7

Create neighbouring cell information (EAC). Define the list of cells where mobiles can make a handover when using the cell. Create the adjacent cells. •



Adjacent cell located in the same BSC: ZEAC:BTS=:ABTS=; Adjacent cell located in a different BSC: ZEAC:BTS=:LAC=,CI=:NCC=,BCC=,FREQ=,:

The adjacent cell parameters can be modified with the EAM command. 8

Check and change the synchronisation of TalkFamily, UltraSite, Flexi EDGE, and MetroSite BTSs if necessary (EFM). Check that the synchronisation is suitable. The default is the internal clock of the BTS. Change the synchronisation of the BCF to external synchronisation if necessary. If the synchronisation settings are not defined or synchronisation is not enabled for the BCF(s) in the BSC Radio Network database, then the BTS site's own synchronisation settings are valid. There are three alternative ways to define synchronisation for the BTS (and LMU) via BSC: the internal clock of the BTS, BSS synchronisation, and Site synchronisation. For further information on changing synchronisation settings of base stations, see BSS Synchronisation.

134

Id:0900d805807d4158 Confidential

DN9812243

BSS Integration

Initialising base stations

For instructions on changing the BTS site's synchronisation settings, see the relevant BTS documentation. Further information Example: Create a BCF according to the Abis time slot allocation shown in the table. 0

LINK MANAGEMENT

1

TRXSIG1

OMUSIG

TCH.2

TCH.3

2

TCH.4

TCH.5

TCH.6

TCH.7

3

TRXSIG2

TCH.1

TCH.2

TCH.3

4

TCH.4

TCH.5

TCH.6

TCH.7

TRX 1

TRX 2

1. Create LAPD links ZDSE:B0001:BCSU,0:62,1:16,33-1,2; ZDSE:T0101:BCSU,0:0,1:16,33-1,0; ZDSE:T0102:BCSU,0:0,2:16,33-3,0; 2. Create BCF ZEFC:1,P:DNAME=B0001; 3. Create BTS • ETSI: ZEQC:BCF=1,BTS=1,NAME=BTS1:CI=1,BAND=900:NCC=0,BCC=0:MCC=2 14,MNC=1,LAC=1:; • ANSI: ZEQC:BCF=1,BTS=1,NAME=CELL1:CI=1,BAND=1900:NCC=0,BCC=0:MCC =214,MNC=1,LAC=1:; 4. Create TRXs ZERC:BTS=1,TRX=1::FREQ=100,TSC=0,PCMTSL=331:DNAME=T0001:SIGN=2,CH0=MBCCHC,CH1=NOTUSED; ZERC:BTS=1,TRX=2::FREQ=55,TSC=0,PCMTSL=333:DNAME=T0002:SIGN=1,CH0=NOTUSED; The TRX parameters can be modified with the ERM command. Further information Next, attach the BCF software build to the BCF.

12.2

Attaching the BCF software build to the BCF Base station software is kept in the BSC's hard disks. There are 40 directories for BTS software builds and one directory for BTS hardware databases (see figure BTS software directories). Usually, only some of the directories are needed since the base stations can use the same builds with each other.

DN9812243

Id:0900d805807d4158 Confidential

135

Initialising base stations

BSS Integration

ROOT

AS8_8_14_0

BCF_PACK

SCMANA

PACK_0

...

BTS SW files

Figure 22

PACK_39

HWDATA

BTS SW files

BTS HW databases

BTS software directories

Steps 1

Copy the BCF software build to the BSC's disks (IWX, IWY, IBC). Find an unused BCF software directory and copy the BCF software build to it from the floppy disk. IWX, IWY, IBC

2

Create BTS software build (EWC). ZEWC::MF=,EXT=,SDIR=;

3

Set initial software build; optional (EWS). ZEWS::;

4

Attach build to the BCF (EWA). If the Operation and Maintenance Unit (OMU) link is working, background downloading of the build to the base station is started. Otherwise, the build is only administratively attached to the BCF and the software is downloaded later. ZEWA::BU:;

5

Activate the build (EWV). If the BCF is in unlocked state it is restarted as the build is activated. Otherwise, only the state of the build is changed to DEF. ZEWV::BU;

6

Confirm the execution of the command. The program asks for a confirmation to execute the command. The command cuts all ongoing calls in the reseted BTS site. Confirm by YES (Y) or NO (N). Further information Next, attach the BTS hardware database to the BTS.

136

Id:0900d805807d4158 Confidential

DN9812243

BSS Integration

Initialising base stations

12.3

t

Attaching the BTS hardware database to the BTS This is done only for Talk-family base stations. The BTS hardware database contains the base station's hardware configuration. Hardware database files are kept in the BSC's hard disks in BCF_PACK\HWDATA directory as shown in figure BTS software directories. Before you start Before proceeding, you must have suitable hardware database files available. For information on how to prepare a BTS hardware database, see BTS documentation. Steps

1

To implement this step, choose one of the following alternatives: a

If The BTS does not yet have a valid hardware database Then Once the BTS hardware configuration is available, copy it to the BSC. The database files are: HWDATA_T. HWDATAOM.

b

Database file in text format Database file in binary format

If The BTS already has a valid hardware database Then Upload the hardware database to the BSC (EVU). If the BTS already has a valid hardware database, it can be uploaded to the BSC instead of copying new files with the command EVU.

2

Create BCF hardware database (EVC). Once the hardware database files have either been copied or uploaded to the BSC, the database must be created. ZEVC::NAME=,EXT=;

3

Attach hardware database to the BCF (EVA). ZEVA::;

4

To implement this step, choose one of the following alternatives: a

If The hardware database has already been downloaded to the BTS Then Activate the hardware database without downloading (EVV). ZEVV::PAS:NODL;

b

If The hardware database is not in the flash Then

DN9812243

Id:0900d805807d4158 Confidential

137

Initialising base stations

BSS Integration

Activate the hardware database with site reset (EVV). The Operation and Maintenace Unit (OMU) link must be operational before the downloading. ZEVV::PAS:SITE; c

Activate the hardware database without site reset (EVV). After this command the hardware database is in the flash but not in use. Site reset is needed to take it into use: ZEVV::PAS:NORST;

Further information Next, take the base station into use.

12.4

Taking the base station into use In this phase, the base station is taken into use by unlocking it. Steps

1

Change status of BTS D-channels (DTC). Change the state of the Operation and Maintenance (OMU) link and the TRX links to WO-EX: ZDTC::,WO;

Parameter

Explanation

D-channel link set name

Name of the LapD link.

2

Unlock the TRXs (ERS). If the higher level objects are already unlocked the transition from locked to unlocked causes a TRX reset in the BTS site. Otherwise, the reset is not done. ZERS:BTS=,TRX=:U;

3

Unlock the BTSs under the BCF (EQS). If the BCF is already unlocked the transition from locked to unlocked causes a BTS reset in the BTS site. Otherwise, the BTSs are not reset. ZEQS:BTS=:U;

4

Unlock the BCF (EFS). ZEFS::U; Expected outcome The transition from locked to unlocked causes a BCF reset. While the BCF is resetting, all its components and the BCF itself are in BL-RST (blocked-reset) state. During that time, the BCF is not available for traffic nor controllable by MML.

138

Id:0900d805807d4158 Confidential

DN9812243

BSS Integration

Initialising base stations

The reset is over when all its components and the BCF itself are in WO (working) state.

DN9812243

Id:0900d805807d4158 Confidential

139

Testing BSS integration

BSS Integration

13 Testing BSS integration Before you start The test requires one of each network element (BTS, BSC, MSC, and HLR), and in fault conditions a PCM/T1 analyser (PC with GSM Protocol Analyser to trace A/Abis messages). All the network elements and connections must be operative and the network configuration valid.

MS

MS

BTS

Abis BSC

TCSM

A TO MSC, HLR, VLR

BTS Protocol Analyzer

MS A and Abis monitor Figure 23

The test arrangements

The test cases are described in a general level. For more detailed information, refer to BSC SW release material: BSC System Test Cases and BSC Release Test Cases. For an overview, see Overview of BSS integration.

13.1

Testing local blocking of a TRX The purpose of the test is to verify the correct working of the BSS in local blocking (OMU MMI) of a TRX Steps

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Check that the TRX and the BTS to be tested are in the working state and operative.

4

Block the TRX locally from the BTS OMU MMI.

5

Unblock the TRX locally from the BTS OMU MMI.

6

Check any new alarms in the system. Expected outcome 1. An alarm concerning a TRX block is raised.

140

Id:0900d805808da946 Confidential

DN9812243

BSS Integration

Testing BSS integration

2. When the TRX is blocked locally an announcement concerning this state is also sent to the BSC, and the BSC MML also shows that the TRX is blocked and not available for traffic.

13.2

Testing the supervision of the TCSM2 (ETSI/ANSI) The purpose of the test is to verify the correct working of the supervision of the TCSM2. Steps

1

Verify that transmission is working correctly and there are no transmission alarms active in the BSC.

2

Check the settings of the TCSM2 with remote MML ZDDT. Use the command ZDDT.

3

Check that the TCSM2 hardware configuration matches the hardware in the racks. Use the service terminal command ZGT.

4

Cause a channel fault to the transcoder unit. Do this for example by pulling out a TR16 (ETSI) or TR12 (ANSI) plug-in unit.

5

Check any new alarms in the system. Expected outcome Alarm 2952 TRANSCODER PLUG-IN UNIT FAILURE is active.

13.3

Testing the supervision of the TCSM3i (ETSI/ANSI) The purpose of the test is to verify the correct working of the supervision of the TCSM3i. Steps

1

Verify that transmission is working correctly and there are no transmission alarms active in the BSC.

2

Check the settings of the TCSM3i with remote MML ZDDT. Use the MML command ZDDT.

3

Check that the TCSM3i hardware configuration matches the actual hardware. Use the service terminal command ZGT.

4

Block one DSP unit. Use the following command:

DN9812243

Id:0900d805808da946 Confidential

141

Testing BSS integration

BSS Integration

ZUB:DSP,0; 5

Check any new alarms in the system. Expected outcome Alarm 3991 TR3 DSP LOCALLY BLOCKED is active. You can unblock the DSP unit with the command ZUF:DSP,0;

13.4

Testing IMSI Attach The purpose of the test is to verify the correct working of the BSS in IMSI attach. Steps

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Power up the mobile station.

4

Check any new alarms in the system. Expected outcome 1. The mobile station finds the BTS. 2. IMSI_ATTACH message is seen in the Abis interface.

13.5

Testing location updating The purpose of the test is to verify the correct working of the BSS in location updating. Steps

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Supply the PIN to the mobile station.

4

Check any new alarms in the system. Expected outcome The mobile station finds the network and ends on service state.

13.6

Testing MS to MS call The purpose of the test is to verify the correct working of the BSS in a basic call.

142

Id:0900d805808da946 Confidential

DN9812243

BSS Integration

Testing BSS integration

Steps 1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Make a call from subscriber A (the calling subscriber) to subscriber B (the called subscriber).

4

Make subscriber B answer the call.

5

Verify speech quality.

6

Clear the call at subscriber A's mobile station.

7

Check any new alarms in the system. Expected outcome The call is successful and speech quality is good.

13.7

Testing MS to MS call, B busy The purpose of the test is to verify the correct working of the BSS in a basic call when subscriber B is busy. Steps

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Make a call from subscriber A to subscriber B (subscriber B is busy).

4

After observing the busy tone at subscriber A's MS, clear the call at subscriber A's MS.

5

Check that there are no hanging resources.

6

Check any new alarms in the system. Expected outcome Subscriber A receives the busy tone.

DN9812243

Id:0900d805808da946 Confidential

143

Testing BSS integration

13.8

BSS Integration

Testing MS to MS call, A subscriber IMSI detach The purpose of the test is to verify the correct working of the BSS in a basic call when subscriber A makes IMSI detach during speech. Steps

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Make a call from subscriber A to subscriber B.

4

Answer the call at subscriber B's MS.

5

Make IMSI detach (subscriber A).

6

Check any new alarms in the system. Expected outcome 1. There are no hanging resources. 2. The call is set up as required and subscriber A releases the call.

13.9

Testing successful handover: free TCHs The purpose of the test is to verify the correct working of the BSS in a successful handover, where free TCHs are available. Steps

144

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Check that there are free TCHs in the BTS where the subscriber A will move.

4

Make a call from subscriber A to subscriber B.

5

Answer the call at subscriber B's MS.

6

Make a handover to subscriber A.

7

Verify speech quality.

Id:0900d805808da946 Confidential

DN9812243

BSS Integration

Testing BSS integration

8

Check any new alarms in the system. Expected outcome The handover is successful and speech quality is good all the time.

13.10

Testing unsuccessful handover: no free TCHs The purpose of the test is to verify the correct working of the BSS in an unsuccessful handover, where no free TCHs are available. Steps

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Make sure that there are no free TCHs in the BTS where subscriber A will move.

4

Make a call from subscriber A to subscriber B.

5

Answer the call at subscriber B's MS.

6

Make a handover attempt to subscriber A.

7

Check any new alarms in the system. Expected outcome The handover fails and the call is released by the network unless the original channel is still adequate to continue the call.

13.11

Testing radio resource queuing in handover The purpose of the test is to verify the correct working of the BSS in a successful handover, where a radio resource has to be queued. Steps

DN9812243

1

Check the status of the signalling network with a BSC MML.

2

Check current alarms in the system.

3

Make a call from subscriber A to subscriber B.

4

Answer the call at subscriber B's MS.

Id:0900d805808da946 Confidential

145

Testing BSS integration

BSS Integration

5

Reserve one TCH with one more MS and block other TCHs.

6

Make a handover attempt to subscriber A.

7

Release the occupied TCH for the handover attempt.

8

Check any new alarms in the system. Expected outcome The handover is successful after queuing and the call continues.

146

Id:0900d805808da946 Confidential

DN9812243

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF