Binomial+Theorem+[Practice+Question].pdf
Short Description
Binomial+Theorem+[Practice+Question].pdf...
Description
IIT – ian’s
P A C E
216 - 217 ,2nd floor , Shopper’s point , S. V. Road. Andheri (West) Mumbai – 400058 40005 8 . Tel: 26245223 / 09
Practice Question Question based on
LEVEL –1 Q.8
Binomial Theorem for positive integral Index
equal then (where r > 1, n > 2), positive
Q.2
a 9 b is 3
integer)-
Fourth term in the expansion of (A) 40 a 7 b3
3 7 (B) 40a b
6 4 (C) 1890 a b
(D) 1890a4 b6
(A) r = n/2 (C) r =
Second term in the expansion of (2x + 3y) 5 will
Q.9
be (A) 46 x2y3
(B) 30 x 3y2
(C) 240 x 4 y
(D) 810 xy4
The coefficient of (3r) th term and coefficient of (r + 2)th term in the expansion of (1 + x) 2n are
10
Q.1
Binomial Theorem
Q.10
n 1 2
(B) r = n/3 n 1
(D) r =
2
The coefficient coefficient of a 2 b3 in (a + b) 5 is(A) 10
(B) 20
(C) 30
(D) 40
The coefficient coefficient of x7 and x8 in the expansion of n
Q.3
Q.4
x 2 are equal, then n is equal to 3
The 5 term of the expansion of (x – 2) is th
8
(A) 8C5x3( –2)5
(B) 8C5x3 25
(C) 8C4x4 (–2)4
(D) 8C6x2 (–2)6
The number of terms in expansion of (x – 3x 2 +
Q.11
3x3)20 is(A) 60 Q.5
(B) 61
(C) 40
(D) 41
(C) 55
(D) None of these
The coefficient of x5 in the expansion of (A) 12C525, 37
(B) 12C626.36
(C) 12C527.35
(D) None of these
The term with coefficient coefficient 6C2 in the expansion
n
Q.12
(A) T1 and T3
(B) T2 and T4
(C) T3 and T 5
(D) None of these
1 If the expansion of x 2 , the coefficient 4 of third term is 31, then the value of n i s-
If n is a positive integer, then r th term in the expansion of (1–x)n is-
Q.7
(B) 45
(2 + 3x)12 is-
of (1+ x)6 is-
Q.6
(A) 35
Q.13
(A) 30
(B) 31
(C) 29
(D) 32
If A and B are coefficients coefficients of x r and xn–r
(A) nCr (–x)r
(B) nCr xr
respectively in the expansion of (1+ x) n, then-
(C) nCr-1(–x) r–1
(D) nCr–1xr–1
(A) A = B (B) A B
If the 4th term in the expansion of ax 5 2
1
(C) A = , B for some
n
is x
, then the values of a and n are-
(D) None of these Q.14
If (1 + by)n = (1 + 8y +24y2 + …..) then the value of b and n are r espectivelyespectively-
(A) 1/2, 6
(B) 1, 3
(A) 4, 2
(B) 2, –4
(C) 1/2, 3
(D) can not be found
(C) 2, 4
(D) –2, 4
2624522 3 / 09 ; .www.iitianspace.com .www.iitians pace.com IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223
1
Q.15
Q.23
The number of terms in the expansion of 9
10
x 3 2 is 2 x
9
(1 + 5 2 x) + (1 – 5 2 x) is-
Q.16
(A) 5
(B) 7
(C) 9
(D) 10
(A)
The number of non zero terms in the expansion
(C)
of [(1 + 3 2 x )9 – (1 – 3 2 x)9] is -
Q.17
(A) 9
(B) 10
(C) 5
(D) 15
Q.24
(B) 5
(C) 4
(D) 3
256
(B)
450
504 259
(D) None of these
263
The coefficient of x –26 in the expansion of 11
in the expansion of (x + 2 ) + (x – 2 ) is(A) 10
405
2 2 x 4 is x
After simplification, the total number of terms 4
The coefficient of x 4 in the expansion of
(A) 330 × 2 6
(B) – 330 × 26
(C) 330 × 2 7
(D) – 330 × 27
4
Q.25
The term independent of x in the expansion of 10
Q.18
x 3 will be 3 2x 2
The number of terms in the expansion of [(x – 3y)2 (x + 3y) 2]3 is-
Q.19
(A) 6
(B) 7
(A) 3/2
(B) 5/4
(C) 8
(D) None of these
(C) 5/2
(D) None of these
The number of terms in (x + a) 100 + (x – a) 100
Q.26
8
(A) 202
(B) 51
1 expansion of y1/ 3 y 1/ 5 is 2
(C) 101
(D) None of these
(A) sixth
(B) seventh
(C) fifth
(D) None of these
after solving the expansion is -
Q.20
The term independent of y in the binomial
The coefficient of x 5 in the expansion of (1+ x2)5 (1+ x)4 is (A) 30
(B) 60
(C) 40
(D) None of these
Q.27
If x4 occurs in the r th term in the expansion of 15
4 1 x 3 , then r equalsx (A) 7
Q. 21
(B) 8
Q.28
(A) 6
(B) 22
(C) – 6
(D) 8
The term containing x in the expansion of 5
2 1 x is x (A) 2nd
(B) 3 rd
(C) 4 th
(D) 5
th
The coefficient of x 4 in the expansion of 6
(1+ x + x 2 + x3)11 is-
Question based on
(D) 10
The coefficient of x in the expansion of (1 + x)3.(1 – x)6 is -
Q.22
(C) 9
5
(A) 990
(B) 495
(C) 330
(D) None of these
Q.29
1 The term independent of x in 2x is 3x (A) 160/9
(B) 80/9
(C) 160/27
(D) 80/3
Particular term in the expansion
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
2
Q.30
The term independent of x in the expansion of
8
Q.37
10
x 3 is 2 3 2 x (A) 10C1
(B) 5/12
(C) 1
(D) None of these
Q.38
x a The middle term of the expansion is a x (A) 56a2/x2
(B) – 56a 2/x2
(C) 70
(D) –70
The
middle
term
in
the
expansion
of
10
Q.31
3 1 x 3 isx
If 9 term in the expansion of (x + x ) does th
1/3
-1/3 n
not depend on x, then n is equal to(A) 10 Q.32
The
constant
1 x x (A)
Q.33
(B) 13
2n ! n!
(C) 16 term
in
(D) 18
the
expansion
of
2n
Q.39
is-
(A) 252
(B) – 252
(C) 210
(D) – 210
If the middle term in the expansion of n
n!
(B)
2n !
(C)
2n ! 2 !n !
(D)
2n !
2 1 x is 924 x6, then n = x
n !n !
(A) 10
(B) 12
(C) 14
(D) None of these
The coefficient of the term independent of y in 3n
Q.40
1 is the expansion of y 2 y
The greatest coefficient in the expansion of (1+ x)10 is(A)
(A) 3nCn–1 (–1)n-1
(B) 3n Cn
(C) 3n Cn(–1)n
(D) None of these (C)
Q.34
The number of integral terms in the expansion of (51/2 + 7 1/6)642 is -
Question based on
Q.35
(A) 106
(B) 108
(C) 103
(D) 109
Q.41
The
10! 5! 6!
(B)
10!
10! (5! )
2
(D) None of these
5! 7! middle
term
in
the
expansion
of
(1 – 3x + 3x – x ) is 2
3 6
(A) 18C10x10 (B) 18C9(–x)9
Middle Term
(C) 18C9 x9 (D) – 18C10 x10
Middle term in the expansion of (x 2 – 2x)10 will be (A) 10C4x17 24
(B) – 10C5 25 x15
(C) – 10C4 24 x17
(D) 10C5 24 x15
Question based on
Q.42 Q.36
The
middle
term
in
the
expansion
9
3 x 3 is x2 6 (A)
189 8
x2,
21 16
x7
189 2 21 7 (C) – x , – x 8 16
(B)
189
21 x2, – x7 8 16
of
Term from end
The 5th term from the end in the expansion of 9
x 3 2 is 2 x3 (A) 63x3 (C)
(D) None of these
672 x18
(B) –
252 x3
(D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
3
n
Q.43
1 If in the expansion of 21 / 3 1/ 3 , the ratio 3
Q.51
C0C1 + C 1C2 + C2C3 + ....+ Cn–1Cn is equal to-
of 6 th terms from beginning and from the end is
(A)
1/6, then the value of n is (A) 5
Q.44
(C)
(D) None of these
Binomial Coefficient
Q.52
If (1+ x) n = C 0 + C 1x + C 2x2 + C 3x3 + ....+ C nxn, (A) 2n+1
(B) 2n–1
(C) 2 + 1
(D) 2 – 1
n
If (1+ x) n = C 0 + C 1x + C 2x2 + ...+ C nxn, then the
2n !
(D)
(n 1)! n !
n 1 1 Cn C0 – nC1 + n C2 – ......+ (–1) n = 2 3 n 1
(B) 1/n 1
n 1
(D)
1 n 1
1 In the expansion of (1 + x) 1 , the term x n
independent of x is-
(A) 2n (n + 1)
(B) 2 n-1 (n + 1)
(A) C 02 + 2 C12 + .....+ (n +1) C 2n
(C) 2n-1 (n + 2)
(D) 2 n (n + 2)
(B) (C0 + C1 + …..+ C n)2 (C) C 02 + C12 + .....+ C 2n
If C0, C 1, C 2, ....., C 15 are coefficients of different
(D) None of these
(B) 2 14
(C) 2 7
Q.54
(D) 28
If (1+ x)n = C0 + C1x + C2x2 +...+ Cnxn, then C0Cr + C1Cr +1 + C2Cr+2 + .....+ C n–r Cn is equal to-
If (1+ x)n = 1 + C 1x + C2x2 + ....+ C nxn, then
(A)
C1 + C3 + C5 + ..... is equal to(A) 2n
(B) 2 n – 1 (C) 2n + 1
1
n!
n !
1 2 ! ( n 2) !
1 4!(n 4) !
(D) 2 n–1
......
(C)
(B) 2 n–1
1! (n 1) ! (A)
2
+
1 3!( n 3)!
(C) 2n+1
+
1 5!( n 5)!
n
n!
(C) 0
( n r )!(n r )! 2n! n !(n r )!
(B)
(D)
2n! n !( n r )! 2n! (n 1) !(n 1)!
is
n !
Q.55
If (1+ x)n = C0 + C1x + C2x2 + ...Cn. xn then the value of C0 + 3C 1 + 5C2 + .....+ (2n + 1) C n is-
(A) 2n 1
2n!
1
equal to -
Q.50
(n 1)! (n 1) !
n !( n 1)!
value of C0 + 2C 1 + 3C2 + ....+(n +1)C n is -
(A) 215
Q.49
2n !
2n !
n
C0+ C2+ C4 + ...+ C 14 is equal to-
Q.48
(B)
n
terms in the expansion of (1 + x) 15, then
Q.47
n
(C)
Q.53
Q.46
n! n!
(A) n
then the value of C 1+ C2+ C3 + ...+ Cn is-
Q.45
2n !
(B) 7
(C) 9 Question based on
If (1+ x)n = C0 + C1x + C2x2+ ...+ Cnxn, then
(B)
2
(D) 2 –n+1
+ .......=
n 1
n!
(D) None of these
The value of 8C0 + 8C2 + 8C4+ 8C6+ 8C8 is(A) 32
(B) 64
(C) 128
(D) 256
Q.56
(A) n.2n
(B) (n –1). 2 n
(C) (n + 2).2 n–1
(D) (n + 1).2 n
If C0, C1, C2.......Cn are binomial coefficients in the expansion of (1 + x)n, n N, then C1 2 (A) (C)
+
C3 4
+
2 n 1 1 n 1 2n 1 n 1
C5 6
+…..+
Cn n 1
is equal to-
(B) (n + 1) . 2 n+1 (D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
4
Q.57
If (1 + x) n = C0 + C1x + C2x2 + ....+ C nxn, then for n odd, C12 + C32 + C52 + .....+ C n2 is equal to (A) 22n-2
Q.58
(B) 2 n
(C)
( 2n)! 2( n!)
2
(D)
(2n )! ( n!)
2
If (1+ x + x 2)2n = a0+ a1x + a2x2 +....then the value of a0 – a 1 + a2 – a3 + .... is(A) 2n
Q.59
(B) 3n
(C) 1
(D) 0
The sum of the coefficients in the expansion of (a + 2b + c) 10 is (A) 410
Q.60
(B) 310
(C) 2 10
(D) 104
The sum of coefficients of even powers of x in the expansion of (1+ x + x 2 + x3)5 is (A) 512
(B) – 512
(C) 215
(D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
5
LEVEL- 2 Q.1
If (1 + x – 2x 2)6 = 1 + C 1x + C2x2 + C3x3 + ....+ C12
x 12,
Q.8
then the value of C 2+ C 4+ C 6 + ...+ C 12
is -
Q.2
Q.3
(A)
(A) 30
(B) 32
(C) 31
(D) None of these
(C) Q.9
If C0, C1, C2, ....C n are binomial coefficients of
n 1
x
r
(B)
n r 1 r
x
r n r
(D)
r 1
x
x
If (1+ x) n = C0 + C1x + C2x2 + ...+ C nxn, then the (A) n(n + 1) 2 n–2
(B) n(n + 1) 2 n–1
equals-
(C) n(n + 1) 2 n
(D) None of these
(A) –n.2n–1
(B) 0
(C) 2n–1. (2 – n)
(D) None of these
If C r
Q.10
Q.11
a/2 n
The sum of coefficients of odd powers of x in the expansion of (1+ x) n is -
stands for nCr , then the sum of first (n+1)
(A) 2n + 1
(B) 2n – 1
(C) 2n
(D) 2n–1
The sum of C02 – C12 + C22 – ....+ (–1) n Cn2 where n is an even integer, is-
(B) na
(C) 0
(A) 2nCn
(D) None of these
(B) (–1)n
5
(A) 252
(B) 252
(C) 452
(D) 532
Q.12
(A) 0, 6
(B) 0, 2 6
(C) 1, 6
(D) 0
b 3
C2,.....Cn denote the binomial
(r 1) C r is -
Q.13
(A) n 2n
(B) (n+1) 2 n–1
(C) (n +2) 2 n–1
(D) (n + 2) 2 n–2
If 1 r n–1 then
n–1C
r
+
n–2C
r
+ .....+ r Cr
equalsterm in the expansion of contains
same
powers
of Q.14
(A) 9
(B) 10
(C) 8
(D) 6
(A) nCr
(B) nCr+1
(C) n+1Cr
(D) None of these
The coefficient of 1/x in the expansion of
(1+ x)n 1
(A)
If n is odd, then C 02 – C12 + C 22 – C 32 + ....+ (–1)n C 2n = (B) 1
C1 ,
r 0
a and b, then the value of r is -
(A) 0
C0 ,
n
21
a
If
value of
values of a0 and a6 are -
a 3 b
(D) (–1) . Cn/2
coefficients in the expansion of (1+x) n, then the
If (2x – 3x 2)6 = a 0 + a 1x + a 2x2 + ...+a 12x12, then
If the (r
n
5
The value of ( 5 + 1) –( 5 – 1) is -
+1) th
2nC
n/2 n
(C) 2nCn–1
Q.7
n r 1
C0 – 2.C1+ 3.C2 – 4.C 3 + .....+ (–1) n .(n + 1)C n
(A)
Q.6
is equal to
value of 12 C1 + 22 C2 + 32 C3 + ...+ n 2 Cn is
aC0 – (a + d) C1+ (a + 2d)C2 – (a + 3d)C3 + ... is-
Q.5
Tr
different terms in the expansion of (1+ x) n then
terms of the series
Q.4
Tr 1
In the expansion of (1+ x) n,
(C)
(D)
(C) n!
1
n
is -
x
n! ( n 1)!( n 1)!
( 2n ) ! (2n 1)!(2n 1)!
(B)
(2n ) ! ( n 1)!( n 1)!
(D) None of these
2
( n / 2) !
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
6
Q.15
If 6th term in the expansion of
Q.21
8
consecutive terms in the expansion of (1+ x) n,
1 8 / 3 x 2 log10 x is 5600, then x i s equal to x
Q.16
(A) 8
(B) 10
(C) 9
(D) None of these
(C)
Q.22
second term, then the value of n is (B) 9
(C) 10
(D) None of these
a2 a3
is equal to-
(B)
(D)
1
a2
2 a2 a3 2a 3 a2 a3
If the coefficients of four consecutive terms in the
a1 a1 a 2
,
a2 a2 a3
,
a3 a3 a 4
are in -
series
(A) A.P.
(B) G.P.
[3.nC0 – 8.nC1 + 13. nC2 – 18. nC3 + .....+ (n +1)]
(C) H.P.
(D) None of these
The
sum
of
the
terms
of
the
Q.23
(A) 3. 2 n –5n.2n-1 (C)
3.2 n +
5n.2n-1
(B) 0
If (1+ x) n = C0 + C1x + C2x2 + .....+ C nxn, then C0C2 + C1C3 + C2C4 + ......+ C n–2 Cn =
(D) None of these (A)
If sum of all the coefficients in the expansion of (x3/2 + x-1/3) n is 128, then the coefficient of x 5
(C)
is (A) 35
(B) 45
(C) 7
(D) None of these
Q.24
(A)
(C)
is -
(2n )! n!
(B)
2n ! (n 2) ! (n 2)!
(B)
(D)
2n ! n !( n 2)! 2n ! (n 1) ! (n 2)!
2n ! ( n !) 2
(B)
(2n 2) ! n ! (n 1)!
(D)
( 2n 2)! [(n 1)!]2 (2n )! n !(n 1)!
( 2n )! ( n )! ( n )!
Q.25
2
(C)
( n 1)!( n 2)!
(1+ x) 2n+2 is -
If (1 + x) n = C0 + C1x + C 2x2 + ....+ C n.xn then
(A) 1
2n !
The greatest coefficient in the expansion of
the value of C 0Cn + C 1Cn–1 + C2Cn–2 + ....+ C nC0
(D) (2n)2
1 The middle term in the expansion of x 2 x 1.3.5.....(2n 3) n!
Find the value (183 73 3.18.7.25)
(C)
6
3 6.243.2 15.814 20.27.8 15.9.16 6.3.32 64 (A) 1
(B) 5
(C) 25
(D)100
2n
is(A)
Q.20
a2 a3 2a 2
a3 a4
expansion of (1+ x)n are a 1,a2,a3 and a4, then
(A) 8
is-
Q.19
a2
If the coefficient of third term in the expansion of
a3
+
a1 a 2
(A)
n
Q.18
a1
then
1 2 / 3 x 1/ 3 is 27 more than the coefficient of x
Q.17
If a1, a2, a3, a4 are the coefficients of any four
Q.26
(B)
1.3.5.....(2n 1) n!
1.3.5.....(2n 1) n!
(D) None of these
The term independent of x in the expansion of 4
3
1 1 x x is x x (A) –3
(B) 0
(C) 1
(D) 3
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
7
Q.27
If the sum of the coefficients in the expansion of (2 x 2 – 2x +1)51 vanishes, then the value of
n
Q.34
If (1 + x) =
Q.28
then 1
(B) –1
(C) 1
(D) –2
If the sum of coefficients in the binomial
(A)
expansion of (x + y)n is 4096 then greatest coefficient in the expansion is (A) 922
(B) 942
(C) 787
(D) 924
(C)
Q.35 Q.29
The value of
(nC2 –2. nC3+3.nC4 –4.nC5 +
.....) is
equal to -
Q.30
(A) 1
(B) 0
(C) –1
(D) None of these
n
Cr .( x ) r
r 0
is (A) 2
n
n
n C1 n C2 . 1 ..... 1 C n = n nC C0 n C1 n – 1 n
n – 1
( n – 1) ! (n 1)
(B)
n
n!
(D)
( n 1)
n – 1
( n – 1) ! (n 1)
n 1
n!
The term independent of x in the expansion of 10
x 1 x 1 2 / 3 1/ 3 is x x 1 x x1/ 2 (A) T4 = 180
(B) T 5 = – 210
(C) T4 = – 180
(D) T5 = 210
The sum of 12 terms of the series 12C
1.
1 3
+ 12C2 .
1 9
12
4 (A) – 1 3
+ 12C3 .
1 27
+ .... is -
12
3 (B) – 1 4
12
3 (C) + 1 4 Q.31
(D) None of these
If n = 10 then ( C 02 – C12 + C 22 – C 32 + ..... + (–1)n ( C 2n )) equals-
Q.32
(A) (–1)5.10C5
(B) 0
(C) 10C5
(D) (–1)6 10C6
If n = 11 then ( C 02 – C12 + C 22 – C 32 + ..... + (–1)n ( C 2n ) equals-
Q.33
(A) (–1)5. 10C5
(B) 0
(C) 10C6
(D) None of these
The sum of (n +1) terms of the series C02+ 3C12 + 5C22 + ..... is (A) 2n–1Cn-1
(B) 2n–1 Cn
(C) 2(n +1) 2n–1Cn
(D) None of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
8
LEVEL- 3 Q.1
If the coefficients of T r , Tr+1, T r+2 terms of
Q.9
integral terms is -
(1+ x)14 are in A.P., then r (A) 6 Q.2
(B) 7
(C) 8
The value of x , for which the
log expansion of 2 2
( 9 x 1 7 )
(D) 9 6 th term
2
Q.10
in the
1
(1 / 5) log 2 ( 3
x 1
1)
(A) 4, 3
(B) 0, 3
(C) 0, 2
(D) 1, 2
Q.11
Q.4
(C) 31C6 – 21C6
(D) 30C5 + 20C5
Q.12
(x2 – x – 2) 5 is-
Q.5
(B) – 82
(C) – 81
(D) 0
Q.13
In the expansion of (1+3x+2x 2)6 the coefficient of x11 is (A) 144
(B) 288
(C) 216
(D) 576
Let R = (5
5 + 11)2n+1 and ƒ = R – [R], where [.]
(A) 42n+1
(B) 42n
(C) 42n–1
(D) 4 –2n
The greatest integer less than or equal to
(A) 196
(B) 197
(C) 198
(D) 199
The number of integral terms in the expansion of
Q.14
(A) 106
(B) 108
(C) 103
(D) 109
The remainder when 599 is divides by 13 is (A) 6
(B) 8
(C) 9
(D) 10
When 2301 is divided by 5, the least positive remainder is (A) 4
Q.6
Coefficients of of (x +
x r [0
3) n–1
(B) 8
(C) 2
(D) 6
r (n–1)] in the expansion
+ (x + 3)n–2 (x + 2) +
Q.15
If the sum of the coefficients in the expansion of
(x + 3)n–3 (x + 2)2 + ........ + (x + 2) n–1 -
(1 – 3x + 10x2)n is a and if the sum of the
(A) nCr (3r – 2n)
(B) nCr (3n–r –2n–r )
coefficients in the expansion of (1 + x 2)n is b,
(C) nCr (3r + 2n–r )
(D) None of these
then -
n
Q.7
(D) 131
(51/2 + 71/6)642 is -
The coefficient of x5 in the expansion of (A) – 83
(C) 130
( 2 + 1)6 is -
(1+ x)21 + (1+ x)22 + ...........+ (1+ x) 30 is (B) 9C5
(B) 129
R.ƒ is -
The coefficient of x5 in the expansion of (A) 51C5
(A) 128
denotes the greatest integer function. The value of
7
is 84 is equal to -
Q.3
In the expansion of (51/2 + 71/8)1024, the number of
If x + y = 1, then
r 2 n Cr x r y n r equals -
(A) a = 3b
(B) a = b3
(C) b = a3
(D) none of these
r 0
Q.8
(A) nxy
(B) nx (x+ yn)
(C) nx (nx+y)
(D) None of these.
10
Q.16
20C k =
k 0
(1 + x)n –nx –1 is divisible by (where n N)–
(A) 219 +
(A) 2x3
(C) 20C10
2
(C) x
(B) 2x
1 2
20
C10
(B) 219 (D) none of these
(D) All of these
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
9
Q.17
If n N such that (7 + 4 3 )n = I + F,
Q.22
where I N and 0 < F < I, Then the value of
expansion of (3 + 5x) 11 when x =
(I + F) (1 – F) is (A) 0 Q.18
(C) 7 2n
(B) 1
The value of
95
C4 +
The value of numerically greatest term in the
(D) 2 2n
(A) 55 310
(B) 110 39
(C) 55 38
(D) 55 39
100 j C 3 is -
j 1
Q.23 100
(A) C5
(B)
(C) 99C4
(D) 100C5
C4
The value of numerically greatest term in the expansion of (3x + 2) 9 when x = 3/2 (A)
(C) 7
0 ƒ 1, then I equals (A) (B) (C) (D) Q.20
7 313
If (5 + 2 6 ) n = I + ƒ, where I N, n N and
1
5
5
95
Q.19
1
(B) 7 313
2 314
(D)
7 314 2
–f
f
Question based on Statements (Q. 24 - 26)
1
Each of the questions given below consist of Statement – I
–f 1 f
and Statement – II. Use the following Key to choose the
1
appropriate answer.
–f 1 f 1 1 f
If (15Cr +
(A) If both Statement- I and Statement- II are true, and Statement - II is the correct explanation of
+f
Statement– I.
15
Cr–1) (15C15–r +
15
C16 –r ) = ( 16C13)2, then
the value of r is (A) r = 3
(B) r = 2
(C) r = 4
(D) none of these
(B) If both Statement - I and Statement - II are true but Statement - II is not the correct explanation of Statement – I. (C) If Statement - I is true but Statement - II is false (D) If Statement - I is false but Statement- II is true.
Passage Based Questions (Q. 21 - 23)
The numerically greatest term in the expansion of (x + a)n is given by
n 1 x 1 a
Q.24
(1 + x + x 2 + ......+ x 10 )5 is 51.
= k (say)
Statement II
to 22n–1 –
numerically greatest term (b) If k is not an integer. Let m is its integral part
Q.21
Q.25
1 5
two together) is equal
( 2n )! 2.(n !) 2
Statement
I
: The coefficient of x 5 in the
expansion of (1 + x 2)5 (1 + x)4 is 120.
The numerically greatest term in the expansion of (3 – 5x)15 when x =
: The sum of the products of
nC , nC , nC ..... nC (taken 1 2 n 0
(a) If k is an integer then Tk and Tk+1 are the
then Tm+1 is the numerically greatest term.
Statement I : The number of terms in
Statement II : The sum of the coefficients in the
expansion of (1 + 2x – 3y + 5z) 3 is 125.
is –
n
(A) T4
(B) T 5 & T6
(C) T4 & T5
(D) T6
Q.26
Statement I :
K . (nCK )2 n . 2n–1Cn–1
K 1
Statement II : If 22003 is divided by 15 the
remainder is 1.
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
10
ANSWER KEY LEVEL- 1 Ques.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Ans. A
C
C
D
C
C
A
A
A
C
C
D
A
C
A
C
D
B
B
B
Ques. 21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
C
A
A
C
B
A
C
C
C
D
C
D
C
B
B
B
C
B
B
B
Ques. 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
B
B
B
D
C
B
D
B
B
C
C
C
C
A
D
C
C
C
A
A
Ans.
Ans.
LEVEL- 2 Ques.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Ans.
C
B
C
B B
A
A
C
A
D
D
C
B
B
B
B
B
A
B
A
Ques.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Ans.
C
A
C
B
B
B
C
D
A
A
A
B
C
C
D
LEVEL- 3 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
D
D
C
C
D
B
C
C
B
A
B
B
B
C
B
A
B
B
C
A
21
22
23
24
25
26
C
D
A
D
D
C
IIT - ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
11
View more...
Comments