Best Practices in Hyperion Financial Management Design & Implementation

April 21, 2018 | Author: ayansane635 | Category: Metadata, Databases, Profit (Accounting), Data, Information Retrieval
Share Embed Donate


Short Description

Deatiled practices in HFM design & implementation...

Description

Best Practices in HFM Application Design Chris Barbieri Consolidation Practice Director Oracle ACE Ranzal & Associates

Personal Background Chris Barbieri • Esta Establ blis ishe hed d HFM HFM perf perfor orma manc nce e tuni tuning ng tech techni niqu ques es and statistics widely used today • 4+ yea years rs as as Sr. Sr. Pro Produ duct ct Iss Issue uess Mana Manage gerr at Hype Hyperi rion on  – HFM, Smart View, Shared Services, MDM

, HFM and Enterprise • MBA, Babson College • B.S. B.S. Fina Financ nce e & Acco Accoun unti ting ng,, Bos Bosto ton n Col Colle lege ge • Co-f Co-fou ound nded ed the the HFM HFM Per Perfo form rman ance ce Tun Tunin ing g Lab Lab at at Ranzal with infrastructure expert Kurt Schletter

Application Design: the Foundation of  Performance • Hyperi erion Fi Financ ancial Management • Meta Metada data ta desi design gn as it impa impact ctss  – Volume of members  – Impact of structures

• Data  – Content  – Density

Metadata

Designing HFM’s 12 Dimensions Application Profile

User controlled

1. Year

5.

Entity

2. Period

6.

Account

3. View

7.

ICP

8.

Scenario

4. Value dimension, includes currencies

User defined 9.

Custom 1

10. Custom 2 11. Custom 3 12. Custom 4

Application Profile Year  – No inherent impact impact on performance  – Cannot be changed changed after the application is built  – Impacts the number number of tables that can be created in the database

Period  –

e ase per o s compr se t e co umn structure o every table, whether you use them or not.  – For this reason, avoid weekly weekly or yearly profiles unless it is key to your entire application’s design

View  – No impact, but only YTD is stored and Periodic, QTD are on-the-fly derivations

System Dimension Value Dimension  – Can not directly modify this  – “” Currency>” is a simple simple variable directing directing you to the current entity’s default currency  – “” points back to the currency of the entity’s parent

Currencies  – Don’t add currencies you aren’t using • Sets of calc calc statu statuss record recordss for for (every (every entity entity * every currency) • Impact Impact of loadi loading ng metad metadata ata with with entity entity or curren currency cy chang changes es

 – Normally translate from the entity’s currency only into it’s parent’s currency.  – Beware of non-default translations translations • Impa Impact cted ed calc calc stat status us • Data ex explosi osion

User Controlled Dimensions Entity  – Sum of the data of the children  – Avoid Consolidate All or All With With Data on each hierarchy  – Assign Adj flags sparingly  – “Hidden” dimension

Scenario  – Number of tables

Impact of Account Depth

6- Net Inco Income me

4- Net Inc Income ome

5- EB EBIT IT

3- Op Optg tg In Inco come me 2- Gros Grosss Margi Margin n 1- Sale Saless

4- Op Optg tg In Inccom ome e 3- Gr Gross oss Profit Profit 2- Gros Grosss Margi Margin n





Effect is multiplied when you consider the custom dimensions Parent accounts don’t lock

1- Sale Saless

User Defined Dimensions Custom 1..4  – Think dozens or hundreds, but not thousands thousands  – Avoid: • Employees • Products • Anythi Anything ng that that is very very dyna dynami micc • One to one relations relationship hip with with the entiti entities es

Metadata Efficiency Ratio What does the average entity have in common with the top entity?  – Density measurement of re-use of the accounts accounts and customs customs across all entities top entity children unique custom 1

Metadata Volumes (Americas) Dimension

Average Volume

Recorded High

Comments

Accounts

2 ,1 3 2

1 4 ,4 0 9

Entities

1 ,1 6 5

2 2 ,8 8 2

16

23 3

Custom1

3 88

1 9 ,4 1 0

use Custom 1 96%

Custom2

1 53

1 5 ,1 8 8

use Custom 2 86%

Custom3

61

2 6 ,8 1 6

use Custom 3 86%

Custom4

39

1 1 ,3 8 9

use Custom 4 62%

Scenarios

11

78

3

24

ICP Accounts with Plug

41

1 ,2 2 3

use automated intercompany matching 56%

Accounts with Line Item Detail

36

1 ,6 6 7

16% use this, but only 10% have more than 1 account flagged

Consolidation Rules

-

-

Consolidation methods

5

10

Currencies

Entity hierarchies

OrgByPeriod ICP Members

use only

1 currency 30%

the equivalent of Organizations in Hyperion Enterprise

use consolidation rules 28% use methods 14% use organization by period 9%

86

1 ,4 0 7

track intercompany activity 81%

Entities flagged for Parent Adjs

14 3

7 ,6 9 8

Allow [Parent Adj] or [Contribution Adj] journals30%

Scenarios using Process Mgmt

5

53

use process management 46%

Data

What’s a Subcube? • HFM dat ata a structu cture • Data Databa basse tab tablles stor stored ed by  – Each record contains all periods for the [Year]  – All records for a subcube are loaded into memory together

Parent subcube, stored in DCN tables Currency subcubes, stored in DCE tables

Take it to the Limit Reports, Grids, or Forms that:  – Pull lots of entities  – Lots of years  – Lots of scenarios

Not so problematic:  – Lots of accounts  – Or Custom dimension members

Smart View  – Cell volume impacts bandwidth  – Subcubes impact server performance

HFM Urban Legends • 100, 100,00 000 0 rec recor ords ds per per subc subcub ube e • Incr Increas ease e MaxN MaxNum umDat DataRe aReco cord rdsI sInRA nRAM M = bett better er performance • 500 500 chi children dren to a aren arentt • Syst System em 9 allo allows ws an an unli unlimi mite ted d sub sub cube cube siz size e • Custom Customss shou should ld be ordered ordered larges largestt to smalles smallestt • Limi Limitt to to the the Acco Accoun untt dim dimen ensi sion on dept depth h • 64 bit is faster (this requires some explanation)

Data Design

“Metadata volume is interesting, but it’s how how you • Density • Content  – Specifically: zeros  – Tiny numbers  – Invalid Records

it that matters matters most”

Data Volume Measurement • No pe perfect me method Method

How-To

Pros

Cons

Data Extract

Extract all data, count per entity

Simple, easy to see input from calculated

Can only extract

FreeLRU

Parse HFM event logs

Good sense of average cube, easy to monitor monthly growth

Can’t identify individual cubes, harder to understand

Database Analysis

Query DCE, DCN tables and count

Easy for a DBA, see all subcubes

Doesn’t count dynamic members, includes invalid records

Data Density Using FreeLRU • Surv Survey ey of of data data den densi sity ty usi using ng Free FreeLRU LRU meth method od Number of applications reviewed: 32

NumCubesInRAM NumDataRecordsInRAM NumRecordsInLargestCube Average records per cube Average metadata efficiency: average average cube/densest cube

Average

Min

Max

10,206

Median

ABC Customer

2,672

72

1,345

577

1,502,788

247,900

5,627,748 1,170,908

1,107,614

86,415

2,508

593,924

53,089

31,446

6,309

24

91,418

1,352

2,288

7.3%

0.3%

39.7%

3.4%

7.3%

Loaded Data • What What perc percen entt of the the loa loade ded d data data is is a zero zero val value ue? ?  – No hard rule, but -1 and < 1 % values > -1 and < 1

2,031,976 Total 18,024 Calculated zeros 0.9% % zeros calculated at base 373,226 Values > -1 and < 1 calculated 18.4% % values > -1 and < 1 calculated

4,387,520

116 %

413,837

2,196 %

9.4% 593,981 13.5%

59 %

Effect of Sparsity on Record Volume • Most Most dense dense data data is is at at the the top top ent entit ity y  – Greatest number of populated intersections (account _ custom 1..4 combinations)

Consolidated Data • Tota Totall vol volume ume of of dat data a in in any any subcube • How How man many y zer zeros os are are gene genera rate ted d by the consolidation process?  – Intercompany eliminations

Consolidated Base Records

Total

991,587

Consolidated zeros

194,204

% zeros Values > -1 and < 1 % values > -1 and < 1

 – Allocations  – Empty variables

Consolidated 19.6%

Calculated 9.4% Loaded 0.9%

19.6% 84,251 8.5%

Data Density Calc Time Average Average Rule Execution Time in i n Contrast with Data Volume 900

2.500

800 2.000

700 600      s        d      r      o      c      e        R

1.500 500 400 1.000

     s        d      n      o      c      e        S

300 200

0.500

100 -

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

correlation between density and calc times • Most Most appli applicat catio ions ns are rule ruless bou bound nd

Invalid Records • Type Type 1: 1: Orphaned records from metadata that has been deleted  – Member is removed from dimension_Item table, but not from the data tables  – These can be removed b Database > Delete Invalid Records

• Type Type 2: 2: the member still exists, but is no longer in a valid intersection  – Most often from changing CustomX Top Member on an account  – These cannot be removed by HFM, but are filtered out in memory

Chris Barbieri [email protected] ee

am, USA

+1.617.480.6173 www.ranzal.com

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF