Binomial Theorem
Short Description
Binomial theorem for IIT by fitjee...
Description
1 BT LEVEL−I 1.
The co-efficient of x in the expansion of (1-2x3+3x5)[1+(1/x)]8 is (A) 56 (B) 65 (C) 154 (D) 62
2.
If the fourth term in the expansion of (px+1/x)n is 5/2 then the value of p is (A) 1 (B) 1/ 2 (C) 6 (D) 2
3.
If x = 1/3, Then the greatest term in the expansion of (1+4x)8 is 3 (A) 56 4 3 (C) 56 4
4.
4
4 (B) 56 3
5
2 (D) 56 5
6.
x2 x3 1n x n The coefficient of x in 1 x .... 2! 3! n!
nn
(B)
n! 1
2
is
2 n
(D) –
n!2
n! 1
n!2
1 The sum of coefficients of even powers of x in the expansion of x x 11 11 (A) 11 11C5 (B) C6 2 (C) 11 11 C 5 11 C 6 (D) 0
9.
(B) Im(Z) =0 (D) Re(z) >0, Im(z) 0, Im(z) >0
(A)
7.
4
The two consecutive terms in the expansion of (3+2x)74 whose coefficients are equal is (A) 30th and 31st term terms (B) 29th and 30th terms st nd (C) 31 and 32 terms (D) 28th and 29th terms 5
5.
5
11
is
1 1 The number of irrational terms in the expansion of 5 8 2 6 (A) 97 (B) 98 (C) 96 (D) 99
100
is equal to;
In the expansion of (1 + ax)n, n N, then the coefficient of x and x2 are 8 and 24 respectively. Then (A) a = 2, n = 4 (B) a = 4, n = 2
2 (C) a = 2, n = 6
(D) none of these
10.
In the coefficients of the (m + 1)th term and the (m + 3) th term in the expansion of (1 +x)20 are equal then the value of m is (A) 10 (B) 8 (C) 9 (D) none of these
11.
The number of distinct terms in the expansion of (2x + 3y –z + -7)n is (A) n + 1 (B) (n + 4)C4 (n + 5) (C) C5 (D) nC5
12.
The coefficient of x5 in the expansion of (1 –x + 2x2)4 is…………
13.
The two successive terms in the expansion of (1+x)24 whose coefficients are in the ratio 4 :1 are (A) 3rd and 4th (B) 4th and 5th th th (C) 5 and 6 (D) 6th and 7th
14.
The expression n C 0 4.n C1 4 2 C 2 ..........4 n C n , equals
n
(A) 2 2n (B) 2 3n 15.
n
(C) 5 n (D) None of these
2 60 when divided by 7 leaves the remainder (A) 1
(B) 6
(C) 5
(D) 2
16.
The sum of the coefficients in the expansion of (1 x 3 x 2 ) 2163 is (A) 1 (B) –1 (C) 0 (D) None of these
17.
The value of 1
18.
1 The sum of the rational terms in the expansion of 2 3 5
n
n n C C 1 n 2 ………. 1 n n is equal to C1 C n1 n n 1 (n 1) n 1 (n 1) n1 (n 1) n (A) (B) (C) (D) (n 1)! (n 1)! n! n!
C1 n C0
10
is ………………
19.
If in the expansion of (1 + x)m (1 –x)n, the co-efficient of x and x2 are 3 and –6 respectively, then m is ……………
20.
For 2 r n, nCr + 2 nCr–1 + nCr–2 is equal to ………………
21.
If (1 + x + 2x2)20 = a0 + a1x + a2x2 + ……………+ a40x40 then a1 + a3 + a5 + ……….+a37 equals to ……………
22.
The largest term in the expansion of (3 + 2x)50 where x =
23.
Let R = 5 5 11 = ………………
24.
23n –7n –1 is divisible by …………
2n1
1 is …………… 5
and f = R –[R] where [.] denotes the greatest integer function, then Rf
3 25.
If (1 –x + x2)n = a0 + a1x + a2x2 + ………………+a2nx2n, then a0 + a2 + a4 + …………+ a2n equals to …………
26.
2 x If the rth term in the expansion of 2 3 x
10
contains x4, then r is equal to …………
27.
1.nC1 + 2.nC2 + 3.nC3 + ……..+ n.nCn is equal to nn 1 n (A) .2 (B) 2n+1 –3 4 (C) n.2n –1 (D) none of these
28.
If the coefficient of (2r + 2)th and (r + 1)th terms of the expansion (1 +x)37 are equal then r = (A) 12 (B) 13 (C) 14 (D) 18
29.
The value of 2 C 0 2 2
30.
If the co-efficient of rth, (r+1)th and (r+2)th terms in the expansion of (1+x)14 are in A.P., then the value of r is (A) 5 (B) 6 (C) 7 (D) 9
31.
If (1+ax)n = 1+8x +24x2+------- then (A) a= 3 (C) a= 2
32.
C1 C C C 2 3 2 2 4 3 ........... 2n 1 n is equal to ……… 2 3 4 n 1
(B) n= 5 (D) n =4
If ab 0 and the co-efficient of x7 in [ax2+(1/bx)]11 is equal to the co-efficient of x-7 in 11
1 ax 2 , then a and b are connected by the relation bx (A) a = 1/b (B) a = 2/b (C) ab = 1 (D) ab = 2
LEVEL−II 1.
Co-efficient of x5 in the expansion of (1+x2)5 (1+x)4 is (A) 40 (B) 50 (C) 30 (D) 60
2.
The term independent of x in the expansion of (x+1/x)2n is 1.3.5. ( 2n 1).2 n 1.3.5. ( 2n 1).2 n (A) (B) n! n! n ! 1.3.5. ( 2n 1) 1.3.5. ( 2n 1) (C) (D) n! n! n ! 8
3.
1 If 6 term in the expansion of 8 / 3 x 2 log10 x is 5600, then x is equal to x (A) 5 (B) 4 (C) 8 (D) 10 th
4
4.
If coefficient of x2 y3 z4 in (x + y +z)n is A, then coefficient of x4y4z is nA (A) 2A (B) 2 A (C) (D) none of these 2
5.
The coefficient of x6 in {(1 + x)6 + (1 + x)7 + ……….+ (1 + x)15} is (A) 16C9 (B) 16C5 – 6C5 16 (C) C6 –1 (D) none of these
6.
If (1 +x)10 = a0 +a1x +a2x2 + ……+a10x10 then (a0 –a2 +a4 –a6 +a8 –a10)2 + (a1 –a3 +a5 –a7 +a9)2 is equal to (A) 310 (B) 210 9 (C) 2 (D) none of these
7.
The remainder of 7103 when divided by 25 is……………
8.
2 The term independent of x in the expansion of 1 2x is………… x
3
9.
10.
1 1 The number of irrational terms in the expansion of 2 2 3 10 (A) 47 (B) 56 (C) 50 (D) 48
55
is;
If ab 0 and the co-efficient of x7 in (ax2+(1/bx))11 is equal to the co-efficient of x-7 in 11
1 ax 2 , then a and b are connected by the relation bx (A) a= 1/b (B) a =2/b (C) ab= 1 (D) ab=2 20
11.
If (1 + 2x + 3x2)10 =
a x r
r
then a2 is equal to;
r 0
(A) 210 (C) 220 12.
(B) 620 (D) none of these
If Pn denotes the product of all the co-efficients in the expansion of (1+x)n, then to (A) (C)
n 1n
(B)
n!
n 1n1
(D)
n! n
13.
Value of
r 0
(A) 2n (C) 2–n + 1
n
C r sin 2
n 1n1 n 1! n 1n n 1!
r , is equal to; 2
(B) 2n –1 (D) 2n –1 –1
Pn 1 is equal Pn
5
n
14.
If a b 1 , then
n
Cr ar bn r equals
r 0
(B) n
(A) 1
15.
(C) na
3 2n , n N is 8
If { x } denotes the fractional part of x , then (A) 3/8 (B) 7/8 (C) 1/8
16.
(D) nb
(D) None of these.
The coefficient of x m in : (1 x) m (1 x) m1 .......(1 x) n , m n is (A)
n 1
C m 1
(B)
n 1
(C) n C m
C m 1
(D) n C m 1
5
17.
5
1 1 The expansion x x 3 1 2 x x 3 1 2 is a polynomial of degree ……
n
18.
19.
1 In the expansion of x 3 2 , n N, if the sum of the coefficients of x5 and x10 is 0 then n x is (A) 25 (B) 20 (C) 15 (D) none of these
The sum
1 10 C0 – 10C1 + 2. 10C2 –22 . 10C3 + ……+ 29. 10C10 is equal to 2
1 2 1 (C) .310 2 (A)
20.
(B) 0 (D) none of these
If the second, third and fourth terms in the expansion of (a+b) respectively, then (A) a = 3 (B) b = 1/3 (C) n = 5 (D) all the above
n
are 135, 30 and 10/3
LEVEL−III
100
1.
The co-efficient of x53 in the expansion
100
C m ( x 3)100 m 2 m is
m 0
(A) 100C53 (C) 65C53 2.
(B) - 100C53 (D) 100C65
If n is an even natural number and coefficient of xr in the expansion of then (A) r n/2 (C) r
n2 2
(B) r
n2 2
(D) r n
1 x n 1 x
is 2n, (|x| < 1),
6
n1 2
3.
Let n be an odd natural number and A =
1 n
n
. Then value of
Cr (B) n( A+1)
r 1
(A) n( A-1) nA (C) 2 4.
(B)
2n 1 1 for odd values of n only n!
(D) none of these 300 300 is ………
5.
The greater of two numbers 300! and
6.
The co-efficient of x4 in the expansion of (1+x+x2+x3)11 is (A) 1001 (B) 990 (C) 900 (D) 895
7.
Value of
n
r n C r r C m is equal to; r 1 m 0
(A) 2n –1 (C) 3n –2n
(B) 3n -1 (D) none of these n
Value of
r
n
Cr
2
is equal to
r 0
n 2n C n 2 2 2n n Cn (C) 2
(A) n . 2nCn
(B)
(C) n2 . 2nCn n
If
r n
r 1
Cr
n
= , then value of
r 0
1 n
Cr
n 2 n (C) 2 (A)
is equal to; (B)
2 n
(D) none of these n
10.
Value of
n
C r cos rx sinn r x is;
r 0
(A)2n –1 sin nx (C) 2n cos nx 11.
r is equal to Cr
1 1 1 .......... is equal to 1!n 1! 3!n 3 ! 5!n 5 ! 2 n1 for even values of n only n! 2 n1 (C) for all n N n!
9.
r 1
n
(D) nA
(A)
8.
Value of
i
0i jn n –3
(A) n.2 (C) n(n –1) . 2n –3
(B) 2n –1 cos nx (D) 2n sin nx n
C j is; (B) (n –1) . 2n –3 (D) none of these
7
12.
The coefficient of xn in the polynomial ( x+ nC0) ( x+3 nC1) ( x+5 nC2) ……..( x+(2n + 1) nCn) is (A) n2n (B) n2n + 1 n (C) (n +1)2 (D) n2n + 1
13.
Value of
2n
r
2n
Cr .
r 0
2
(A)
2n
2
n 1 2
(B)
2n 1 2n 2 22 n1 2n 2 2 n 1
(C)
14.
n 1
1 is equal to r2
2 n1
and f = R – [R]; where [ ] denotes G. I. F., then R f is equal to
2n
(B) 112 n1 (D) 11
(A) 11 (C) 112n1 15.
Value of
2n 1 2n 2
(D) None of these
2n 1 2n 2
If R = 5 3 8
22 n1 2n 2 n 1 2
n
2
Ci n C j is
0 i j n
2n
(A) n. Cn 2 2 n
(B) n 1 2 n Cn 22 n
(C) n 1 2 n Cn 2 2 n
(D) n 1 2 n Cn 2 2 n
16.
The remainder when 7103 is divided by 25 is (A) 0 (B) 18 (C) 16 (D) 9
17.
The number 101100 1 is divisible by (A) 10 (C) 103
18.
Integral part of 5 5 11
(B) 102 (D) 104
2 n1
is
(A) Even (C) Neither
(B) Odd (D) Can’t Say
19.
Let f (n) 10 n 3 4 n 2 5; n N . The greatest value of the integer which divides f(n) for all ‘n’ is (A) 27 (B) 9 (C) 3 (D) None
20.
If
n
r 2n
r 1 r 0
(A) 8 (C) 6
Cr
28 1 , then ‘n’ is 6 (B) 4 (D) 5
8
ANSWERS LEVEL −I 1. 5. 9. 13. 17. 21. 25. 29.
C B A C B 239 − 219 3n 1 2 n 1 3 1 n1
2. 6. 10. 14. 18. 22.
B B C C 41 50 C6 344 (2x)6
3. 7. 11. 15. 19. 23.
B D B A 12 42n+1
4. 8. 12. 16. 20. 24.
A A −56 B n+2 Cr 49
26.
3
27.
C
28.
A
30.
D
31.
C
32.
C
D A B B 7
2. 6. 10. 14. 18.
A B C A C
3. 7. 11. 15. 19.
D −7 A C A
4. 8. 12. 16. 20.
C
B 300! B A A, B, C, D
2. 6. 10. 14. 18.
D B A C. A
3. 7. 11. 15. 19.
B B C D B
4. 8. 12. 16. 20.
C B C B D
LEVEL −II 1. 5. 9. 13. 17.
3
C0 2 3C1
A A D
LEVEL −III 1. 5. 9. 13. 17.
View more...
Comments