Binomial Theorem
Short Description
Binomial theorem questions.(IITians Pace)....
Description
BINOMIAL # 1
IIT – ian’s P A C E 216 - 217 ,2nd floor , Shopper’s point , S. V. Road. Andheri (West) Mumbai – 400058 . Tel: 26245223 / 09
BI NOMI AL D E F I N I T I O N S 1.
AND
R E S U LT S
STATEMENT OF BINOMIAL THEOREM : If x , y R and n N, then ; n
(x + y)n = nC0 x n + nC1 x n1 y + nC2 x n2y 2 + ..... + nCr x nr y r + ..... + nCny n =
n
r0
Cr x nr y r .
This theorem can be proved by Induction .
2.
PROPERTIES OF BINOMIAL THEOREM :
(i)
The number of terms in the expansion is (n + 1) .
(ii)
The sum of the indices of x & y in each term is n .
(iii)
The binomial coefficients of the terms nC0 , nC1 .... equidistant from the beginning and the end are equal ( nCr = nCn r ) .
(iv)
General term : The general term or the (r + 1) th term in the expansion of (x + y)n is Tr+1 = nCr x nr . y r .
(v)
Middle term(s) : (a) (b)
3.
If n is even , there is only one middle term which is given by ; T(n+2)/2 = nCn/2 . x n/2 . y n/2 If n is odd , there are two middle terms which are : T(n+1)/2 & T[(n+1)/2]+1
BINOMIAL THEOREM FOR NEGATIVE OR FRACTIONAL INDICES : If n Q , then (1 + x) n = 1 + n x +
n (n 1) 2 n (n 1) (n 2) 3 x + x + ........ 2! 3!
provided x < 1 .
4.
EXPONENTIAL SERIES :
(i)
x x2 x3 1 1 ex = 1 + 1! 2! 3! ....... ; where x may be any real or complex & e = Limit n n
(ii)
ax = 1 +
5.
LOGARITHMIC SERIES :
(i)
2 3 4 ln (1+ x) = x x x x ....... where 1 < x 1 .
n
x x2 x3 3 lna l n2a l n a ....... where a > 0 . 1! 2! 3!
2
3
2
(ii)
ln (1 x) = x
(iii)
ln
4
3
x x x4 ....... 2 3 4
where 1 x < 1 .
x3 x5 (1 x) ...... x < 1 . = 2 x 3 5 (1 x)
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(1)
BINOMIAL # 2
Note : 1.
Term independent of x coefficient of x 0 ..
2.
Numerically greatest term in the expansion of (1 x)n , x > 0 , n N is the same as the greatest term in (1 + x) n .
3.
PROPERTIES OF BINOMIAL COEFFICIENTS :
(i)
C0 + C1 + C2 + ....... + Cn = 2 n
(ii)
C0 + C2 + C4 + ....... = C1 + C3 + C5 + ....... = 2 n1
(iii)
C0² + C1² + C2² + .... + Cn² = 2nCn =
(iv)
C0.Cr + C1.Cr+1 + C2.Cr+2 + ... + Cnr .Cn =
4.
When the index n is a positive integer the number of terms in the expansion of (1 + x)n is finite i.e. (n + 1) & the coefficient of successive terms are : n C0 , nC1 , nC2 , nC3 ..... nCn
5.
When the index is other than a positive integer such as negative integer or fraction, the number of terms in the expansion of (1 + x) n is infinite and the symbol nCr cannot be used to denote the Coefficient of the general term .
6.
If (x < 1 ) . (a) (1 + x)1 = 1 x + x 2 x 3 + x 4 .... (c) (1 + x)2 = 1 2x + 3x 2 4x 3 + ....
(2 n) ! n ! n! (2 n) ! (n r) (n r) !
(b) (1 x)1 = 1 + x + x 2 + x 3 + x 4 + .... (d) (1 x)2 = 1 + 2x + 3x 2 + 4x 3 + .....
7.
PROPERTIES OF ' e ' :
(a)
e=1+
(b)
' e ' is an irrational number approximately equal to 2.72 ..
(c)
e + e1 = 2 1
(e)
Logarithms to the base ‘e’ are also called Natural Logarithm .
1 1 1 ....... 1! 2! 3!
1 1 1 ....... 2! 4 ! 6 !
(d)
e e1 = 2 1
1 1 1 ....... 3! 5! 7!
EXERCISE I 1.
If ‘a’ be the sum of the odd terms & ‘b’ the sum of the even terms of the expansion of (1 + x)n , then (1 x²)n = (A) a² b² (B) a² + b² (C) b² a² (D) none
2.
If the sum of the coefficients in the expansion of (1 + 2x) n is 6561, then the greatest coefficient in the expansion is (A) 1592 (B) 1492 (C) 1792 (D) 1700 9
3.
3x 2 1 The term independent of x in is : 3x 2
(A) 27/5 4.
(B) 7/18
(C) 8/81
(D) none of these
Given that the term of the expansion (x 1/3 x 1/2)15 which does not contain x is 5 m where m N , then m = (A) 1100 (B) 1010 (C) 1001 (D) none
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(2)
BINOMIAL # 3
5.
6.
If the second , third and fourth terms in the expansion of (a + b) n are 135, 30 and 10/3 respectively , then : (A) a = 3 (B) b = 1/3 (C) n = 5 (D) n = 7 In the binomial (2 1/3 + 31/3)n, if the ratio of the seventh term from the beginning of the expansion to the seventh term from its end is 1/6 , then n = (A) 6 (B) 9 (C) 12 (D) 15
7.
Let R = (6 6 + 14)2n + 1 and f = R [R] , where [ ] denotes the greatest integer function. Then Rf = (A) 20 2n + 1 (B) 20 2n 1 (C) 20 2n (D) none
8.
The term independent of x in the expansion of x x
is :
(A) 3
(D) 3
4
1 x
(B) 0
1 x
3
(C) 1 2 n
9.
The sum of the coefficients in the expansion of (1 2x + 5x ) is a and the sum of the coefficients in the expansion of (1 + x) 2n is b . Then : (A) a = b (B) a = b 2 (C) a2 = b (D) ab = 1
10.
If k R and the middle term of ( (A) 3
11. 12.
13.
k + 2)8 is 1120 , then value of k is 2
(C) 3
(B) 2
(D) 4
4
2 12
The coefficient of x in the expansion of (1 x + 2x ) is : (A) 12C3 (B) 13C3 (C) 14C4
(D)
12
C3 + 3 13C3 + 14C3
If (1 + x + x²)25 = a0 + a1x + a2x² + ..... + a50 . x 50 then a0 + a2 + a4 + ..... + a50 is : (A) even (B) odd & of the form 3n (C) odd & of the form (3n 1) (D) odd & of the form (3n + 1) The expression 6
6 2 2 x 2 1 2 x 2 1 + is a polynomial of degree 2 2 2x 1 2 x 1
(A) 5 14. 15.
(B) 6
(D) a20 = 2 2 . 3 7 . 7
If x is so small that x 2 and higher powers of x can be neglected , then value of the
(A) 1 +
1 3x (1 x)5/ 3 is ( 4 x)1/ 2
35 x 24
(B) 1
35 x 24
(C) 1 +
8 x 9
(D) 1
8 x 9
C0 C1 C2 C ...... 10 = 1 2 3 11
(A)
17.
(D) 8
If (1 + 2x + 3x 2 )10 = a0 + a1 x + a2 x 2 + .... + a20 x 20 , then (A) a1 = 20 (B) a2 = 210 (C) a4 = 8085
expression
16.
(C) 7
211 11
(B)
211 1 11
x y
y x
The (m + 1)th term of
(C)
311 11
(D)
311 1 11
2 m 1
is
(A) independent of x (C) dependents on the ratio x/y and m
(B) a constant (D) none of these
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(3)
BINOMIAL # 4
18.
If (C0 + C1) (C1 + C2) (C2 + C3) ...... (Cn1 + Cn) = m . C1C2C3 .... Cn1 , then m = (A)
19.
n 1n 1 n 1 !
(B)
( n 1) n n!
(C)
n 1n 1 n!
The number of positive terms in the sequence x n = (A) 2
(B) 3
1 195 4 n Pn
(C) 4
(D)
n n 1 n 1 !
n3 n 1
P3 is : Pn 1
(D) none of these
20.
The numerically greatest terms in the expansion of (2x + 5y)34 when x = 3 & y = 2 is (A) T21 (B) T22 (C) T23 (D) T24
21.
If the second term of the expansion a 1/13
(A) 4 22. 23. 24.
25.
(B) 3 n
a is 14a5/2 then the value of a 1
(C) 12
n
2
10
2
x
10
C0
2/3
(B)
x1 x 1 1/ 3 x 1 x x1/ 2 10
C7
(D) 5 n 1 (D) 199
3 8
The coefficient of x in the expansion of (1 + x x ) is (A) 476 (B) 496 (C) 506
C3 is : C2
(D) 6
The greatest integer less than or equal to ( 2 + 1)6 is (A) 196 (B) 197 (C) 198
In the expansion of
n n
n1
n
The value of 4 { C1 + 4 . C2 + 4 . C3 + ...... + 4 } is : (A) 0 (B) 5 n + 1 (C) 5 n
(A) 26.
n
(D) 528
10
(C)
, the term which does not contain x is : 10
C4
If x = (7 + 4 3 )2n = [x] + f , then x(1 f) = (A) 2 (B) 0 (C) 1
(D) none (D) 2520
27.
Coefficient of x n 1 in the expansion of , (x + 3)n + (x + 3)n 1 (x + 2) + (x + 3)n 2 (x + 2)2 + ..... + (x + 2)n is (A) n+1 C2 (3) (B) n1 C2 (5) (C) n+1 C2 (5) (D) n C2 (5)
28.
Let (1 + x 2)2 (1 + x)n = A0 + A1 x + A2 x 2 + ...... If A0, A1, A2 are in A.P. then the value of n is : (A) 2 (B) 3 (C) 5 (D) 7
29.
Set of value of r for which, 18Cr 2 + 2 . 18Cr 1 + 18Cr 20C13 contains : (A) 4 elements (B) 5 elements (C) 7 elements (D) 10 elements
30.
If (1 + x + x 2 )n = a0 + a1 x + a2 x 2 +.....+ a2n x 2n then value of a0 + 2a1 + 3a2 + ......+ (2n + 1) a 2 n is n (A) 3 (1 + n) (B) n.3 n (C) 3 n
31.
(D) none
If Cr stands for 4Cr ,then C0 C4 C1 C3 + C2 C2 C3 C1 + C4 C0 = (A) C2
(B) C3
(D) 24
(D) 18
5
32.
The value of the expression (A)
47
C5
(B)
52
47
C5
C4 +
j1
52 j
C3 is equal to : (C)
52
C4
(D)
49
C4
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(4)
BINOMIAL # 5 13
33.
The greatest terms of the expansion (2x + 5y) when x = 10, y = 2 is : (A) 13C5 . 20 8 . 10 5 (B) 13C6 . 20 7 . 10 4 13 9 4 (C) C4 . 20 . 10 (D) none of these
34.
(nC0)2 + (nC1)2 + (nC2)2 + ....... + (nCn)2 = (A) 2 2n (B) 2nCn
35. 36.
(C) (2nCn)2
(D) (n!)2
The remainder when 2 2003 is divided by 17 is (A) 1 (B) 2 (C) 8
(D) none of these
If n is a natural number which is not a multiple of 3 and (1 + x + x 2 )n = 2n
n
r0
r0
a r x r , then value of ( 1) r (a r )( n C r ) is (A) 1
(B) 2
(D) (1)n
(C) 0
EXERCISE II 1.
Show that the coefficient of x 10 in the expansion of (1 + x 2 x 3)9 is 882 .
2.
Show that the term independent of x in the expansion of 1 x
6 x
10
is ,
5
1+
10
r 1
C2 r
2r
Cr 6 r .
3.
Show that there are 32 integer terms in the expansion of ,
4.
Find numerically the greatest term in the expansion of : (2 + 3x)9 when x =
(i)
5.
3 2
(ii)
In the binomial expansion of , y
4 ( 2 y )
345
124
.
1 5
(3 5x)15 when x =
n
1
the first three coefficient form an A.P.
in the order . Find other terms in the expansion of which the power of ' y ' is a natural number . 2
6.
Given s n= 1 + q + q² + ..... + q that
n+1
C1 +
n+1
C2.s 1 +
n+1
n
n
q 1 q 1 q 1 & Sn = 1 + + 2 + .... + 2 , q 1 , prove 2
C3.s 2 +....+
n+1
Cn+1.s n = 2 n . Sn .
1 1. 3 1. 3 . 5 1. 3 . 5 . 7 ........ 3 3. 6 3. 6 . 9 3. 6 . 9 .12
then prove that x² + 2x 2 = 0 .
7.
If x =
8.
Given that , (1 + x + x 2 + x 3)5 = a0 + a1 x + a2 x 2 + ...... + a15 x 15 . Find a10 .
9.
Prove that
10.
Show that , lnx =
11.
If 3 3 5
(72)!
36! 2
2n 1
1 is divisible by 73 . x 1 1 x2 1 1 x3 1 . . 2 x 1 2 (x 1) 3 (x 1) 3
+...... (x > 0)
= p+f where p is an integer and f is a proper fraction then find the
value of f (p+f) . n N . IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(5)
BINOMIAL # 6
12.
p
Prove that if ' p ' is a prime number greater than 2, then the difference 2 5 2 p+1
is divisible by p, where [ ] denotes greatest integer . 13.
If ' n ' & ' r ' are coprime , prove that nCr is divisible by n .
14.
If C0 , C1 , C2 , ..... , Cn are the combinatorial coefficients in the expansion of (1 + x) n, n N , then prove that , ( n 1) (2 n)! n! n!
1 . Co² + 3 . C1² + 5 . C2² + ..... + (2n+1) Cn² = 15.
If n is an integer greater than 1 , show that ; a nC1(a1) + nC2(a2) ..... + (1)n (a n) = 0
16. 17.
C1 C 2 C 3 ......
C n 2n 1
n 1 2
If (1+x)n = C0 + C1x + C2x² + .... + Cn xn , then show that the sum of the products of the Ci’s taken two at a time , represented by
Ci C j 2 n! is equal to 2 2n1 . 0 i j n 2 (n !) 2
18.
If (1 + 2 x + 2 x 2)n = k 0 + k 1 x + k 2 x 2 + ...... + k 2 n x 2 n . Prove that , k 2 = 4 n 2 2 2 n n ( 1 + 3 . n 1C2 + 5 . n 1C3 + ...... + (2 n 1) n 1Cn 1) .
19.
If (1 + x)n =
n
C
r
. x r then prove that ;
r0
2 2 . C0 2 3 . C1 2 4 . C 2 2n 2 . C n 3n 2 2n 5 ...... 1. 2 2.3 3. 4 (n 1) (n 2) ( n 1) (n 2)
20.
Prove that the sum to (n+1) terms of
C0 C1 C2 ......... equals n (n 1) (n 1) ( n 2) ( n 2) (n 3)
1
x n1. (1 x)n+1 . dx & evaluate the integral .
0
3n
21.
Prove that ,
k 0
6n
C2 k 1 ( 3)k = 0 .
2 12 28 50 78 + ...... = 5 e + 2 1! 2! 3! 4! 5!
22.
Prove that ,
23.
If the series 1 +
x3 x6 + ... 3! 6!
; x+
x4 x7 + ... 4 ! 7!
;
x2 x5 x8 + ... are denoted 2! 5! 8!
by a , b , c respectively, show that : a 3 + b 3 + c3 3abc = 1 . 24.
Prove that the coefficient of x n in the expansion of log e (1 + x + x²) is
2 n
or
1 n
according as n is/or is not a multiple of 3 . 25.
Find the sum of the following infinite series ,
26.
Prove that ,
x2 2 x3 3x4 4 x5 ....... given x < 1 2 3 4 5
1 1 1 1 1 1 1 ... = .... = ln 2 1. 2 3 . 4 5 . 6 2 1. 2 . 3 3 . 4 . 5 5 . 6 . 7
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(6)
BINOMIAL # 7
27.
If , are the roots of the equation ax² + bx + c = 0 , then show that :
log e (a + bx + cx²) = log e a ( ) x
2 2 2 3 3 3 x x ....... 2 3
1 1 1 n 1 2 ( n 1) 2 3 (n 1) 3
.....
Show that :
29.
Prove that , 1. 2 . 3 3. 4 . 5 5 . 6 . 7 +........ = 3 ln2 1
30.
If x denotes 2 3 , n N & [x] the integral part of x then find the value of ;
5
7
+ .... =
1 1 1 n 2 n2 3 n3
28.
9
n
x x² + x[x] . 31.
32.
Find the cube root of 1001 correct to 5 decimal places without using calculator or tables . Also evaluate (0.99) 15 correct to 4 places . x
2
n
Find the index ' n ' of the binomial if the 9th term of the expansion has numerically 5 5
the greatest coefficient (n N) . If C0 , C1 , C2 , ..... , Cn are the combinatorial coefficients in the expansion of (1 + x)n , n N , then prove the following : 33.
Co² C1² + C2² C3² + ...... + (1)n Cn² = 0 or (1)n/2 Cn/2 according as n is odd or even .
34.
(n1)² . C1 + (n3)² . C3 + (n5)² . C5 +..... = n (n + 1)2 n3 .
35.
If a0 , a1 , a2 , ..... be the coefficients in the expansion of (1 + x + x²) n in ascending powers of x , then prove that : a0 a1 a1 a2 + a2 a3 .... = 0 (ii) a0a2 a1a3 + a2a4 ..... + a2n 2 a2n = an + 1 .
(i) (iii)
E1 = E2 = E3 = 3 n1 ; where E1= a0 + a3 + a6 + ........ ; E2 = a1 + a4 + a7 + ........ & E3 = a2 + a5 + a8 + .......
36.
Prove that : C 0 C1 C 2 C 3 ........(1) n C n
37.
If (1+x)n = C0 + C1x + C2x² + ..... + Cn x n , then show that :
1
C1(1x)
5
9
13
4n 1
4 n . n! . 1. 5 . 9 .13..... ( 4 n 3) ( 4 n 1)
C2 C 1 1 1 (1x)² + 3 (1x)3 ....+ (1)n1 (1x)n = (1x) + (1x²) + (1x 3) 2 3 n 2 3
1 n
+......+ (1x n) 1n 2 3 4 1 ( 1) n 1 n n C1 nC2+ nC3 nC4 + ..... + . Cn= . 2 3 4 5 n 1 n 1
38.
Prove that ,
39.
Prove that , (2nC1)²+ 2 . (2nC2)² + 3 . (2nC3)² + ... + 2n . (2nC2n)² =
40.
If (1 + x + x 2)n =
(4 n 1)!
(2 n 1) !
2
2n
ar xr , n N , then prove that
r0
(r + 1) ar + 1 = (n r) ar + (2 n r + 1) ar 1 .
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(7)
BINOMIAL # 8
EXERCISE 1.
III
Find the coefficient of x 50 in the expression : (1 + x)1000 + 2x . (1 + x)999 + 3x² (1 + x)998 + ..... + 1001 x 1000 [ REE ’90 , 6 ] [ REE ’91 , 6 + 6 ]
2.
C k C k k 1 k 1 n
(a)
If n is a positive integer & C k = nCk , find the value of
(b)
Find the sum of the following series upto infinity . 1
2 1
2 2
.
3 2 2 5 2 7 17 12 2 ......... 12 80 24 2
3.
[ JEE ’92 , 6 + 2 ] 2n
(a)
2
3
If
a
2n r
(x 2) r
r0
b
r
r0
(x 3) r & a = 1 for all k n, then show that b = k n
2n+1
Cn+1.
(b)
The expression [x + (x 31)1/2]5 + [x (x 31)1/2]5 is a polynomial of degree : (A) 5 (B) 6 (C) 7 (D) 8
4. (a)
[ REE '92 , 6 + 2 ] Determine the value of ' x ' in the expression (x + x ) , if the third term in the expression is 10,00,000 . Where t = log 10 x .
(b)
Sum the following series : 9
t 5
16 27 42 ........ 2! 3! 4!
5.
[ REE '93 , 6 + 6 ] log10 3 1/ 2 x 2 log 3 2 2 x
(a)
Find the value of ' x ' for which the sixth term of
1/ 5
m
is equal to
21 & binomial coefficients of second , third & fourth terms are the first , third & fifth terms of an arithmetic progression . [ Take every where base of log as 10 ]
1
a2
1
a3
1
(b)
2 4 6 Find the sum of a x 2 2 x 4 3 x 6 ........ and determine the values x x x of a & x for which it is valid .
6.
Let n be a positive integer . If the coefficients of 2nd , 3rd & 4th terms in the expansion of (1+x)n are in AP , then the value of n is ______ . [ JEE ’94 , 2 ]
7.
Given that the 4th term in the expansion of 2 8 has the maximum numerical
3x
10
value , find the range of values of ' x ' for which this will be true . [ REE ’94 , 6 ] 8.
If a0 , a1 , a2 , ..... be the coefficients in the expansion of (1+x+x²) n in ascending powers of x , then prove that a 0² a1² + a2² a3² + ..... + a2n² = an . [ JEE ’94 , 5 ]
9.
Find the sum of the infinite series n
k 1
2k 1 k !( n k )!
a 1 + a2 + a3 + .......... , where a n = (log e 3)n
for each positive integer n .
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(8)
BINOMIAL # 9
[ REE ’95 , 6 ] n4
Let (1+x²)² . (1+x)n =
10.
a K 0
K
. x K . If a1 , a2 & a3 are in AP, find n .
[ REE ’96 , 6 ] In the expansion of the expression (x + a) , if the eleventh term is the geometric mean of the eighth and twelfth terms , which term in the expansion is the greatest ? [ REE ’96 , 6 ] n th th In the binomial expansion of (a b) , n 5, the sum of the 5 and 6 terms is zero. Then a/b equals : 15
11.
12.
(A)
n5 6
(B)
5
n4 5
6
(C) n 4
(D) n 5 [ JEE '2001 , 1 ]
ANSWER SHEET
EXERCISE I 1. A
2. C
3. B
4. C
5. ABC
6. B
7. A
8. B
9. A
10. B
11. D
12. A
13. B
14. ABC
15. B
16. B
17. C
18. B
19. C
20. B
21. A
22. D
23. B
24. A
25. C
26. C
27. C
28. AB
29. C
30. A
31. A
32. C
33. C
34. B
35. C
36. C
EXERCISE II 4. (i) T7 =
7.313 2
(ii) 455 x 3 12
5. If n = 4 , then T1 = y 2 . If n = 8 , then T1 = y 4 , T7 = 11. 2 2n+1
8. 101
25. ln (1 x) +
x 1 x
35 y 8
30. 1
31. 10.00333 ; 0.8601
32. n = 12
EXERCISE III 1.
n (n 1) 2 ( n 2) 12
6. S = ln 1
9. 6 ln (27e)
2. 2
a a x2 a 2 x2
1 2 ln 2 2
4. x = 10 or 10 5/2
where 1 < a < 1 & x > 1
10. n = 3 or 4
11. T8
12. 4e 3
5. x = 2 or 0 64 64 , 2 2 , 21 21
7. x 14.
12
C6
15. B
IIT-ian’s PACE ; ANDHERI / DADAR / CHEMBUR / THANE ; Tel : 26245223 / 09 ; .www.iitianspace.com
(9)
View more...
Comments