Basic Equation of Drilling
September 30, 2017 | Author: saeed65 | Category: N/A
Short Description
Basic Equation of Drilling...
Description
Basic Drilling Engineering Equations - p.1
Q=
Triplex Pump :
3 π 2 LEN d 4 231
( )
(
Q=
Hydraulic Horsepower :
HHP =
Annular Area :
A ANN =
Pipe Capacity :
(
π 2 2 d 2 − d1 4
VPIPE =
Pipe Capacity :
Gas in Mud :
Gelled Mud :
)
VPIPE =
⎛ bbl ⎞ ⎜ ⎟ ⎝ ft ⎠
VANN =
d 2 − d1 1,029.4
2
⎛ CPS Z A TA ∆PRED = ⎜⎜ ⎝ (100 − C) Z S TS
⎛ bbl ⎞ ⎜ ⎟ ⎝ ft ⎠
Circulatin g Pr essure :
⎞ ⎟⎟ ⎠
⎛ 1 ⎞ ∆PPARASITIC = ⎜ ⎟ ∆PPUMP ⎝ m + 1⎠
Max Im pact Force :
⎛ 2 ⎞ ∆PPARASITIC = ⎜ ⎟ ∆PPUMP ⎝m+ 2⎠
A NOZ _ TOT =
Nozzle Area :
(
)
π 2 2 2 d1 + d2 + d3 + ... 4
∆PNOZ =
d NOZ =
10,859 A NOZ _ TOT
2
ρMUD ∆PNOZ _ OPT
4 A TOT 3π
⎛ ⎜ log R 60N dC = ⎜ ⎜ 12W ⎜ log 6 10 D B ⎝
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
⎛ ρ MUD _ NORMAL ⎞ ⎜ ⎟ ⎜ρ ⎟ ⎝ MUD _ ACTUAL ⎠
E = en
⎡ dC _ OBSERVED ⎢ ⎢⎣ dC _ NORMAL
⎤ ⎥ ⎥⎦
1.2
⎛ E 1⎞ Lowering Pipe : L = W ⎜1 + + ⎟ n n⎠ ⎝
P S ⎡S ⎛ P ⎞ ⎤ = − ⎢ −⎜ ⎟ ⎥ D D ⎣D ⎝ D ⎠N ⎦
⎛n+ 4⎞ ⎟⎟ Load on Dead _ Line _ Leg : L D = W ⎜⎜ ⎝ 4n ⎠
P S ⎡ S ⎛ P ⎞ ⎤ ⎡ R OBSERVED ⎤ = −⎢ −⎜ ⎟ ⎥ ⎢ ⎥ D D ⎣ D ⎝ D ⎠ N ⎦ ⎣ R NORMAL ⎦
lbf : p = 0.004 V 2 ft 2
ρ MUD Q 2
2
1 1⎞ ⎛ Lifting Pipe : L = W ⎜1 + + ⎟ ⎝ En n ⎠
Wind Load,
∆PNOZ ρ MUD
⎛Q ⎞ A NOZ _ TOT _ OPT = ⎜ OPT ⎟ 104 2 . ⎝ ⎠
With 3 Nozzles :
⎞ ⎟⎟ ⎠
VNOZ = 33.43
Nozzle Pr essure Drop :
ρ MUD ρ STEEL
⎛ SPM 2 P2 = P1 ⎜⎜ ⎝ SPM1
For Max Hyd. HP :
Nozzle Area :
C = Gas Volume as % of Total Volume
Buoyancy Factor for steel : BF = 1 −
τ GEL dP = dL 300 (d 2 − d1 )
Nozzle Velocity :
⎞ ⎛ P + PS ⎟⎟ ln ⎜⎜ B ⎠ ⎝ PS
929 ρ V d µ
Im pact Force : FJ = 0.01732 Q ρ ∆PNOZ
d2 ⎛ bbl ⎞ ⎜ ⎟ 1,029.4 ⎝ ft ⎠ 2
Annular Capacity :
Q ∆P 1,714
π 2 ⎛ 12 ⎞ d ⎜ ⎟ 4 ⎝ 231 * 42 ⎠
N Re =
Re ynolds Number :
π 2 di 4
A PIPE =
Pipe Internal Area :
)
π 2 2 L E N 2d L − d R 2 231
Double − Acting Duplex :
P = 0.052 * Density * Depth
Hydrostati c Pr essure :
P S ⎡ S ⎛ P ⎞ ⎤ ⎡ C NORMAL ⎤ = −⎢ −⎜ ⎟ ⎥ ⎢ ⎥ D D ⎣ D ⎝ D ⎠ N ⎦ ⎣ C OBSERVED ⎦
(V in mph)
1.2
2 ⎞ ⎛ Dp ⎟V Vae = ⎜ 0.45 + PIPE 2 2 ⎟ ⎜ D D − H p ⎠ ⎝
P S ⎡ S ⎛ P ⎞ ⎤ ⎡ ∆t NORMAL ⎤ = −⎢ −⎜ ⎟ ⎥ ⎢ ⎥ D D ⎣ D ⎝ D ⎠ N ⎦ ⎣ ∆t OBSERVED ⎦
2 2 ⎞ ⎛ Dp − D i ⎟V Vae = ⎜ 0.45 + PIPE 2 2 2 ⎟ ⎜ D D D − + H p i ⎠ ⎝
⎛S −P⎞ ⎛ γ ⎞ P F=⎜ ⎟⎟ + ⎟ ⎜⎜ ⎝ D ⎠ ⎝1− γ ⎠ D p.1
www.petroman.ir
1.2
3.0
HCJ - October 9, 2002
Basic Drilling Engineering Equations - p.2 Stress =
Force Area
Pr essure =
1 ft 3 = 7.48 gal
Force Area
1 bbl = 42 gal
Torque = Force * Arm
1 hp = 33,000 ft − lbf / min
Power = Force * Velocity
1 BTU = 779 ft − lbf
Power = Torque * Angular Velocity ρ FLUID 8.33
Specific Gravity =
⎛ lb / gal ⎞ ⎜⎜ ⎟⎟ ⎝ lb / gal ⎠
Newtonian Model
Bingham Plastic Model
dP µV = dL 1,500 d 2
Laminar
τy µp V dP = + 2 dL 1,500 d 225 d
Laminar
τy µp V dP = + 2 dL 1,000 (d 2 − d1 ) 200 (d 2 − d1 )
dP µV = dL 1,000 (d 2 − d1 )2 dP f ρ V 2 = dL 25 .8 d
Turbulent
PCC =
e.g.,
dP ρ 0.75 V 1.75 µ 0.25 = dL 1,800 d1.25
0.75 1.75 dP ρ V µ p = dL 1,800 d1.25
dP f ρV2 = dL 21.1(d 2 − d1 )
dP f ρV2 = dL 21.1(d 2 − d1 )
dP ρ 0.75 V 1.75 µ 0.25 = dL 1,396 (d 2 − d1 )1.25
ρ 0.75 V 1.75 µ p dP = dL 1,396 (d 2 − d1 )1.25
1 ⎛ 17,571− 15,000 ⎞ ⎟ (3,660 − 3,590) ⎜ 3,660 − 1.125 ⎝ 20,000 − 15,000 ⎠
Pump Pr essure : Mixtures :
0.25
0.25
S − S1 ⎞ 1 ⎛ ⎜⎜ P1 − ⎟ (P1 − P2 ) D.F. ⎝ S 2 − S1 ⎟⎠
PCC =
dP f ρ V 2 = dL 25 .8 d
Turbulent
ρ KILL = ρ OLD +
SIDPP 0.052 D
ρ KICK = ρ OLD −
SICP − SIDPP 0.052 hKICK
PPUMP = ∆PS + ∆PDP + ∆PDC + ∆PNOZ + ∆PDC _ ANN + ∆PDP _ ANN + ∆PHYDROSTATIC
Mass = ρ1 V1 + ρ 2 V2 + ρ 3 V3 + ... + ρ n Vn =
(V1 + V2
p.2
www.petroman.ir
+ V3 + ... + Vn ) ρMIX HCJ - November 13, 2002
Hydraulics Equations - API RP 13D Pipe Flow ⎛R n p = 3 . 32 log ⎜⎜ 600 ⎝ R 300
Kp = Vp = µ ep
⎞ ⎟⎟ ⎠
0.408 Q D2
N Re p =
np −1
⎛ 3np + 1⎞ ⎜ ⎟ ⎜ 4n ⎟ p ⎝ ⎠
Va =
0.408 Q 2 2 D 2 − D1
µ ea
µ ep
fp =
170 .2 na
⎛ 144 Va ⎞ ⎟⎟ = 100 K a ⎜⎜ ⎝ D 2 − D1 ⎠
na −1
⎛ 2n a + 1 ⎞ ⎟⎟ ⎜⎜ 3 n a ⎠ ⎝
na
928 (D 2 − D 1 ) Va ρ µ ea
Laminar
16 NRep
(NRep < 2,100)
Turbulent
fa =
24 NRea
fa =
a
Turbulent
log np + 3.93
}
50 1 . 75 − log n p
fp =
a=
a NRep
b
b=
7
156 ρ Q 2 2
b
⎛ dP ⎞ ∆Pa = ⎜ ⎟ ∆L a ⎝ dL ⎠ a
⎛ dP ⎞ ∆Pdp = ⎜ ⎟ ∆L dp ⎝ dL ⎠ dp
N1
}
1 . 75 − log n a 7
NRea
2
2
(D
log na + 3.93 50
fa Va ρ ⎛ dP ⎞ ⎟ = ⎜ ⎝ dL ⎠ a 25.81(D 2 − D1 )
fp Vp ρ ⎛ dP ⎞ ⎜ ⎟ = ⎝ dL ⎠ dp 25 .81 D
∆ PNozzles =
5.11 R 100
NRea =
(NRep < 2,100)
b =
Ka =
np
928 D Vp ρ
Laminar
a=
⎞ ⎟⎟ ⎠
⎛R n a = 0 . 657 log ⎜⎜ 100 ⎝ R3
np
⎛ 96Vp ⎞ ⎟⎟ = 100 K p ⎜⎜ ⎝ D ⎠
p.3
Annular Flow
5.11 R 600 1,022
-
+ D N2 + D N3 2
)
2 2
Slip Velocity - API RP 13D ⎛R n S = 0 . 657 log ⎜⎜ 100 ⎝ R3
⎞ ⎟⎟ ⎠
KS =
5.11R100 170.2nS
γ& S =
12 VS Dp
2 ⎛ µ es ⎞ ⎛⎜ ⎞⎛ Dp ρ ⎞ ⎛ ρp ⎜ ⎟ 1 + 16,465 Dp ⎜ Vs = 0.01344 ⎜ ρ − 1⎟⎟⎜⎜ µ ⎟⎟ ⎜ D ρ ⎟ ⎜⎜ ⎠⎝ es ⎠ ⎝ ⎝ p ⎠⎝
p.3
www.petroman.ir
n −1 µ eS = 100 K S γ& S S
⎞ ⎟ − 1⎟ ⎟ ⎠ HCJ May 30, 2002
Directional Survey Equations Tangential
∆East = ∆MD • sin(I2 ) • sin( A 2 )
Method
∆North = ∆MD • sin(I2 ) • cos( A 2 )
-
p.4
∆North = ∆MD • sin(I AVG ) • cos( A AVG )
I1 + I2 2
A AVG =
A1 + A 2 2
∆Vert = ∆MD • cos(IAVG )
Radius of Curvature
Balanced Tangential
Minimum Curvature
RF =
2 β tan β 2
∆East =
∆MD • [cos(I1 ) − cos(I2 )] • [cos( A 1 ) − cos( A 2 )] (I2 − I1 ) • ( A 2 − A 1 )
∆North =
∆MD • [cos(I1 ) − cos(I2 )] • [sin( A 2 ) − sin( A 1 )] (I2 − I1 ) • ( A 2 − A 1 )
∆Vert =
∆MD • [sin(I2 ) − sin(I1 )] (I2 − I1 )
∆East =
∆MD [sin(I1 ) • sin(A1 ) + sin(I2 ) • sin(A 2 )] 2
∆North =
∆MD [sin(I1 ) • cos(A1 ) + sin(I2 ) • cos(A 2 )] 2
∆Vert =
∆MD [cos(I2 ) + cos(I1 )] 2
∆East =
∆MD [sin(I1 ) • sin(A1 ) + sin(I2 ) • sin(A 2 )] • RF 2
∆North =
∆MD [sin(I1 ) • cos(A1 ) + sin(I2 ) • cos(A 2 )] • RF 2
∆Vert =
∆MD [cos(I1 ) + cos(I2 )] • RF 2
β = cos −1 [(cos(I2 − I1 ) − sin I1 sin I2 (1 − cos( A 2 − A 1 ))] β = cos −1 [cos(A 2 − A 1 ) sin I1 sin I2 + cos I1 cos I2 ]
⎛I −I ⎞ ⎛ A − A1 ⎞ 2⎛I + I ⎞ β = 2 sin−1 sin2 ⎜ 2 1 ⎟ + sin2 ⎜ 2 ⎟ sin ⎜ 1 2 ⎟ 2 ⎝ 2 ⎠ ⎝ ⎠ ⎝ 2 ⎠
⎛∆A⎞ ⎛ ∆I⎞ β = 2 sin−1 sin2 ⎜ ⎟ + sin2 ⎜ ⎟ sin I1 sin I2 ⎝ 2 ⎠ ⎝ 2⎠ p.4
www.petroman.ir
HCJ - June 2, 2002
- Be careful when angles are equal
Angle
IAVG =
- Use angles in RADIANS when appropriate
∆East = ∆MD • sin( IAVG ) • sin( A AVG )
CAUTION: RADIUS OF CURVATURE - Be sure to use the MINIMUM angle for the DIFFERENCE
Average
CAUTION: AVERAGE ANGLE - Be sure to use the MINIMUM angle for the AVERAGE
∆Vert = ∆MD • cos(I2 )
View more...
Comments