Box Culvert by B.C.punmia Example 30.2

Share Embed Donate


Short Description

Download Box Culvert by B.C.punmia Example 30.2...

Description

DESIGN OF BOX TYPE CULVERT 1 In side side diam diamen enti tion ons s

3.50

2 Supe Superr impo impose sed d load load

12000

N/m3

3 Live load

45000

N/m2

4 Wieg Wieght ht of so soil

18000

N/m2

5 Angl Angle e of of rep repos ose e

30

Degree

6 Nomi Nomina nall cove coverr top top / bot botto tom m

50

mm

6 Cocrete

3.50

Thickness of top slab Thickness of bottom slab

25000

N/m2

330 320 350

8 Thic Thicke kess ss of side side wall wall

50

Nominal cover side m

ter side σst

415

m

wt. of concrete

7

σcbc

9

x

20

M-

7 Steel

m

N/m2 σst

150

mm kg/m3

13 190

mm

thickness of side wall is OK

mm

O.K.

N/m2

mm

Reinforcement 

Top slab

Bottom slab

mm c/c

mm Φ @

130 130 200 120 120 300 300

8

mm Φ @

130

mm c/c

260

mm c/c

Main

20

mm Φ @

Distribution

8

mm Φ @

At supports

mm Φ @

Vertical

8 20 8 8 20

Distribution

Main Distribution At supports

Side vertical wa wall

20 mm Φ @

mm Φ @ mm Φ @ mm Φ @

8 mm Φ @

200

mm c/c mm c/c mm c/c mm c/c mm c/c

Through out slab at bottom

mm c/c

Both side

mm C/C

8 mm Φ @

130

mm C/c

320 700

20 mm Φ @

20 mm Φ @

130 mm C/C

300 mm C/C 3.50

8 mm Φ @ 130 mm C/C 20 mm Φ @ 120 mm c/c 350 20 mm Φ @ 240 mm c/c

8 mm Φ @ 200

C/C

8 mm Φ @ 130

C/

O.K.

[email protected]

[email protected]

DESIGN OF BOX TYPE CULVERT 1 In side diamentions

3.5

2 Su Super imposed load

12000

N/m3

3 Live Live load load

45000 45000

N/m2

4 Wieght of soil

18000

N/m2

5 Angle of repose

30

Degree

6 Nominal cover top/bottom

50

mm

6 Cocrete 7 Steel

M-

20

σcbc

7

Fy

1 Soluti Solution on

x

3.5

m

9800

N/m3

Nominal cover Side

50

mm

wt. of concrete

25000

N/m3

wt. of water

N/m2

m Out side σst

190

N/m2

water side side σst

150

N/m2

415

13

Genra Genrall For the purpose of design , one metre length of the box is considered.

The analysis is done for the f ollowing cases. (I) Live load, dead load and earth prssure acting , with no water pressure from inside. (II) Live and dead load on top and earth pressure acting from out side, and water pressure acting from ins with no live load on sides (III) Dead load and earth pressure acting from out side and water pressure from in side. Let the thicness of Horizontal slab

330 mm

=

0.33 m

Vertical wall thicness

320 mm

=

0.32 m

Effective slab span

3.5

+

0.33 =

3.83 m

Effective Height of wall

3.5

+

0.32 =

3.82 m

2 Case 1 : Dead and live load from out side of while no water pressure from inside. Self weight og top slab =

0.33 x

Live load and dead load =

45000 +

Weight of side wall = ∴

3.82 x

Upward soil reaction at base = ( 65250 x

25000 =

8250

N/m2

=

57000

N/m2

Total load on top =

65250

N/m2

25000

30560

N/m

1x

1x

12000 0.32 x 3.83 )+(

=

2x

30560 )=

3.83 Ka = ∴

1 - sin 30 1 + sin 30

=

1-

0.5

1+

0.5

0.5

=

1.5

81208.22 N/m2 1

=

= 0.33

3

Latral pressure due to dead load and live load = Pv x Ka p=

57000 x

Latral pressure due to soil Ka x w x h

=

0.33 x

Hence total pressure

=

19000 +

Latral presure intencity at top

=

19000

Latr Latral al press ressu ure inte ntenci ncity at botto ottom m

=

19000+ 9000+

0.33 =

19000

18000 h =

6000

h

6000 h N/m2 6000 000 x w =

Fig 1 show the box culvert frame  ABC D, D, along with the external loads, Due to symmetry, half of  frame (i.e.  AEFD) of box culvert is considered for moment distribution. Since all the members have uniform thickness, and uniform diamentions, the relative stiffness K for  AD will be equal to 1 while the relative stiffness for  AE   AE and DF will be 1/2.

N/m2

3.82 =

41920

N/m2

65250 N/m2

19000

19000 A

h

E

B

3.83

19000

3.82

6000 6000 h D

F

C

41920

19000 ### N/m2

22920

[email protected]

1

Distribution factore for  AD and DA=

=

1+1/2

MFAD = + MFAD = +

pL2 12 19000

###

12 3.82 2=

### x

=

12

=

1/3

N-m

98751.91 N - m

12

Where W is the total tringular earth pressure.

3.82

2

+ 22920 x

12

3.82

2

x

3.82 15

=

34254

N-m

WL

-

12

15

19000 x

MFDA = -

wL2

3.82 2=

65250 x

1+1/2

15

x

pL2

MFDA = -

+

WL

+

=

12

Mfdc=

1/2

Distribution factore for  AB and DC=

wL2

MFAB=

Fix end moments will be as under :

2/3

3.82

2-

- 22920 x

12

3.82

2

x

3.82 10

= -23105

-16723

=

-39

The Moment distribution is carried out as illustrate in table Fixed End Moments

Member

DC

DA

AD

AB

98751.91

-39828

34254

-79346

55075

65250

46852

The moment distribution carried out as per table 1 for  case 1 Joint

D

A

124627.5

1246

Member

DC

DA

AD

AB

Distribution factore

0.33

0.67

0.67

0.33

98751.91

-39828

34254

-79346

A

A

-19641

-39283

30061

15031

55075

1.91

15031

-19641

-10020

13094

6547

-5010

-4365

3340

1670

-2182

-1113

1455

727

-557

-485

371

186

-242

-124

162

81

-62

-54

41

21

-27

-7

-14

18

9

71023

-71023

55075

-55075

Fix end moment Balance Carry over balance

-5010

Carry over balance

-2182

Carry over balance

-557

Carry over balance

-242

Carry over balance

-62

Carry over balance

-27

Carry over balance Final moment

46852

6547

0.5

x

65250

1670

71023

727

41920

186

155514

D 69810

71023 155

69810

81 81208

21

Fig 2

x

65250

3.82 =

Vertical reaction at D and C =

3.83

81208.22 x

=

N/m2.

124627.5 N/m2

### N/m2

x

1.91

22920 D

Similarly, for the Bottom slab DC carrying U.D.L.loads @ 0.5

7197

3.82 m

For horizontal slab AB, carrying UDL @ Vertical reactionat a and B =

55075

19000

###

N

The body diagram for various members, including loading, B.M. And reactions are shown in fig.2 For the vertical member AD, the horizontal reaction at A is found by taking moments at D.Thus ( -ha x

3.83

)+ +

55075 - 71023 + 19000 x 1/2

22920

3.83 3.83

x

3.83 3 83

x

1/2 1/3

Hence , hd =( 19000 + 41920 )x

3.83 -

46852 =

69810 N

2

[email protected]

65250

Free B.M. at mid point E =

x

3.83

2

=

Net B.M. at E =

119644 81208.22

Similarly, free B.M. at F =

-

55075

x

2

3.83

= =

148904.42

-

64569

###

8

Net B.M. at F =

N-m

119644

8

71023

N-m

N -m

=

77881

N-m

For vertical member AD , Simply supported B.M. At mid span 19000

imply supporetd at mid sapn

x

3.83

2

+

1/16

8 71023

Net B.M. =

+

55075

x 22920 x

=

2

63049

-

3.83

2

=

###

###

=

7197

N-m

3 Case 2 : Dead load and live load from out side and water pressure from inside. 9800 x

In this case , water pressure having an intensity of zero at A and At D, is acting, in addition to the pressure considered in case 1. The various pressures are marked in fig 3 .The vertical walls will thus be subjected to a net latral pressure of  Itensity And

= 19000 = =

-

= 37436 N/m2

65250 N/m2

w = 19000

19000

N/m2 At the Top

41920

3.82

A

E

190

14516

B

37436

4484 N/m2 at the bottom

3.83 3.82

F

D

C

41920

41920 w

4484

### N/m2

=

Fig 3 Fix end moments will be as under :

wL2

MFAB=

12

MFAD = + MFAD = + MFDA = MFDA = -

pL2

+

12 4484

x

=

12

WL

-

12 4484 x

3.83 2=

### x 12

N-m

99269.61 N - m

Where W is the total tringular earth pressure.

10 3.83

2

+ 14516 x

12 pL2

###

12

wL2

Mfdc=

3.83 2=

= 65250 x

3.83

2

x

3.83 10

=

16128

N-m

=

-12579

N -m

WL 15 3.83

2

-

14516 x

12

3.83

2

x

3.83 15

The moment distribution is carrired out as illustred in table. Fixed End Moments

Member

DC

DA

AD

AB

99269.61

-12579

16128

-79762

45069

65250

23451

The moment distribution carried out as per table 1 for  case 1 Joint

D

A

124627.5

Member

DC

DA

AD

AB

Distribution factore

0.33

0.67

0.67

0.33

19000

99269.61

-12579

16128

-79762

A

Fix end moment

1246

23451

45069 A

balance

-7070

-14141

19265

9632

-7070

-6422

4714

2357

-3211

-1571

2141

1070

-786

-714

524

262

-357

-175

238

119

-87

-79

58

29

-40

-10

-19

26

13

58813

-58813

45069

-45069

Carry over balance

-3211

Carry over balance

-786

Carry over balance

-357

Carry over balance

-87

Carry over balance

-40

Carry over balance Final moment

9632

3.82

2357

58813 4484 D

1070

0.5

x

65250

D 21404

262

58813

155108

1551

21404

119 81208

29

Fig 4

For horizontal slab AB, carrying UDL @ Vertical reactionat a and B =

1.91

x

N/m2.

65250

3.82 =

124627.5 N/m2

Similarly, for the Bottom slab DC carrying U.D.L.loads @ 81208 N/m2 Vertical reaction at D and C =

0.5

x

81208

x

3.82

=

###

N

The body diagram for various members, including loading, B.M. And reactions are shown in fig.3 For the vertical member AD, the horizontal reaction at A is found by taking moments at D.Thus ( -ha x

3.82

)+

45069 - 58813 + 4484

+ -ha x

3.82 +

1/2

x

-13744

+

From which,

ha =

Hence , hd =( 4484

14516

x

3.82

x

3.82

x

1/2

x

3.82

x

3.82

x

2/3

32716.16 + 70607.76

23451

+ 19000 )x

3.82 -

23451 =

21404 N

2 65250

Free B.M. at mid point E =

3.82

2

=

119020

8

Net B.M. at E =

119020

-

81208

x

Similarly, free B.M. at F = Net B.M. at F =

x

45069 3.82

=

-

73951

N-m

2

=

###

8 148127.86

N-m

58813

N -m

=

89315

N-m

For vertical member AD , Simply supported B.M. At mid span 4484

imply supporetd at mid sapn

x

3.82

2

+

1/16

8 58813

Net B.M. =

+

45069

x 14516 x

=

2

51941

3.82

2

= 21418

- 21418 =

30523 N-m

4 Case 3 : Dead load and live load on top water pressure from inside no live load on side. in this case, it is assume that there is no latral oressure due to live load . As before . The top slab is subjected to a load of '=

65250

N/m2

and the bottom slab is subjected to a load Itensity = 81208. N/m2 Lateral pressure due to dead load = 1/3 x

12000

Lateral pressure due to soil 1/3 x

18000

=

w = 4000

Hence earth pressure at depth h is =

4000 A

4000

E

B

N/m2

= =

65250 N/m2

3.83

6000

N/m2

3.82

4000

Earth pressure intensity at top

=

4000

37436 w=

N/m2

### N/

37436

Fig 5 Earth pressure intensity at Bottom=

### +

6000 x

3.82

=

26920

N/m2

In addition to these, the vertical wall lslab subjectednto water pressure of intensity ZERO at top and

374

N/m2 at Bottom, acting from inside . The lateral pressure on vertical walls Is shown in fig 5 and 6 [email protected]

wL2

MFAB=

Fix end moments will be as under :

12 wL2

Mfdc= MFAD = + MFAD = + MFDA = MFDA = -

pL2 12 4000

4000

3.83 2=

### x 12

N-m

99269.61 N - m

Where W is the total tringular earth pressure.

3.83

2

-

14516 x

12

3.83

2 WL

+

12

###

12

15

x

pL2

3.83 2=

65250 x

=

12

WL

-

=

### -

x

3.83 15

=

-2209

N-m

=

5757

N -m

###

10

x

3.83

2

-

14516 x

12

3.83

2

x

3.83 10

The moment distribution is carrired out as illustred in table. Fixed End Moments

Member

DC

DA

AD

AB

99269.61

5757

-2209

-79762

35902

65250

3

=

The moment distribution carried out as per table 1 for  case 1 Joint

D

A

124627.5

1246

Member

DC

DA

AD

AB

Distribution factore

0.33

0.67

0.67

0.33

4000

99269.61

5757

-2209

-79762

A

A

-35009

-70018

54647

27324

35902

1.91

27324

-35009

-18216

23339

11670

-9108

-7780

6072

3036

-3890

-2024

2593

1297

-1012

-864

675

337

-432

-225

288

144

-112

-96

75

37

-48

-12

-25

32

16

49646

-49646

35902

-35902

Fix end moment Balance Carry over balance

-9108

Carry over balance

-3890

Carry over balance

-1012

Carry over balance

-432

Carry over balance

-112

Carry over balance

-48

Carry over balance Final moment

11670

3.82

3036

0.5

x

65250

1.91

0D 1297

14516

337

155108

8

48748

49646

D 49646

144 81208 37

Fig 4

x

65250

3.82 =

N/m2.

124627.5 N

Similarly, for the Bottom slab DC carrying U.D.L.loads @ 81208 N/m2 Vertical reaction at D and C =

0.5

x

81208

x

3.82

=

###

9 155

5200

For horizontal slab AB, carrying UDL @ Vertical reactionat a and B =

35902

N

The body diagram for various members, including loading, B.M. And reactions are shown in fig.6

-ha x

3.82 +

1/2

x

14516

x

-13744

+

29184.8

-

From which,

ha =

3.82

x

3.82

x

1/3

-

5200 = 7245.56

35304

5200

Hence , hd =( 14516 x

3.82 )-

4000 x

3.82

119644

N-m

2 65250

Free B.M. at mid point E =

x

2

3.83

=

8

Net B.M. at E =

119644 81208

Similarly, free B.M. at F =

-

35902

x

2

3.83

= =

###

8

Net B.M. at F =

148904.42

-

83742

49646

N-m

N -m

=

99258

N-m

For vertical member AD , Simply supported B.M. At mid span 4000

Simply supporetd at mid sapn =

x

2

+

3.83

1/16

8 49646

Net B.M. =

+

35902

x 14516 x

=

2

42774

3.83

2

###

=

+

= 5973.91 48748 N-m

5 Design of top slab : Mid section The top slab is subjected to following values of B.M. and direct force Case

B.M. at Center (E)

B.M. at ends (A)

Direct force (ha)

(i)

64569

55075

46852

(II)

73951

45069

23451

(II)

83742

35902

5200

The section will be design for maximum B.M. =

83742

N -m

for water side force σst

= σcbc = m k=

=

150

N/mm2

=

7

N/mm2

=

13

wt of water = 9800 N/mm2 for water side f

m*c

m*c+σst

 j=1-k/3 = R=1/2xc x j x k =

wt. of concrete = 25000 N/m3

1 0.5

13

= x

13 x

7

0.378 /

3

7

Provide over all thickness Mr = R . B .D

2

=

1.155 x

x

BMx100/σstxjxD=

using

20 mm Φ bars

Spacing of Bars = x1000/Ast Hence Provided Acual Ast provided

Ast using

= 8

0.24

mm Φ bars

=

0.3

= 0.874

J

=

0.8

x 0.378 = 1.155

R

=

1.1

=

320 mm so effective thicknesss 270

2

=

84216794

83742000 150 x A

=

314

x

20

0.874 x

=

0.1

320

x

A

=

10

3.83 /

x(

320 -

=

3.14xdia2 4 100

3.14 x

83742000

133

O.K.

x

20

say

=

100

759 mm2

130

mm

mm2

2415

100

=

= 314

mm c/c

5

=

20 4

130

130 =

= 450 -

mm

2365 mm

2365 =

mm Φ Bars @ 314 /

270

2

=

4 x100 1000 /

>

=

270

3.14xdia2

1000 x

0.3 x

K

150

0.87

Bend half bars up near support at distance of L/5 Area of distributionn steel =

= 0.378

+

x

1000 x

Ast =

7

=

0.80 m 0.24

%

area on each face= 3.14 x

8 4

x

8

# =

50

 

Section at supports :-  Maximum B.M.=

55075

N-m. There is direct compression of

46852 N also.

But it effect is not considered because the slab is actually reinforced both at top and bottom . σst =

Since steel is at top k=

0.32

J=

concrete M

0.89

R=

55075000

=

Ast



N/mm2

190

190 x

0.89 x

=

270

20

1.01 mm2

1204

[email protected]

Area

available from the bars bentup from the middle section = 1204 <

###

2415

/

2

=

mm2

###

Hence these bars will serve the purpose. However, provide 8 mm dia. Additional bars @ 200 mm c/c

6 Design of bottom slab: The bottom slab has the following value of B.M. and direct force. Case

B.M. at Center (F)

B.M. at ends (D)

Direct force (ha)

(i)

77881

71023

69810

(II)

89315

58813

21404

(II)

99258

49646

7246

The section will be design for maximum B.M. =

99258

N -m

for water side force σst

= σcbc = m k=

=

150

N/mm2

=

7

N/mm2

=

13

m*c+σst 1 0.5

13

= -

7

0.378 /

3

x

1000 x

7

x

7

= 0.378

K

=

0.3

= 0.874

J

=

0.8

x 0.378 = 1.155

R

=

1.1

+

0.87

=

1.155

Provide thickness of bottom slab D=

x

13 x

99258416

d =

Ast =

wt of water = 9800 N/mm2 for water side f

m*c

 j=1-k/3 = R=1/2xc x j x k =

wt. of concrete = 25000 N/m3

294

150

D

mm

350 mm so that d = 99258416

BMx100/σstxjxD=

150 x

300 =

0.874 x

20

mm bars

Spacing of Bars = x1000/Ast

A

=

314

x

20

Hence Provided Acual Ast provided

Area of distributionn steel = Ast

=

0.23

using 8

0.3

1000 / 314 /

x

3.83 /

x(

350 -

450 -

350

x

A

=

50

x

mm bars

Spacing of Bars = Ax1000/Ast =

0.1

=

8

Hence Provided

10

=

say

=

100

800 mm2

4 x100

400 =

mm Φ Bars @

20

=

= 314

120

mm

mm2

2617 5

=

x

mm c/c

100

3.14xdia2 1000 /

124

120

120 =

20 4

2523 =

mm Φ Bars @

-

mm

3.14 x

=

4 x100

Bend half bars up near support at distance of L/5

mm

300

3.14xdia

1000 x

344

2523 mm2

2

using

=

=

0.80 m 0.23 %

area on each face= 3.14 x

8

x

8

4 126

120

say

=

120

400 =

50 mm

mm c/c on each face

Section at supports :-  Maximum B.M.=

71023

N-m. There is direct compression of

69810 N also.

But it effect is not considered because the slab is actually reinforced both at top and bottom . Si

t

l i

tt

σ

190

N/mm2

t M

20

 

190 x Area

0.89 x

300

available from the bars bentup from the middle section = 1397 >

###

mm bars

Spacing of Bars = Ax1000/Ast = Hence Provided

/

2

=

mm2

###

Fail , hence additional reinforcement will provided. Additional reinforcemet required

using 8

2617

8 mm Φ Bars @

A

=

50

x

3.14xdia2

=

3.14 x

=

4 x100 1000 /

89

mm2

88.67

8

x

8

=

4

=

567

say

560

=

50 mm

300 mm c/c throught out the slab, at its bottom.

7 Design of side wall: The side wall has the following value of B.M. and direct force. Case

B.M. at Center (F)

B.M. at ends (D)

Direct force (ha)

(i)

7197

71023

155514

(II)

30523

58813

155108

(II)

48748

49646

155108

The section will be design for maximum B.M. =

71023

71023

Eccentricity =

N -m,

x

1000

=

155514

proposed thickness of side wall '=

330 mm



and direct force

e/D

=

457

mm

457 /

330 =

155514

1.38 <

1.5

thickness of side wall is OK

20

Let us reinforce the section with in fig xxx . With cover of Asc = Ast =

50 1000 300

mm

and D

=

20

x

3.14 x

x

300 mm c/c provided on both faces, as sho

mm Φ bars @

330 mm 20

4

=

mm2

1047

The depth of N.A. is computed from following expression: bn

D - dt -

3

n + (m - 1)Asc 1 (n - dc)(D - dt- dc) n

3

b n + (m -1) Asc

n - dc n

1000 n or 

2 1000 n+ 2

500 n 500 n+

140000 n 500 n

- m Ast

330

-

12

x

280

-

12560 n

+

50 ### n n 3

=

e+

+

12

x

n

-

50

-

n

-

50

x

D - dt - n

- dt

2

n

x

+

n 3

x

n

-

###

n2

+ -1256000

12560

D

-

50

-

628000 n

### n

### n 13

x x

n ### n

-

50

x 330

x -

50

-1256000 n

x

280

= 457 + 115 -

n

-62800000

-

n

-

### n

= +

572

###

multiply by n 140000 n2

-

500 2

+

### n3 12560

+

-1256000 n 628000

-

-62800000 ###

+

###

=

572

286000 n2

+

14967333 n

-146000 n2

-

13711333 n

-876 n2

+

82268

Solwing this trial and error we get, n ∴

= (

c'

500

x

n =

-

-2475659733

= 167 n3

-

14853958

= n3

91.47 mm 12 x

91.47 +

x(

2538459733

###

( 91.47 -

91.47

330 -

50 -

91.47 )

137.32 x

41.47 -

### x

50

)-

13 x

###

91.47

[email protected]

or

### + ∴

c' =

Also stress in steel t =

=

155514 m c' n

6.65

=

23383

(D-dc-n)

178.21 N/mm2

= <

7

< 13 x

6.65

91.47

190 N/mm2

188.53 = N/mm2

x(

330

23383

Stress is less than permissi -

50

O.K.

Stress in steel is less than permissiable Hence section is O.K.

-

91.47

)

[email protected]

ide,

28

55075

27.5

64569

77881

14

00   m   a   r   g   a    i    d   e   r   u   s   s   e   r   p    l   a   r    t   a    l    t   e    N

45069

27.5

73951

89315

08

  m   a   r   g   a    i    d   e   r   u   s   s   e   r   p    l   a   r    t   a

36

5902

27.5 3742

9258 08

orce 78 74 55

mm2

mm2 mm2

orce 78 74 55

mm2

mm2 mm2

mm2

N

OK n

-100 -n

ble

Box culverts

20 m Φ @

260

mm c/c

8 mm Φ @

200

mm C/C

8 mm Φ @

130

mm C/c

320 700

20 mm Φ @

20 mm Φ @

130 mm C/C

300 mm C/C 3.50

8 mm Φ @ 130 mm C/C 20 mm Φ @ 120 mm c/c 350 20 m Φ @ 240 mm c/c 330

8 mm Φ @

8 mm Φ @

200 mm C/C

130 mm C/c

3.50

330

Table 3.1

Table 1.15. PERMISSIBLE DIRECT TENSILE STRESS Grade of co

Tensile stress N/mm2

10

M-10

M-15

M-20

M-25

M-30

M-35

M-40

1.2

2.0

2.8

3.2

3.6

4.0

4.4

b < 0 0. 0. 0.

Table 1.16.. Permissible stress in concrete (IS : 456-2000) Permission stress in compression (N/mm2)

Grade of  concrete M M M M M M M M M

Bending αcbc

(N/mm2) 3.0 5.0 7.0 8.5 10.0 11.5 13.0 14.5 16.0

10 15 20 25 30 35 40 45 50

Kg/m2 300 500 700 850 1000 1150 1300 1450 1600

Direct (αcc) (N/mm2) 2.5 4.0 5.0 6.0 8.0 9.0 10.0 11.0 12.0

Kg/m2 250 400 500 600 800 900 1000 1100 1200

1.

Permissible stress in bond (Average) for  plain bars in tention (N/mm 2)

1. 1. 1. 2. 2. 2. 2.

(N/mm2) in kg/m2 --0.6 60 0.8 80 0.9 90 1.0 100 1.1 110 1.2 120 1.3 130 1.4 140

3.00 an

Over all de

Table 1.18. MODULAR RATIO M-10 31 (31.11)

Grade of co

Modular ra

M-15 19 (18.67)

M-20 13 (13.33)

M-25 11 (10.98)

M-30 9 (9.33)

M-35 8 (8.11)

M-40 7 (7.18)

Table Grade of  τc.

Table 2.1. VALUES OF DESIGN CONSTANTS Grade of concrete

M-15

M-20

M-25

M-30

M-35

M-40

Modular Ratio σcbc N/mm2

18.67 5

13.33 7

10.98 8.5

9.33 10

8.11 11.5

7.18 13

m σcbc

93.33

93.33

93.33

93.33

93.33

93.33

0.4

0.4

0.4

0.4

0.4

0.4

0.87

0.87

0.87

0.87

0.87

0.87

0.87

1.21

1.47

1.73

1.99

2.25

0.71

1

1.21

1.43

1.64

1.86

0.33

0.33

0.33

0.33

0.33

0.33

M 15

0.89

0.89

0.89

0.89

0.89

0.89

M 20

0.73

1.03

1.24

1.46

1.68

1.9

M 25

0.43

0.61

0.74

0.87

1

1.13

M 30

kc

0.29

0.29

0.29

0.29

0.29

0.29

 jc

0.9

0.9

0.9

0.9

0.9

0.9

M 40

0.65

0.91

1.11

1.31

1.5

1.7

M 45

k (a) σst = c  jc 140 N/mm2 Rc (Fe 250) P (%) c kc (b) σst =  j c 190 Rc N/mm2 Pc (%) (c ) σst = 230 N/mm2

Rc

Grade of concre τbd (N / mm2

Grade of  concrete

M 35

e

Pc (%)

Shear stress tc 100As bd 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52

M-20 0.18 0.18 0.18 0.19 0.19 0.19 0.2 0.2 0.2 0.21 0.21 0.21 0.22 0.22 0.22 0.23 0.23 0.24 0.24 0.24 0.25 0.25 0.25 0.26 0.26 0.26 0.27 0.27 0.27 0.28 0.28 0.28 0.29 0.29 0.29 0.30 0.30 0.30

0.31

0.44

Reiforcement % 100As M-20   bd 0.18 0.15 0.19 0.18 0.2 0.21 0.21 0.24 0.22 0.27 0.23 0.3 0.24 0.32 0.25 0.35 0.26 0.38 0.27 0.41 0.28 0.44 0.29 0.47 0.30 0.5 0.31 0.55 0.32 0.6 0.33 0.65 0.34 0.7 0.35 0.75 0.36 0.82 0.37 0.88 0.38 0.94 0.39 1.00 0.4 1.08 0.41 1.16 0.42 1.25 0.43 1.33 0.44 1.41 0.45 1.50 0.46 1.63 0.46 1.64 0.47 1.75 0.48 1.88 0.49 2.00 0.50 2.13 0.51 2.25

0.53

 

0.63

Degree 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 30 35 40 45 50 55 60 65

0.72

0.82

Value of angle sin cos 0.17 0.98 0.19 0.98 0.21 0.98 0.23 0.97 0.24 0.97 0.26 0.97 0.28 0.96 0.29 0.96 0.31 0.95 0.33 0.95 0.34 0.94 0.36 0.93 0.37 0.93 0.39 0.92 0.41 0.92 0.42 0.91 0.50 0.87 0.57 0.82 0.64 0.77 0.71 0.71 0.77 0.64 0.82 0.57 0.87 0.50 0.91 0.42

M 50

tan 0.18 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.32 0.34 0.36 0.38 0.40 0.42 0.45 0.47 0.58 0.70 0.84 1.00 1.19 1.43 1.73 2.14

0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02

0.30 0.30 0.31 0.31 0.31 0.31 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.33 0.33 0.33 0.34 0.34 0.34 0.34 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.36 0.36 0.36 0.36 0.36 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.38 0.38 0.38 0.38 0.38 0.38 0.39 0.39 0.39

1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52

0.39 0.39 0.39 0.39 0.39 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45 0.45 0.45

1.53 1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.78 1.79 1.80 1.81 1.82 1.83 1.84 1.85 1.86 1.87 1.88 1.89 1.90 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2.00 2.01 2.02

0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.49 0.49 0.49

2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50 2.51 2.52

0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60 2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70 2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80 2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90 2.91 2.92 2.93 2.94 2.95 2.96 2.97 2.98 2.99 3.00 3.01 3.02

0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 3.12 3.13 3.14 3.15

0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

. Permissible shear stress Table

c

in concrete (IS : 456-2000)

Permissible shear stress in concrete tc N/mm2

As d .15 5 0 5

M-15 0.18 0.22 0.29 0.34

M-20 0.18 0.22 0.30 0.35

M-25 0.19 0.23 0.31 0.36

M-30 0.2 0.23 0.31 0.37

M-35 0.2 0.23 0.31 0.37

M-40 0.2 0.23 0.32 0.38

0

0.37

0.39

0.40

0.41

0.42

0.42

5

0.40

0.42

0.44

0.45

0.45

0.46

0 5 0 5 0 5

0.42 0.44 0.44 0.44 0.44 0.44 0.44

0.45 0.47 0.49 0.51 0.51 0.51 0.51

0.46 0.49 0.51 0.53 0.55 0.56 0.57

0.48 0.50 0.53 0.55 0.57 0.58 0.6

0.49 0.52 0.54 0.56 0.58 0.60 0.62

0.49 0.52 0.55 0.57 0.60 0.62 0.63

200 1.20

175 1.25

above

Table 3.2. Facor k  pth of slab

300 or more

1.00

275 1.05

250 1.10

.3. Maximum shear stress M-15 1.6

concrete ax

M-20 1.8

τc.max

M-25 1.9

225 1.15

15 0.6

20 0.8

25 0.9

M-30 2.2

M-35 2.3

bd

M-40 2.5

in concrete (IS : 456-2000)

30 1

35 1.1

40 1.2

Table 3.5. Development Length in tension Plain M.S. Bars τbd

(N / mm2)

H.Y.S.D. Bars

kd = Ld Φ

1.30

in concrete (IS : 456-2000)

able 3.4. Permissible Bond stress Table 10 --

150 or less

τbd

(N / mm2)

kd = Ld Φ

0.6

58

0.96

60

0.8

44

1.28

45

0.9

39

1.44

40

1

35

1.6

36

1.1

32

1.76

33

1.2

29

1.92

30

1.3

27

2.08

28

45 1.3

50 1.4

1.4

tan 0.18 0.19 0.21 0.23 0.25 0.27 0.29 0.31 0.32 0.34 0.36 0.38 0.40 0.42 0.45 0.47 0.58 0.70 0.84 1.00 1.19 1.43 1.73 2.14

25

Value of angle Degree sin 10 0.17 11 0.19 12 0.21 13 0.23 14 0.24 15 0.26 16 0.28 17 0.29 18 0.31 19 0.33 20 0.34 21 0.36 22 0.37 23 0.39 24 0.41 25 0.42 30 0.50 35 0.57 40 0.64 45 0.71 50 0.77 55 0.82 60 0.87 65 0.91

2.24

cos 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.93 0.93 0.92 0.92 0.91 0.87 0.82 0.77 0.71 0.64 0.57 0.50 0.42

26

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF