Bode Graph

March 2, 2019 | Author: paul3012 | Category: Technology, Computing, Software, Computing And Information Technology
Share Embed Donate


Short Description

Download Bode Graph...

Description

Diagrammes de Bode, Black et Nyquist avec PGF/TIKZ Papanicola Robert ∗ 7 avril 2009  ver  versi sion on 1 : mise en ligne de la version initiale 06/04/2009.

1 Prés Présen enta tati tion on Ce package permet de tracer les diagrammes de Bode, Black et Nyquist à l’aide de Gnuplot et Tikz. Les fonctions de transfert élémentaires et les correcteurs courants sont préprogrammés préprogrammés pour être utilisés dans les fonctions de tracé.

1.1 1.1 Néce Nécess ssit ite e Pour fonctionner ce package nécessite : – une version CVS de Pgf/Tikz Pgf/Tikz (certaines commandes de calculs calculs ont étés modifiées ou intégrées depuis la version 2), elle peut être téléchargée sur le site Texample .  A TE X(Cf. la doc de – que gnuplot soit installé et configuré pour être exécuté exécuté lors de la compilation de votre fichier fichier L A  Pgf/Tikz).

1.2 1.2 Comp Compos osit itio ion n du pack packag age e Ce package est constitué de trois fichiers : – bodegraph.sys bodegraph.sys : le package proprement proprement dit ; – isom.txt : macro-commandes macro-commandes de de définition des courbes iso-module iso-module ; – isoa.tx : macro-commandes macro-commandes de définition définition des courbes iso-arguments. iso-arguments. Du fichier bodegraph.tex, ce fichier contenant la documentation. Remarque : pour compiler ce document latex, vous avez besoin du package tkzexample de Alain Matthes. Les courbes gnuplot précalculées sont dans le répertoire /gnuplot/.

1.3 Utili Utilisat sation ion Décompresser l’archive du package dans votre répertoire personnel. Rajouter dans l’entête la commande .

1.4 1.4 ToDo oDo – – – –

Compléter les fonctions élémentaires, élémentaires, corriger les fotes d’orthographe d’orthographe,, Traduire en anglais, anglais, ... ∗

Merci à Germain Gondor pour ses remarques

1

2 Les commandes 2.1 Grille semilog  Une commande générique :

.

10 0 −10

−20

10−2

10−1

100

101

102

103

L’amplitude des coordonnées de l’abcisse doit être donnée en décade, de 10 d écademini  à 10decademaxi , l’ordonnée varie elle de ymini  à ymaxi . On utilisera les commandes d’échelles de tikz pour adapter les dimensions de la grille à celle de la page. Ainsi si on souhaite afficher un diagramme d’amplitude de 5 décades de 10 −1 à 104 sur 7 cm et 80 dB de -60 à 20 dB sur 3 cm, le diagramme de phase de −180◦ à 0◦ sur 3 cm avec un pas vertical de 30 ◦ en précisant les unités (figure 1) : 20

dB

10 0 −10 −20 −30 −40 −50 −60

10−1

rad/s

100

101

102

103

104

100

101

102

103

104



0 −30 −60 −90 −120 −150 −180

10−1

rad/s

F IGURE 1 – Grille semilog  Configuration – permet d’afficher les unités pour un diagramme d’amplitude – permet d’afficher les unités pour un diagramme de phase, – permet de préciser le pas des graduations verticales (par défaut 10) du diagramme semilog, – et permettent de choisir directement lesunités à afficher, à utiliser sous la forme

2.2 Tracé des diagrammes Deux commandes permettent de tracer les diagrammes d’amplitude et de phase (figure 2). Ces fonctions nécessitent que gnuplot ( ) soit installé et utilisable par votre distribution L A TE X. – pour le diagramme d’amplitude ;

2



réalise le tracé et ajoute le texte avec les options précisées à l’extrémité.

– –

pour le diagramme de phase ; réalise le tracé et ajoute le texte avec les

options précisées à l’extrémité. avec – le domaine du tracé précisé en puissance de 10, ainsi pour tracer un fonction de 10 −2 rad/s à 10 2 rad/s on notera le domaine ; – la fonction à tracé écrite avec la syntaxe gnuplot. – par défaut les options suivantes sont appliquées, toutes les options de tracé de tikz et de gnuplot peuvent être utilisées et substituent à celle par défaut, on notera principalement – spécifiques à tikz – la couleur, [red], [blue], . . . – l’épaisseur [thin], [thick], .. . – le style [dotted] [dashed], . . . – spécifiques à gnuplot – le nombre de points [samples=xxx] – l’identifiant du fichier créé [id=nomdufichier], il est à noter que tikz, sauvegarde au premier appel de gnuplot la table des valeurs et que si celle-ci est inchangée lors d’une compilation ultérieure, tikz réutilise la table précédemment sauvée. il est donc important pour minimiser le temps de compilation de préciser un id différent pour chaque courbe, par défaut les macros sauvegardent les graphes dans des fichiers différents (incrémetation d’un compteur), il n’est donc utile de nommer la courbe que si vous souhaitez la retrouver. – le répertoire de sauvegarde des tables de données [prefix=repertoire/] (par défaut prefix=gnuplot/) – pour les autres options, consulter la documentation de tikz. 3  Ainsi pour tracer le diagramme d’amplitude de la fonction du premier ordre, H (s ) = entre 10−2 rad/s et 1 + 0.3 · s  102 rad/s sur une grille semi logarithmique, on utilise la séquence de commandes ci-dessous. 10

0

−10

−20

10−2

10−1

100

101

102

F IGURE 2 – Utilisation de BodeAmp

2.3 Fonctions de transfert élémentaires Les fonctions de base pour tracer les diagrammes de Bode des systèmes du premier, du second ordre, et l’intégration, sont directement implémentées dans le package et les diagrammes asymptotiques. Ces fonctions ne peuvent être utilisées seules mais combinées avec les commandes de tracé : – pour le diagramme d’amplitude; 3

– pour le diagramme de phase ; Le tracé des asymptotes présente un défaut à la cassure, cela est du à la finesse du tracé avec gnuplot, pour améliorer ce tracé, il est possible d’augmenter le nombre de points à calculer (samples=xxx) mais cela augmente le temps de compilation. 2.3.1 Premier ordre

Deux commandes implémentent les formules permettant le tracé des diagrammes d’amplitude et de phase par K 

gnuplot de la fonction du premier ordre H 1 (s ) = et deux autres les diagrammes asymtotiques (figure 3) : 1 + τ · s  – pour le diagramme d’amplitude, avec le gain la constante de temps ; – pour le diagramme asymptotique d’amplitude ; – pour le diagramme de phase ; – pour le diagramme asymptotique de phase. Remarque : la donnée, n’est pas utile pour tracer le diagramme de phase, il est juste maintenu pour faciliter l’écriture de la fonction par copie directe de la commande de tracer du module. 20 10 0 −10

−20

10−2

10−1

100

101

102

10−1

100

101

102

0 −10 −20 −30 −40 −50 −60 −70 −80 −90

10−2

F IGURE 3 – Premier ordre

2.3.2 Second ordre

Deux commandes implémentent les formules permettant le tracé des diagrammes d’amplitude et de phase par K 

gnuplot de la fonction du second ordre H 2 (s ) = 1+ –

2 · z  ωn 

· s +

s 2 2

ωn 

pour le diagramme d’amplitude, avec

et deux pour le tracé des asymptotes (figure 4) : le gain,

le coefficient d’amortissement et

pulsation propre; – – –

pour le diagramme asymptotique d’amplitude ; pour le diagramme de phase ; pour le diagramme asymptotique de phase ;

4

la

20 10 0 −10

−20

10−1

100

101

102

100

101

102

0 −30 −60 −90 −120 −150 −180

10−1

F IGURE 4 – Second ordre 2.3.3 Intégrateur H i (s ) =

– –

K  (figure 5) s 

pour le diagramme d’amplitude ; pour le diagramme de phase.

40 30 20 10 0 −10 −20 −30 −40

10−2

10−1

100

101

102

10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 −100 10−2

10−1

100

101

102

F IGURE 5 – Intégrateur

5

2.3.4 Gain seul H K (s ) = K  :

pour le diagramme d’amplitude (pas de diagramme de phase).

2.3.5 Retard H r (s ) = e −T r ·s (figure 6)

– –

pour le diagramme d’amplitude ; pour le diagramme de phase.

10

dB

0

retard −10

−20

1er ordre 1er ordre retardé

−30

−40

10◦0

101

rad/s

102

103

0 −30

retard 1er ordre

−60

−90

−120

1er ordre retardé

−150

−180

100

101

102

rad/s

103

F IGURE 6 – Retard et 1er ordre 2.3.6 Premier Ordre généralisé H (p ) = K 

a 1 + a 2 · (figure 7) b 1 + b 2 · p 

Courbes réelles – –

 Asymptotes – –

a 1 et b 1 ne doivent pas être nuls.

6

40 30 20 10 0 −10 −20 −30 −40

10−2 90 80 70 60 50 40 30 20 10 0 −10 −20 −30 −40 −50 −60 −70 −80 −90 10−2

10−1

100

101

102

10−1

100

101

102

F IGURE 7 – Premier ordre généralisé 2.3.7 Fonctions inverses

 À partir des fonctions élémentaires ci dessus il est facile de tracer les fonctions inverses en inversant uniquement le signe. Premier ordre au numérateur : N 1 ( s ) = 1 + T  · s  avec – pour le module, – pour la phase ; 2 s  2 · z  Second ordre au numérateur : N 2 ( s ) = 1 + 2 cdots + 2 avec ωn 

– –

ωn 

pour le module, pour la phase;

Dérivateur : N d (s ) = s  avec

– –

pour le module, pour la phase.,

2.4 Correcteurs Les correcteurs de base sont aussi pre-programmés. Correcteur P C (p ) = K 

– module : – argument :

1

Correcteur PI C (s ) = K p  ·

1 + T i  · s  T i  · s 

(figure 8)

1. commande inutile, elle retourne 0

7

– module : , – argument : et les tracés asymptotiques

30

– module : – argument :

,

dB

20 10 0 −10 ◦

0100 −10 −20 −30 −40 −50 −60 −70 −80 −90 100

rad/s

101

102

103

101

102

103

rad/s

F IGURE 8 – Correcteur P.I

2.4.1 Correcteur PD C (p ) = K p  · 1 + T d  · p  , le correcteur PD programmé est un correcteur idéal, pour réaliser un correcteur réel, on





utilisera le correcteur à avance de phase (figure 9). – module : – argument :  Asymptotes

,

– module : – argument :

,

2.4.2 Correcteur à Avance de phase C  AP (p ) = K p  ·

1 + a · T 1 · p  (figure 10) 1 + T 1 · p 

Courbes réelles – module : – argument :

 Asymptotes – module : – argument :

,

2.4.3 Correcteur à Retard de phase C RP  (p ) = K p  ·

1 + T 1 · p  1 + a · T 1 · p 

(figure 11)

8

,

50

dB

40 30 20 10 0 10◦0 90 80 70 60 50 40 30 20 10 0 100

rad/s

101

102

103

101

102

103

rad/s

F IGURE 9 – Correcteur P.D

30

dB

20 10 0 −10

100

rad/s

101

102

103

101

102

103



90 60 30 0 −30 −60 −90

100

rad/s

F IGURE 10 – Correcteur avance de phase – module : – argument :  Asymptotes

,

– module : – argument :

9

,

30

dB

20 10 0 −10

100

rad/s

101

102

103

101

102

103



90 60 30 0 −30 −60 −90

100

rad/s

F IGURE 11 – Correcteur retard de phase 2.4.4 Correcteur PID série C (s ) = K p  ·

1 + T i  · s  T i  · s 

· (1 + T d  · s ) (figure 12)

Courbes réelles – module : – argument :

,

 Asymptotes – module : – argument :

,

2.5 Fonctions de transfert complexe Pour tracé les diagrammes de Bode d’un fonction de transfert complexe, définie par le produit de fonctions élémentaires, il suffit de sommer les représentation, aussi bien pour le tracé de la fonction que pour les asymptotes. 2.5.1 Exemples

8 (figure 13) s · (1 + 0.5 · s ) 1 + 0.01 · s  Second ordre généralisé : 5 · (figure 14) s 2 2 · 0.3 · s + 1+ 15 152 Premier ordre + intégrateur : H ( s ) =

3 Diagramme de Black  3.1 Lieu de Black  Deux commandes et permettent de tracer le lieu de Black d’une fonction (figure 15). –

10

30

dB

20 10 0 −10

100

rad/s

101

102

103

101

102

103



90 60 30 0 −30 −60 −90

100

rad/s

F IGURE 12 – Correcteur P.I.D série 60 50 40 30 20 10 0 −10 −20 −30 −40 10−2

10−1

100

101

102

10−1

100

101

102

0 −20 −40 −60 −80 −100 −120 −140 −160 −180 −200

10−2

F IGURE 13 – Premier ordre + intégrateur –

, c’est le domaine de tracé au sens de GnuPlot, il est conseillé de définir le domaine décade (entière ou non) comme , GnuPlot va tracer la fonction pour ω compris entre 10−1 et 103 . – , la fonction à tracer doit être définie par la qui retourne l’argu◦ ment en et la qui retourne le module en dB. On peut bien sur utiliser les fonctions définies au dessus pour les diagrammes de Bode pour ces fonctions. – , toutes les options tikz pour tracer des fonctions gnuplot. – cette commande permet de rajouter commentaire (nom, référence, équation) à l’extrémité d’un tracé. Les paramètres sont identiques, se rajoute uniquement 11

30 20 10 0 −10 −20 −30 −40 −50

10−1

100

101

102

103

104

100

101

102

103

104

0 −20 −40 −60 −80 −100 −120 −140 −160 −180 −200

10−1

F IGURE 14 – Second ordre généralisé – –

, ce sont les options d’écriture du texte (couleur, position,...), , le texte à écrire entre parenthèses ;



cette commandepermet de tracer et noter des points particuliers du graphe, la valeur de la pulsation est placée à coté (droite par défaut). – options de tracé (couleur, id, prefix,...), – pulsations en rad/s séparées par une virgule, – identique à – la version étoilée de la commandeprécédentepermet de choisir la position de chaque texte, comme l’exemple

3.2 Grille et abaque de Black-Nichols 3.2.1 grille

Une grille peut aussi être ajoutée avec la commande qui dessine une grille dont le pas horizontal est ◦ définie par la variable (par défaut 45 que l’on change si on le souhaite par , le pas vertical est lui défini par (par défaut 10 dB ). Cette commande dessine aussi le point critique (-180◦ ,0 dB) et gradue les axes. La commande étoilée , ne dessine que la grille. 3.2.2 Abaque de Black-Nichols

permet de tracer les courbes isomodule et isoargument de l’abaque de Black-Nichols (figure 16). Les seules valeurs possibles pour ces courbes de gain et d’argument sont les suivantes : – isomodule, gain en dB : -30, -25, -20, -15, -12, -10, -8, -6, -5, -4, -3, -2, -1, -0.5, -0.2, 0, 0.2, 0.5, 1, 2, 2.3, 3, 4, 5, 6, 8, 10 ; – isoargument, en ◦ : 359, 357, 354, 350, 345, 340, 330, 315, 300, 285, 270, 255, 240 , 225, 210,195, 190, 170,165, 150, 135, 120, 105, 90, 75, 60, 45, 30, 20, 15, 10, 6, 3, 1. Deux autres commandes permettent de limiter l’affichage à quelques courbes : – cette commande permetde traceruniquement lescourbes d’amplitude de la liste par défaut, toutes les courbes sont dessinées. 12

,



, cette commande permet de tracer uniquement les courbes d’amplitude de la liste , par défaut, toutes les courbes sont tracées. Le style des courbes tracées est modifiable à l’aide des deux commandes : – pour les courbes isomodules. – pour les courbes isoarguments. Remarque : pour ne pas trop ralentir la compilation, les courbes sont pré-calculées. Elles sont définies dans les deux fichiers isom.txt et isoa.txt (respectivement pour le module et l’argument). Si vous souhaitez ajouter de nouvelles courbes, il faut les ajouter dans ces fichiers en respectant la syntaxe.

3.3 Exemples Sur l’exemple figure 15 sont représentées les fonctions suivantes : 1

– H 1 (p ) =

p 2

2 · 0.1 · p + 1500 15002 5 – H 2 (p ) = , p 2 2 · 0.2 · p + 1+ 150 1502 1+

,

– H 3 (p ) =

5 , 1 + 3 · p  1

– H 4 (p ) = 1+

p 2 2 · 0.1 · p + 1500 15002

dB

H 4 • 25



80 1500 •

• 0.1 +10

• 1

-180



-135

-90

500 • -45



0

• 3 -10

• 4000

• 12

H 1

• 65

H 3

H 2

F IGURE 15 – Diagramme de Black 

13

  0.43 · 1 + 0.0009 · p  2 · 0.0009 · p 

dB

0dB

0.2dB

−0.2dB

0.5dB

−0.5dB

1dB

−1dB

2dB 2.3dB

−2dB

3dB

+10

4dB 5dB 6dB 8dB 10dB

−3dB −4dB −5dB

-360

-315

-270

-225

-180



-135

-90

-45



−6dB

0

−8dB −10dB −12dB -10

−15dB

−20dB −1◦

−359◦

−357◦ −3◦ −354◦ −6◦ − 25dB −350◦ −10◦ −345◦ −15◦ ◦ −340 −20◦ −330◦ −30◦ −315◦ −45◦ −30dB −300◦ −60◦ ◦ ◦ −285 −75 ◦ ◦ −270 −90 −255◦ −105◦ −240◦ −120◦ −225◦ −135◦ −210◦ −190◦ −170◦ −150◦ −195◦ −165◦

F IGURE 16 – Abaque de Black 

4 Diagramme de Nyquist Ce package permet aussi de tracer le diagramme de Nyquist (figure 17) d’une fonction linéaire, le tracé est réalisé à partir de la description polaire de la fonction de transfert H (i  ·o  m e g a)  = H (i  · ω) · e arg (H (i · )) . Cela permet de tracer le diagramme de Nyquist à partir des définitions précédentes du module et de l’argument. – La commande trace donc le lieu de Nyquist de fonctions simples ou de fonctions composées (voir les exemples ci-dessous). – , options de tracé voir plus haut, – , le domaine de tracé doit être défini en décade, ω

14

I m 

1

-1 •

0

R e 

1

20 • -1

H 3

10





8

F IGURE 17 – Diagramme de Nyquist –

, le module doit être écrit en dB, on peut bien sûrutiliserles fonctionsélémentaires ci-dessus comme , pour obtenir ce module. – , l’argument doit être définie en degré, on peut utiliser les fonctions arguments cidessus comme , . – , cette version étoilée permet de rajouter un commentaire à l’extrémité du tracé. – , cette commande permet de tracer et noter des points particuliers du graphe, la valeur de la pulsation est placée à coté (droite par défaut). – , la version étoilée permet de préciser la postion du point. Un grille peut être ajoutée au tracé par la commande , par défaut le pas de la grille est de 1 mais peut être réglé avec les deux variables et . La commande étoilée trace la grille seule sans graduation, la commande simple trace en plus le cercle unitaire, le point critique (-1,0).

4.1 Quelques exemples de tracé de lieu de Nyquist Sur l’exemple figure 17 sont représentées les fonctions suivantes :

15

1

– H 1 (p ) =

p 2

2 · 0.1 · p + 1500 15002 5 – H 2 (p ) = , p 2 2 · 0.2 · p + 1+ 150 1502 1+

,

– H 3 (p ) =

5 , 1 + 3 · p  1

– H 4 (p ) = 1+

p 2 2 · 0.1 · p + 1500 15002

0.43 · 1 + 0.0009 · p  2 · 0.0009 · p 





5 Réponse temporelle figure 18 – gnuplot. – trémité.

trace la fonction, la fonction doit être définiecommeune fonction trace la fonction et ajoute le texte à l’ex-

s

2

1

1

0

t  0

1

F IGURE 18 – Réponse temporelle

16

Table des matières 1 Présentation

1.1 1.2 1.3 1.4

Nécessite . . . . . . . . . . Composition du package Utilisation . . . . . . . . . ToDo . . . . . . . . . . . .

1

. . . .

. . . .

. . .. . . ..

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .. . . ..

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .. . . ..

. . . .

. . . .

. . . .

. . . .

. . . .

. . .. . . ..

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .. . . ..

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . .. . . ..

. . . .

. . . .

2 Les commandes

1 1 1 1 2

2.1 Grille semilog  . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Tracé des diagrammes . . . . . . . . . . . . . . . . . . . . 2.3 Fonctions de transfert élémentaires . . . . . . . . . . . . 2.3.1 Premier ordre . . . . . . . . . . . . . . . . . . . . . 2.3.2 Second ordre . . . . . . . . . . . . . . . . . . . . . 2.3.3 Intégrateur . . . . . . . . . . . . . . . . . . . . . . . 2.3.4 Gain seul . . . . . . . . . . . . . . . . . . . . . . . . 2.3.5 Retard . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.6 Premier Ordre généralisé . . . . . . . . . . . . . . 2.3.7 Fonctions inverses . . . . . . . . . . . . . . . . . . 2.4 Correcteurs . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Correcteur PD . . . . . . . . . . . . . . . . . . . . . 2.4.2 Correcteur à Avance de phase . . . . . . . . . . . . 2.4.3 Correcteur à Retard de phase . . . . . . . . . . . . 2.4.4 Correcteur PID série . . . . . . . . . . . . . . . . . 2.5 Fonctions de transfert complexe . . . . . . . . . . . . . . 2.5.1 Exemples . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .. .. . . . . . . . . . . .. . .

. . . .. . . . . . . .. . . . . . .. . . . . . 2 .. . . . . . . .. . . . . . . .. . . . . . .. 2 .. . . .. . . .. . . .. . . .. . .. . . .. 3 . . . . . . . .. . . . . . .. . . . . . . .. . 4 . . . . . . . .. . . . . . .. . . . . . . .. . 4 . . . . .. . . . . . . .. . . . . . .. . . . . 5 . . . . .. . . . . . . .. . . . . . .. . . . . 6 . . . .. . . . . . . .. . . . . . .. . . . . . 6 . . .. . .. . . .. . . .. . . .. . . .. . . 6 . . .. . .. . . .. . . .. . . .. . . .. . . 7 . . .. . . . . . .. . . . . . . .. . . . . . . 7 . . . . . . . .. . . . . . .. . . . . . . .. . 8 .. . . .. . . .. . . .. . . .. . .. . . .. 8 .. . . .. . . .. . . .. . . .. . .. . . .. 8 . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . . 10 . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Diagramme de Black 

10

3.1 Lieu de Black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Grille et abaque de Black-Nichols . . . . . . . . . . . . . . . . 3.2.1 grille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2.2 Abaque de Black-Nichols . . . . . . . . . . . . . . . . . 3.3 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Diagramme de Nyquist

. . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .

10 12 12 12 13 14

4.1 Quelques exemples de tracé de lieu de Nyquist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 Réponse temporelle

16

17

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF