bending moment

April 21, 2018 | Author: Samuel Chan | Category: Bending, Beam (Structure), Physics, Physics & Mathematics, Applied And Interdisciplinary Physics
Share Embed Donate


Short Description

Download bending moment...

Description

4 Shear Forces and Bending Moments

Shear Forces and Bending Moments

800 lb

Problem 4.3-1

Calculate the shear force V and bending moment  M  at a cross section just to the left of the 1600-lb load acting on the simple beam AB shown in the figure.

 A

B

30 in.

Solution 4.3-1

1600 lb

60 in. 120 in.

30 in.

Simple beam

800 lb

Free-body diagram of segment  DB

1600 lb  D

 A

1600 lb V 

B

 D

 B

 M 

30 in. 30 in.

60 in.

30 in.

 R A

 R B  R B

© F VERT  0:

V  1600 lb  1400 lb  200 lb

 M  A  0:  R B  140 1400 0 lb  M  B  0:  R A  100 1000 0 lb

© M  D  0:  M  (1400 lb)(30 in.)  42,000 lb-in. 6.0 kN

Problem 4.3-2

Determine the shear force V and bending moment  M  at the midpoint C of the simple beam  AB shown in the figure.



 A

1.0 m

Solution 4.3-2

2.0 m

Free-body diagram of segment  AC 

2.0 kN/m



6.0 kN

 B  A

1.0 m  R A

1.0 m 4.0 m

 B

Simple beam 6.0 kN

 A

2.0 kN/m

1.0 m

 M  A  0:  R B  4.5kN  M  B  0:  R A  5.5kN

2.0 m



1.0 m  R B



 M 

1.0 m

 R A

© F VERT  0:

V  0.5 kN

© M C   0:  M  5.0 kN m 

259

260

CHAPTE CHA PTER R4

Shear She ar Forc Forces es and Ben Bendin ding g Mome Moments nts

Problem 4.3-3

Determine the shear force V  and bending moment  M at the midpoint of the beam with overhangs (see figure). Note that one load acts downward and the other upward.

P

P

b

Solution 4.3-3

L

b

Beam with overhangs

P

P  A

¢

© M  A  0:  R B  P 1 

B

2b  L



P  A

b

L

b

 R A

(downward)

b

 R B

 M 

C  L /2

 R A



Free-body diagram (C is the midpoint)

© M  B  0  R A 

1  L

© F VERT  0:

¢

[ P ( L  b  b ) ]

¢

P 1

2b  L



V  R A  P  P 1 

2b

≤  L

¢

(upward)

 M  P 1  PL

2

2b

 L ≤ ¢ ≤  L 2

Calculate the shear force V and bending moment  M at a cross section located 0.5 m from the fixed support of the cantilever beam  AB shown in the figure.

 Pb  Pb 

 L

2

 L

2



0

1.5 kN/m

 A

 B

1.0 m

2.0 m

Cantilever Canti lever beam

4.0 kN

1.5 kN/m

 A

 B

1.0 m

2.0 m



Point D is 0.5 m from support  A. 4.0 kN

1.5 kN/m

 D

 B

 M 

1.0 m

2.0 m

© F VERT  0: m )(2.0 m) V  4.0 kN  (1.5 kN  m)(2.0  4.0 kN  3.0 kN  7.0 kN © M  D  0:  M   (4.0 kN)(0.5 m) m )(2.0 m)(2.5 m)  (1.5 kN  m)(2.0  2.0 kN m  7.5 kN m  9.5 kN m 

Free-body diagram of segment  DB

0.5 m

PL

4.0 kN

1.0 m



¢

P b

Problem 4.3-4

1.0 m

2bP

© M C   0:

 M 

Solution 4.3-4

P 



SECTION 4.3

Problem 4.3-5

Determine the shear force V and bending moment  M  at a cross section located 16 ft from the left-hand end  A of the beam with an overhang shown in the figure.

400 lb/ft

200 lb/ft  B

 A

10 ft

Solution 4.3-5

10 ft



6 ft

6 ft

Beam with an overhang

400 lb/ft

200 lb/ft  B

 A

10 ft

261

Shear Forces and Bending Moments

10 ft

 R A

Free-body diagram of segment  AD C 

6 ft

400 lb/ft  D

 A

6 ft

10 ft

6 ft V 

 R A

 R B

 M 

 M  B  0:  R A  2460 lb  M  A  0:  R B  2740 lb

Point D is 16 ft from support  A.

© F VERT  0: V  2460 lb  (400 lb  f t)(10 ft)  1540 lb

© M  D  0:  M  (2460 lb)(16 ft)  (400 lb  f t)(10 ft)(11 ft)  4640 lb-ft

Problem 4.3-6

The beam  ABC shown in the figure is simply P1 = 4.0 kN supported at  A and  B and has an overhang from  B to C . The loads consist of a horizontal force P1  4.0 kN acting at the end of a vertical arm and a vertical force P2  8.0 kN acting at 1.0 m  A the end of the overhang. Determine the shear force V and bending moment  M at a cross section located 3.0 m from the left-hand support. ( Note: Disregard the widths of the beam and vertical arm and use centerline dimensions when making calculations.)

Solution 4.3-6

P2 = 8.0 kN  B

4.0 m



1.0 m

Beam with vertical arm

P1 = 4.0 kN P2 = 8.0 kN

1.0 m  A

Free-body diagram of segment  AD

Point D is 3.0 m from support  A.

 B

4.0 kN • m

 A

3.0 m 4.0 m  R A

 M  B  0:

 R A  1.0 kN (downward)

 M  A  0:

 R B  9.0 kN (upward)

1.0 m  R B



 R A

© F VERT  0:

 M 

D

V   RA   1.0 kN

© M  D  0:  M   R A (3.0 m)  4.0 kN m 

 7.0 kN



m

262

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.3-7

The beam ABCD shown in the figure has overhangs at each end and carries a uniform load of intensity q. For what ratio b/L will the bending moment at the midpoint of the beam be zero?

q  A

 D  B



b

Solution 4.3-7

L

b

Beam with overhangs q

Free-body diagram of left-hand half of beam :

 A

 D  B b

Point E is at the midpoint of the beam.



q

L

b  RC 

 R B

 M = 0 (Given)

 A b

 L/2

¢





 R B

From symmetry and equilibrium of vertical forces:  L  R B   RC   q b  2

 E 

© M  E   0

 

2

¢ L2 ≤ q ¢ 12 ≤ ¢b  L2 ≤  L  L q ¢b ≤2 ¢ 2 ≤ q ¢ 12 ≤ ¢b  L2 ≤  R B













0 2

0

Solve for b /  L : b  L



1 2

Problem 4.3-8

At full draw, an archer applies a pull of 130 N to the bowstring of the bow shown in the figure. Determine the bending moment at the midpoint of the bow. 70° 1400 mm

350 mm

SECTION 4.3

Solution 4.3-8

Shear Forces and Bending Moments

Archer’s bow  B

Free-body diagram of segment  BC   B  

 

P



 H  2



 H 

 A b



 M 

© M C   0 b

P  130N    70°



 1.4m



 M  0





Substitute numerical values:

b  350 mm  M 

 0.35m

T   

 A



T  tensile force in the bowstring F HORIZ  0:

2T cos  P  0 T 

P

2 cos b

B

130 N 1.4 m

2  M  108 N

Free-body diagram of point  A

P

¢ H 2 ≤ T (sin b) ( b)  H  T ¢ cos b b sin b≤ 2 P  H  ¢ b tan b≤ 2 2

T (cos b )  M  

 H  1400 mm

 



m

2

R

 (0.35 m)(tan 70 )

263

264

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.3-9

A curved bar ABC is subjected to loads in the form of two equal and opposite forces P, as shown in the figure. The axis of  the bar forms a semicircle of radius r . Determine the axial force  N , shear force V , and bending moment  M  acting at a cross section defined by the angle .

Solution 4.3-9

 M   N  P cos  r 



 A

P  A







O

P

P





 A

Curved bar

 B P

 M   N 

 B

O

P C 

 B

 N   P sin u

V  

P

© F  N   0 Q b   N  P sin u  0

O

 A P sin 

F V  

0

© M O  0



R a 

 

V   P cos u  0 V  P cos u  M  Nr  0  M  Nr  Pr sin u

Problem 4.3-10

Under cruising conditions the distributed load acting on the wing of a small airplane has the idealized variation shown in the figure. Calculate the shear force V and bending moment  M at the inboard end of the wing.

1600 N/m

2.6 m

Solution 4.3-10

Loading (in three parts)

900 N/m

700 N/m

V   A

B

2.6 m

2.6 m

1.0 m

Shear Force F VERT  0

1.0 m

2.6 m

Airplane wing

1600 N/m  M 

900 N/m

1 2

900 N/m  A

3  B

Bending Moment

c T

1 V  (700 N  m )(2.6 m)  (900 N  m )(5.2 m) 2 1  (900 N  m )(1.0 m)  0 2 V  6040 N  6.04 kN

(Minus means the shear force acts opposite to the direction shown in the figure.)

© M  A  0  M 

1 2



(700 N  m )(2.6 m)

¢ 2.63 m ≤

 (900 N  m )(5.2 m)(2.6 m) 

1 2

¢

(900 N  m )(1.0 m) 5.2 m 

1.0 m 3



0

 M  788.67 N • m  12,168 N • m  2490N • m  15,450 N • m  15.45 kN



m

SECTION 4.3

Problem 4.3-11

A beam ABCD with a vertical arm CE is supported as a simple beam at  A and  D (see figure). A cable passes over a small pulley that is attached to the arm at  E . One end of the cable is attached to the beam at point  B. What is the force P in the cable if the bending moment in the beam just to the left of point C is equal numerically to 640 lb-ft? ( Note: Disregard the widths of the beam and vertical arm and use centerline dimensions when making calculations.)

 E

 A

P

Cable P

 B

6 ft 4P __ 9

UNITS: P in lb  M in lb-ft

 B

C

6 ft

D

6 ft

8 ft C

6 ft

Free-body diagram of section  AC  P

P

D

P 4 __ 5

 A

6 ft

4P __ 9

6 ft 4 P __ 9

3P __ 5

 M 



 N 

6 ft

 B



© M C  0  M  

4P 5

 M  



(6 ft) 

4P 9

(12 ft)  0

8P

lb-ft 15 Numerical value of  M equals 640 lb-ft.



Problem 4.3-12

8 ft

Beam with a cable  E

 A

P

Cable

6 ft

Solution 4.3-11

265

Shear Forces and Bending Moments

640 lb-ft 

8P

lb-ft 15 and P  1200 lb

A simply supported beam  AB supports a trapezoidally distributed load (see figure). The intensity of the load varies linearly from 50 kN/m at support  A to 30 kN/m at support  B. Calculate the shear force V  and bending moment  M at the midpoint of the beam.

50 kN/m 30 kN/m

 A

 B

3m

266

CHAPTER 4

Solution 4.3-12

Shear Forces and Bending Moments

Beam with trapezoidal load Free-body diagram of section CB

50 kN/m 30 kN/m

 A

Point C is at the midpoint of the beam. 40 kN/m

 B

30 kN/m

V   M 

3m  R A



 R B

Reactions

V  (30 kN  m )(1.5 m)  12 (10 kN  m )(1.5 m)

 (20 kN  m )(3 m) ( 12 ) (2 m)  0

 R A  65kN

 55kN  0

V  2.5 kN

© M C   0



© F VERT  0 c  R A  R B  12 (50 kN  m  30 kN  m )(3 m)  0  R B  55kN



 M  (30 kN/m)(1.5 m)(0.75 m)  12 (10 kN  m )(1.5 m)(0.5 m)  (55kN)(1.5 m)  0

 M  45.0 kN



m q1 = 3500 lb/ft

Problem 4.3-13

Beam  ABCD represents a reinforced-concrete foundation beam that supports a uniform load of intensity q1  3500 lb/ft (see figure). Assume that the soil pressure on the underside of the beam is uniformly distributed with intensity q2. (a) Find the shear force V  B and bending moment  M  B at point  B. (b) Find the shear force V m and bending moment  M m at the midpoint of the beam.

Solution 4.3-13

 B



 A

 D q2

3.0 ft

8.0 ft

3.0 ft

Foundation beam

q1 = 3500 lb/ft A

55 kN

c T

F VERT  0

© M  B  0   R A (3 m)  (30 kN  m )(3 m)(1.5 m)

 B

1.5 m

B

(b) V and  M at midpoint  E  C

D

3500 lb/ft  B

 A



 M m

q2

3.0 ft

8.0 ft

3.0 ft

V m

2000 lb/ft F VERT  0:

q2(14ft)  q1(8 ft)

q2 

4 ft

8

q1  2000 lb  ft 14 (a) V and  M at point  B ∴

3 ft

 B

 A

 M   B

V  B

V m  0  M  E   0:

F VERT  0: 2000 lb/ft 3 ft

F VERT  0: V m  (2000lb/ft)(7ft)  (3500lb/ft)(4 ft)

V  B  6000 lb

© M  B  0:  M  B  9000 lb-ft

 M m  (2000lb/ft)(7ft)(3.5 ft)  (3500 lb/ft)(4ft)(2 ft)

 M m  21,000 lb-ft

SECTION 4.3

 E 

Problem 4.3-14

The simply-supported beam  ABCD is loaded by a weight W  27 kN through the arrangement shown in the figure. The cable passes over a small frictionless pulley at  B and is attached at E to the end of the vertical arm. Calculate the axial force  N , shear force V , and bending moment M at section C, which is just to the left of the vertical arm. ( Note: Disregard the widths of the beam and vertical arm and use centerline dimensions when making calculations.)

Cable 1.5 m  A

 B



2.0 m

2.0 m

W = 27 kN

Solution 4.3-14

Beam with cable and weight  E 

Cable  A

2.0 m

Free-body diagram of pulley at  B 1.5 m

 B

27 kN



2.0 m

 D

21.6 kN

2.0 m 27 kN

27 kN

 R A  18kN

10.8 kN

 R D

 R A

 R D  9 kN

Free-body diagram of segment  ABC of beam 10.8 kN 21.6 kN

 A

2.0 m

 B

 M 



 N 

2.0 m V 

18 kN

© F HORIZ  0:  N  21.6 kN (compression) © F VERT  0:

V  7.2 kN

© M C  0:  M  50.4 kN m 

267

Shear Forces and Bending Moments

 D

2.0 m

268

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.3-15

The centrifuge shown in the figure rotates in a horizontal plane (the  xy plane) on a smooth surface about the  z axis (which is vertical) with an angular acceleration . Each of the two arms has weight w per unit length and supports a weight W  2.0 wL at its end. Derive formulas for the maximum shear force and maximum bending moment in the arms, assuming b  L /9 and c   L /10.

 y

 c   L

  b



 x 



Solution 4.3-15

Rotating centrifuge

 c   L   b

W  ( L + b + c) __ g

 x

Tangential acceleration  r  Inertial force Mr  

Substitute numerical data:

W  r  g

W  2.0 wL

Maximum V  and M occur at  x  b. W  V max  ( L  b  c )   g

 L  b



b

W  ( L  b  c )  g 

wL

( L  2b ) 2g W  ( L  b  c ) ( L  c )  M max  g  L  b w  x ( x  b ) dx  g b W   ( L  b  c ) ( L  c ) g





w L2

6g

(2 L  3b )

__

w x g

w  x dx g

b

2

V max   M max 

91wL  30g 229wL3 75g

 L

9

c

 L

10

SECTION 4.5

269

Shear-Force and Bending-Moment Diagrams

Shear-Force and Bending-Moment Diagrams When solving the problems for Section 4.5, draw the shear-force and  bending-moment diagrams approximately to scale and label all critical ordinates, including the maximum and minimum values. Probs. 4.5-1 through 4.5-10 are symbolic problems and Probs. 4.5-11 through 4.5-24 are numerical problems. The remaining problems (4.5-25 through 4.5-30) involve specialized topics, such as optimization, beams with hinges, and moving loads.

Problem 4.5-1

Draw the shear-force and bending-moment diagrams for a simple beam  AB supporting two equal concentrated loads P (see figure).

a

P

P

 A

B

 L

Solution 4.5-1

Simple beam

a

P

P

 A

 L

 R B = P

P V 

0 P

Pa

 M 

0

a B

 R A = P

a

270

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-2

A simple beam AB is subjected to a counterclockwise couple of moment  M 0 acting at distance a from the left-hand support (see figure). Draw the shear-force and bending-moment diagrams for this beam.

 M 0  A

B a  L

Solution 4.5-2

Simple beam  M 0  A

B a

 M   R A = 0  L

 M   R B = 0  L

 L

M0  L



0

 M 

 M 0a L

0

 M 0 (1 

a )  L

q

Problem 4.5-3

Draw the shear-force and bending-moment diagrams for a cantilever beam  AB carrying a uniform load of intensity q over one-half of its length (see figure).

 A  B  L — 2

Solution 4.5-3

Cantilever beam  M   A =

3qL2 8

q  A  B

 R A =

qL 2

 L — 2

 L — 2

qL — 2 V 

 M 

0

0



3qL2 8



qL2 8

 L — 2

SECTION 4.5

Shear-Force and Bending-Moment Diagrams

Problem 4.5-4

The cantilever beam  AB shown in the figure is subjected to a concentrated load P at the midpoint and a counterclockwise couple of moment  M 1  PL /4 at the free end. Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-4

271

PL  M 1 = —– 4

P

 A

B  L — 2

 L — 2

Cantilever beam P  A

B  M 1 

 M   A L/2

 R A



 M 

PL 4

 R A  P

L/2  M   A 

P

0

PL 4

0 

PL 4

The simple beam  AB shown in the figure is subjected to a concentrated load P and a clockwise couple  M 1  PL /4 acting at the third points. Draw the shear-force and bending-moment diagrams for this beam.

 A

B  L — 3

Simple beam PL  M 1 = —– 4

P  A

5P  R A = —– 12

B  L — 3

 L — 3

 L — 3

7P  R B = —– 12

5P /12 V 

0

7P /12

5PL /36  M 

7PL /36

0 PL /18

PL  M 1 = —– 4

P

Problem 4.5-5

Solution 4.5-5

PL 4

 L — 3

 L — 3

272

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-6

A simple beam AB subjected to clockwise couples  M 1 and 2 M 1 acting at the third points is shown in the figure. Draw the shear-force and bending-moment diagrams for this beam.

 M 1

2 M 1

 A

B  L — 3

Solution 4.5-6

 L — 3

 L — 3

Simple beam  M 1

2 M 1

 A

B

3 M   R A = —–1  L

 L — 3

 L — 3

3 M   R B = —–1  L

 L — 3

0

3 M 1  L

 —–



 M 1  M 

0  M 1

 M 1

Problem 4.5-7

A simply supported beam  ABC is loaded by a vertical load P acting at the end of a bracket  BDE (see figure). Draw the shear-force and bending-moment diagrams for beam  ABC .

 B  A

C   D

 E  P

 L — 4

 L — 4

 L — 2  L

Solution 4.5-7

Beam with bracket P  A

P  R A = —– 2





 B

3 L — 4

 L — 4

P  RC  = —– 2

P —– 2 P 2

0

 —–

PL —– 8  M 

PL —– 4

0

3PL —– 8

SECTION 4.5

Problem 4.5-8

A beam ABC is simply supported at  A and B and has an overhang  BC (see figure). The beam is loaded by two forces P and a clockwise couple of moment Pa that act through the arrangement shown. Draw the shear-force and bending-moment diagrams for beam ABC .

Solution 4.5-8

273

Shear-Force and Bending-Moment Diagrams

P

P

 A

Pa



 B a

a

a

a

Beam with overhang P

P C 

upper beam:

a

Pa

a

a

P

P P

P  B

lower beam:

C  a

a

a

2P P V 

0

 M 

0

P

Pa

q

Problem 4.5-9

Beam ABCD is simply supported at  B and C  and has overhangs at each end (see figure). The span length is  L and each overhang has length  L /3. A uniform load of intensity q acts along the entire length of the beam. Draw the shear-force and bending-moment diagrams for this beam.

Solution 4.5-9

 A

 D  B  L 3

C   L

 L 3

Beam with overhangs q  A

 D  L / 3

 B



 L

5qL  R B = __ 6 qL __ 2 V  0 qL – __ 3

 L / 3

5qL  RC  = __ 6 qL/ 3

5qL2 __

qL – __ 2

72  M  0  –qL2 / 18

 X 1

 –qL2 / 18

 x1  L

5 6

 0.3727 L

274

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-10

Draw the shear-force and bending-moment diagrams for a cantilever beam  AB supporting a linearly varying load of maximum intensity q0 (see figure).

q0

 A  B  L

Solution 4.5-10

Cantilever beam  x q=q0 __  L

q0 2 q__ 0 L  M   B = 6

 B

 A  x V  0

 R B =

 L

q0 x2 V = – __ 2 L

 M  0  M = –

3 q__ 0 x 6 L

q0 L __

2

 –

q0 L __

 –

q0 L2 __

2

6

Problem 4.5-11

The simple beam  AB supports a uniform load of  intensity q  10 lb/in. acting over one-half of the span and a concentrated load P  80 lb acting at midspan (see figure). Draw the shear-force and bending-moment diagrams for this beam.

P = 80 lb q = 10 lb/in.  A

B  L — = 40 in. 2

Solution 4.5-11

Simple beam P = 80 lb

10 lb/in.  A

 R A =140 lb

B

40 in.

40 in.

 R B = 340 lb

140 V  (lb)

60 0 6 in. –340 5600

 M  (lb/in.)

0 46 in.

 M max = 5780

 L — = 40 in. 2

SECTION 4.5

Problem 4.5-12

The beam  AB shown in the figure supports a uniform load of intensity 3000 N/m acting over half the length of the beam. The beam rests on a foundation that produces a uniformly distributed load over the entire length. Draw the shear-force and bending-moment diagrams for this beam.

3000 N/m  A

B

0.8 m

Solution 4.5-12

275

Shear-Force and Bending-Moment Diagrams

1.6 m

0.8 m

Beam with distributed loads 3000 N/m  A

 B

1500 N/m 0.8 m

1.6 m

0.8 m

1200 V  0 (N)

960 480

 M  (N . m) 0

–1200 480

200 lb

Problem 4.5-13

A cantilever beam AB supports a couple and a concentrated load, as shown in the figure. Draw the shear-force and bending-moment diagrams for this beam.

400 lb-ft  A

 B

5 ft

Solution 4.5-13

5 ft

Cantilever beam 200 lb 400 lb-ft  A

 B

 M   A = 1600 lb-ft

5 ft

 R A = 200 lb

5 ft

+200 V  (lb)

0 0  M  (lb-ft)

–1600

–600

–1000

276

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-14

The cantilever beam  AB shown in the figure is subjected to a uniform load acting throughout one-half of its length and a concentrated load acting at the free end. Draw the shear-force and bending-moment diagrams for this beam.

2.0 kN/m

2.5 kN  B

 A

2m

Solution 4.5-14

2m

Cantilever beam 2.0 kN/m  M  A = 14 kN . m

2.5 kN  B

 A

2m

 R A = 6.5 kN

2m

6.5 V  (kN)

2.5 0 0

 M  (kN . m)

–5.0 –14.0

25 lb/in.

Problem 4.5-15

The uniformly loaded beam  ABC has simple supports at  A and B and an overhang  BC (see figure). Draw the shear-force and bending-moment diagrams for this beam.

 A

C   B

72 in.

Solution 4.5-15

Beam with an overhang 25 lb/in.  A

C   B

72 in.  R A = 500 lb

48 in.  R B = 2500 lb 1200

500 V  0 (lb) 20 in.

–1300 5000  M  0 20 in. (lb-in.)

40 in. –28,800

48 in.

SECTION 4.5

Problem 4.5-16

A beam ABC with an overhang at one end supports a uniform load of intensity 12 kN/m and a concentrated load of magnitude 2.4 kN (see figure). Draw the shear-force and bending-moment diagrams for this beam.

12 kN/m

2.4 kN

 A



 B

1.6 m

Solution 4.5-16

277

Shear-Force and Bending-Moment Diagrams

1.6 m

1.6 m

Beam with an overhang 12 kN/m

2.4 kN

 A



 B

1.6 m

1.6 m

1.6 m

 R A = 13.2 kN

 R B = 8.4 kN

13.2 V  (kN)

2.4 0 1.1m  M max

–6.0 5.76

 M  (kN . m) 0

 M max = 7.26

0.64 m

1.1m

Problem 4.5-17

The beam  ABC shown in the figure is simply supported at  A and  B and has an overhang from  B to C . The loads consist of a horizontal force P1  400 lb acting at the end of the vertical arm and a vertical force P2  900 lb acting at the end of the overhang. Draw the shear-force and bending-moment diagrams for this beam. ( Note: Disregard the widths of the beam and vertical arm and use centerline dimensions when making calculations.)

Solution 4.5-17

–3.84

P1 = 400 lb P2 = 900 lb

1.0 ft  A

 B

4.0 ft



1.0 ft

Beam with vertical arm

P1 = 400 lb

P2 = 900 lb

1.0 ft  A

 B

900

C  V  (lb) 0

4.0 ft

1.0 ft

 R A = 125 lb

 A

400 lb-ft

 R B = 1025 lb

900 lb

 B



125 lb

1025 lb

 M  (lb)

125

0  400

 900

278

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-18

A simple beam AB is loaded by two segments of  uniform load and two horizontal forces acting at the ends of a vertical arm (see figure). Draw the shear-force and bending-moment diagrams for this beam.

8 kN

4 kN/m

4 kN/m

1m  A

B

1m 8 kN 2m

Solution 4.5-18

2m

2m

2m

Simple beam

4 kN/m

6.0

4 kN/m

16 kN . m

 A

V  (kN)

B

2m

2m

2m

0

1.5 m

 2.0

2m

 R A = 6 kN

 R B = 10 kN

 10.0

16.0 12.0 4.5  M 

4.0

(kN . m) 0 1.5 m

 E 

Problem 4.5-19

A beam ABCD with a vertical arm CE is supported as a simple beam at  A and D (see figure). A cable passes over a small pulley that is attached to the arm at  E . One end of the cable is attached to the beam at point  B. The tensile force in the cable is 1800 lb. Draw the shear-force and bending-moment diagrams for beam  ABCD. ( Note: Disregard the widths of the beam and vertical arm and use centerline dimensions when making calculations.)

Cable  A

C

1800 lb

6 ft

6 ft

Free-body diagram of beam  ABCD 1800

1440 Cable  B

1440

8 ft C

D

5760 lb-ft 1800  A



 B

1080

 D

720

800 6 ft

6 ft

 R D = 800 lb

6 ft

Note: All forces have units of pounds.

 R D = 800 lb

640

V  (lb)

D

Beam with a cable  E 

1800 lb  A

8 ft

 B

6 ft

Solution 4.5-19

1800 lb

4800

0

 M  0 (lb-ft)  800

 960

 800  4800

800

SECTION 4.5

Problem 4.5-20

The beam  ABCD shown in the figure has overhangs that extend in both directions for a distance of 4.2 m from the supports at  B and C , which are 1.2 m apart. Draw the shear-force and bending-moment diagrams for this overhanging beam.

279

Shear-Force and Bending-Moment Diagrams

10.6 kN/m 5.1 kN/m

5.1 kN/m

 A

D  B



4.2 m

4.2 m 1.2 m

Solution 4.5-20

Beam with overhangs 32.97 6.36

10.6 kN/m 5.1 kN/m

V  0 (kN)

5.1 kN/m

 A

6.36

D  B

4.2 m  R B = 39.33 kN

32.97

C   M  0 (kN . m)

4.2 m  RC = 39.33 kN

1.2 m

59.24 61.15

61.15

4.0 k 

Problem 4.5-21

The simple beam  AB shown in the figure supports a concentrated load and a segment of uniform load. Draw the shear-force and bending-moment diagrams for this beam.

2.0 k/ft C 

 A

5 ft

10 ft 20 ft

Solution 4.5-21

Simple beam 4.0 k  C 

 A  R A = 8 k 

V  (k)

5 ft

 B

5 ft

10 ft  R B = 16 k 

8 0

2.0 k/ft

4 12 ft

8 ft C   16

60 64

 M max = 64 k-ft

40  M  (k-ft)

0 12 ft



8 ft

 B

280

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-22

The cantilever beam shown in the figure supports a concentrated load and a segment of uniform load. Draw the shear-force and bending-moment diagrams for this cantilever beam.

3 kN

 B

0.8 m

Solution 4.5-22

1.0 kN/m

 A

0.8 m

1.6 m

Cantilever beam 4.6

3 kN  M   A = 6.24 kN . m

V  (kN)

1.0 kN/m

 A

1.6 0

 B

0.8 m

0.8 m

1.6 m  M  (kN . m)

 R A = 4.6 kN

0  1.28  2.56  6.24

180 lb/ft

Problem 4.5-23

The simple beam  ACB shown in the figure is subjected to a triangular load of maximum intensity 180 lb/ft. Draw the shear-force and bending-moment diagrams for this beam.  A

 B C 

6.0 ft 7.0 ft

Solution 4.5-23

Simple beam 240

180 lb/ft

V  (lb)

0

 x1 = 4.0 ft

 B

 300

 A

 390

C   M max = 640

6.0 ft  R A = 240 lb

1.0 ft  R B = 390 lb

360  M  (lb-ft) 0

3.0 kN/m

Problem 4.5-24

A beam with simple supports is subjected to a trapezoidally distributed load (see figure). The intensity of the load varies from 1.0 kN/m at support  A to 3.0 kN/m at support  B. Draw the shear-force and bending-moment diagrams for this beam.

1.0 kN/m

 A

 B

2.4 m

SECTION 4.5

Solution 4.5-24

281

Shear-Force and Bending-Moment Diagrams

Simple beam 2.0

3.0 kN/m V  (kN)

1.0 kN/m

0  A

 B

 x1 = 1.2980 m  x  2.8

2.4 m  R A = 2.0 kN

 R B = 2.8 kN

V   2.0  x 

 x2

 M max = 1.450

( x  meters; V  kN)

2.4

 M  (kN . m)

Set V  0:  x1  1.2980m

0

Problem 4.5-25

A beam of length L is being designed to support a uniform load of intensity q (see figure). If the supports of the beam are placed at the ends, creating a simple beam, the maximum bending moment in the beam is qL2 /8. However, if the supports of the beam are moved symmetrically toward the middle of the beam (as pictured), the maximum bending moment is reduced. Determine the distance a between the supports so that the maximum bending moment in the beam has the smallest possible numerical value. Draw the shear-force and bending-moment diagrams for this condition.

Solution 4.5-25

q

 A

B a  L

Beam with overhangs q

 A

B

(L  a)/ 2

(L  a)/ 2

a



 R B = qL /2

 R A = qL /2

2) L  0.5858 L

Solve for a: a  (2  q  M 1  M 2  ( L  a ) 2 8 qL2

8

(3  2 2)  0.02145qL2 0.2929 qL

 M 2 V 

0

 M  0

0.2929 L  0.2071 qL

 M 1

 M 1

0.2071 qL

0.2071 L

 0.2929 qL

2 0.02145 qL

The maximum bending moment is smallest when  M 1 M 2 (numerically).  M 1 

 M  0

q ( L  a ) 2

 M 2   R A  M 1  M 2

 x1

 x1

8 a

¢2≤



qL2

8

 2

qL

8

(2 a  L )

( L  a )  L (2 a  L )

2

 0.02145 qL

 x1 = 0.3536 a

= 0.2071 L

2

 0.02145 qL

282

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-26

The compound beam  ABCDE shown in the figure consists of two beams ( AD and DE ) joined by a hinged connection at  D. The hinge can transmit a shear force but not a bending moment. The loads on the beam consist of a 4-kN force at the end of a bracket attached at point  B and a 2-kN force at the midpoint of beam  DE . Draw the shear-force and bending-moment diagrams for this compound beam.

4 kN

1m 2 kN B

 A

2m

Solution 4.5-26

C

1m

D

2m

2m



2m

Compound beam 4 kN Hinge 4 kN . m  B

 A



2m

2m

 D

2m

 R A = 2.5 kN



1m 1m

 RC = 2.5 kN

2.5 V  (kN)

2 kN

 R E = 1 kN

1.0

0

 D

 1.5

 1.0

5.0  M  0 (kN . m)

1.0

1.0

 D

2.67 m  2.0

Problem 4.5-27

The compound beam  ABCDE shown in the figure consists of two beams ( AD and  DE ) joined by a hinged connection at  D. The hinge can transmit a shear force but not a bending moment. A force P acts upward at  A and a uniform load of intensity q acts downward on beam DE . Draw the shear-force and bending-moment diagrams for this compound beam.

Solution 4.5-27

Compound beam

P

q  B

 A

L

P

C

L

D

L

q  B

 A

C

D

 E  Hinge

L  R B = 2P + qL P V 

L

L  RC = P + 2qL

 D PL

0

R E = qL

qL

0

 M 

2 L

 –qL

− P− qL

qL 2

 D − qL2

 L

L



2 L

SECTION 4.5

Problem 4.5-28

The shear-force diagram for a simple beam is shown in the figure. Determine the loading on the beam and draw the bendingmoment diagram, assuming that no couples act as loads on the beam.

12 kN V 

0 –12 kN 2.0 m

Solution 4.5-28

283

Shear-Force and Bending-Moment Diagrams

Simple beam ( V is given)

1.0 m

6.0 kN/m

1.0 m

12 kN B

 A

2m

 R A = 12kN

1m

1m

 R B = 12kN

12

V  (kN)

0

−12

12  M  (k N . m)

0 652 lb

Problem 4.5-29

The shear-force diagram for a beam is shown in the figure. Assuming that no couples act as loads on the beam, determine the forces acting on the beam and draw the bendingmoment diagram.

580 lb

572 lb

500 lb



0 –128 lb –448 lb 4 ft

Solution 4.5-29

Forces on a beam (V is given)

16 ft

4 ft

652

580

572

Force diagram V  (lb)

20 lb/ft

0 –128 2448 4 ft 652 lb

700 lb

16 ft

4 ft 1028 lb

500 lb

–448

 M  (lb-ft)

0 14.50 ft –2160

500

284

CHAPTER 4

Shear Forces and Bending Moments

Problem 4.5-30

A simple beam AB supports two connected wheel loads P and 2P that are distance d apart (see figure). The wheels may be placed at any distance  x from the left-hand support of the beam.

P  x

(a) Determine the distance  x that will produce the maximum shear force in the beam, and also determine the maximum shear force V max. (b) Determine the distance  x that will produce the maximum bending moment in the beam, and also draw the corresponding bendingmoment diagram. (Assume P  10 kN, d  2.4 m, and L  12 m.)

Solution 4.5-30

2P

 x

P  10kN d  2.4m  L  12 m



 A

 B

 L

(a) Maximum shear force By inspection, the maximum shear force occurs at support B when the larger load is placed close to, but not directly over, that support. 2P

P  x = L







 A

 B

 A

 B

 L

Reaction at support  B:  R B 

P

 x 

 R A = Pd   L

 R B = P(3



2P

( x  d ) 

 L  L Bending moment at  D:



dM  D dx

P  L 

P  L

 L

¢3 6

P  L

B

 A

2



¢ L6 ≤ ¢3



PL

d  3 ¢ ≤  L 12 

 4.0 m

5d  2  L



5d   L



 (3 L  5d )

R

 2d ( L  d )

 78.4 kN



m

 M max = 78.4

64  M  (kN . m)

2.4 m

5.6 m

 B

Note:  R A   L



2

4.0 m  D

 L

0

2P d 

5d 

¢ L6 ≤ ¢3

3

(b) Maximum bending moment

P



Substitute x into Eq (1):



By inspection, the maximum bending moment occurs at point  D, under the larger load 2P.

 R B

Eq.(1)

( 6 x  3 L  5d )  0





(2 d  3 x )

 L

[ 3 x2  (3 L  5d ) x  2d ( L  d ) ]

Solve for x:  x 

d )  L

 x  L  d  9.6 m d   28 kN V max  R B  P 3   L

P

 M  D  R B ( L  x  d ) P (2 d  3 x ) ( L  x  d )   L

 M max 

 x



Moving loads on a beam P

¢

2P

 R B 

P

¢3 2 P ¢3 2

 



≤ ≤  L  L d 

 16 kN  14 kN

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF