Banco Sol

August 16, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Banco Sol...

Description

 

Bsta`gs Odeaemdbrgs    :    1    >    6   y    4    1    >    6   b    `   b   r    f   h   b    d   m    d    `   b    `    1    =    c   a

 .    A  .    ]   g    d   r   a    `    d    c   g    ]   g   m   e   a    F

DEOGVHB @B CG] AR@DPGVB] DE@B^BE@DBEPB]

^ái. 6

 

Bsta`gs Odeaemdbrgs

FAEMG ]GCD@AVDG ].A. B]PA@G @B ]DPRAMDGE ^APVDHGEDAC AC =1 @B @DMDBHFVB @B 6>14 T 6>1: (Bxprbsa`g be Fgcdvdaegs) Egtas 6>14  A M P D _ G @dspgedfdcd`a`bs Devbrsdgebs tbhpgrardas Martbra Martbra vdibetb Martbra vbemd`a Martbra be bkbmumdýe Martbrarbprgiraha`ag rbbstrumtura`a vdibetb Martbrarbprgiraha`ag rbbstrumtura`a

:.a) :.m.1)

6>1:

2=2.109.=>2 1.:01.09:.0=9 11.2:=.12:.64:

:.f.1) 11.6::.112.2?? :.f.6) =?.449.412 :.f.=) 0>.6>>.6:=

?66.==?.4?= 1.2=:.:04.?== 1>.422.0??.2>1 1>.42?.669.?19 6?.:::.>1? =:.??1.2?0

:.f.0)

=40.90:.=4>

1>>.1>0.212

:.f.2) vbemd`a Martbrarbprgiraha`ag rbbstrumtura`a :.f.?) be bkbmumdýe ^rg`umtgs `bvbeia`gs pgr mgfrar :.f.9) martbra ^rbb vdvd sdsd ýe ^r ýe pa parr am arar tb ra d em em gfr gfra fcfc b :.f. f .:) :)

0.1=>.4>?

6.>00.141

 Gtras mubetas pgr mgfrar Fdbebs rbacdzafcbs Devbrsdgebs pbrhaebetbs Fdbebs `b usg Gtrgs amtdvgs PGPA C@B CAMP D_G

=.224.:>4

6.?:9.41=

161.269.??6

11:.:?4.?:>

( =>? =>?.. 166 166.. 6== 6==))

( 64> 64>.. >1? >1?.. 442 442))

:.`) :.b) :.m.6) :.o) :.i)

 ^ A ] D _ G Gfcdiamdgebsmge bc pûfcdmg Gfcdiamdgebsmge destdtumdgebs fismacbs Gfcdiamdgebs mge faemgs y betd`a`bs `b fieaemdahdbetg Gtras mubetas pgr paiar ^rbvdsdgebs _a cgr g rb s b e m dr muc muca mdmd ýe ýe Gfcdcdiamd Gf i amdgebs g ebs su sufg fgr` r`de dea` a`as as Gfcdiamd iamdgebs gebs mge bhprbsas bsas pûfcdmas mas PGPAC @B C^A] D_G   ^ A P V D H G E D G  G  Mapdtac sgmdac Apgrtbs eg mapdtacdza`gs Vbsbrvas Vbsucta`gs amuhuca`gs PGPAC @B C^AP VDVD HG HGED G  PG PGPA PACC @ BC BC ^A ]D]D _G _G T ^APV PVDD HG HG ED ED G MGEPDEIBEPB]   MRBEPA] MGEPDEIBEPB]  MRBEPA] @B GV@BE

1>=.6=:.400 20 10>.?49.192 6>?.=:2.:91 9.2>2.409 1 0.0.0 19 19. ?1 ?16 .> =1 =1

:.q.1)

1.99>.=>=.2:4

1.?6>.09=.466

Iastgs fieaemdbrgs

:.q.6)

(=4?.142.:99)

(=00.=2=.664)

1.=90.1>9.916

1.69?.16>.?4=

Vbsucta`g fieaemdbrg frutg Gtrgs deirbsgs gpbratdvgs

:.t.1)

99.221.>?6

2?.96=.4==

Gtrgs iastgs gpbratdvgs

:.t.6)

(6>.962.>9>)

(6>.2>9.112)

1.0=>.4==.9>0

1.=16.==9.211

Vbmupbramdýe `b amtdvgs fieaemdbrgs

:.r)

=0.6>6.?02

?6.401.:1=

Marigs Mar igs pgr dem demgfr gfrafd afdcd`a` c d`a` y `bsv `bsvacg acgrdz rdzamdý amdýee `b `b amtd amtdvgs v gs fiea fieaemd emdbrgs b rgs

:.s)) :.s

(1>=.1 (1> =.1::. ::.9==) 9 ==)

(161.= (16 1.=64. 64.:?0) : ?0)

1.=?1.409.?1?

1.62=.404.0?>

(96>.022.1?1)

(99?.6:0.:60)

?01.046.022

099.??0.?=?

Vbsucta`g `b gpbramdýe `bspuäs `b Demgfrafcbs Iastgs `b a`hdedstramdýe;

:.v)

Vbsucta`g `b gpbramdýe ebtg Akustb pgr `dobrbemda `b mahfdg y haetbedhdbetg `b vacgr Vbsucta`g `bspuäs `b akustb pgr `dobrbemda `b mahfdg y haetbedhdbetg `b vacgr

:.=4>.2?2.>44 :.120.?12

:.404.090.?=1 129.>:2

Deirbsgs bxtragr`deardgs

:.l)

6.6==.>1:.420

1.:==.>26.:42

Iastgs bxtragr`deardgs

:.c) :.h) :.e) e) :.g) g) :.p)

02>.621.>>4 12?.241.066 2>9. 2> 9.?0:. ? 0:.::4 : :4 ==0. == 0.:: ::?. ?.22 22?? ?14.62>.00 ?14.6 2>.0011 1 6.6. 9> 9>> .=? ?.?. 4: 4: 2

=2:.642.9=1 104.12>.:4: 2>9. 2> 9.===. = ==.=== = == 6?=. 6? =.9=:. 9 =:.::4 : :4 1 6.6.> ?1 ?1 .6 >= >= .0 ?6 ?6

Vbsucta` Vbsu cta`gg ebt ebtgg `bc pbr pbrèg` èg`gg aetb aetbss `b aku akustb stbss `b ibs ibstdg tdgebs ebs aetb aetbrdg rdgrbs rbs

:.w) :.x)

1.19=.6>?.:>> 1.?:4.2=2 6>9.0:2.?=> ==0.:?=.>:1 1 .9 19 19 .60 2.2.> 0? 0? 10.. 019 10 019.. ?16 ?16.. >=1 >=1 :01.029 16.16:.06=.?49

1.>=?.2:2.1>> 1.?:4.2=2 1:>.?>0.0?4 6?:.:11.?>4 1 .0 :9 :9 .? 4> 4>. 91 91= 1=.. 20: 1= 20:.. :40 :40.. 192 192 2>9.900 11.199.4?4.6=4

6>14

Deirbsgs fieaemdbrgs

Vbsucta`g `b gpbramdýe frutg

:2.?>4.:9> 02 104.?2:.:>4 1:0.=:2.496 16.2:?.=:6 1 =.=.2 0: 0: .: 40 40 .1 92 92

FAEMG ]GCD@AVDG ].A. B]PA@G @B OCRKG @B BOBMPD_G ^GV CG] BKBVMDMDG] PBVHDEA@G] BC =1 @B @DMDBHFVB @B 6>14 T 6>1: (Bxprbsa`g be Fgcdvdaegs)

FAEMG ]GCD@AVDG ].A. B]PA@G @B IAEAEMDA] T ^ÄV@D@A] ^GV CG] BKBVMDMDG] ODEACD[A@G] AC =1 @B @DMDBHFVB @B 6>14 T 6>1: (Bxprbsa`g be Fgcdvdaegs) Egtas 6>14 6>1:

:.d) :.k)

4.a) 4.f) 4.m) 4.`)

:.u.1)

(61:)

(?.9>0)

 ?01.046.6=9

099.?29.4=6

6.204.>=?

0.691.606

-

-

?00.>0 ?00 .>01.6 1.69= 9=

0:1.46 0:1 .464.1 4.190 90

-

-

-

-

 ?00.>01.69=

0:1.464.190

-

-

?00.>01.69=

0:1.464.190

( => =>4 .1 9: 9: .1 46 46)

( 61 61 =.=. 11 11 9.9. 2? 2?2 )

==0.:?=.>:1

6?:.:11.?>4

Deirbsgs `b ibstdgebs aetbrdgrbs Iastgs `b ibstdgebs aetbrdgrbs Vbsucta`g aetbs `b dhpubstgs y akustb mgetafcb pgr bobmtg `b ca destamdýe

:.u.6)

Akustb mgetafcb pgr bobmtg `b ca destamdýe Vbsucta`g aetbs `b dhpubstgs Dh pu pub stst g sg frfr b c asas Rt Rt dc d`a `b `b s ` b c a B hp hp rb sasa s ( DR B)B)

6 .k .=)

Vbsucta`g ebtg `bc bkbrmdmdg

 OCRKG @B OGE@G] BE AMPD_D@A@B] @B G^BVAMDÝE; Vbsucta`g ebtg `bc bkbrmdmdg ^artd`as qub jae aobmta`g bc rbsucta`g ebtg `bc bkbrmdmdg, qub eg jae ibebra`g hgvdhdbetg `b oge`gs; ^rg`umtgs ^rg` umtgs `bvbei `bvbeia`gs a`gs eg mgfra` mgfra`gs gs  Marigs `bvbeia`gs eg paia`gs ^rbvdsdgebs para demgfrafcbs ^rbvdsdgebs para `bsvacgrdzamdýe ^rbvdsdýe ^rbvds dýe pgr devbrsdgebs sdgebstbhpgrardas ardas y pbrhae pbrhaebetbs betbs ^rgvdsdgebs g prbvdsdgebs para fbebfimdgs sgmdacbs ^rgvdsdgebs para dhpubstgs y gtras mubetas pgr paiar @bprbmdamdgebs y ahgrtdzamdgebs Gtrgs Gtr gs  Oge`gs gftbed`gs be ca utdcd`a` `bc bkbrmdmdg ^rg`umtgs mgfra`gs (marigs paia`gs) be bc bkbrmdmdg `bvbeia`gs be bkbrmdmdgs aetbrdgrbs sgfrb; Martbra `b prästahgs @dspgedfdcd`a`bs, Devbrsdgebs tbhpgrardas y pbrhaebetbs Gfcdiamdgebs Gfcdiam dgebs mge bc pûfcdmg mg  Gfcdiam Gfcdiamdgebs dgebs mge faemg faemgss y betd`a betd`a`bs `bs `b fieaemdahdbetg ahdbetg  Gfcdiam Gfcdiamdgebs dgebs sufg sufgr`dea` r`dea`as as y vacgrb vacgrbss be mdrmuca mdrmucamdýe mdýe  Gfcdiamdgebs mge bhprbsas mge partdmdpamdýe bstatac  Demrbhbetg (`dshdeumdýe) ebtg `b gtrgs amtdvgs y pasdvgs; Gtras mubeta mubetass pgr mgfra mgfrarr - paigs aetdmdp aetdmdpa`gs a`gs - `dvbrsas sas  F dbebs b ebs r bac bacd zaf zafcc bsbs - vbe vbe`` d` gsgs Gtrgs amtdvgs - partd`as pbe`dbetbs `b dhputamdýe  Gtras mubeta mubetass pgr paiar - `dvbrsas sas y prgv prgvdsdgeb dsdgebss y prbvds prbvdsdgebs dgebs  Ocukg ebtg gftbed`g be amtdvd`a`bs `b gpbramdýe - bxmbptg amtdvd`a`bs `b detbrhb`damdýe OCRKG @B OGE@G] BE AMPD_D@A@B] @B DEPBVHB@DAMDÝE; Demrbhbetg (`dshdeumdýe) `b maptamdgebs y gfcdiamdgebs pgr Detbrhb`damdýe - Gfcdiamdgebs mge bc pûfcdmg; @bpýsdtgs @bpýs dtgs a ca vdsta y be makas `b ajgrrg @bpýsdtgs a pcazg jasta =?> `das @bpýsdtgs @bpýs dtgs a pcazg pgr hás `b =?> `èas - Gfcdiamdgebs mge faemgs y betd`a`bs `b fieaemdahdbetg; A mgrtg pcazg A hb`daeg y carig pcazgs  - Gtras gpbramdgebs `b detbrhb`damdýe; Gfcdiamdgebs mge destdtumdgebs fismacbs  Gfcdiamdgebs mge bhprbsas pûfcdmas  (Demrbhbetg) `dshdeumdýe `b mgcgmamdgebs; Mrä`dtgs mgcgma`gs be bc bkbrmdmdg; A mgrtg pcazg   A hb`dae hb`daegg y carig pcazg - hás `b 1 añg   Mrä`dtgs rbmupbra`gs be bc bkbrmdmdg Ocukg ebtg be amtdvd`a`bs ` a`bs `b Detb Detbrhb`dam rhb`damdýe dýe OCRKG @B OGE@G] BE AMPD_D@A@B] @B ODEAEMDAHDBEPG; Demrbhbetg (`dshdeumdýe) `b prästahgs; Gfcdiamdgebs sufgr`dea`as Pètucgs vacgrbs be mdrmucamdýe  Mubetas `b cgs ammdgedstas ^aig ^a ig `b `dv `dvd`b d`be`g e`gss  Ocukg ebtg be amtdvd`a`bs ` a`bs `b Odeaemdahdbet ahdbetg  OCRKG @B OGE@G] BE AMPD_D@A@B] @B DE_BV]DÝE; Demrbhbetg (`dshdeumdýe) ebtg be; Devbrsdgebs sdgebstbhpgrardas ardas  Devbrsdgebs pbrhaebetbs Fdbebs Fdb ebs `b usg  Ocukg ebtg be amtdvd`a`bs ` a`bs `b Devbrsdýe dýe  @dshdeumdýe e umdýe `b oge`g oge`gss `urae `uraetb tb bc bkbrmdmdg mdg @dspgedfdcd`a`bs ac dedmdg `bc bkbrmdmdg @dspgedfdcd`a`bs ac mdbrrb `bc bkbrmdmdg

Cas Egtas 1 ac 1= a`kuetas, sge partb detbiraetb `b bstgs bsta`gs fieaemdbrgs Cas Egtas 1 ac 1= a`kuetas, sge partb detbiraetb `b bstgs bsta`gs fieaemdbrgs

WWWWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWWWW

  Jberry Arae`a V. Ebcsge Egiacbs H.   Kbob Eamdgeac `b Mgetafdcd`a` Ibrbetb Eamdgeac `b Gpbramdgebs a.d.

^ái. =

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

WWWWWWWWWWWWWWWWWWWWWWWW

Lurt Lgbedisobst ]. Ibrbetb Ibebrac

6>1:

==0.:?=.>:1

6?:.:11.?>4

(120.0>4.>24) (120.0>4.>2 4) 9?>.9?4.>02 26.==4.40: 6 (01.1:2) (01.1 :2) 6>.94=.=66 =1=.?40.1>: 66.?49.=61 (1?.16 (1? .16:.? :.?4:) 4:) 1.==0.299.::2

(12=.902.122) (12=.902.12 2) ?:>.9>>.09= 0>.492.:44 =4.161 ?.:??.:?> ?.:?? .:?> =1.926.096 612.>06.:96 6=.9=4.==: (1?.=> (1? .=>0.> 0.>::) ::) 1.>49.:94.0>1

11:.:?4.?:> =0.:92.092 (24?.6?:.290) (24?.6?:.29 0) (9=.=24.?9 (9=.= 24.?99) 9) (11.>96.66 (11.> 96.666) 6) -

1>9.4>1.099 9.0:2.0>: (214.219.2:>) (214.219.2: >) (=0.>?9.2? (=0.> ?9.2?1) 1) (1=.60?.=: (1=.6 0?.=:4) 4) (0>0.??>)

(19.4??.44 (19.4 ??.440) 0) ( 11 11 ) 6.0:>.621 (60=.=94.?= (60=.= 94.?=0) 0) 20:.92?.194

(9.126.>64 (9.12 6.>64)) 1 .4 91 91 (=.=04.21=) (6=1.114.4> (6=1.1 14.4>0) 0) 0>0.01>.?61

(10>.:4?.>>2) : 4?.>>2) 11.964.>=9 (091.>61.669) > 61.669)

2=?.>06.?6== 2=?.>06.?6 42.=:6.6>? 02=.104.:4 02=.1 04.:444

=??.6>>.960 =.96>.>>>

1:=.?92.:66 (1>.>>>.>>>)

9.449.2=1 ?11.4?4.>41

(1>.?0>.62:) (=>.0>:.26?)

(?0.9:2.19 (?0.9 :2.196) 6) (9.66:.=?>.=9:) (9.66:.=?>. = 9:) ?.?60.=49.91= (694.>0:. (694 .>0:.?:?) ? :?)

(1>6.66=.26 (1>6.6 6=.261) 1) (9.=2:.:6:.014) (9.=2:.:6:.0 14) ?.64>.:?=.61? 09.>1=.>06 09.>1=.>06

9>.>>>.>>> -

9>.>>>.>>> (19>.>>>.>>>)

(:4.1: (:4 .1:>.> >.>2>) 2>) (14.1:>.>2>) (14.1:>.>2 >)

(46.=: (46 .=:4.: 4.:=0) =0) (146.=:4.:=0) (146.=:4. : =0)

(=>1.41?.999) 4 1?.999) ?.64?.910 (06.>4 (06 .>49.> 9.>=9) =9) (==9.919.1>>) 9 19.1>>) (:9.1:4.?2 (:9.1 :4.?2:) :) ?66.==?.4?= 2=2.109.=>2

(160.94:.:?1) 9 4:.:?1) 4=.>1?.691 (0:.49 (0: .492.2 2.2:>) :>) (:>.92:.19 (:>.9 2:.19>) >) 19:.692.?24 19:.692.?24 000.>?1.=>0 ?66.==?.4?=

Cas Egtas 1 ac 1= a`kuetas, sge partb detbiraetb `b bstgs bsta`gs fieaemdbrgs

WWWWWWWWWWWWWWWWWWWWWWWW

Dieamdg Aiudrrb R. ]èe`dmg

  WWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWW WWW

WWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWW WWWW

  Jberry Arae`a V. Ebcsge Egiacbs H.   Kbob Eamdgeac `b Mgetafdcd`a` IbrbetbEamdgeac `b Gpbramdgebs a.d.

WWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWW WWWWW

WWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWW WW

Lurt Lgbedisobst ]. Ibrbetb Ibebrac

  WWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWW WWWW

Dieamdg Aiudrrb R. ]èe`dmg

WWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWW WW

  Jberry Arae`a V. Ebcsge Egiacbs H.   Kbob Eamdgeac `b Mgetafdcd`a` Ibrbetb betb Eamdgeac `b Gpbramdgebs a.d.

WWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWW WWW

Lurt Lgbedisobst ]. Ibrbetb Ibebrac

WWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWW WWWW

Dieamdg Aiudrrb R. ]èe`dmg

FAEMG ]GCD@AVDG ].A. B]PA@G @B MAHFDG] BE BC ^APVDHGEDG EBPG ^GV CG] BKBVMDMDG] PBVHDEA@G] BC =1 @B @DMDBHFVB @B 6>14 T 6>1: (Bxprbsa`g be Fgcdvdaegs)

Mapdtac ]gmdac

Pgtac ]ac`gs ac 1 `b bebrg `b 6>1:

Apgrtbs Eg Mapdtacdza`gs Apgrtbs drrbvgmafcbs @geamdgebs pbe`dbetbs `b eg mapdtacdzamdýe mapdtacdzafcbs Pgtac

1.=69.29=.>69

4>>.919.9>>

-

( 46 46 .= .= :4 :4 .: .: =0 =0 )

-

-

-

Vbsbrvas _gcuetardas eg `dstrdfudfcbs

Cbiac 10=.1?9.:9>

Gtras eg `dstrdfudfcbs -

Vbsucta`gs amuhuca`gs

Pgtac

1.?:4.2=2

1.?:4.2=2

1>.6?=.110

12=.0=>.4:0

691.9=0.:>:

-

-

-

-

-

-

-

( 46 46 .= .= :4 :4 .: .: =0 =0 )

-

-

-

-

1=2.:?9.0>>

-

1=2.:?9.0>>

(1=2.:?9.0>>)

@dstrdfumdýe `b utdcd`a`bs aprgfa`as pgr ca Kueta Ibebrac Bxtragr`dearda mbcbfra`a be obmja 6: `b obfrbrg `b 6>1:   - a ` dv dv d` d` be be `g `g s p gr gr p ai ai ar ar   - a rbsbrva vgcuetarda   - a rbsbrva cbiac   - ?% O ge` ge`g g `b Ia Iara raet etda da - O uem uemdý dýe e ] gm gm da da c ] brv brvdm dmdg dgss O dea deaem emdb dbrgs rgs

-

-

-

-

-

69.19=.0:2

-

-

69.19=.0:2

(69.19=.0:2)

(1?. (1 ?.=> =>0. 0.>: >:4) 4)

-

-

-

-

-

-

-

-

(1?. (1 ?.=>0 =>0.> .>:4 :4))

 -

1=2.:?9.0>>

-

-

-

-

(1=2.:?9.0>>)

-

(1=2.:?9.0>>)

-

6?:.:11.?>4

-

-

-

-

-

-

-

-

6?:.:11.?>4

1.0:9.?4>.91=

1.>=?.2:2.1>>

-

1.?:4.2=2

1.?:4.2=2

19>.=01.=22

-

1>.6?=.110

1:>.?>0.0?4

6?:.:11.?>4

( :4 :4 .1 .1 :> :> .> .> 2> 2> )

-

-

-

-

-

-

-

-

( :4 :4 .1 .1 :> :> .> .> 2> 2> )

-

-

-

-

-

-

1=?.?61.9>>

-

1=?.?61.9>>

(1=?.?61.9>>)

Mapdtacdzamdýe `b rbsbrvas vgcuetardas eg `dstrdfudfcbs prgvbedbetbs `bc rbsucta`g mgrrbspge`dbetb a ca ibstdýe 6>19 sbiûe mgesta be Amta `b ca Prdiäsdha Gmtava Gmtava Kueta Ibebrac Gr`dearda y `b amubr`g a marta A]OD DD/V-:?>?9/6>1: `b obmja 6? `b afrdc `b 6>1:. Vbsucta`g ebtg `bc bkbrmdmdg ]ac`gs ac =1 `b `dmdbhfrb `b 6>1: @dstrdfumdýe `b utdcd`a`bs aprgfa`as pgr ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a mbcbfra`a be obmja 1 `b harzg `b 6>14   - a ` dv dv d` d` be be `g `g s p gr gr p ai ai ar ar   - a rbsbrva vgcuetarda   - a rbsbrva cbiac

-

-

-

-

-

6?.::1.1?1

-

-

6?.::1.1?1

(6?.::1.1?1)

  - =% Oge`g `b Iaraetda `b Mrä`dtgs `b _dvdbe`a `b Detbräs ]gmdac

(:.>?0.=04)

-

-

-

-

-

-

-

-

(:.>?0.=04)

  - =% Oge`g `b Iaraetda `b Mrä`dtgs para bc ]bmtgr ^rg`umtdvg

(:.>?0.=04)

-

-

-

-

-

-

-

-

(:.>?0.=04)

 -

1=?.?61.9>>

-

-

-

-

(1=?.?61.9>>)

-

(1=?.?61.9>>)

-

==0.:?=.>:1

-

-

-

-

-

-

-

-

==0.:?=.>:1

1.919.602.>0?

1.19=.6>?.:>>

-

1.?:4.2=2

1.?:4.2=2

149.666.21?

-

1 >.6?=.110 1>

6>9.0:2.?=>

==0.:?=.>:1

Mapdtacdzamdýe `b rbsbrvas vgcuetardas eg `dstrdfudfcbs prgvbedbetbs `bc rbsucta`g mgrrbspge`dbetb a ca ibstdýe 6>1:, sbiûe mgesta be Amta `b ca Kueta Ibebrac Bxtragr`dearda `b Ammdgedstas `b obmja 1 `b harzg `b 6>14, y `b amubr`g a marta A]OD/  @]V / D/ V-9===4 / 6>14 `b obmja 11 `b afrdc `b 6>14. Vbsucta`g ebtg `bc bkbrmdmdg ]ac`gs ac =1 `b `dmdbhfrb `b 6>14 Cas egtas 1 a 1= a`kuetas, sge partb detbiraetb `b bstgs bsta`gs fieaemdbrgs.

   

WWWWWWWWWWWWWWWWWWWWWWWWWWWW Jberry Arae`a V. Kbob Eamdgeac `b Mgetafdcd`a`

WWWWWWWWWWWWWWWWWWWWWWWWWWWW Ebcsge Egiacbs H. ]ufibrbetb Eamdgeac `b Gpbramdgebs a.d.

WWWWWWWWWWWWWWWWWWWWWWWWWWWW Lurt Lgbedisobst ]. Ibrbetb Ibebrac

WWWWWWWWWWWWWWWWWWWWWWWWWWWW Dieamdg Aiudrrb R. ]èe`dmg

 

Bsta`gs Odeaemdbrgs

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

FAEMG ]GCD@AVDG ].A. EGPA] A CG] B]PA@G] ODEAEMDBVG] AC =1 @B @DMDBHFVB @B 6>14 T 6>1: EGPA 1 - GVIAED[AMDÝE a) G riaedzamdýe `b ca ]gmdb`a` Faemg ]gcd`ardg ].A. bs uea ]gmdb`a` Aeýedha mgestdtud`a hb`daetb bsmrdtura pûfcdma Eg.44/1441 `b 11 `b `dmdbhfrb `b 1441 y pgr Vbsgcumdýe Eg. 626/41 `b ? `b `dmdbhfrb `b 1441, ca ]upbrdetbe`bemda `b Faemgs y Betd`a`bs Odeaemdbras (amtuac Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD) autgrdzý su ouemdgeahdbetg mghg betd`a` faemarda. ]u pbrsgebrèa kurè`dma oub rbmgegmd`a hb`daetb Vbsgcumdýe A`hdedstratdva Eg. 6?0=9 `b 6> `b `dmdbhfrb `b 1441, prgeuemda`a pgr bc Vbidstrg `b Mghbrmdg y ]gmdb`a`bs pgr Ammdgebs (amtuac ORE@BH^VB]A) b desmrdta fakg ca Hatrèmuca Eg. 9-6616>-1. Amtuachbetb Faemg ]gcd`ardg ].A. frde`a sbrvdmdgs fieaemdbrgs fakg ca hg`acd`a` `b faemg hûctdpcb, a`bmuáe`gsb ac Art. 6=>, ]bmmdýe DD `b ca Cby =4= `b –]brvdmdgs Odeaemdbrgs‘ `b obmja 61 `b aigstg `b 6>1=. Bc gfkbtdvg prdemdpac `b Faemg ]gcd`ardg ].A. bs prbstar sbrvdmdgs fieaemdbrgs ac pûfcdmg

EGPA 1 - GVIAED[AMDÝE (Mget.)

EGPA 1 - GVIAED[AMDÝE (Mget.)

f) Jbmjgs dhpgrtaetbs sgfrb ca sdtuamdýe `b ca betd`a` (Mget.)

f) Jbmjgs dhpgrtaetbs sgfrb ca sdtuamdýe `b ca betd`a` (Mget.)

f.1) Dhpamtg `b ca sdtuamdýe bmgeýhdma y `bc ahfdbetb fieaemdbrg (Mget.)

f.6) Ibstdýe detbirac `b rdbsigs (Mget.)

Mghpgsdmdýe ammdgearda

f.6.v) Ibstdýe `b rdbsig gpbramdgeac gpbramdgeac (Mget.)

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, ca mghpgsdmdýe ammdgearda `b Faemg ]gcd`ardg ].A. bstá bstrumtura`a `b amubr`g ac sdiudbetb mua`rg;

Ca Ibstdýe `b Vdbsig Gpbramdgeac sb dhpcbhbeta a traväs `b pgcètdmas y prgmb`dhdbetgs qub mgesd`brae ca bstratbida `b ca betd`a` y bc harmg egrhatdvg bxtbreg vdibetb be fasb a cas btapas bstafcbmd`as pgr A]OD be cas –@drbmtrdmbs Fásdmas para ca Ibstdýe `bc Vdbsig Gpbratdvg‘; d`betdfimamdýe, hb`dmdýe, hgedtgrbg, mgetrgc, hdtdiamdýe y `dvuciamdýe.

6. 9?9?0. 42421

6>1: Dhpgrtb ^artdmdpamdýe Ammdgebs @drbmta Fs % 69?. 04042. 1>1>> 6? ?, 9

19 2.2.49 2.2.=> >

12,> >

1. 22220. :6:69

122. 0:0:6. 9>9>>

12 >, >

1. ?9?9? 4. 1?

1? 9.9.?4 1.1.?> >

10,6 4

1. 0:0:1. ?=?=?

10:. 1?1?=. ?>?>>

10 6, 4

B sta` t a` gsR gsR ed` ed`gg s 1. 2?2?1. ?6?6= `bAhärdma PVDG@G PVDG @G]]DM ]]DMA_DD-PV A_DD-PVDG@ DG@G] Cuxbhfurig 9>=.4>2 HDMVGODEAEMBORE@,ue DEAEMBORE@,ue ]ufoge` ]ufoge`gg `bPrdg`gs]DMA_DD :1>0?: :1> 0?:90: 90: PVDG@G]MR]PG@ P G@TF._ TF._.bemacd`a .bemacd`a`` ^aèsbs Fa Fakgs 9>=.4>2 `bprgpdbtardgcbiac`bPVDG@G]OADV ]JAVBORE@ BDE02E 02-66:0> :0>4> 4> YY YYFMA^ FMA^DP DPAC^A AC^AVP VPEB EBV],C V],C^^ Bsta`gsRed a `gsRed`gs ` gs 2:2.00: `bAhärdma F02?64 Vbspges Vbsp gesAfdc A fdcdtyHaeaib d tyHaeaibhbetMg hbetMghpa hpaey ey Cuxbhfurig 2:>.9=1 ].A.qudbeamtûabe suprgpdgeghfrb ypgr mubeta`bVbspgesAfdcdty MJB =- ::. ?:?:> 0. Vbs pgpgesAf cd td y^ y^a tr md d papat dges AI AI ]ud za 2?4. ?9?90

12? 1. ? 6.6.=> >

1 =,=,= 1

1. =9=94. 9?9?4

1=9. 4949?. 4>4>>

1= =, 1

9>.=4>.2>>

?,>>

?61.4=0

?6.14=.0>>

?,>>

9>.=4>.2>>

?,>>

?61.4=0

?6.14=.0>>

?,>>

2:.200.:>>

0,44

219.691

21.969.1>>

0,44

2:.>9=.1>>

0,42

21=.1>0

21.=1>.0>>

0,42

F 16 161120

D `b`b etet dfi mama mdmd ýeýe 12=9 12 =9BBF BBF]G ]G

>>6=>= >>6 =>=4>2 4>2

Faemg ]gcd`ardg ].A. tdbeb su `ghdmdcdg prdemdpac be ca maccb Edmgcás Amgsta Bsq. Maña`a ]trgeibst E¾ 6:4 `b ca mdu`a` `b Ca ^az, Bsta`g ^curdeamdgeac `b Fgcdvda. Faemg ]gcd`ardg ].A. tbe`rá uea `uramdýe `b egvbeta y eubvb añgs `b pcazg, mghputafcb a partdr `b ca obmja `b su desmrdpmdýe be bc Vbidstrg `b Mghbrmdg y ]gmdb`a`bs pgr Ammdgebs (amtuac ORE@BH^VB]A), pu`dbe`g prgrrgiarsb bc pcazg `b `uramdýe pgr amubr`g `b ca Kueta Ibebrac Bxtragr`dearda `b Ammdgedstas, aetbs `bc vbemdhdbetg `bc pcazg de`dma`g.

1 1=1= 9B9B BF BF ]G ]G

Faemg ]gcd`ardg ].A. tdbeb pgr gfkbtg ca rbacdzamdýe `b tg`as cas amtdvd`a`bs `b detbrhb`damdýe fieaemdbra faemarda be ibebrac, autgrdza`as pgr ca Cby `b Faemgs y Betd`a`bs Odeaemdbras (amtuac Cby `b ]brvdmdgs Odeaemdbrgs) y bc Mý`dig `b Mghbrmdg. Cas gpbramdgebs `b Faemg ]gcd`ardg ].A. sb beogmae jamda ca mgcgmamdýe `b prästahgs mge `dvbrsas maramtbrèstdmas, sdbe`g rbobrbetbs be bc áhfdtg eamdgeac b detbreamdgeac be bc mahpg `b cas Hdmrgfieaezas< asdhdshg, prbsta sbrvdmdgs eg mrb`dtdmdgs y oghbeta ca hgvdcdzamdýe y maptamdýe `bc ajgrrg, para muyg bobmtg, Faemg ]gcd`ardg ].A. rbacdza tg`as cas traesammdgebs, amtgs y mgetratgs pbrhdtd`gs pgr Cby. Faemg ]gcd`ardg ].A. ac =1 `b `dmdbhfrb `b 6>14 tdbeb mgfbrtura y partdmdpamdýe be tg`as cas mapdtacbs `bc paès, mgetae`g mge :12 puetgs `b atbemdýe fieaemdbra betrb Aibemdas Odkas, Gfimdeas Vbidgeacbs, ^uetgs ]gc Ahdig, ]gc Ahdig Bxprbss, Aibemdas Hývdcbs, _betaedccas `b Mgfraeza y Makbrgs Autghátdmgs. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bc eûhbrg `b bhpcba`gs a edvbc eamdgeac bs bc sdiudbetb; FAEMG ]GCD@AVDG ].A. VBIDGEAC / GODMDEA

@dmdbhfrb 6>14

@dmdbhfrb 6>1:

>1. GODMDEA EAMDGEAC

199

1?0

>6. VBIDGEAC CA ^A[

21?

21?

>=. VBIDGEAC BC ACPG

?:=

?:?

>0. VBIDGEAC ]AEPA MVR[

?=6

?00

>2. VBIDGEAC MGMJAFAHFA

?46

?:2

E gh gh frfr b AmAm mdmd gege ds ta AMMDG AM MDGEIA EIAPB PBYA YATORE [email protected] @C.C.M. .M.

M_V==62=46= @AED]JHDMVGODEAEMB JHDMVGODEAEMB ^AVPEBV]L/] ^AVPE BV]L/]

be ibebrac,prg`umtdva oavgrbmdbe`g `bsarrgccg amtdvd`a`de`ustrdac bmgeýhdma ca bxpaesdýe `b ca amtdvd`a` y bc bc `bsarrgccg `b`b ca ca mapamd`a` `bceamdgeac, paès.

Faemg ]gcd`ardg ].A. dedmdý sus gpbramdgebs bc 1> `b obfrbrg `b 1446. Ca hdsdýe `b Faemg ]gcd`ardg ].A. bs –]br ue Faemg qub frde`a ca gpgrtued`a` `b tbebr ue hbkgr outurg a cgs sbmtgrbs `b hbegrbs deirbsgs, a traväs `b sbrvdmdgs fieaemdbrgs detbiracbs `b macd`a` apgya`gs be ue bqudpg juhaeg actahbetb mghprghbtd`g‘. Mgemgr`aetb mge bstg, ca vdsdýe `b Faemg ]gcd`ardg ].A. bs –]br bc cè`br, rbobrbetb b deegva`gr `b cas Hdmrgfieaezas a edvbc eamdgeac b detbreamdgeac, oavgrbmdbe`g ac `bsarrgccg, prgirbsg y macd`a` `b vd`a `b cas pbrsgeas mge hbegrbs deirbsgs, be ogrha sgstbedfcb‘.

Eb`brca Eb` brcae`s e`sbOdeaemdbr b Odeaemdbrdeis d eisHaatsmjappdk_ggr Getwdllbcdeiscae`be E._.(OHG) A MM MM DG E DE PBPB VE VE AP DG EA EA C

E amam dg eaea cd `a`a `

Maetd`a` `b Ammdgebs

Bsta`gsRed a `gsRed`gs ` gs =. 16164 =. 91 `bAhärdma @dea har ma 1. 99224 9. 2= ^a sè bs Fa Fak gsgs

F11299 F112 9911

VbspgesAfdcdty ]D]DMA_ (Cux)

6>1=9999=>2 6>1=99 99=>2 IVR^GAM^DE_BV]DGEB]T GEB]T @B]AVVGCCG 0 6666 1>1> 9=9= =: =: KG KG]] B HA HA VDA VDA VR VR D] AE AE MJ MJ B[ B[

6>14 Dhpgrtb ^artdmdpamdýe Ammdgebs @drbmta Fs % =1 6.6.4= 9.9.1> > 6?,? 9

Maetd`a` `b Ammdgebs

2? 4. ? 9.9.0> >

0,: ?

2>=. ====0

2>. =====. 0>0>>

0 :, ?

Cuxbhfurig

629.?=4

62.9?=.4>>

6,6>

669.?=?

66.9?=.?>>

6,6>

^brû

19:.666

19.:66.6>>

1,26

129.0?9

12.90?.9>>

1,26

B sta` t a` gsR gsR ed` ed`gg s `bAhärdma Fgcdvda

66.=1?

6.6=1.?>>

>,1:

14.919

1.491.9>>

>,1:

=9264=C^

KRCDG CBGE ^VA@G

:2?

:2.?>>

>,>1

92:

92.:>>

>,>1

6>9>?6C^

IGE[ACG ]AEMJB[ @B CG[A@A

Fgcdvda

:2?

:2.?>>

>,>1

92:

92.:>>

>,>1

=>=911C^

CRD] B@RAV@G ]DCB]

Fgcdvda

:2=

:2.=>>

>,>1

922

92.2>>

>.>1

1 1.9 1.9== 6.> 6.>?? : 1 .1 9=9= .6 >?>? .: >> >>

1 >> >> >, >

1 >.= >.=?? 2.: 2.:22 1 1 .> =?=? .2 :2:2 .1 >>>>

1 >>>> ,> >

Ac =1 `b `dmdbhfrb `b 6>1: bc dhpgrtb `bc paqubtb ammdgeardg `b Faemg ]gcd`ardg ].A. oub `b Fs1.>=?.2:2.1>> mghpubsta pgr 1>.=?2.:21 `b ammdgebs. f.6) Ibstdýe detbirac `b rdbsigs Ca Ibstdýe Detbirac `b Vdbsigs, bs bkbmuta`a `b amubr`g a ca Bstratbida bstafcbmd`a pg r Faemg ]gcd`ardg ].A. para bc bobmtg, cas pgcètdmas y egrhas `bfd`ahbetb ogrhacdza`as y be cèeba bc ^cae Bstratäidmg Destdtumdgeac, mgesd`brae`g bc `b bstafcbmdhdbetg ymge rbogrzahdbetg `b ca Muctura `b Ibstdýe Detbirac `b `b haebra Vdbsigs,bspbmdac bcbhbetg oue`ahbetac dhpgrtaemda be bc prgmbsg `b `bfiedmdýe `bc pbrfic `b rdbsig< asè mghg ca d`betdfimamdýe `b ca detbrrbcamdýe betrb cgs `dobrbetbs tdpgs `b rdbsigs, `dmjgs cdebahdbetgs sge mgetbhpca`gs be ma`a uea `b cas amtdvd`a`bs qub ca Ibrbemda Eamdgeac `b Vdbsigs ccbva a mafg ac detbrdgr `b ca griaedzamdýe. Cas btapas `b ca Ibstdýe Detbirac `b Vdbsigs jae sd`g `bfied`as y ogrhacdza`as para su apcdmamdýe y bvacuamdýe mgesd`brae`g ue prgmbsg `b hbkgra mgetdeua, apcdma`g ac mgekuetg `b jbrrahdbetas y hbtg`gcgièas `bsarrgcca`as detbreahbetb, be ca qub cgs ouemdgeardgs `bc Faemg be cas `dstdetas árbas sge rbspgesafcbs `b bkbmutar tarbas tarbas be ouemdýe `b cas rbspgesafdcd`a`bs y atrdfumdgebs qub cbs mghpbtbe, aspbmtg qub sb bemubetra ogrhacdza`g ogrhacdza`g be cgs haeuacbs `b ouemdgebs `b ma`a marig y a`bmua`ahbetb `doue`d`gs.

>?. GODMDEA GVRVG

90

90

>9. VBIDGEAC ]RMVB

1=:

10=

f.6.d) Ibstdýe `b rdbsig mrb`dtdmdg mrb`dtdmdg

>:. GODMDEA PAVDKA

110

16>

>4. GODMDEA ^GPG]D

=2

=2

1>. GODMDEA FBED

=1

=6

11. GODMDEA ^AE@G

10

12

=.1>?

=.110

Ca egrhatdva detbrea para ca ibstdýe `bc rdbsig mrb`dtdmdg mgesd`bra ca rbvdsdýe `b ca tbmegcgièa mrb`dtdmda, a`bmua`a y amtuacdza`a a cas mge`dmdgebs `bc betgreg y a cgs sbihbetgs `b hbrma`g qub sb atdbe`be, asè mghg a cgs mahfdgs egrhatdvgs, rbid`as pgr ue prdemdpdg `b pru`bemda. Cas jbrrahdbetas y cgs hg`bcgs `dsbña`gs b dhpcbhbeta`gs para ca ibstdýe `bc rdbsig mrb`dtdmdg sge hgedtgrba`gs, vdidcae`g ca mgefiafdcd`a` y gpgrtued`a` `b ca deogrhamdýe rbsuctaetb, pbrhdtdbe`g asè mgegmbr cgs edvbcbs `b rdbsig `bc pgrtaogcdg `b mrä`dtgs y c a pgsdfcb detbrrbcamdýe b dhpamtg mge gtrg tdpg `b rdbsig.

Pgtac Ibebrac

f) Jbmjgs dhpgrtaetbs sgfrb ca sdtuamdýe `b ca betd`a` f.1) Dhpamtg `b ca sdtuamdýe bmgeýhdma y `bc ahfdbetb fieaemdbrg Faemg ]gcd`ardg ].A. fibc a su hdsdýe `b frde`ar gpgrtued`a`bs `b ue hbkgr outurg a cgs sbmtgrbs `b hbegrbs deirbsgs hb`daetb bc ammbsg a sbrvdmdgs fieaemdbrgs haetdbeb hás `b 6:: hdc Hdmrgbhprbsardgs atbe`d`gs fieacdzae`g ca ibstdýe 6>14. Bc demrbhbetg `b ca Martbra `b Mrä`dtgs be bc 6>14 oub `b R]@ 4=,0 hdccgebs `b `ýcarbs bsta`gued`besbs, haetbedäe`gsb uea macd`a` bxmbpmdgeac, mge ue èe`dmb `b hgra `b facaemb `bc >,96% y uea Martbra Pgtac Pgtac `b R]@ 1.912,0 hdccgebs `b `ýcarbs bsta`gued`besbs. Bc mrbmdhdbetg `b ca Martbra `b Mrä`dtgs be ca ibstdýe 6>14 oub `bc 2,9?%. @uraetb ca ibstdýe 6>14 cgs mcdbetbs `bpgsdtaetbs sb demrbhbetarge be ?:.904, tgtacdzae`g 1.>0:.=69 ac mdbrrb `b ca ibstdýe, `b cgs muacbs 1.>19.619 sge mcdbetbs `b Makas `b Ajgrrg y =1.11> `b @^O°s. Bsta rbspubsta rbstbka ca dhpgrtaemda qub tdbeb bc ajgrrg para cgs hdmrgbhprbsardgs qub atdbe`b Faemg ]gcd`ardg ].A. y tahfdäe ca rbmdprgmd`a` y mgefiaeza `bpgsdta`a be uea Destdtumdýe qub vdbeb apgyae`g bc `bsarrgccg `b cas pbrsgeas. Re `atg qub sb `bfb `bstamar bs bc hgetg qub `bpgsdtarge eubstrgs mcdbetbs `b Makas `b Ajgrrg, qub asmdbe`b a R]@ 0=?,0 hdccgebs `b `ýcarbs bsta`gued`besbs. Be tg`a ca deorabstrumtura pubsta a `dspgsdmdýe pgr Faemg ]gcd`ardg ].A. mghg sge cas Aibemdas Odkas, cas Aibemdas Hývdcbs, cgs Makbrgs Autghátdmgs, ^uetgs ]gc Ahdig, _betaedccas `b Mgfraeza, ^uetgs ]gc Ahdig Bxprbss, Deogsgc, App]gc y ]gcebt, sb rbacdzarge hás `b 64 hdccgebs `b traesammdgebs `uraetb ca ibstdýe 6>14. ^gr gtra partb, bc Mapdtac Vbiucatgrdg `b Faemg ]gcd`ardg ].A. ac mdbrrb `b ca ibstdýe 6>14 asmdbe`b a R]@ 6?6 hdccgebs `b `ýcarbs bsta`gued`besbs, pbrhdtdbe`g bstg qub ccbiubhgs a mdbetgs `b hdcbs `b Hdmrgbhprbsardgs. Ca sdtuamdýe bmgeýhdma `bc paès sb ja haetbed`g bstafcb irae partb `b ca ibstdýe 6>14, mge ue mrbmdhdbetg bstdha`g betrb bc =% y 0%, eubvahbetb, ueg `b cgs hás dhpgrtaetbs `b ca rbidýe. Cgs mahfdgs dhpgrtaetbs pgstbrdgrbs a ca prg huciamdýe `b ca Cby `b ]brvdmdgs Odeaemdbrgs be aigstg `bc 6>1= y `bc @bmrbtg ]uprbhg Eg. 1:06 `b `dmdbhfrb `bc hdshg añg, `ge`b sb `bfieb bc räidhbe `b tasas `b detbräs para bc fieaemdahdbetg `b _dvdbe`a `b Detbräs ]gmdac y cgs edvbcbs hèedhgs `b martbra para bc sbmtgr prg`umtdvg, sb `dbrge be kucdg `bc 6>10 a traväs `bc @bmrbtg ]uprbhg Eg. 6>22. Cgs aspbmtgs sgfrbsacdbetbs `b bstb ûctdhg @bmrbtg oubrge bc bstafcbmdhdbetg `b tasas `b detbräs hèedhas para cas makas `b ajgrrg, `bpýsdtgs a pcazg fikg y cas tasas `b detbräs háxdhas para mrä`dtgs ac sbmtgr prg`umtdvg. Be bebrg `b ca ibstdýe 6>12 sb bhdtdý ca Vbsgcumdýe Hdedstbrdac E¾ >=1, bstafcbmdbe`g cas hbtas detbrhb`das aeuacbs para bc sbmtgr prg`umtdvg y vdvdbe`a `b detbräs sgmdac. ^gstbrdgr a bsta Vbsgcumdýe, be kucdg `b 6>12, betrý be vdibemda bc Vbicahbetg para Gpbramdgebs `b Mrä`dtg ac ]bmtgr ^rg`umtdvg a traväs `b ca Mdrmucar A]OD Eg =>9 bhdtd`a pgr A]OD, ca muac bstafcbmb, betrb gtras mgesd`bramdgebs, cgs cdebahdbetgs `bc Mrä`dtg `bstdea`g ac ]bmtgr Purdshg y ^rg`ummdýe Detbcbmtuac. Be gmtufrb `b 6>1? sb bhdtdý ca mdrmucar A]OD 06:/6>1? rbobrd`a ac Vbicahbetg para ca Ouemdýe ]gmdac `b cgs ]brvdmdgs Odeaemdbrgs, ca muac bstafcbmb qub cas betd`a`bs `bfbe acdebar su pcaedfimamdýe bstratäidma mge ca ouemdýe sgmdac, prdemdpachbetb be cas trbs árbas tbhátdmas (@bsarrgccg Detbirac para bc _dvdr Fdbe, Bcdhdear ca ^gfrbza y Bcdhdear ca Bxmcusdýe ]gmdac y Bmgeýhdma), asè mghg su rbspbmtdvg sbiudhdbetg sbiudhdbetg y mgetrgc. Pg`g bstb mûhucg `b bcbhbetgs rbiucatgrdgs detrg`umd`gs pgr bc Igfdbreg betrb bc 6>1= y 6>1?, harmae bc dedmdg `b ue eubvg mdmcg be cas Hdmrgfieaezas be Fgcdvda. Mgesmdbetbs `bc rbtg y tg`g cg qub bccg dhpcdma, Faemg ]gcd`ardg ].A. `dsbñý ue ^cae Bstratäidmg jamda bc 6>61, bstafcbmdbe`g uea ruta pgr ca muac traesdtar, haetbedbe`g firhb su prgpýsdtg `b oavgrbmbr bc `bsarrgccg y macd`a` `b vd`a `b cas pbrsgeas mge hbegrbs deirbsgs.

^ái. 0

Bc rdbsig `b mgembetramdýe `b pgrtaogcdg bs hb`d`g y mgetrgca`g a traväs `bc sbiudhdbetg `b ca partdmdpamdýe be cgs sbmtgrbs bmgeýhdmgs be cgs muacbs bstá `dstrdfud`a ca martbra `b mrä`dtgs `b Faemg ]gcd`ardg ].A., asè mghg `b cgs cèhdtbs detbregs pgr rbidýe ibgiráfima, tdpg `b mrä`dtg, martbra rbprgiraha`a y raeig `b hgetg aprgfa`g, a`bhás `bc mgetrgc `bc muhpcdhdbetg `b hbtas `b martbra mge tasa mgetrgca`a, aspbmtgs qub mubetae mge de `dma`grbs qub sge hgedtgrba`gs pbrhaebetbhbetb. Ca Red`a` `b Vdbsig Mrb`dtdmdg partdmdpa `b haebra bx aetb be ca gtgriamdýe `b gpbramdgebs pgr hgetgs haygrbs, mge bc gfkbtdvg `b airbiar vacgr ac aeácdsds mrb`dtdmdg `b ästb tdpg `b gpbramdgebs y `b bsta ogrha mga`yuvar ac mrbmdhdbetg saeg `bc pgrtaogcdg `b mrä`dtgs.

]b mgetbhpca ca rbacdzamdýe pbrdý`dma `b cas prubfas `b bobmtdvd`a` a cgs ^caebs `b Mgetdeibemda y Mgetdeud`a` be mggr`deamdýe mge cas árbas devgcumra`as, asè mghg ca rbvdsdýe `b prgybmtgs `b eubvgs prg`umtgs y/g sbrvdmdgs fieaemdbrgs be cgs qub Faemg ]gcd`ardg ].A. demursdgea y cas hg`dfimamdgebs a cgs prg`umtgs y/g sbrvdmdgs ya bxdstbetbs, beoatdzae`g bc prdemdpdg prbvbetdvg be bc qub sb apgya bc harmg `b ca Ibstdýe `b Vdbsig Gpbramdgeac. Mge bc gfkbtdvg `b rbogrzar ca Ibstdýe `b Vdbsig Gpbramdgeac, ca muac sb mbetra be ca –Muctura `b Ibstdýe `b Vdbsig Gpbramdgeac‘, ca Red`a` `b Vdbsig Gpbramdgeac be muhpcdhdbetg `b su pcae `b trafakg 6>14 , rbacdzý mapamdtamdgebs a edvbc eamdgeac `b haebra vdrtuac, be ca qub sb detrg`ukg mgembptgs mge bkbhpcgs prámtdmgs y sb beoatdzý ca dhpgrtaemda `b ca partdmdpamdýe `b tg`gs cgs ouemdgeardgs be ca ibstdýe `b cgs rdbsigs gpbramdgeacbs d`betdfima`gs. f.6.vd)  Ibstdýe `b gtrgs rdbsigs

Ibstdýe `b sbiurd`a` `b deogrhamdýe y rdbsig tbmegcýidmg Faemg ]gcd`ardg ].A. rbmgegmb qub ca deogrhamdýe, be tg`as sus ogrhas, bs ue amtdvg `b vacgr para bc ebigmdg y ca tgha `b `bmdsdgebs, y rbmgegmb bc papbc oue`ahbetac qub ca Pbmegcgièa `b ca Deogrhamdýe (PD) `bsbhpbña be bc apgyg y muhpcdhdbetg `b cgs gfkbtdvgs `bc ebigmdg. Be bstgs tdbhpgs, `ge`b ca ]biurd`a` `b ca Deogrhamdýe sb bemubetra ma`a vbz hás bxpubsta a betgregs qub rbqudbrbe ammdgebs dehb`datas, Faemg ]gcd`ardg ].A. sb bemubetra mgestaetbhbetb be ca dhpcbhbetamdýe `b hbkgras para hdedhdzar cgs rdbsigs asgmda`gs a ca ]biurd`a` `b ca Deogrhamdýe. Ca Ibstdýe `b ]biurd`a` `b ca Deogrhamdýe y ca hbtg`gcgièa para ca Ibstdýe `b Vdbsigs `b ]biurd`a` `b ca Deogrhamdýe utdcdza`as pgr Faemg ]gcd`ardg ].A., mgetbhpcae hbmaedshgs para ca d`betdfimamdýe `b aspbmtgs y bvbetgs `b rdbsig rbcamdgea`gs mge Pbmegcgièas `b ca Deogrhamdýe. Asdhdshg, cas hbtg`gcgièas utdcdza`as pbrhdtbe a Faemg ]gcd`ardg ].A. mgetar mge ue aeácdsds y bvacuamdýe `b rdbsigs `b ]biurd`a` `b c a Deogrhamdýe, a gfkbtg `b rbspge`br `b haebra bfimdbetb a cas ebmbsd`a`bs y bvbetgs qub pub`ae prbsbetarsb< qub a su vbz gorbmb uea ogrha mgjbrbetb para griaedzar y prdgrdzar cgs rbmursgs mge bc fie `b ibstdgear cgs rdbsigs d`betdfima`gs `b ca hbkgr haebra, mud`ae`g `ar muhpcdhdbetg a cgs rbqubrdhdbetgs egrhatdvgs qub bstafcbmbe bc rbicahbetg bxdid`g pgr bc betb rbiuca`gr. Bs dhpgrtaetb hbemdgear qub `b `dmjg aeácdsds sb `bsprbe`be bstratbidas b devbrsdgebs be Pbmegcgièa y ]biurd`a` `b ca Deogrhamdýe. Bc ]dstbha `b Ibstdýe `b ]biurd`a` `b ca Deogrhamdýe rbprbsbeta para Faemg ]gcd`ardg ].A. bc `dsbñg, dhpcbhbetamdýe, haetbedhdbetg `b ue mgekuetg `b prgmbsgs para ibstdgear ca `dspgedfdcd`a` y ammbsg sbiurg a ca deogrhamdýe mgesd`brae`g sus prdemdpacbs bcbhbetgs; mgefi`bemdacd`a`, detbird`a`, `dspgedfdcd`a`, eg rbpu`dg y muhpcdhdbetg< haetbedbe`g mgetrgca`gs cgs rdbsigs y acdeba`gs a cas bxdibemdas egrhatdvas `bc Betb Vbiuca`gr, a cas fubeas prámtdmas y a bstáe`arbs detbreamdgeacbs. Fakg bsa hdsha cèeba, para prgtbibr a `dmjg amtdvg `b vacgr, Faemg ]gcd`ardg ].A. sb bemubetra mgestaetbhbetb dhpcbhbetae`g sgcumdgebs y hbmaedshgs `b sbiurd`a` qub pbrhdtbe hgedtgrbar y prbvbedr demd`betbs rbcamdgea`gs mge ca sbiurd`a` `b ca deogrhamdýe, mge bc prgpýsdtg `b ogrtacbmbr cgs bsqubhas `b sbiurd`a` ac detbrdgr `bc Faemg, prgtbidbe`g ca deogrhamdýe qub sb a`hdedstra be cgs `dobrbetbs edvbcbs. A`dmdgeachbetb, Faemg ]gcd`ardg ].A. fusma haetbebr ue a`bmua`g edvbc `b muctura be sbiurd`a` be tg`gs sus ouemdgeardgs, mge cg qub bc bmgsdstbha `b sbiurd`a` be bc ebigmdg bstarèa mufdbrtg. Mghg tg`g prgmbsg `b ibstdýe, `dmjg sdstbha `bfb rbspge`br a uea hbkgra mgetdeua a`aptáe`gsb a cgs mahfdgs detbregs `bc Faemg asè mghg cgs bxtbregs `bc betgreg. f.=) Bhdsdgebs `b fgegs faemardgs y fgegs sufgr`dea`gs @uraetb ca ibstdýe 6>14 Faemg ]gcd`ardg ].A. ja haetbed`g mghg partb `b su bstrumtura `b oge`bg cgs Fgegs ]bedgr y Fgegs ]ufgr`dea`gs mgcgma`gs be ibstdgebs aetbrdgrbs. Bc sac`g ac =1 `b `dmdbhfrb `b 6>14 `b cas bhdsdgebs pgr _acgrbs be Mdrmucamdýe (Fgegs ]bedgr) acmaezae a Fs2>> hdccgebs, dhpgrtb rbidstra`g be ca mubeta 6?1.>6 –Fgegs Vbprbsbeta`gs pgr Aegtamdgebs be Mubeta‘. Bstas gfcdiamdgebs oubrge bhdtd`as `betrg `b `gs prgirahas `b bhdsdgebs `b fgegs `dobrbetbs; 



 ^rgiraha –Fgegs Faemg]gc‘ autgrdza`g pgr Fs2>> hdccgebs qub demgrpgrý trbs bhdsdgebs mgcgma`as be su tgtacd`a`, `gs vdibetbs ac mdbrrb `bc =1 `b `dmdbhfrb `b 6>14 y uea qub ya oub maembca`a be kucdg `b 6>1:, `beghdea`a –Fgegs Faemg]gc ” Bhdsdýe 6‘, pgr ue dhpgrtb grdideac `b Fs19> hdccgebs.   ^rgiraha –Fgegs Faemg]gc DD‘ autgrdza`g pgr Fs2>> hdccgebs, `b cgs muacbs sýcg sb mgcgmý ca prdhbra bhdsdýe `beghdea`a –Fgegs Faemg]gc DD- Bhdsdýe 1‘ pgr Fs19> hdccgebs.

Bc `btaccb `b cas maramtbrèstdmas `b prgirahas y sus rbspbmtdvas bhdsdgebs sb bxpgebe a mgetdeuamdýe; Eghfrb `bc ^rgiraha

Ac =1 `b `dmdbhfrb `b 6>14 ca martbra `b mrä`dtgs asmdbe`b a R]@1.912,0 hdccgebs, mge ue de`dma`gr `b hgra `b facaemb `b >,96%, ca mgfbrtura `b prbvdsdgebs sgfrb martbra be hgra bs `b 0=0,44% y sgfrb bc tgtac `b ca martbra `b mrä`dtgs =,?9%, razgebs qub rbsactae bc edvbc `b mgfbrtura qub sbrvdrèa `b rbspac`g aetb uea bvbetuacd`a` `b mge`dmdgebs a`vbrsas, ya sbae detbreas, bxtbreas g `b mdmcgs bmgeýhdmgs qub pg`rèae aobmtar ca macd`a` `bc pgrtaogcdg `b mrä`dtgs.

Fgegs Faemg]gc

f.6.dd)  Ibstdýe `b rdbsig `b cdqud`bz 

Ac =1 `b `dmdbhfrb `b 6>14 cas pgsdmdgebs `b cdqud`bz taetg a edvbc mgesgcd`a`g mghg pgr hgeb`a sb bemubetrae pgr bemdha `b cgs cèhdtbs detbregs aprgfa`gs pgr bc @drbmtgrdg `b Faemg ]gcd`ardg ].A., cgs qub oubrge `bfied`gs `b amubr`g ac hg`bcg `b ebigmdg y bc pbrfic `b maptamdgebs. Cas ratdgs `b mgembetramdýe `b cas gfcdiamdgebs sb bemubetrae `betrg `b cgs cèhdtbs bstafcbmd`gs, be muaetg a ca bstrumtura `b cgs `bpýsdtgs a pcazg fikg, bsta sb maramtbrdza pgr tbebr vbemdhdbetgs `b carig pcazg qub hdtdiae cas mgembetramdýe `b cgs prdemdpacbs `bpgsdtaetbs, pgr gtrg ca`g ca bxpgsdmdýe be frbmjas amuhuca`as `b cdqud`bz pgr fae`a tbhpgrac `bc macmb `b pcazgs bs pgsdtdva. Bstgs aspbmtgs sge d eogrha`gs pbrdý`dmahbetb be cas sbsdgebs `b Mghdtä `b Vdbsigs, mgesd`brae`g a ca cdqud`bz mghg ue oamtgr `b oue`ahbetac dhpgrtaemda para ca betd`a`, ca qub bs rbstbka`a be su sgcvbemda y bc eg rhac `bsbevgcvdhdbetg `b sus gpbramdgebs. f.6.ddd) Ibstdýe `b rdbsig mahfdardg mahfdardg

Bc Faemg Mbetrac `b Fgcdvda mgetdeûa mge ca pgcètdma `b tdpg `b mahfdg fikg, pgr cg qub cas `bfiedmdgebs `b Faemg ]gcd`ardg ].A. be muaetg a pgsdmdgebs mahfdardas rbstbkae uea ibstdýe pru`betb, `b amubr`g ac hgedtgrbg `b cas ratdgs `b sbesdfdcd`a` ac rdbsig mahfdardg, bstgs sb bemubetrae `betrg `b cgs cèhdtbs bstafcbmd`gs y aprgfa`gs pgr @drbmtgrdg. f.6.dv) Ibstdýe `b rdbsig `b tasa `b detbräs

Bc hgedtgrbg `b ca frbmja `b rbprbmdg betrb amtdvgs y pasdvgs ja sd`g rbacdza`g a traväs `bc hg`bcg `b mácmucg `b `uramdýe hg`dfima`a, ca `uramdýe `b cgs pasdvgs bs haygr qub ca `b cgs amtdvgs be tärhdegs `b rbprbmdg pbrhdtdbe`g bc mrbmdhdbetg `b cgs amtdvgs< bstg `bfd`g a ca bstrumtura `b maptamdgebs `b Faemg ]gcd`ardg ].A., sdbe`g bsta uea sdtuamdýe oavgrafcb para uea betd`a` `b Hdmrgfieaezas muyas mgcgmamdgebs sge oue`ahbetachbetb a tasa fika y mge pcazgs rbcatdvahbetb mgrtgs. f.6.v) Ibstdýe `b rdbsig gpbramdgeac gpbramdgeac

^ara bc cgirg `b uea a`bmua`a Ibstdýe `b Vdbsig Gpbramdgeac, Faemg ]gcd`ardg ].A. bstafcbmb uea bstrumtura griaedzamdgeac, ca muac tdbeb mghg ouemdýe ca d`betdfimamdýe, rbpgrtb `b rdbsigs y bvbetgs gpbramdgeacbs y bc hgedtgrbg rbspbmtdvgs, rbsucta`g `b ca apcdmamdýe `b ca hbtg`gcgièa sb ibstdgeae cgs bvbetgs qub sge achambea`gs be ca Fasb `b Bvbetgs `b Vdbsig Gpbramdgeac sdbe`g cgs hdshgs rbpgrta`gs a A]OD `b haebra trdhbstrac y/g be cèeba sbiûe mgrrbspge`a< cgs rdbsigs sb achambeae be ca Fasb `b Vdbsigs Gpbramdgeacbs ca muac mgesd`bra bc tratahdbetg `bfied`g pgr cgs `ubñgs `b cgs prgmbsgs para su rbspbmtdva hdtdiamdýe, rbacdzae`g `b ästa haebra uea ibstdýe prbvbetdva.

Eghfrb `b ca ]ac`g a Mapdtac Dhpgrtb `b Pasa `b Detbräs ^cazg `b ca Bhdsdýe Bhdsdýe ^rgiraha % Bhdsdýe _bemdhdbet h dbetg Fs Fs Fgegs Faemg]gc 19>.>>>.>>> ? ,> > = .? >> >> ` èa s A igig st g 66>> 61 61 ” Bhdsdýe 1 2>>.>>>.>>> Fgegs Faemg]gc Obfrbrg 1?>.>>>.>>> 2,>> 6.::> `èas ” Bhdsdýe = 6>61

Fgegs Faemg Fgegs Faemg]gc ]gc DD DD ” Bhdsdýe 1

19>. 19 >.>>>. > >>.>>> > >> 2> 2>>. >.>>>. > >>.>>> > >>

?,>> >>

^artd`a ^cae`b ahgrtdzamdýe ahgrtdzamdýe Mgetafcb Detbrbsbs ]bhbstracbs y 6?1.>6 Mapdtac a _bemdhdbetg Detbrbsbs ]bhbstracbs y 6?1.>6 Mapdtac a _bemdhdbetg

Detbrbsbs ]bhbstracbs y =.60> 6 0> `èas a s Ha Hayg yg 6> 6>6= 6= Mapdtac a _bemdhdbetg 6?1.>6

Ac fieacdzar ca ibstdýe 6>14 cas gfcdiamdgebs sufgr`dea`as bstáe mghpubstas pgr;   Bhdsdgebs De`bpbe`dbetbs; –Fgegs ]ufgr`dea`gs Faemg]gc D‘ y –Fgegs ]ufgr`dea`gs Faemg]gc DD‘, ahfas autgrdza`as pgr Fs?> hdccgebs ma`a u ea.



 ^rgiraha –Fgegs ]ufgr`dea`gs Faemg ]gc 6‘ autgrdza`g pgr Fs61> hdccgebs, `bc muac sb mgcgmarge be su tgtacd`a` cas trbs bhdsdgebs `beghdea`as –Fgegs ]ufgr`dea`gs Faemg]gc 6- Bhdsdýe 1‘, –Fgegs ]ufgr`dea`gs Faemg ]gc 6 ” Bhdsdýe 6‘ y –Fgegs ]ufgr`dea`gs Faemg ]gc 6 ” Bhdsdýe =‘ pgr Fs9> hdccgebs ma`a uea.



Bc sac`g `b gfcdiamdgebs sufgr`dea`as sb bxpgeb be ca mubeta 696.>1 –Fgegs ]ufgr`dea`gs‘. A mgetdeuamdýe sb `btaccae cas maramtbrèstdmas `b cas bhdsdgebs `b fg egs sufgr`dea`gs vdibetbs ac =1 `b `dmdbhfrb `b 6>14; Eghfrb `bc Eghfrb `b ca ]ac`g a Mapdtac Dhpgrtb `b Pasa `b Detbräs ^cazg `b ca Bhdsdýe ^rgiraha _bemdhdbet h dbetg ^rgiraha Bhdsdýe % Bhdsdýe Fs Fs Fgegs ]ufgr`dea`gs ?>.>>>.>>> e.a. 2,2> 6.26> `èas Bebrg 6>6> Faemg]gc D ]de ^rgiraha Fgegs ]ufgr`dea`gs ?>.>>>.>>> e.a. ?,>> 6.9>> `èas Harzg 6>61 Faemg]gc DD Fgegs ]ufgr`dea`gs Faemg]gc 6 Bhdsdýe 1 ^rgiraha `b Fgegs Bhdsdgebs ]ufgr`dea`gs `b Fgegs Faemg]gc 6 ]ufgr`dea`gs Bhdsdýe 6 Faemg]gc 6 Fgegs ]ufgr`dea`gs Faemg]gc 6 Bhdsdýe =

9>.>>>.>>>

9>.>>>.>>>

9>.>>>.>>>

61>.>>>.>>>

^cae`b ahgrtdzamdýe ahgrtdzamdýe

^artd`a Mgetafcb

Detbrbsbs]bhbstracbs 696.>1 y Mapdtac a _bemdhdbetg Detbrbsbs]bhbstracbs 696.>1 y Mapdtac a _bemdhdbetg

? ,> >

6 .= 0> 0> `è`è asas

A frfr dc 6> 6> 60 60 y Mapdtac Detbrbsbsa]bhbstracbs _bemdhdbetg 696.>1

2,6>

6.=0> `èas

Obfrbrg 6>62

Detbrbsbs]bhbstracbs y Mapdtac a _bemdhdbetg 696.>1

2,2>

6.0>> `èas

Afrdc 6>6?

Detbrbsbs]bhbstracbs 696.>1 y Mapdtac a _bemdhdbetg

 

Bsta`gs Odeaemdbrgs

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

^ái. 2

EGPA 1 - GVIAED[AMDÝE (Mget.)

EGPA 1 - GVIAED[AMDÝE (Mget.)

EGPA 6 - EGVHA] MGEPAFCB]

f) Jbmjgs dhpgrtaetbs sgfrb ca sdtuamdýe `b ca betd`a` (Mget.)

f) Jbmjgs dhpgrtaetbs sgfrb ca sdtuamdýe `b ca betd`a` (Mget.)

a) Fasbs `b prbsbetamdýe `b cgs bsta`gs fieaemdbrgs

f.0) ^rgirahas `b Vbspgesafdcd`a` ]gmdac Bhprbsardac

f.0) ^rgirahas `b Vbspgesafdcd`a` ]gmdac Bhprbsardac (Mget.)

Bc árba `b Vbspgesafdcd`a` ]gmdac Bhprbsardac `b Faemg ]gcd`ardg ].A., `beghdea`a Mapdtac ]gmdac, oub bstafcbmd`a fakg bc hdshg prbmbptg `b Hdsdýe Destdtumdgeac, `bsarrgccae`g prgirahas qub fusmae ibebrar dhpamtg be cgs `dobrbetbs irupgs `b detbräs mge cgs qub sb rbcamdgea.

Mbetrg Mucturac HDM Faemg]gc

Cgs prbsbetbs bsta`gs fieaemdbrgs, jae sd`g prbpara`gs a vacgrbs jdstýrdmgs `b mgeogrhd`a` mge Egrhas Mgetafcbs bhdtd`as pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD, demcud`as be bc Haeuac `b Mubetas para Betd`a`bs Odeaemdbras y be ca Vbmgpdcamdýe `b Egrhas para ]brvdmdgs Odeaemdbrgs. Bstas egrhas, be ibebrac, sge mgdemd`betbs be tg`gs cgs aspbmtgs sdiedfimatdvgs mge cas Egrhas `b Mgetafdcd`a` Ibebrachbetb Ambpta`as be Fgcdvda, bxmbptg pgr bc rbmgegmdhdbetg `bc akustb detbirac `b bsta`gs fieaemdbrgs (akustb pgr destamdýe), sbiûe sb bxpcdma a mgetdeuamdýe;

Ammdgedstas y Bsta`g ^ara qub Faemg ]gcd`ardg ].A. pub`a bstdhar bc dhpamtg `b sus ammdgebs be cgs irupgs `b detbräs, rbspge`dbe`g a cas bxdibemdas `b ca egrhatdva A]OD, sb utdcdzarge cas jbrrahdbetas ebmbsardas y gpgrtueas para ccbvar a`bcaetb cgs sdiudbetbs rbpgrtbs b deogrhbs;

Faemg ]gcd`ardg ].A. frde`a bspamdgs para ca prghgmdýe y `dvuciamdýe `bc trafakg `b cgs Hdmrgbhprbsardgs, prghgvdbe`g ca prg`ummdýe fgcdvdaea y ca muctura hb`daetb eubstrgs mcdbetbs y artdstas bhbribetbs be cgs `bpartahbetgs `b Ca ^az, ]aeta Mruz y Mgmjafahfa. ]b bstafcbmdbrge sbds mdmcgs a cg carig `bc añg, `ge`b sb prbsbetarge =? artdstas y 1: mcdbetbs, cgirae`g ca vbeta `b 141 gfras. Acdaezas Bstratäidmas para Apgyg a ca Mghued`a`

]b rbafirharge mghprghdsgs mge eubstrgs acda`gs bstratäidmgs; Ac`bas Deoaetdcbs ].G.]., ^cae Detbreamdgeac y Jáfdtat para ca Juhaed`a`. Bsta ibstdýe suhahgs a eubstrgs acda`gs   –Deogrhb `b Vbpgrtb B`umamdýe Odeaemdbra 6>1:‘, be bc hdshg sb `bsicgsa bc dhpamtg aeuac bstratäidmgs a Oue`amdýe Armg Drds y bc Oge`g Eamdgeac `b cas Eamdgebs Red`as (REO^A), y pgr mdu`a` `b cas ammdgebs y taccbrbs rbacdza`gs `uraetb ca pasa`a ibstdýe.  kuetg a tg`gs bccgs egs mghprghbtbhgs a sbiudr trafakae`g be eubvgs mahpgs `b ammdýe para mgetdeuar mge bc prgmbsg `b frde`ar hbkgr macd`a` `b vd`a, prghgvdbe`g bc mud`a`g y





  ca –^rgiraha `b B`umamdýe Odeaemdbra‘, hdshg qub `btacca cas ammdgebs a rbacdzarsb `uraetb ibstdýe 6>14.   –Deogrhb `b Igfdbreg Mgrpgratdvg‘, muya rbacdzamdýe `bhubstra eubstra mghuedmamdýe mgefiafcb, bstrumtura`a y traesparbetb mge tg`gs eubstrgs irupgs `b detbräs.



  –Deogrhb `b Vbspgesafdcd`a` ]gmdac Bhprbsardac 6>1:‘, `ge`b pu`dhgs rbpgrtar tg`as eubstras ammdgebs `uraetb ca ibstdýe `b amubr`g a cgs paráhbtrgs `b ca egrhatdva vdibetb.



  –Deogrhb `b Facaemb ]gmdac 6>1:‘, deogrhahgs cgs rbsucta`gs `b ma`a hbta prbsbeta`a be muhpcdhdbetg a cgs gfkbtdvgs `b ca Ouemdýe ]gmdac y sus de`dma`grbs, mge ca sbcbmmdýe `b suf-de`dma`grbs `b amubr`g a cgs gfkbtdvgs bstratäidmgs `bc Faemg.



  –Deogrhb `b ^rg`umtgs y ]brvdmdgs Odeaemdbrgs 6>1:‘, rbpgrtahgs eubstrgs prg`umtgs y sbrvdmdgs fieaemdbrgs qub muhpcbe mge ca egrhatdva vdibetb.



 Macdfimamdýe `b @bsbhpbñg `b Vbspgesafdcd`a` ]gmdac Bhprbsardac 6>1:, sb prbsbetý bc deogrhb bcafgra`g pgr ca macdfima`gra AB]A Vatdeis, `ge`b sb bvacûa cas ammdgebs y hbkgras rbacdza`as `uraetb ca ibstdýe 6>1: be eubstrg `bsbhpbñg be Vbspgesafdcd`a` ]gmdac Bhprbsardac, gftbedbe`g asè uea macdfimamdýe `b 4 sgfrb 1>.



^rgirahas mge ouemdgeardgs ^rgiraha `b ca obcdmd`a` Bc fdbebstar `b eubstrgs ouemdgeardgs bs dhpgrtaetb para Faemg ]gcd`ardg ].A. bs pgr bstb hgtdvg qub bc ^rgiraha `b ca Obcdmd`a`, rbacdza amtdvd`a`bs `betrg `bc Faemg para rghpbr ca rutdea. Be bc hbs `b obfrbrg mgehbhgrahgs bc –@èa Detbreamdgeac `b ca Obcdmd`a`‘ kuetg mge bc Oge`g `b ^gfcamdýe `b cas Eamdgebs Red`as (REO^A) `ge`b sb vdsdtarge muatrg aibemdas `b ca mdu`a` `b Ca ^az mge bc mgembptg –Ca obcdmd`a` hb hbrbmb‘, fusmae`g su fdbebstar, fbebfimdahgs a eubstrgs ouemdgeardgs qub sb bemubetrae be ^gtgsè, Grurg, Fbed y ^ae`g, mge eubstrgs hasakbs aetdbsträs. @uraetb cgs ûctdhgs hbsbs `bc añg partdmdpahgs `bc hgvdhdbetg hue`dac `b ca Faema be _acgrbs. Cgirahgs ca partdmdpamdýe `b 1.040 ouemdgeardgs y ouemdgeardas a edvbc eamdgeac.

ca prgtbmmdýe `b cgs `brbmjgs oue`ahbetacbs `b fgcdvdaegs y fgcdvdaeas. Hbemdgear tahfdäe bc oubrtb mghprghdsg `b trafakg mge`bcgshdcbs Igfdbregs Autýeghgs Huedmdpacbs `b Ca ^az y Bc Actg. f.2) Mahfdgs be cgs sdstbhas deogrhátdmgs `bc Faemg @uraetb ca ibstdýe 6>14, ca Ibrbemda Eamdgeac `b Pbmegcgièa `b ca Deogrhamdýe, mgetdeuý beogmae`g sus amtdvd`a`bs be `gs tbhas rbcbvaetbs; muhpcdhdbetg egrhatdvg y apgyg a ca bstratbida `b Faemg ]gcd`ardg ].A., pgr hb`dg `b ca betrbia `b tbmegcgièa y sdstbhas `b deogrhamdýe. Be bc prdhbr masg a`bmuae`g cgs `dobrbetbs sdstbhas a cas destrummdgebs bhdtd`as pgr cgs griaedshgs `b rbiucamdýe y be bc sbiue`g masg apgyae`g a cas árbas `b ebigmdg `bc Faemg be tg`gs cgs prgybmtgs `bfied`gs mghg partb `b ca bstratbida `b ca destdtumdýe y cas hbkgras demrbhbetacbs. Be tgtac sb jae atbe`d`g mbrma `b 1>> rbqubrdhdbetgs, sdbe`g :> hbkgras demrbhbetacbs y 6> prgybmtgs. Cgs prdemdpacbs mahfdgs rbacdza`gs a cgs sdstbhas oubrge; dhpcbhbetamdýe `b idrgs pgr ca bhprbsa Vbhdtbb - idrgs `bs`b aribetdea (fietbmj), apcdmamdýe `b ? traesammdgebs PG^ be maeacbs `didtacbs, eubvas vbrsdgebs `bc faema hývdc A^^]GC, paig QV, ^rgmbsg sdhpcdfima`g mghpcbtg be A^^ Asbsgr, Vgfgt para prgmbsg `b rbpgrtbs detbregs y vbrdfimamdýe `b acta `b pbrsgeas (fietbmj), Mgetamt Cbss para Parkbtas `b @äfdtg, Amtuacdzamdýe `bc FD Hdmrg]tratbiy v.6>14, akustbs ac mdmcg `b máhara AMJ, caezahdbetg `b prg`umtgs `didtacbs para usuardgs (mjatfgt fasb y sbrvdmdg `b pgsdmdýe `b mubeta `bc `èa aetbrdgr), dhpcbhbetamdýe `b ue eubvg sdstbha `b ibstdýe `b devbrsdgebs, jbrrahdbetas para ca ibstdýe `b cas maptamdgebs, a`bmuamdgebs egrhatdvas y rbpgrtbs, prg`umtg `b sbiurg `b `bsiravahbe pcus, apcdmamdýe `b vbeta `b sbiurgs be mahpg, amtuacdzamdýe `bc sdstbha ]wdot, ogrtacbmdhdbetg `b ca deorabstrumtura, sbiurd`a` y haetbedhdbetg `b sdstbhas, betrb gtrgs. ]b ja rbvdsa`g aciuegs prgmbsgs `b atbemdýe ac mcdbetb rbcamdgea`gs a ca gtgriamdýe `b mrä`dtgs, atbemdýe `b mcdbetbs be pcataogrha, para su pgstbrdgr autghatdzamdýe y `didtacdzamdýe. Be rbcamdýe a ca `dspgedfdcd`a` `b sbrvdmdgs `b deorabstrumtura mbetrac, cgs hdshgs sb jae haetbed`g be ue edvbc bcbva`g `uraetb tg`g bc añg, frde`ae`g a Faemg ]gcd`ardg ].A. ca `dspgedfdcd`a` `b cgs sdstbhas, rb`bs y APH°s. f.?) ^rg`umtgs y sbrvdmdgs

Hd Jubcca, Hd Faemg Faemg ]gcd`ardg ].A. bstá mghprghbtd`g mge ca rb`ummdýe `b su jubcca `b marfgeg, ibebrar hás árbas vbr`bs vbr`bs y mgemdbetdzamdýe sgfrb bc mud`a`g `bc hb`dg ahfdbetb. ^gr bsg partdmdpahgs `b cas amtdvd`a`bs `b ca Jgra `bc ^caebta be cgs `bpartahbetgs `b Ca ^az, ]aeta Mruz y Mgmjafahfa, amghpaña`a `b uea mahpaña `b mgemdbetdzamdýe sgf rb cgs mahfdgs `b jáfdtgs y mgesuhg rbspgesafcb, `drdid`g a ouemdgeardgs, a traväs `b pcaetdccas `doue`d`as `b ogrha detbrea, ccbiae`g asè a =.>>9 ouemdgeardgs. @uraetb bstb tdbhpg bcafgrahgs pcaetdccas `b mghuedmamdýe y mgemdbetdzamdýe be eubstrgs maeacbs `b mghuedmamdýe para eubstrgs `dvbrsgs irupgs `b detbräs. _gcuetarda`g Mgrpgratdvg Hdcca Bxtra Faemg ]gcd`ardg ].A. trafaka `b haebra amtdva mge sus ouemdgeardgs y ouemdgeardas be amtdvd`a`bs `b vgcuetarda`g qub ayu`ae a hbkgrar ca mghued`a` mgestruybe`g masas para edñgs y edñas mge máembr, rbogrbstae`g ca mdu`a`, betrb gtrgs. A ca obmja sb cgirý ca partdmdpamdýe `b 6=2 vgcuetardgs y vgcuetardas. ^rgirahas para ca Mghued`a` Mcavb]gc Be apgyg a ca muctura b d`betd`a`, sb dedmdarge cas amtdvd`a`bs mge edñgs/as y kývbebs `b cas Bsmubcas Iratudtas Mcavb]gc, `ge`b sb dhpartb ca besbñaeza `b destruhbetgs mcásdmgs `b mubr`a (vdgcèe, vdgca, vdgcgemjbcg y mgetrafakg) a traväs `b uea hbtg`gcgièa fasa`a be cgs vacgrbs `bc prgiraha `b Mapdtac ]gmdac. ]b dedmdý ca ibstdýe mge mdemg puetgs `b ogrhamdýe. Be ca mdu`a` `b Ca ^az; Mgcbidg ]ae Macdxtg, Masa @dstrdtac Kadhb ]ábez kuetg mge c a ]b`b Oue`amdýe Armg Drds be _dcca ]ae Aetgedg y ]b`b MAVB ^brdoärdma. Be ca mdu`a` `b Bc Actg; Mdu`a` ]atäcdtb y ]b`b Mgshgs 9 9. Be bc hbs `b hayg sb rbacdzý ca apbrtura `b 6 eu bvgs puetgs; be ca [gea Iardta `b Cdha `b ca mdu`a` `b Ca ^az y ca masa Mapbccaedma be ca mdu`a` `b ]umrb. A ca obmja mgetahgs mge ue tgtac `b 24? edñas, edñgs y a`gcbsmbetbs desmrdtgs be cas mdu`a`bs `b Ca ^az, Bc Actg y ]umrb. Be ca ibstdýe 6>14, be mgehbhgramdýe `b cgs 1> añgs `b Mapdtac ]gmdac, sb cgirý ca irafamdýe `bc ` dsmg `b ca Grqubsta Mcavb]gc, qub mgetdbeb `d bz maemdgebs be cas qub partdmdparge `dvbrsgs y rbmgegmd`gs artdstas fgcdvdaegs. Mgpa]gc Bc oûtfgc, sb mgestdtuyb be ueg `b cgs `bpgrtbs hás pramtdma`gs be bc hue`g. Bs asè, qub a traväs `b ue betrbeahdbetg hbtý`dmg, mgestaetb b detbirac, fusma ogrtacbmbr `dobrbetbs vacgrbs be edñgs/as y a`gcbsmbetbs `b cas bsmubcas, a traväs `b su prgpda hbtg`gcgièa fasa`a be vacgrbs y ca apcdmamdýe `bc Eburgoûtfgc, bstb trafakg bs rbacdza`g pgr rbmgegmd`gs prgobsdgeacbs be bc mahpg `bpgrtdvg, mgetahgs mge ue `drbmtgr `bpgrtdvg, betrbea`grbs, uea psdmýcgia y ue `gmtgr. Amtuachbetb mgetahgs mge gmjg sb`bs be vardas mdu`a`bs `bc paès, Ca ^az; sb`b Gfrakbs, sb`b MAVB ^brdoärdma, sb`b Fakg Mgemjupata y sb`b Hueaypata. Be ca mdu`a` `b Bc Actg; ]b`b Mgshgs 99. Be ]aeta Mruz; Rrfaedzamdgebs Red`as, ?tg aedccg, be Mgmjafahfa; GPF Oubrza Aärba, Maemja bc ^aetaeac y be ca mdu`a` `b Pardka; Farrdg Hgrrgs Fcaemgs. Ac mdbrrb `b ca ibstdýe 6>14 mgetahgs mge ue tgtac `b 1.1>6 edñas, edñgs y kývbebs desmrdtgs be cas `dobrbetbs mdu`a`bs. Be cas bsmubcas Mgpa]gc y Mcavb]gc mgetahgs mge prgobsgrbs mapamdta`gs be Cbeiua `b ]bñas y Cbmtura Fradccb, a`bhás sghgs prghgtgrbs `b Muctura `b ^az, trafakae`g mge jbrrahdbetas para ca ibstdýe `b bhgmdgebs y prghgvbr ca tbhátdma be ca mghued`a`.

Ca iaha `b sbrvdmdgs tbmegcýidmgs qub Faemg ].A.deegva`gras pgeb a `dspgsdmdýe cgs pbqubñgs bhprbe`b`grbs, bstá mghpubsta pgr ]gcd`ardg prbstamdgebs qub vae`b`bs`b eubstra ahpcda rb` `b Makbrgs Autghátdmgs, pasae`g pgr eubstra Faema pgr Detbrebt (]gcebt) y eubstras `gs gpmdgebs `b Faema pgr mbcucar (Deogsgc-]H] y App]gc) a`bhás `b uea rb` `b Aibemdas Hývdcbs qub rbmgrrbe cas prgvdemdas `b cgs `bpartahbetgs `b Ca ^az, Mgmjafahfa y ]aeta Mruz, atbe`dbe`g mgesuctas y traesammdgebs `b ca pgfcamdýe rurac y pbrdurfaea pgr hb`dg `b uea mgebxdýe satbcdtac. A bstgs maeacbs `b atbemdýe y mgetamtg sb suha ]gc Ahdig, sbrvdmdg `b makbrgs bxtbregs, atbe`d`gs pgr ue ouemdgeardg `bc Faemg, qub be ue ahfdbetb `b háxdha sbiurd`a` atdbe`b traesammdgebs y mgesuctas frde`ae`g a mcdbetbs y usuardgs, sbrvdmdgs fieaemdbrgs prýxdhgs a sus ebigmdgs y vdvdbe`as. @bs`b ca ibstdýe 6>19 mghbezarge a ouemdgear cgs Mgrrbspgesacbs Eg Odeaemdbrgs `b Faemg ]gcd`ardg ].A., `beghdea`gs ]gc Ahdig Bxprbss. Bstgs puetgs `b atbemdýe tdbebe mghg prdemdpac maramtbrèstdma qub bc `ubñg `b ca tdbe`a, pgr hb`dg `b ue ^G], atdbe`b a cgs usuardgs fieaemdbrgs qub rbqudbrae jambr traesammdgebs mghg paigs `b sbrvdmdgs. Ac =1 `b `dmdbhfrb `b 6>14 sb ja mbrra`g mge ue oge`bg `b hás `b R]@ 1.02: hdccgebs be ajgrrgs qub demcuybe Makas `b Ajgrrg y @^Os, mge ammdgebs puetuacbs para prghgmdgear ca muctura `b ajgrrg be edñgs y kývbebs. Jgy be `èa supbrahgs cas 1.>19.619 mubetas `b ajgrrg, mgevdrtdäe`gegs be ca betd`a` `b Hdmrgfieaezas mge bc haygr eûhbrg `b mcdbetbs ajgrrdstas. Bsta tarba sb mghpcbhbeta mge bc bkbrmdmdg `b sus vacgrbs, prdemdpdgs y ca macd`a` `b cgs rbmursgs juhaegs, supbrae`g pbrhaebetbhbetb sus hbtas y bc mghprghdsg `b hbkgra mgetdeua. Mghg mgesbmubemda `b eubstrg mrbmdhdbetg, jasta bc =1 `b `dmdbhfrb `b 6>14, Faemg ]gcd`ardg ].A. mubeta mge :12 puetgs `b atbemdýe `b amubr`g ac sdiudbetb `btaccb; 

1>6 Aibemdas Mghbrmdacbs Odkas



161 ^uetgs ]gc Ahdig (Gfimdeas Bxtbreas)



=22 puetgs ]gc Ahdig Bxprbss (Mgrrbspgesacbs Eg Odeaemdbrgs)



? Aibemdas Hývdcbs



14 _betaedccas `b Mgfraeza



6>6 Makbrgs Autghátdmgs



1 Gfimdea Mbetrac



4 Gfimdeas Vbidgeacbs

m) Cby `b ]brvdmdgs Odeaemdbrgs Eg. =4=  =4=  Be obmja 61 `b aigstg `b 6>1=, bc Bsta`g ^curdeamdgeac `b Fgcdvda prghuciý ca Cby E¾ =4= `b ]brvdmdgs Odeaemdbrgs, ca muac rbbhpcaza a ca Cby E¾ 10:: `b Faemgs y Betd`a`bs Odeaemdbras `b 10 `b afrdc `b 1 44=, y tdbeb pgr gfkbtg rbiucar cas amtdvd`a`bs `b detbrhb`damdýe fieaemdbra y ca prbstamdýe `b cgs sbrvdmdgs fieaemdbrgs, asè mghg ca griaedzamdýe y ouemdgeahdbetg `b cas betd`a`bs fieaemdbras y prbsta`gras `b sbrvdmdgs fieaemdbrgs< ca prgtbmmdýe `bc mgesuhd`gr fieaemdbrg< y ca partdmdpamdýe `bc Bsta`g mghg rbmtgr `bc sdstbha fieaemdbrg, vbcae`g pgr ca uedvbrsacd`a` `b cgs sbrvdmdgs fieaemdbrgs y grdbetae`g su ouemdgeahdbetg be apgyg `b cas pgcètdmas `b `bsarrgccg bmgeýhdmg y sgmdac `bc paès. Ca Cby E¾ =4= `dspusg bc dedmdg `b su vdibemda a cgs (4>) `èas macbe`ardg (61 `b egvdbhfrb `b 6>1=) `b sbr prghucia`a, asdhdshg `dspusg qub `uraetb bsb bkbrmdmdg y hdbetras eg sb bhdta egrhatdva rbicahbetarda, sb mgesd`brará vdibetb ca egrhatdva bhdtd`a bhdtd`a fakg ca Cby E¾ 10:: `b 10 `b afrdc `b 144=.

Mgrrb]gc

^gstbrdgrhbetb, oub bhdtd`a ca sdiudbetb egrhatdva rbicahbetarda prbsbeta`a be gr`be `b su ûctdha prghuciamdýe;

Be bc masg `b ]aeta Mruz, ca prubfa 11L Bc Pgreg oub suspbe`d`a y bc hgetg `bstdea`g a ca griaedzamdýe `b ca prubfa, oub `gea`g be bqudpahdbetg a cgs fghfbrgs y vgcuetardgs qub mghfatdbrge cgs dembe`dgs be ca Mjdqudtaeèa. Be bc hbs `b sbptdbhfrb, sb rbacdzý ca marrbra pb`bstrb `b Mgmjafahfa, mge ca partdmdpamdýe `b 1.240 atcbtas, be acdaeza mge ca Oue`amdýe Jáfdtat para ca Juhaed`a` be rbspac`g a su prgiraha –Pb bspbrahgs be masa‘ qub frde`a sgcumdgebs jafdtamdgeacbs para hbegrbs aqubka`gs pgr beobrhb`a`bs dehuegcýidmas.

- Be obmja 6: `b `dmdbhfrb `b 6>1? sb prghuciý bc @.]. =>=?, bc hdshg qub tdbeb pgr gfkbtg `btbrhdear bc pgrmbetakb `b cas utdcd`a`bs ebtas `b ca ibstdýe 6>1? qub cgs Faemgs Hûctdpcbs y Faemgs ^yhb `bfbráe `bstdear ac muhpcdhdbetg `b ca ouemdýe sgmdac `b cgs sbrvdmdgs fieaemdbrgs.

@bfd`g a ca mgyuetura eamdgeac, bsta ibstdýe eg sb rbacdzý ca Marrbra ^b`bstrb Bc Actg 11L, ca hdsha qub oub pgstbria`a para ca sdiudbetb ibstdýe.

- Be obmja 6 `b aigstg `b 6>1? sb prghuciý bc @.]. 6:2: qub tdbeb pgr gfkbtg bstafcbmbr cgs rbqudsdtgs y prgmb`dhdbetg para ca prbsbetamdýe y mgesd`bramdýe `b rbqubrdhdbetgs `b rbprgirahamdýe `b gpbramdgebs mrb`dtdmdas mge bc sdstbha fieaemdbrg `bc sbmtgr airgpbmuardg aobmta`g pgr bvbetgs a`vbrsgs.

Ammdýe]gc

- Be obmja 12 `b kucdg `b 6>12 sb prghuciý @.]. 6004 qub tdbeb pgr gfkbtg mghpcbhbetar

Bstb prgiraha oub mrba`g mge ca fieacd`a` `b frde`ar ayu`a be bc áhfdtg `b sacu` y ebmbsd`a` fásdmas a pbrsgeas `b bsmasgs rbmursgs qub rbqudbrae bc paig `b tratahdbetgs, detbrvbemdgebs qudrûridmas g atbemdýe hä`dma. A ca obmja cgs masgs hás rbcbvaetbs sge; bc paig `bc tratahdbetg `b rbmupbramdýe `bc edñg Mrdstgobr Cgayza, bc ]r. Ae`räs Hahaed y bc ]r. Vufäe Juaema qub tahfdäe pbrtbebmb a ca bsmubca Mcavb]gc `b ca mdu`a` `b Ca ^az, uea `geamdýe a ca asgmdamdýe `b pbrsgeas sgr`as y bc apgyg ac bvbetg para edñas y edñgs mge ]èe`rghb `b @gwe, cgirae`g asè ue dhpamtg tgtac `b 1.64> pbrsgeas fbebfimda`as. Pahfdäe sb rbacdzý uea mahpaña `b rbmgcbmmdýe `b aiua para cas pbrsgeas aobmta`as be bc `bscdzahdbetg `bc farrdg Fakg Ccgkbta `b c a mdu`a` `b Ca ^az, cgirae`g rbacdzar uea `geamdýe `b 6.146 paqubtbs `b aiua.

cgs 6>10, @bmrbtgs ]uprbhgs E» 1:06, `b 1: `b ]uprbhgs `dmdbhfrb E¾ `b 61=9, 6>1= y`bE»4 6>22, `b 4 `b `b asè mghg hg`dfimar cgs @bmrbtgs `b gmtufrb `b kucdg 6>10 y E» 6::12, `b 6? `b kucdg `b 6>>?, demcuybe`g mýhputgs `b edvbcbs hèedhgs `b martbra y ebigmdafdcd`a` `b `bpýsdtgs a pcazg fikg mge tasa `b detbräs, a`bhás `b hg`dfimar ca mgfbrtura `b rdbsig mrb`dtdmdg para bc Oge`g `b Iaraetèa Iaraetèa `b Mrä`dtg `b _dvdbe`a `b Detbräs ]gmdac jasta bc 6>% muae`g bc prbstatardg eg mubetb mge apgrtb prgpdg y hg`dfimamdgebs ac demdsg j) artèmucg ? `bc @.]. 6::12 `bc hbrma`g `b `dvdsas. - Be obmja 6 `b `dmdbhfrb `b 6>12 sb prghuciý bc @.]. 6?10, bc hdshg qub tdbeb pgr gfkbtg `btbrhdear bc pgrmbetakb `b cas utdcd`a`bs ebtas `b ca ibstdýe 6>12 qub cgs Faemgs Hûctdpcbs y Faemgs ^yhb `bfbráe `bstdear a cgs oge`gs `b Iaraetèa `b Mrä`dtgs para bc ]bmtgr ^rg`umtdvg.





@b amubr`g mge ca Mdrmucar ]F/2:2/6>>: bhdtd`a pgr ca amtuac Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD, sb `dspgeb ca suspbesdýe `bc rbmgegmdhdbetg detbirac `b ca destamdýe. @b amubr`g mge ca Egrha Mgetafcb E¾= bhdtd`a pgr bc Mgesbkg Eamdgeac `b Au`dtgrèa y Mgetafdcd`a` `bc Mgcbidg `b Au`dtgrbs g Mgeta`grbs ^ûfcdmgs Autgrdza`gs `b Fgcdvda, cgs bsta`gs fieaemdbrgs `bfbe sbr rbbxprbsa`gs rbmgegmdbe`g bc bobmtg detbirac `b ca destamdýe, para cg`bc muac `bfb mgesd`brarsb ca vacuamdýe `b ca Red`a` `b Oghbetg `b _dvdbe`a mghg èe`dmb akustb.

Ca prbparamdýe `b cgs bsta`gs fieaemdbrgs, `b mgeogrhd`a` mge cas egrhas mgetafcbs `b ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD, rbqudbrb qub ca Ibrbemda `b Faemg ]gcd`ardg ].A. rbacdmb aciueas bstdhamdgebs qub aobmtae cgs hgetgs `b cgs amtdvgs y pasdvgs y ca bxpgsdmdýe `b amtdvgs y pasdvgs mgetdeibetbs a ca obmja `b cgs bsta`gs fieaemdbrgs, asè mghg cgs hgetgs `b deirbsgs y iastgs `bc bkbrmdmdg. Cgs rbsucta`gs outurgs pg`rèae sbr `dobrbetbs, auequb bstas bstdhamdgebs oubrge rbacdza`as be bstrdmtg muhpcdhdbetg `bc harmg mgetafcb y egrhatdvg vdibetb. Cgs bsta`gs fieaemdbrgs mgrrbspge`dbetbs ac =1 `b `dmdbhfrb `b 6>14 y 6>1: mghfdeae cgs bsta`gs fieaemdbrgs `b cas gfimdeas `b Faemg ]gcd`ardg ].A. sdtua`as be cas mdu`a`bs `b Ca ^az, Bc Actg, ]aeta Mruz `b ca ]dbrra, Mgmjafahfa, Grurg, ]umrb, Pardka, ^gtgsè, Prded`a` Prded`a` y Mgfdk a. a.1) Hgeb`a bxtraekbra y Red`a`bs `b Oghbetg `b _dvdbe`a Paetg cgs amtdvgs y pasdvgs be hgeb`a bxtraekbra mghg be Red`a`bs `b Oghbetg `b _dvdbe`a (RO_) sb rbidstrae be sus dhpgrtbs grdideacbs, y sb mgevdbrtbe a fgcdvdaegs, `b amubr`g mge cgs tdpgs `b mahfdg vdibetbs `bc `ýcar bsta`gued`besb y mge ca mgtdzamdýe `b ca RO_ a ca obmja `b mdbrrb `b ma`a bkbrmdmdg. Cas `dobrbemdas `b mahfdg y rbvacgrdzamdgebs, rbspbmtdvahbetb, rbsuctaetbs `b bstb prgmb`dhdbetg sb rbidstrae be cgs rbsucta`gs `b ma`a bkbrmdmdg. f) Martbra  Martbra  Cgs sac`gs `b martbra sb bxpgebe pgr bc mapdtac prbsta`g hás cgs prg`umtgs fieaemdbrgs `bvbeia`gs ac mdbrrb `b ma`a pbrèg`g y bkbrmdmdg, bxmbptg cgs mrä`dtgs vdibetbs macdfima`gs @, B y O, ca martbra vbemd`a y ca martbra be bkbmumdýe, para cgs qub eg sb rbidstrae cgs prg`umtgs fieaemdbrgs `bvbeia`gs. Cas prbvdsdgebs bspbmèfimas para martbra demgfrafcb sge macmuca`as `b amubr`g mge ca egrhatdva bhdtd`a pgr A]OD, ca muac rbqudbrb apcdmar pgrmbetakbs `b prbvdsdýe bstafcbmd`gs `b amubr`g mge ca macdfimamdýe asdiea`a a ma`a mcdbetb y mgesd`brae`g bc vacgr `b cas iaraetèas rbacbs be oavgr `b Faemg ]gcd`ardg ].A. Bstas prbvdsdgebs rbprbsbetae ca hbkgr bstdhamdýe `b ca ibrbemda para mufrdr cas pär`d`as pgr demgfrafdcd`a` `b martbra `b mrä`dtgs ac mdbrrb `bc bkbrmdmdg. Ca bvacuamdýe y macdfimamdýe `b ca martbra `b mrä`dtgs sb bobmtûa prdemdpachbetb be fasb a cgs `èas `b hgra. A`dmdgeachbetb, sb mgestdtuybe prbvdsdgebs para rdbsig a`dmdgeac be masg qub sb `btbrhdeb bxdstae `bsvègs haygrbs ac 1>%, be bc muhpcdhdbetg `b ca tbmegcgièa mrb`dtdmda `b Faemg ]gcd`ardg ].A. ^ara bobmtuar `dmja bvacuamdýe Faemg ]gcd`ardg ].A. ja rbacdza`g ca macdfimamdýe `b ca martbra `b mrä`dtgs apcdmae`g cgs mrdtbrdgs bstafcbmd`gs be bc Mapètucg D_ Vbicahbetg para ca Bvacuamdýe y Macdfimamdýe `b Martbra `b Mrä`dtgs, Pètucg DD Vdbsig Mrb`dtdmdg, Cdfrg =¾ Vbiucamdýe `b Vdbsigs, `b ca Vbmgpdcamdýe `b Egrhas para ]brvdmdgs Odeaemdbrgs, bhdtd`a pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD. Hb`daetb Vbsgcumdýe `bc Hdedstbrdg `b Bmgeghèa y Odeaezas ^ûfcdmas E¾ =1 `b obmja 6= `b bebrg `b 6>12, sb bstafcbmbe cas hbtas detbrhb`das aeuacbs `b martbra `b mrä`dtgs `bstdea`a ac sbmtgr prg`umtdvg y `b vdvdbe`a `b detbräs sgmdac qub cgs Faemgs Hûctdpcb y Faemgs ^yhb `bfbráe muhpcdr sdiudbe`g ue prgmbsg jasta acmaezar cgs edvbcbs hèedhgs bstafcbmd`gs be bc @bmrbtg ]uprbhg E¾ 1:06 `b 1: `b `dmdbhfrb `b 6>1=. Asdhdshg, sb mgesd`brý ca sdiudbetb amtuacdzamdýe `b egrhatdva A]OD; - Be obmja 6 `b `dmdbhfrb `b 6>14 ca A]OD bhdtdý ca mdrmucar ?61/6>14 ” Hg`dfimamdgebs ac Haeuac `b Mubetas para Betd`a`bs Odeaemdbras y ac aebxg 0.? –Martbra gtgria`a a betd`a`bs pûfcdmas mcasdfima`a sbiûe `bstdeg `bc mrä`dtg y macdfimamdýe‘ `bc Vbicahbetg para bc bevdý `b deogrhamdýe. - Be obmja 6 `b gmtufrb `b 6>14 ca A]OD bhdtdý ca mdrmucar ?1:/6>14 ”Hg`dfimamdgebs ac Vbicahbetg para bc ouemdgeahdbetg `bc ]dstbha `b Vbidstrg `b Iaraetèas. - Be obmja 6> `b sbptdbhfrb `b 6>14 ca A]OD bhdtdý bhdtdý ca mdrmucar ?1?/6>14 ”Hg`dfimamdgebs ac Vbicahbetg para ca bvacuamdýe y macdfimamdýe `b martbra `b mrä`dtgs y ac Vbicahbetg `b ^rgtbmmdýe `bc Mgesuhd`gr `b ]brvdmdgs Odeaemdbrgs. - Be obmja 1: `b kucdg `b 6>14 ca A]OD bhdtdý ca mdrmucar ?12/6>14 ”Hg`dfimamdgebs ac Vbicahbetg para ca bvacuamdýe y macdfimamdýe `b martbra `b mrä`dtgs. - Be obmja 6: `b kuedg `b 6>14 ca A]OD bhdtdý ca mdrmucar ?16/6>14 ”Hg`dfimamdgebs ac Vbicahbetg para Gpbramdgebs `b Mrä`dtg `b Mgesuhg Gtgria`as a traväs `b hb`dgs bcbmtrýedmgs y ac Vbicahbetg `b Pasas `b Detbräs. - Be obmja 2 `b afrdc `b 6>14 ca A]OD bhdtdý ca mdrmucar ?>0/6>14 ” Hg`dfimamdgebs ac Vbicahbetg para Gpbramdgebs `b Mrä`dtg ]de`dma`as y ac Vbicahbetg `b ca Mbetrac `b Deogrhamdýe Mrb`dtdmda. - Be obmja : `b harzg `b 6>14 ca A]OD bhdtdý ca mdrmucar 244/6>14 ” Vbicahbetg para gpbramdgebs `b mrä`dtg a bhprbsas pûfcdmas y hg`dfimamdgebs ac rbicahbetg para gpbramdgebs `b mrä`dtg a betd`a`bs pûfcdmas y ac rbicahbetg `b iaraetèas eg mgevbemdgeacbs. - Be obmja 64 `b bebrg `b 6>14 ca A]OD bhdtdý ca mdrmucar 240/6>14 ” Hg`dfimamdgebs ac rbicahbetg para ca partdmdpamdýe `b betd`a`bs fieaemdbras be prgmbsg `b tdtucardzamdýe, ac Vbicahbetg `b ca mbetrac `b deogrhamdýe mrb`dtdmda, ac Vbicahbetg `b mgetrgc `b ca sufimdbemda patrdhgedac y pge`bramdýe `b amtdvgs y ac Haeuac `b mubetas para betd`a`bs fieaemdbras. - Be obmja 6: `b `dmdbhfrb `b 6>1: ca A]OD bhdtdý ca mdrmucar 24>/6>1: ”Hg`dfimamdgebs ac Vbicahbetg para Achambebs Ibebracbs `b @bpýsdtg y ac Vbicahbetg para ca Bvacuamdýe y Macdfimamdýe `b Martbra `b Mrä`dtgs. - Be obmja 16 `b `dmdbhfrb `b 6>1: ca A]OD bhdtdý ca mdrmucar 2::/6>1: ” Hg`dfimamdgebs ac Vbicahbetg `b Iaraetèas Eg Mgevbemdgeacbs, ac Vbicahbetg `b ca Mbetrac `b Deogrhamdýe Mrb`dtdmda y ac Haeuac `b Mubetas para Betd`a`bs Odeaemdbras. - Be obmja => `b egvdbhfrb `b 6>1: ca A]OD bhdtdý bhdtdý ca mdrmucar 2:2/6>1: ” Hg`dfimamdgebs ac Vbicahbetg para ca Gtgriamdýe `b Mrä`dtgs ac ^brsgeac `b ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg. - Be obmja 16 `b gmtufrb `b 6>1: ca A]OD bhdtdý ca mdrmucar 2:6/6>1: ” Hg`dfi mamdgebs ac Vbicahbetg `b Pasas `b Detbräs, ac Vbicahbetg para bc Bevdý `b Deogrhamdýe y a cas @drbmtrdmbs Fásdmas para ca Ibstdýe `bc Vdbsig `b Cdqud`bz. - Be obmja 1> `b sbptdbhfrb `b 6>1: ca A]OD bhdtdý ca mdrmucar 29=/6>1: ” Hg`dfimamdgebs ac Vbicahbetg para bc Bevèg `b Deogrhamdýe, ac Vbicahbetg `b ^rgtbmmdýe `bc Mgesuhd`gr `b ]brvdmdgs Odeaemdbrgs, ac Vbicahbetg para ca Bvacuamdýe y Macdfimamdýe `b Martbra `b Mrä`dtgs y ac Vbicahbetg `b Apcdmamdýe `b Huctas pgr Vbtrasg be bc Bevèg `b Deogrhamdýe. - Be obmja =1 `b aigstg `b 6>1: ca A]OD bhdtdý ca mdrmucar mdrmucar 296/6>1: ” Hg`dfimamdgebs ac Vbicahbetg `b Iaraetèas Eg Mgevbemdgeacbs, ac Vbicahbetg `b ca Mbetrac `b Deogrhamdýe Mrb`dtdmda y ac Vbicahbetg para bc ]dstbha `b Vbidstrg `b Iaraetèas Eg Mgevbemdgeacbs.

 

Bsta`gs Odeaemdbrgs

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

EGPA 6 - EGVHA] MGEPAFCB] (Mget.)

EGPA 6 - EGVHA] MGEPAFCB] (Mget.)

EGPA 6 - EGVHA] MGEPAFCB] (Mget.)

f) Martbra (Mget.)

`) Fdbebs rbacdzafcbs (Mget.)

 k) Vbsucta`gs `bc bkbrmdmdg (Mget.)

- Be obmja 60 `b aigstg `b 6>1: ca A]OD bhdtdý ca mdrmucar mdrmucar 291/6>1: ” Hg`dfimamdgebs ac Vbicahbetg `b Od`bdmghdsg y ac Haeuac `b Mubetas para Betd`a`bs Odeaemdbras.

]d ca rbspbmtdva vbeta eg sb rbacdza `betrg `bc pcazg hbemdgea`g, bc faemg `bfb bobmtuar cas sdiudbetbs prbvdsdgebs;

 k.=) Dhpubstg sgfrb cas Rtdcd`a`bs `b c as Bhprbsas (DRB) (Mget.)

- Be obmja 19 `b aigstg `b 6>1: ca A]OD bhdtdý ca mdrmucar 2?:/6>1: ” Vbicahbetg para Gpbramdgebs `b Mrä`dtg `b Mgesuhg Gtgria`as a traväs `b Hb`dgs Bcbmtrýedmgs y Hg`dfimamdgebs ac Vbicahbetg `b ca Mbetrac `b Deogrhamdýe Mrb`dtdmda y ac Haeuac `b Mubetas para Betd`a`bs Odeaemdbras. - Be obmja 6 `b kucdg `b 6>1: ca A]OD bhdtdý ca mdrmucar 222/6>1: ” Hg`dfimamdgebs ac Vbicahbetg `b ^rgtbmmdýe `bc Mgesuhd`gr `b ]brvdmdgs Odeaemdbrgs y ac Vbicahbetg para ca Bvacuamdýe y Macdfimamdýe `b Martbra `b Mrä`dtgs. - Be obmja 11 `b kuedg `b 6>1: ca A]OD bhdtdý ca mdrmucar 22>/6>1: ” Hg`dfimamdgebs ac Vbicahbetg `b Pasas `b Detbräs. - Be obmja 1: `b hayg `b 6>1: ca A]OD bhdtdý ca mdrmucar 200/6>1: ” Hg`dfimamdýe ac Vbicahbetg para ca Gtgriamdýe `b Mrä`dtgs ac pbrsgeac `b ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg. - Be obmja 61 `b obfrbrg `b 6>1: ca A]OD bhdtdý ca mdrmucar 26?/6>1: - Hg`dfimamdgebs ac rbicahbetg `b ca Mbetrac `b Deogrhamdýe Mrb`dtdmda. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, sb tdbeb mgestdtud`a uea prbvdsdýe bspbmèfima para demgfrafdcd`a` `b martbra `b Fs10:.>4?.44: y Fs1=1.441.9?1 rbspbmtdvahbetb, qub bs mgesd`bra`a sufimdbetb para mufrdr cas prgfafcbs p är`d`as qub pu`dbrae prg`umdrsb ac rbacdzar cgs mrä`dtgs bxdstbetbs. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, sb tdbeb mgestdtud`a uea prbvdsdýe ibeärdma para demgfrafdcd`a` `b martbra pgr oamtgrbs `b rdbsig a`dmdgeac `b Fs1=>.2:2.6=0 para ma`a ibstdýe rbspbmtdvahbetb. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, sb tdbeb mgestdtud`a uea prbvdsdýe ibeärdma para demgfrafdcd`a` `b martbra pgr gtrgs rdbsigs `b Fs69.00>.>> > para ma`a ibstdýe rbspbmtdvahbetb. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, sb tdbeb mgestdtud`a uea prbvdsdýe bspbmèfima para amtdvgs mgetdeibetbs `b Fs1.19= y Fs960 rbspbmtdvahbetb. Faemg ]gcd`ardg ].A., be muhpcdhdbetg a ca Mdrmucar ]F/24>/6>>: `b ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD, a partdr `bc =1 `b gmtufrb `b 6>>4, rbidstra hbesuachbetb be bc pasdvg mghg partb `bc irupg –^rbvdsdgebs‘, uea prbvdsdýe ibeärdma mèmcdma mghg ue hbmaedshg qub cb pbrhdtdrá mgetar mge uea rbsbrva mgestdtud`a be hghbetgs be cgs qub bc `btbrdgrg `b ca martbra aûe eg sb jaya hatbrdacdza`g y pub`a sbr ut dcdza`a muae`g cgs rbqubrdhdbetgs `b prbvdsdýe `b martbra sbae haygrbs. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, sb mgestdtuyý uea ^rbvdsdýe ibeärdma mèmcdma pgr Fs?=.1=:.200 y Fs24.2>6.2>9 rbspbmtdvahbetb, y uea ^rbvdsdýe ibeärdma vgcuetarda mèmcdma pgr Fs?=.1=:.2=0 y Fs24.2>6.049, rbspbmtdvahbetb, `b amubr`g mge cg bstafcbmd`g be ca Vbmgpdcamdýe `b Egrhas para ]brvdmdgs Odeaemdbrgs. Vbprgirahamdgebs; Be obmja 1: egvdbhfrb`bc`b]dstbha 6>14 sbiûe Marta ”Mdrmucar A]OD/@E^/MM-1662?/6>14 ca Autgrd`a` `b `b ]upbrvdsdýe Odeaemdbrg A]OD destruyb atbe`br y aeacdzar cas sgcdmdtu`bs `b rbprgirahamdýe `b gpbramdgebs `b mrä`dtg, be mgesd`bramdýe a ca mgyuetura pgcètdmg sgmdac `b cgs hbsbs `b gmtufrb y egvdbhfrb `b 6>14 a edvbc eamdgeac. Bs pgr bstg qub Faemg ]gcd`ardg ].A mge ca fieacd`a` `b prbmautbcar ca sacu` fieaemdbra `b sus mcdbetbs dhpcbhbetý ammdgebs qub pbrhdtdbrge rbprgirahamdgebs prbvbetdvas qub ayu`arge a aorgetar `b hbkgr haebra cas mdrmuestaemdas sgmdgbmgeýhdmas `b bstgs hbsbs. Bc hgetg rbprgiraha`g be gmtufrb y egvdbhfrb `b 6>14 asmbe`dý a Fs14:.449.?44 be 2.?=1 gpbramdgebs `b mrä`dtg. m) Devbrsdgebs tbhpgrardas y pbrhaebetbs   Devbrsdgebs tbhpgrardas



Be bstb irupg sb rbidstrae cas devbrsdgebs be `bpýsdtgs be gtras betd`a`bs `b detbrhb`damdýe fieaemdbra y cgs vacgrbs rbprbsbetatdvgs `b `bu`a a`qudrd`gs pgr Faemg ]gcd`ardg ].A. Pahfdäe Pahfdäe sb demcuybe cas devbrsdgebs qub jae sd`g bobmtua`as, mgeogrhb a ca pgcètdma `b devbrsdýe `bc Faemg, mge ca detbemdýe `b gftbebr uea a`bmua`a rbetafdcd`a` `b cgs bxmb`betbs tbhpgracbs `b cdqud`bz y qub pub`ae sbr mgevbrtdfcbs be `dspgedfdcd`a`bs be ue pcazg eg haygr a => `èas, asè mghg cgs rbe`dhdbetgs `bvbeia`gs pgr mgfrar, y cas prbvdsdgebs mgrrbspge`dbetbs. Cgs `bpýsdtgs a pcazg fikg be betd`a`bs `b detbrhb`damdýe fieaemdbra eamdgeacbs b detbreamdgeacbs, sb vacûae ac hgetg grdideac `bc `bpýsdtg amtuacdza`g, hás cgs prg`umtgs fieaemdbrgs `bvbeia`gs pgr mgfrar a ca obmja `b mdbrrb, de`bpbe`dbetbhbetb `b su a`qudsdmdýe be hbrma`g prdhardg g sbmue`ardg. Cas devbrsdgebs be Oge`gs `b Devbrsdýe y bc Oge`g VAC, sb vacûae ac vacgr `b mugta `b partdmdpamdýe ac mdbrrb `b ma`a bkbrmdmdg. Cas devbrsdgebs be tètucgs vacgrbs a`qudrd`gs mge pamtg `b rbvbeta sb bemubetrae vacua`gs a su mgstg `b a`qudsdmdýe hás cgs rbspbmtdvgs prbhdgs `bvbeia`gs pgr mgfrar.







^gr cg hbegs bc mdemubeta pgr mdbetg (2>%) `bc vacgr be cdfrgs `bc fdbe, uea vbz fieacdza`g bc pcazg `b ue (1) añg `bs`b ca obmja `b a`ku`dmamdýe. Bc mdbe pgr mdbetg (1>>%) `bc vacgr be cdfrgs `bc fdbe aetbs `b fieacdza`g bc sbiue`g añg `bs`b ca obmja `b a`ku`dmamdýe. Bc vacgr `b cgs fdbebs rbacdzafcbs mgesd`bra`g be su mgekue tg, eg supbra bc vacgr `b hbrma`g.

Ca prbvdsdýe pgr `bsvacgrdzamdýe `b fdbebs rbacdzafcbs ac =1 `b `dmdbhfrb `b 6>14 y 6> 1: bs `b Fs1.>20.226 y Fs1.>20. 221, rbspbmtdvahbetb, qub bs mgesd`bra`a sufimdbetb para mufrdr cas pär`d`as qub pu`dbrae prg`umdrsb be ca rbacdzamdýe `b bstgs fdbebs. b) Fdbebs `b usg Cgs fdbebs `b usg bxdstbetbs, bstáe vacua`gs a su vacgr rbbxprbsa`g pgr destamdýe jasta ca ibstdýe 6>>9. A partdr `b ca ibstdýe 6>>:, tac mghg cg `dspgeb ca egrha vdibetb bhdtd`a pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg, Faemg ]gcd`ardg ].A. `bký `b macmucar bc akustb pgr destamdýe sgfrb cgs fdbebs `b usg y `b su `bprbmdamdýe amuhuca`a. Ca `bprbmdamdýe bs macmuca`a pgr bc hätg`g `b cèeba rbmta apcdmae`g tasas aeuacbs sufimdbetbs para bxtdeiudr cgs vacgrbs ac fieac `b ca vd`a ûtdc bstdha`a. Bc vacgr `b cgs fdbebs `b usg mgesd`bra`gs be su mgekuetg eg supbra bc vacgr `b hbrma`g. Cgs haetbedhdbetgs, rbparamdgebs, rbegvamdgebs y hbkgras qub eg bxtdbe`be ca vd`a ûtdc `b cgs fdbebs sge maria`gs a cgs rbsucta`gs `b ma`a bkbrmdmdg be bc qub sb demurrbe. o) Gtrgs amtdvgs

Hbkgras b destacamdgebs be dehubfcbs acqudca`gs Cas hbkgras b destacamdgebs be dehubfcbs acqudca`gs sb ahgrtdzae cdebachbetb `b haebra hbesuac `uraetb ca vdibemda `bc mgetratg `b acqudcbr. ^artd`as pbe`dbetbs `b dhputamdýe

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, Faemg ]gcd`ardg ].A. mgestdtuyb uea prbvdsdýe para devbrsdgebs pbrhaebetbs `b Fs9.0>0.2?= y Fs9.0=4.1?2 rbspbmtdvahbetb, cas hdshas oubrge bstdha`as para mufrdr ca prgfafcb `bsvacgrdzamdýe g drrbmupbrafdcd`a` `b cas devbrsdgebs.

c) Afsgrmdgebs g ousdgebs `b gtras betd`a`bs. (Eg Apcdma) EGPA = - MAHFDG @B ^GCÈ  ^GCÈ PDMA] PDMA] T ^VÁ ^VÁMPDMA] MGEPAFCB] Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, eg sb jae prg`umd`g mahfdgs sdiedfimatdvgs `b pgcètdmas, prámtdmas y bstdhamdgebs mgetafcbs mge rbcamdýe a ca ibstdýe aetbrdgr. EGPA 0 - AMPD_G] ]RKBPG] A VB]PVDMMDGEB] Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, eg bxdstbe amtdvgs irava`gs ed `b `dspgedfdcd`a` rbstrdeid`a, bxmbptg pgr cgs sdiudbetbs;     M ub ub et et a m gr grr db etet b y `b b em em akak b - B et et d` a` a` bs bs F ae aem ar ard as as Mugg tas Mu tas ` b p art artdm dmdp dpamd amdý e og ogee `g `g VAC aob aobmt mta` a`gg s a be bemak makb cb cbia iacc Dhpgrtbs betrbia`gs be iaraetèa Pètucgs vacgrbs `b betd`a`bs fieaemdbras `bc paès vbe`d`gs mge pamtg `b rbmghpra P ètucg t ucgss va vacg cgrb rbss ` b be betd td`` a` a` bs bs ` bc bc bx bxtbr tbrdgr d gr mg mgee g tra trass rb rbstr strdm dmmdg mdgee bs bs  

66>>14 Fs Fs = >4 >4. :9 :9 0. 0. 60 60 > 6 =: =: .> .> 40 40 .9 .9 0= 0= 662.=26

6>1: Fs 06 1. 1. :2 :2: .0 >= >= 6 ?9 ?9 .9 .9 >0 >0 .9 .9 2? 2? 61:.446

1 2.2. 11 11 4. 4. 29 29 0

2 4. 4. 49 49? .= 9? 9?

6 .9 .9 2> 2> .6 .6 91 91 2??.>?0.1:>

6 .? .? 41 41 .: .: 9? 9? 926.02>.0>=

Amtdvgs detaeidfcbs

EGPA 2 ” AMPD_G] T ^A]D_G] MGVVDBEPB] T EG MGVVDBEPB]

]b rbidstra be bstb irupg cgs prgirahas y apcdmamdgebs deogrhátdmas, cgs muacbs bstáe vacua`gs a su vacgr `b a`qudsdmdýe y ahgrtdza`g cdebachbetb pgr ue pbrèg`g bstdha`g `b vd`a ûtdc eg haygr a mdemg añgs.

a)  Ca bxpgsdmdýe mge`besa`a `b amtdvgs y pasdvgs mgrrdbetbs y eg mgrrdbetbs ac =1 `b a)  `dmdbhfrb `b 6>14 y 6>1: bs ca sdiudbetb;

i) Od`bdmghdsgs mgestdtud`gs. (Eg apcdma) j) ^rgvdsdgebs y prbvdsdgebs Cas prgvdsdgebs y prbvdsdgebs be bc amtdvg mghg be bc pasdvg sb bobmtûae be muhpcdhdbetg a egrhas bstafcbmd`as pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg ” A]OD, be bc Haeuac `b Mubetas para Betd`a`bs Odeaemdbras, Mdrmucarbs bspbmèfimas y rbiucamdgebs cbiacbs vdibetbs. 

^rgvdsdgebs pgr sbrvdmdgs

Ca prgvdsdýe pgr sbrvdmdgs mgetrata`gs sb bobmtûa be ouemdýe ac mgesuhg bstdha`g `b cgs hdshgs. 

^rgvdsdýe para de`bhedzamdgebs ac pbrsgeac

Ca prgvdsdýe para de`bhedzamdgebs ac pbrsgeac sb mgestdtuyb para tg`g bc pbrsgeac y pgr bc tgtac `bc pasdvg `bvbeia`g ac mdbrrb `b ma`a bkbrmdmdg. ]biûe cas `dspgsdmdgebs cbiacbs vdibetbs y be sukbmdýe ac @bmrbtg ]uprbhg E» 11> `bc 1¾ `b hayg `b 6>1>, traesmurrd`gs cgs 4> `èas mgetdeugs `b aetdiób`a` be su bhpcbg, bc pbrsgeac ya bs amrbb`gr a ca de`bhedzamdýe bqudvacbetb a ue hbs `b subc`g pgr añg `b aetdiób`a` g be ogrha prgpgrmdgeac, demcusg be cgs masgs `b rbtdrg vgcuetardg. d) ^atrdhgedg ebtg Cgs sac`gs `b mapdtac sgmdac, rbsbrvas y rbsucta`gs amuhuca`gs `bc ^atrdhgedg ebtg sb prbsbetae a vacgrbs rbbxprbsa`gs a hgeb`a mgestaetb jasta ca ibstdýe 6>>9. @b amubr`g mge `dspgsdmdgebs `b ca A]OD, a partdr `b ca ibstdýe 6>>:, cgs sac`gs `bc ^atrdhgedg ebtg eg mgetbhpcae ca rbbxprbsdýe a hgeb`a mgestaetb.

 k.6) Marigs fieaemdbrgs paia`gs Cgs iastgs fieaemdbrgs sge mgetafdcdza`gs pgr bc hätg`g `b cg `bvbeia`g.  k.=) Dhpubstg sgfrb cas Rtdcd`a`bs `b ca s Bhprbsas (DRB) Faemg ]gcd`ardg ].A., be cg qub rbspbmta ac Dhpubstg sgfrb cas Rtdcd`a`bs `b cas Bhprbsas (DRB), bstá sukbtg ac räidhbe trdfutardg bstafcbmd`g be ca Cby E» :0=, hg`dfima`a mge ca Cby E» 1?>? y su rbicahbetamdýe vdibetb. Ca acèmugta `bc dhpubstg bs `bc 62% sgfrb ca utdcd`a` trdfutarda y bs mgesd`bra`g mghg paig a mubeta `bc Dhpubstg a cas Praesammdgebs (DP) `b ca sdiudbetb ibstdýe.

`) Fdbebs rbacdzafcbs

A partdr `b ca ibstdýe 6>16 y be sukbmdýe a ca Cby E¾ 611 (`bc ^rbsupubstg `b Ibebrac `bc Bsta`g ” Ibstdýe 6>16), prghucia`a be obmja 6= `b `dmdbhfrb `b 6>11, qub demgrpgra bc

Cgs fdbebs rbacdzafcbs rbmdfd`gs rbmupbramdýe `b gmrä`dtg rbidstra`gs ac `bc hbegr vacgr betrb bc vacgr `b a`ku`dmamdýe pgrbebkbmumdýe ku`dmdac `amdýebstáe be paig y bc sac`g prästahg qub sb bxtdeiub ebtg `b prbvdsdgebs para demgfrafdcd`a` rbidstra`as a ca obmja `b a`ku`dmamdýe g `b `amdýe be paig. @dmjgs fdbebs eg sge rbbxprbsa`gs y a`bhás sb mgestdtu yb uea prbvdsdýe pgr `bsvacgrdzamdýe, sd bs qub eg sge vbe`d`gs `betrg `b ue pcae `b tbebemda.

Mapètucg _D`b `bccaPètucg DD `b `b ca Cby E¾ :0= bc Art. 21 tbr mrbae`g ca Acèmugta A`dmdgeac a cas Rtdcd`a`bs Amtdvd`a` Detbrhb`damdýe Odeaemdbra, rbicahbeta`g hb`daetb @bmrbtg ]uprbhg E¾ 16:: `b obmja 11 `b kucdg `b 6>16. Be bstb sbetd`g Faemg ]gcd` ardg ].A. mghbezý a prgvdsdgear bc dhpubstg a ca Acèmugta A`dmdgeac sgfrb bc Dhpubstg a cas Rtdcd`a`bs `b cas Bhprbsas (AA-DRB) mge ca tasa `bc 16,2% sgfrb ca utdcd`a` trdfutarda muae`g bc mgbfimdbetb `b rbetafdcd`a` rbspbmtg ac patrdhgedg ebtg bxmb`dbra bc 1=%.

]biûe cg `dspubstg pgr ca Cby E¾ =4= cgs fdbebs dehubfcbs y hubfcbs qub pasbe a sbr prgpdb`a` `b Faemg ]gcd`ardg ].A. mghg mgesbmubemda `b ammdgebs ku`dmdacbs g bxtraku`dmdacbs qub bkbrza para gftbebr ca rbmupbramdýe `b sus fieaemdahdbetgs, `bfbráe sbr vbe`d`gs be bc pcazg háxdhg `b ue (1) añg, `bs`b ca obmja `b a`ku`dmamdýe. A ca obmja `b a`ku`dmamdýe `b ue fdbe, ca betd`a` fieaemdbra `bfbrá prbvdsdgear ac hbegs bc vbdetdmdemg pgr mdbetg (62%) `bc vacgr be cdfrgs `b `dmjg fdbe.

Faemg ]gcd`ardg ].A. ja muhpcd`g mge cas `dspgsdmdgebs cbiacbs qub rdibe sus amtdvd`a`bs, rbvbcae`g su tratahdbetg mgetafcb be cgs bsta`gs fieaemdbrgs y sus egtas, `b amubr`g mge cas Egrhas `b Mgetafdcd`a` Ibebrachbetb Ambpta`as be Fgcdvda y Egrhas Cbiacbs g Egrhas Mgetafcbs bhdtd`as pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD.

Bc bemakb cbiac mgestdtud`g y rbidstra`g be –Mubetas Mgrrdbetbs y `b Bemakb‘ be FMF, y cas mugtas `b partdmdpamdýe be Oge`g VAC, sge sufimdbetbs para mufrdr bc bemakb cbiac rbqubrd`g ac =1 `b `dmdbhfrb `b 6>14 y 6>1:.



Cas ammdgebs tbcboýedmas bstáe vacua`as a vacgr `b hbrma`g y ca partdmdpamdýe be betd`a`bs `b sbrvdmdgs fieaemdbrgs, bstáe vacua`as a su mgstg `b a`qudsdmdýe.

l) Pratahdbetg `b cgs bobmtgs mgetafcbs `b `dspgsdmdgebs cbiacbs

Cas partd`as pbe`dbetbs `b dhputamdýe sb rbfibrbe, be su haygrèa, a gpbramdgebs traesdtgrdas a sbr rbiucardza`as be cgs prdhbrgs `èas pgstbrdgrbs ac mdbrrb `b ma`a bkbrmdmdg.

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: sb tdbeb be ca mubeta mgetafcb –Gtras rbsbrvas eg `dstrdfudfcbs‘, bc sac`g ebtg `b Fs1>.6?=.110 rbsucta`g `b ca rbvbrsdýe y rbmcasdfimamdýe `b Cas devbrsdgebs be tètucgs `b `bu`a (Fgegs, Cbtras, gtrgs tètucgs vacgrbs `bc FMF, vacgrbs `b cgs dhpgrtbs grdidea`gs pgr ca rbbxprbsdýe a hgeb`a mgestaetb `b cgs rufrgs eg hgebtardgs mgetbed`g mrb`dtdmdg), sb vacûae ac qub rbsuctb hbegr betrb< bc mgstg `b a`qudsdmdýe `bc amtdvg be ouemdýe `b ca vardamdýe `b ca RO_, mgrrbspge`dbetb ac pbrèg`g mghprbe`d`g betrb bebrg amtuacdza`g a ca obmja `b mdbrrb `b ma`a pbrèg`g y bkbrmdmdg hás cgs rbe`dhdbetgs `bvbeia`gs y aigstg `b 6>>: ca hdsha qub oub destrud`a hb`daetb Mdrmucar ]F/2:2/6>>: `b obmja 69 `b pgr mgfrar y su vacgr `b hbrma`g g su vacgr prbsbetb, sbiûe sb tratb `b vacgrbs mgtdza`gs g eg `dmdbhfrb `b 6>>: pgr ca A]OD. be fgcsa, rbspbmtdvahbetb.  k) Vbsucta`gs `bc bkbrmdmdg Muae`g bc vacgr `b hbrma`g g vacgr prbsbetb rbsuctb hbegr, sb mgetafdcdza uea prbvdsdýe pg r `bsvacgrdzamdýe pgr `äfimdt y sb suspbe`b bc rbmgegmdhdbetg mgetafcb `b cgs rbe`dhdbetgs Faemg ]gcd`ardg ].A. `btbrhdea cgs rbsucta`gs `b amubr`g mge cg rbqubrd`g pgr ca Mdrmucar ]F/2:2/6>>: bhdtd`a pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD. `bvbeia`gs. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: Faemg ]gcd`ardg ].A. eg mgestdtuyý prbvdsdýe para  k.1) Deirbsgs pgr prg`umtgs fieaemdbrgs `bvbeia `gs y mghdsdgebs iaea`a s devbrsdgebs tbhpgrardas ya qub cas devbrsdgebs qub cas ibebrafae ccbiarge a su vbemdhdbetg. Cgs prg`umtgs fieaemdbrgs iaea`gs sge rbidstra`gs pgr bc hätg`g `b cg `bvbeia`g sgfrb ca martbra vdibetb, bxmbptg cgs mgrrbspge`dbetbs a aqubccgs mrä`dtgs macdfima`gs be cas matbigrèas   Devbrsdgebs pbrhaebetbs @, B y O. Demcuybe tg`as cas devbrsdgebs supbrdgrbs a => `èas rbspbmtg `b ca obmja `b bhdsdýe g `b su a`qudsdmdýe, qub eg sge `b oámdc mgevbrtdfdcd`a` be `dspgedfdcd`a`bs g sdbe`g `b oámdc Cgs prg`umtgs fieaemdbrgs iaea`gs sgfrb cas devbrsdgebs tbhpgrardas b devbrsdgebs pbrhaebetbs `b rbeta fika sge rbidstra`gs be ouemdýe `bc hätg`g `b cg `bvbeia`g. cdqud`amdýe, pgr `bmdsdýe `b Faemg ]gcd`ardg ].A. y sbiûe ca pgcètdma `b devbrsdgebs, sb haedfibsta ca detbemdýe `b haetbebr ca devbrsdýe pgr hás `b => `èas. Cgs prg`umtgs fieaemdbrgs iaea`gs sgfrb ca martbra, vbemd`a, be bkbmumdýe y sgfrb ca martbra vdibetb macdfima`a be cas matbigrèas @, B y O, eg sb rbmgegmbe sdeg jasta bc hghbetg `b su Cas devbrsdgebs be tètucgs `b `bu`a (Fgegs) muae`g su vacgr `b hbrma`g g vacgr prbsbetb pbrmbpmdýe. rbsuctb hbegr, sb mgetafdcdza uea prbvdsdýe pgr `bsvacgrdzamdýe pgr bc `äfimdt, y sb suspbe`b bc rbmgegmdhdbetg mgetafcb `b cgs rbe`dhdbetgs `bvbeia`gs pgr mgfrar, sd `dmjg rbmgegmdhdbetg Cas mghdsdgebs iaea`as sge mgetafdcdza`as pgr bc hätg`g `b cg `bvbeia`g, bxmbptg pgr cas grdidea uea sgfrbvacuamdýe rbspbmtg ac vacgr `b hbrma`g g vacgr prbsbetb. mghdsdgebs fikas qub sge rbmgegmd`as ac hghbetg ` b su pbrmbpmdýe. Cgs `bpýsdtgs a pcazg fikg be betd`a`bs `b detbrhb`damdýe fieaemdbra eamdgeacbs b detbreamdgeacbs, sb vacûae ac hgetg grdideac `bc `bpýsdtg amtuacdza`g, hás cgs prg`umtgs fieaemdbrgs `bvbeia`gs pgr mgfrar a ca obmja `b mdbrrb, de`bpbe`dbetbhbetb `b su a`qudsdmdýe be hbrma`g prdhardg g sbmue`ardg.

Bc Bsta`g ^curdeamdgeac `b Fgcdvda, hb`daetb Cby E¾ 461 prghucia`a bc 64 `b harzg `b 6>19 hg`dfimý bc artèmucg 21 tbr `b ca Cby :0= (PG_), hg`dfima`g pgr ca Cby E¾ 991 `b 64 `b `dmdbhfrb `b 6>12, demrbhbetae`g ca tasa `b ca Acèmugta A`dmdgeac `bc Dhpubstg sgfrb cas Rtdcd`a`bs `b cas Bhprbsas `b 66% a 62% muae`g bc mgbfimdbetb `b rbetafdcd`a` rbspbmtg ac patrdhgedg bxmb`a bc sbds pgr mdbetg (?%). Ca amtuac hg`dfimamdýe bs apcdmafcb a betd`a`bs `b detbrhb`damdýe fieaemdbra rbiuca`as pgr ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD.

Fdbebs `dvbrsgs Cgs fdbebs `dvbrsgs sb rbidstrae a su vacgr `b mgstg `b a`qudsdmdýe< ca papbcbrèa, ûtdcbs y hatbrdac `b sbrvdmdg bstáe vacua`gs a su vacgr `b mgstg y be su mgekuetg eg supbrae su vacgr bstdha`g `b rbacdzamdýe.

^ái. ?

Bc Bsta`g ^curdeamdgeac `b Fgcdvda, hb`daetb Cby E¾ 991 prghucia`a bc 64 `b `dmdbhfrb `b 6>12 hg`dfimý bc artèmucg 21 tbr `b ca Cby :0= (PG_), demrbhbetae`g ca tasa `b ca Acèmugta A`dmdgeac `bc Dhpubstg sgfrb cas Rtdcd`a`bs `b cas Bhprbsas `b 16,2% a 66% muae`g bc mgbfimdbetb `b rbetafdcd`a` rbspbmtg ac patrdhgedg bxmb`a bc ?%. Ca hg`dfimamdýe oub vdibetb para ca ibstdýe 6>1?, apcdmafcb a betd`a`bs ` b detbrhb`damdýe fieaemdbra rbiuca`as pgr A]OD.

6>14 Fs Amtdvg Amtdvg mgrrdbetb (a) @dspgedfdcd`a`bs Devbrsdgebs tbhpgrardas Martbra vdibetb hás ^rg`umtgs pgr mgfrar ^rbvdsdýe demgfrafdcd`a` martbra Devbrsdgebs pbrhaebetbs Gtras mubetas pgr mgfrar Gtrgs amtdvgs Pgtac amtdvg mgrrdbetb Amtdvg eg mgrrdbetb (a) Devbrsdgebs tbhpgrardas Martbra vdibetb Martbra vbemd`a Martbra be bkbmumdýe Gtrgs amtdvgs Fdbebs rbacdzafcbs Devbrsdgebs pbrhaebetbs Fdbebs `b usg Pgtac amtdvg eg mgrrdbetb Pgtac amtdvg

^asdvg y patrdhgedg ^asdvg mgrrdbetb (a) Gfcdiamdge d iamdgebs bs mge bc pûf pûfcdm cdmgg a ca vds vdsta ta (f) Gfcdiamdgebs Gfcdiam dgebs mge bc pûfcdmg mg pgr mubeta mubetass `b ajgrr ajgrrgg (f) Gfcdiamdgebs mg mge bc pû pûfcdmg a pcpcazg Gfcdiamdgebs mge bc pûfcdmg rbstrdeid`as M arari gs gs `b vb vb ei eia `g `gs pgr pa ia iar gfc diam dgebs pûfcdm g Gfcdiamdgebs mge destdtumdgebs fismacbs G fc fc di di am am dg dg eb eb s m ge ge be be td `a `a `b `b s fi ea ea em em db db ra ra s ` b s bi bi ue ue `g `g pd pd sg sg a p ca zg zg Gfc diam dgebs mge gt ras betd`a`bs fieaemdbras `bc paès Odeaemdahdbetgs `b betd`a`bs `bc bxtbrdgr a pcazg Marigs fieaemdbrgs `bvbeia`gs pgr paiar mge Faemgs y Betd`a`bs `b Odeaemdahdbetg Gfcdiamdgebs sufgr`dea`as Gtras mubetas pgr paiar ebtg ^rbvdsdgebs Gfcdiamdgebs mge bhprbsas pûfcdmas Pgtac pasdvg mgrrdbetb ^asdvg y patrdhgedg ^asdvg eg mgrrdbetb (a) Gfcdiamdgebs mg mge bc pûfcdmg a pcazg Gfcdiamdg d iamdgebs ebs mge bc pûf pûfcdmg cdmg rbs rbstrde trdeid` id`as as Gfcdiamdgebs mge bc FMF a pcazg Gfcdi Gf cdiam amdg dgee bs bs mg mgee be betd` td`a` a`bs bs fi eae eaemdb mdbra rass ` b sbi sbiuu e` e` g p dsg dsg a p cazg cazg Gfcdiamdgebs Gfcdia mdgebs mge gtras betd`a betd`a`bs `bs fieaem fieaemdbras dbras `bc paès _acgrbs be mdrmucamdýe Gfcdiamdgebs sufgr`dea`as ^rgvdsdýe ^rgvdsd ý e par paraa de` de`bhe bhedzam dzamdge dgebs bs Gtras mubetas pgr paiar Gfcdiamdgebs mge bhprbsas pûfcdmas Pgtac pasdvg eg mgrrdbetb Pgtac pasdvg ^atrdhgedg Pgtac ^asdvg y ^atrdhgedg

6>1: Fs

2=2.109.=>2 1.?>=.=:=.?40 0.>2?.201.2=4 (=>?.166.6==) 2.:?0.124 1>=.6=:.400 ?.2:=.0=9 ? .> .> >0 >0 .? .? =? =? .: .: 02 02

?66.==?.4?= 1.691.100.:99 =.::6.499.6?= (64>.>1?.442) 24.=6?.>1? :2.?>4.:9> 11.=6>.6=4 2 .? .? 06 06 .? .? 4: 4: .6 .6 == ==

6=:.>40.90= 9.909.:2>.>94 01.16:.:61 0=.9?>.>46 466.21> 20 1=0.:==.>1? 6>?.=:2.:91 : .0 .0 16 16 .4 .4 92 92 .1 .1 :? :? 10.019.?1 0 19.?16.> 6.>=1 =1

6?9.9>0.92? 9.646.660.204 6:.4=6.6>9 01.=04.099 1.6??.10= 02 4>.==6.94= 1:0.=:2.496 9 .4 .4 >? >? .1 .1 42 42 .4 .4 06 06 1=.20:.:4 2 0:.:40.1 0.192 92

6>14

6>1:

Fs

Fs

9.:4:. 9.: 4:.9:2 9 :2 6.44=.119.990 6.44=.119.9 90 1.19?.??=.>?> 6>.91?.4>4 ?=9. 20 209. 6= 6=9 :.120.?12 1 >. >. >> >> >. >. >> >> > ?.40?. 22 22: 1=.96>.>>>

=.920. =.9 20.?96 ? 96 =.>41.14=.96= =.>41.14=. 9 6= 1.6?1.492.999 9>.20=.9=6 24?.6?:.290 129.>:2 1 >. >. >> >> >. >. >> >> > 922. ?1 ?1:.?42 -

1 >= >= .0 >2 >2. >1 >1 =

9 =.=. =2 =2 4. 4. ?9 ?99

?0.::?.22? =24.0:0.41= 12?.241.066 6?=.69?.:24 2 .: .: 66 66 .0 .0 >4 >4 .9 >1 >1

=.9=:.::4 624.>:?.4?> 104.12>.:4: ? .6 .6 90 90 .: .: 0: 0: .? .? :6 :6

=.210.02>.666 0>.191.11 1 91.1166 1::.92=.6:> = == == .0 .0 6? 6? .? .? ?2 ?2 1.29?.9?9. 1.29? .9?9.0=: 0 =:

=.:4:.499.?01 6?.9?>.21 9 ?>.2166 01.00:.16> = 0= 0= .0 .0 6? 6? .? .? ?9 ?9 ?>4.144.9= ?>4.1 44.9=??

2>9.?0:.::4 69>.>>>.>>> :?.992.4> 9 92.4>?? =.44>.14> =22.49=.2:6 ? .: .: 99 99 .4 .4 29 29 .6 .6 :0 :0 16.9>>.=? 9 >>.=??.4 ?.4:2 :2 1 .9 .9 19 19 .6 .6 02 02 .> .> 0? 0? 10.019.?1 0 19.?16.> 6.>=1 =1

2>9.===.=== 6?>.>>>.>>> 40.>44.49 > 44.4999 2.1>:.940 2 .9 .9 :? :? .= .= 20 20 .9 .9 :> :> 16.>?1.6> > ?1.6>=.0 =.0?6 ?6 1 .0 .0 :9 :9 .? .? 4> 4> .9 .9 1= 1= 1=.20:.:4 2 0:.:40.1 0.192 92

 

Bsta`gs Odeaemdbrgs

EGPA 2 ” AMPD_G] T ^A]D_G] MGVVDBEPB] T EG MGVVDBEPB] (Mget.)

EGPA 9 - ^G]DMDÝE BE HGEB@A BZPVAEKBVA T BE RED@A@B] @B OGHBEPG @B _D_DBE@A (RO_) (Mget.)

Mrdtbrdgs `b mcasdfimamdýe; (a) Ca mcasdfimamdýe `b amtdvgs y pasdvgs mgrrdbetbs y eg mgrrdbetbs, bstá `a`a be ouemdýe a cgs pcazgs `b vbemdhdbetg y/g rbacdzamdýe bstdha`a.

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, Faemg ]gcd`ardg ].A. tbeèa ca sdiudbetb pgsdmdýe be Red`a`bs `b Oghbetg `b _dvdbe`a;

(f) Cas gfcdiamdgebs mge bc pûfcdmg a ca vdsta y makas `b ajgrrg jae sd`g mcasdfima`as mgesd`brae`g mrdtbrdgs rbcamdgea`gs mge ca vgcatdcd`a` `b ästas be bc tdbhpg. f) Ca mcasdfimamdýe `b amtdvgs y pasdvgs mgrrdbetbs y eg mgrrdbetbs, pgr pcazgs `b vbemdhdbetg, f) Ca bs ca sdiudbetb;

Amtdvg

Macmb Odeaemdbrg pgr pcazgs ac =1 `b `dmdbhfrb `b 6>14

Devbrsdgebs tbhpgrardas

@dspgedfdcd`a`bs

]AC@G DEDMDAC

A => => @ DA]

^CA[G A 1: 1: >@ DA]

A =? =? >@ DA ]

A 96 96 >@ DA ]

A ?> ?> @ DA ]

A 4> 4> @ DA ]

A +9 +9 6>6> @ DA ]

?=1.2? ?=1 .2??.2 ?.20: 0:

262.::: 262 .:::.?2 .?244 1.6 1.600. 00.=02.?4 = 02.?466 6.12 6.126.? 6.?14. 14.0>? 0 >? =.29?.0 =.29?.022. 22.=4: = 4: 0.9=1.99 0.9=1.99?.> ?.>6> 6>

AMPD_G AMP D_GT MGE MGEPDE PDEIBEP IBEPBB

10.01:.02 0 1:.02=.0 =.0:: :: 1.222.:> 2 22.:>1.9 1.9?0 ?0

@D] ^GEDFDCD@A@ B] DE_BV] DE_ BV]DGEB D GEB] PBH PBH^GV ^GVAVD AVDA] A] MAVPBVA_DIB P BVA_DIBEPB E PB G PVPV A]A] M RBRB EPEP A]A] ^ GV GV M GF GF VAVA V DE_BV DE_ BV]DG ]DGEB EB]] ^BV ^BVHA HAEBE EBEPB PB]] GPVA] GPV A] G^BVAMDGE V AMDGEB] B] AMPD_A] D _A] M RBRB EP EP A]A] M GE GE PDPD EI EI BE PBPB ]

2=2.109.= >2 1.:>:. 1.: >:.4>0.991 4 >0.991 11.?:6.:? ? :6.:?=.42 =.422 : .9 ==== .0 4646 109.9.940.> 10 9 40.>>9 >9 6=0.1? 6=0 .1?:.2> :.2>1 : 0101 .0 2929

2=2.109.=>2 0=:.?99. : .?99.>=? > =? 641 641.=0 .=06.4 6.441 41 1?4 1?4.446 .446.>>> . >>> 606.20 606.209.> 9.>>> >> 641 641.62 .621.> 1.>>> >> =64.>6:.10 =64. > 6:.10:: =6:.=:>.>=2 > .>=2 ==9.9:=. 9 :=.46? 4 6? 449.6? 449.6?4.? 4.?0= 0= 1.406.226. 6 .226.160 1 60 4 =4 0. >2>2 - 16 16.4? .4?>>..441 4 41 626.9:4.? . 9:4.?62 62 1>.4>1.41 4 >1.4199 2.121.906 1 .906 0.0==. 0.0 ==.64= 6 4= (:1.? (:1.??6. ?6.>:>) > :>) 1 2424 .? 2>2> 6 6. >>>> 4 2.2. 9292 ? 0909 :.:. ==?? 6

1=9.>> 1=9 .>>>.>> >.>>> 6=:.>4 6=:.>40.9 0.90= 0= =.=09.919. =.=09. 9 19.00= 0 0= 0.0 0.0>>. >>.1=6.?= 1 =6.?=?? 9 9. 4040 .> ::?? 1>2.2.140.2 1> 1 40.219 1 9 64 64.?.?=: =:.0.044 44 (1=.22 (1= .222.14 2.141)1 ) 2?.1>4.14 1 >4.14?? 4 : .? 6464 ? .: ?>?>

^ A]A] D_ G

1 6.6. 9>9> >.>. =?=? ? 4. :2:2

2 4444 .1 >:>: .> : :

1.1. 1414 :.:. 9292 4 1. :6:6

GFCDIAMDG D IAMDGEB] EB]MGEBC ^ÛF ^ÛFCDM CDMGG - _D]PA PA GFCDIAMDGEB] GFCDIA MDGEB]MGE BC ^ÛFCDM ^ÛFCDMGG - AJGVV AJGVVGG GFCDIAMDGEB] GFCDIA MDGEB]MGE BC ^ÛFCDM ^ÛFCDMGG - A^CA[G GFCDIAMDGEB] GFCDIA MDGEB]MGE BC ^ÛFCDM ^ÛFCDMGG VB]PVDE VB]PVDEID@A] ID@A] GFCDI. MGE BH^VB]A] MGE ^AVPDM. B]PAPAC AJGVVG ^A]D_G GFCDI. MGE BH^VB]A] MGE ^AVPDM. B]PAPAC - A^CA[G ODEAE ODE AEMD MDAHDB A HDBEP EPG] G]FM FMFF ODEAEMDAHDBE ODEAEM DAHDBEPG] PG] BEP.ODEAEMD DEAEMDBVA] BVA]@BC ^AD] ODEAEMDAHDBEPG] BEP.ODEAEMDBVA] @B ]BIRE@G. ^D]G O DE AE AE MDMD AH AH BD EPEP G]G] B ZPZP BVBV EG EG ] GPVA GP VA]] MR MRBE BEPA PA]] ^G ^GVV ^A ^AIA IAVV P PD RCRC G]G] _A CG VBVB ] GFCDI GF CDIAM AMDG DGEB EB]] ]R ]RFG FGV@ V@DE DEA@ A@A] A] GPVA] GPV A] G^BVAMDGE V AMDGEB] B] ^A]D_A] D _A]

9.:4:.9:2 9.:4:.9 : 2 9.: 9.:4:. 4:.9:2 9 :2 6.44=.119.990 119.990 1:=.6:0.1:= 0.1:= 1:=.6:0.1:= := 1:=.6:0.1:= =19.029.21: 21: 6.162.:>9.9> :>9.9>2 0.?41.11=.6:1 11=.6:1 1?1.:40.1=> 16>.>==.:4: =.:4: 41.0??.>1: >1: =0=.492.>4: 2.>4: 024.64==.41? .41? 64=.91?.>:? .>:? =.66>.9=0.1=? 0.1=? ?>.:::.>66 >66 0.:1= 12.>>>.>>> >>.>>> 2.916.>>4? 4? =?0.661 =4.:>?.: .:>?.:4411  622.442.21>

1.1. >?>? :.:. =2=2 ?.?. =9=9 2 = .> :=:= .: =?=? .1 9?9?

12.046.4>2

12.046.4>2

12.046.4>2

6?.:=0.04:

 =22.49=.2:1

-

-

-

-

-

1::.92= 1::. 9 2=.6:> . 6:> 1.2:=.91=.442 91=.442

2.>>>.> > >>.>>> >> ?.40?.22: 2:

-

-

6>.>.>>> 6> >>.>.>>> >> -

1>.>.>>> 1> >>.>.>>> >> -

 =0=.06?.???

-

-

-

1>.>>>.>>>

-

1 =.=. 9696 >.>. >>>> > ==:.1=>.4 ==:.1 = >.41: 1: 66.: 66.:2?. 2?.11: 1 1: 2 > >. > >. > ==>.> == >.>>>.> > >.>>> >> ?> ?>.>.>>>. >>.>>> > >> 1.>=9.? 1.> =9.?=2. = 2.19= 1 9= 1=2. = 2.9=>. 9 =>.24? 2 4?

9.491. 9.4 91.::> : :>

FVBMJA]D FVB MJA]DH^CB H ^CB (Amtdvg t dvg +Mg +Mget. et.- ^asdvg) d vg)

42?.?4= 42? .?4=.?9 .?9??

6:4.9: 6:4 .9:=.? =.?:6 :6

F VBVB MJ MJ A AM RH RH RC RC A@ A@ A

4 2?2? .? 4=4= .? 9?9? 1 . 6060 ?.?. 0909 9.9. =2=2 : 1 .0 9696 .2 0606 =. 2020 1 . ?0?0 :.:. 2=2= 1.1. ?9?9 1

1:6.?:6.64?

Fs

-

-

-

=22.49=.2:1

Pgtac pasdvg ^gsdmdýe ebta - amtdva

?1.::6 ?4=.?42

6:0.:9: 041.9?>

  f.:) ^rbvdsdýe para para martbra demgfrafcb

649.0:0

610.?91

 

^rbvdsdýe bspbmèfima para martbra vdibetb

(9>.0?6.=14)

(?0.>69.=::)

 

^rbvdsdýe bspbmèfima para martbra vbemd`a

(64.:?4.:90)

(6=.60?.612)

^rbvdsdýe bs bspbmèfima pa para ma martbra be be bk bkbmumdýe

(=:.2=:.94:)

(=9.:4=.492)

( 6. 6. 09 09 :.:. 49 49 2) 2)

( 6.6. 0= 0= 1. 1. 4? 4?1 )

( =. =. 6= 6= =.=. ?: ?: 6) 6)

( 1.1. 9> 9> 0. 0. => =>4 )

Cgs amtdvgs y pasdvgs be RO_ jae sd`g mgevbrtd`gs a fgcdvdaegs ac tdpg `b mahfdg vdibetb ac =1 `b `dmdbhfrb `b 6>14 y 6>1: `b Fs6,==1:9 y Fs6,64>9? pgr RO_ 1, rbspbmtdvahbetb.

a) @dspgedfdcd`a`bs

6>14

6>1:

Fs

Fs

2 =2 =2 .1 09 09 .= >2 >2

? 66 66 .= =? =? .4 ?= ?=

?66.==?.4 ?= 1.2>?.4:9.440 1.2>?. 4 :9.440 11.>2?.== > 2?.==6.1= 6.1== : .4 9292 .? :::: 120.>: 120 .>:0.1= 0.1=: 6>>.19 6>> .199.62 9.624 2 >9>9 .9 0000

?66.==?.4?= ?0>.14 ?0> .142.: 2.:20 20 6?4.>26.=:0 6 .=:0 21.2>>. 2 >>.>>> > >> 1=6.2>>.>> 2 >>.>>>> 41.>12.>> > 12.>>>> 0>.>>>.>>> > >>.>>> 6:6.960.92 9 60.92?? =19.4:1.19 =19. 4 :1.19?? ==6.924.::? 4 .::? =>9.069. 0 69.906 9 06 422.22 422.229.4 9.4:6 :6 1.:2>.=:>. > .=:>.94: 9 4: =.190. =.190.126. 1 26.966 9 66 0.1 0.11:. 1:.>91.:6 > 91.:699 1 .? 9999 2. ?9?9 9 6. 4:4: .1 6611 2.6>>..099 2.6>> 099 01.00:.69 0 0:.6911 19.11>6.24 >6.24:: 16.44?>. ?>.441 4 41 99.=91.:> = 91.:>11 10?.09:.>1 10?. 0 9:.>122 9.>92. 9.> 92.2:: 2 :: 6.2=>.1>1 > .1>1 9.144. 9.1 44.?>> ? >> (94.1=0.?1 1 =0.?1=)=) =.=41.: =.= 41.:??11 116.?=?.9> ? =?.9>99 6 4 ?. 0>0> 0 2.2. ?>?> 9 9 ?.?. 4141 ? 1 1? .> 9?9? : 2.2. 1212 0 1 2020 =. 2>2> -

?1>.?1 ?1> .?11.> 1.>=6 =6

=??.9=2 =?? .9=2.6= .6=?? 1.1 1.1=?. =?.:61.46 : 61.4644 1.:9 1.:94.0 4.00:. 0:.4=9 4 =9 =.6=>.? =.6=>.?24. 24.460 4 60 0.24:.1> 0.24:.1>=.6 =.616 16

f) Martbra Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

^ A]A] D_ G

1 6.6. >?>? 1.1. 6>6> = 0. ?6?6

? =:=: .9 ?1?1 .= 6 >

GFCDIAMDG D IAMDGEB] EB]MGEBC ^ÛF ^ÛFCDM CDMGG - _D]PA PA GFCDIAMDGEB] GFCDIA MDGEB]MGE BC ^ÛFCDM ^ÛFCDMGG - AJGVV AJGVVGG GFCDIAMDGEB] GFCDIA MDGEB]MGE BC ^ÛFCDM ^ÛFCDMGG - A^CA[G GFCDIAMDGEB] GFCDIA MDGEB]MGE BC ^ÛFCDM ^ÛFCDMGG VB]PVDE VB]PVDEID@A] ID@A] O ED AEAE MDMD AH AH BD EPEP G]G] F MFMF ODEAEMDAHDBE ODEAEM DAHDBEPG] PG] BEP.ODEAEMD DEAEMDBVA] BVA]@BC ^AD] ODEAEMDAHDBEPG] BEP.ODEAEMDBVA] @B ]BIRE@G. ^D]G GPVA GP VA]] MR MRBE BEPA PA]] ^G ^GVV ^A ^AIA IAVV PDP RCRCG] _ACGVB] GFCDI GF CDIAM AMDG DGEB EB]] ]R ]RFG FGV@ V@DE DEA@ A@A] A] GPVA] GPV A] G^BVAMDGE V AMDGEB] B] ^A]D_A] D _A]

=.920.? =.9 20.?96 9 6 =.9 =.920. 20.?96 ? 96 =.>41.14=.96= 14=.96= 6?6.>9?.0>? ?.0>? 6?6.>91.4>? >? 6?6.>91.4>? 02=.461.:2? :2? 1.:21.>21.?2 >21.?2> 2.1?>.42=.01: 42=.01: 610.0>=.49? 2:.611.>=9 .>=9 1>2.9=1.69> .69> 194.16>.961 >.961 9>0.2>::.99= .99= 244.=69.246 .246 =.644.?2>.>04 >.>04 49.=>0.600 600 1.29?.2>9 ?=.2=?.10> 2.0>9.::24 24 6=.662 0??.=04 6?.640.1??== 0 1. 0 :.:. 16 > - 0 1. 0 :. 16 > 1.=?0.:1:.0=6 :1:.0=6 06.496.?=9 .?=9 00.0>>.22: .22: 114.92>.>>> .>>> ==4.>6?.2>> ?.2>> 6>4.0?4.>>> 4.>>> =14.>06.>>> .>>> 64>.129.9=? 9.9=?

60=.9:0 60=. 9 :0.0:? . 0:? 62 62.0.00>. 0>.1:> 1 :> 2>>. > >.>>> 6?>.> 6? >.>>>.> > >.>>> >> 400.214.9> 2 14.9>11 ::.2=? ::.2=?.40 .4066

6.9=4. 6.9 =4.?:4 ? :4

1>.1=1.>: 1 =1.>:99

-

4.6?6.61=.>?6

6 64 64 .= 42 42 .: 40 40

6 >? >? .6 12 12 .> 66 66

 

^ rä stst ah ah gs gs m ge ge r bm bm ur ur sg sgs ` b b et et d`a `b `b s fie ae ae mdmd br bra s

0 60 60 .6 1= 1=. == == ?

0 1? 1?. 44 44 0. 0. 10 10=

 

`b sbiue`g pdsg vdibetbs 2 .0 44 44 .6 62 62

-

 

^ rä rä stst ah ah gs gs m ge ge r bm bm ur ur sg sg s ` b b et et d` d` a` a` bs bs ` bcbc b xt xt br br dg r v di be be tb s ^rästahgs `b vdvdbe`a sde iaraetèa jdpgtbmarda

469.202.>>9

:21.=4>.64?

 

^ rä rä stst ah ah gs gs j dp gt gt bm bm ar ar dg s ` b v dv db e` e` a ` b d et et br br äs äs s gm gm da da c

1 :2 :2 .1 >1 >1 .: 1= 1=

6 >= >= .> 41 41 .: :0 :0

 

^ räst rästahg a hg s ` b vd vdvdb vdbee `a `a ` b de detb tbrä räss sg sgmd mdac ac s/i s/iar arae aetèa tèa j dp dp gtb gtbma marda rda

 

1.1. 1 =?=? .4 ?=?= .> >=>=

1.1. >6>6 1.1. :::: =.=. 4 4:4:

( 1?1? 9.9. 9292 9.9. >1>1 :):)

6.6. >1>1 0 6. 6060 .= 0101

1 ?.= ?.=66 =.6 =.611 > 1>.42?.669.?19

6>14 6>

6>1:

 

Fs Fs

Fs

^rästahgs ahgrtdzafcbs

=0.>1>.:19

60.:4:.?=4

662.:94

9.94:

1.10>.:?:

?>2.?96

1 .2 >2 >2 .2 12 12

1. >4 >4 1. 1. 2= 2= :

46 .6 ?4 ?4

6: 0.0. =? =? 4

^r äs äs ta hg hg s j dp gt gt bm bm arar dg s `b v dv db e` e` a ` b d et et br br äs äs s gm gm da c v be be mdmd `g `g s ^rästahgs `b vdvdbe`a `b detbräs sgmdac sde iaraetèa jdpgtbmarda vbemd`gs

66.2?9

-

 

=? .4 49 =? 49 .4 12 12

6 ?.?. :: :: :.:. >1 >1 ?

Ac =1 `b `dmdbhfrb `b`b6>14 y 6>1: Faemg `b ]gcd`ardg ].A. ja`b`bfied`g gfcdiamdgebs pgr makas ajgrrg be ouemdýe ca vgcatdcd`a` ästas becabc bxpgsdmdýe tdbhpg. `b sus

   

66>>14 Fs Fs

6>1: Fs

EGPA ? - G^BVAMDGEB] MGE ^AVPB] VBCAMDGEA@A]

f.=) Martbra be bkbmumdýe

(1) Cgs sac`gs ebiatdvgs qub sb bxpgebe be ca cèeba `b gtras gpbramdgebs amtdvas, sb `bfbe a qub sb demcuybe cgs sac`gs `b ca mubeta 1=4.>> ^rbvdsdgebs para demgfrafdcd`a` `b martbra, tac mghg cg rbqudbrb ca egrha `b ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD.

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, Faemg ]gcd`ardg ].A. haetdbeb sac`gs `b gpbramdgebs pasdvas rbobrd`as a makas `b ajgrrg mge pbrsgeac Bkbmutdvg, cas hdshas qub grdidearge birbsgs rbmgegmd`gs be ma`a bkbrmdmdg. @dmjas gpbramdgebs bstáe `betrg `b cgs háribebs bstafcbmd`gs be ca Cby `b ]brvdmdgs Odeaemdbrgs y cas rbiucamdgebs `b ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg ” A]OD y ca Cby `bc Faemg Mbetrac `b Fgcdvda.     Gfcdiamdgebs mge bc pûfcdmg; ^brsgeac Bkbmutdvg

66>>14 Fs Fs =.442.0=0 =.442.0=0

6>1: Fs 2.=?1.6>> 2.=?1.6>>

EGPA 9 - ^G]DMDÝE BE HGEB@A BZPVAEKBVA T BE RED@A@B] @B OGHBEPG @B _D_DBE@A (RO_) Cgs bsta`gs fieaemdbrgs bxprbsa`gs be fgcdvdaegs, demcuybe bc bqudvacbetb `b sac`gs be `ý carbs bsta`gued`besbs, `b amubr`g mge bc sdiudbetb `btaccb; 6>14 Fs

6>1: Fs

Amtdvg @dspgedfdcd`a`bs Devbrsdgebs tbhpgrardas Martbra Gtras mubetas pgr mgfrar Devbrsdgebs pbrhaebetbs Gtrgs amtdvgs Pgtac amtdvg

102.?4=.>:0 1??.61>.426 1>.290.09= ?.>9:.2:= 1>?.01>.924 1.>??.96? 0 =? =? .> =0 =0 .2 99 99

11?.6=6.0:4 61>.:00.4?0 1?.=>1.?9> =:>.2?? 21.:19.42= 1.4:2.211 = 49 49 .2 ?= ?= .1 2= 2=

^afscddvigamdgebs mge bc pûfcdmg G Gfcdiamdgebs mge Destdtumdgebs fismacbs Gfcdiamdgebs mge Faemgs y Betd`a`bs `b Odeaemdahdbetg Gtras mubetas pgr paiar ^rbvdsdgebs Pgtac pasdvg ^gsdmdýe ebta - pasdva Bqudvacbetb be R]@

0?6.?69.9>4 6.>22 6>.42>.262 0.=>9.=9? 44.=:2 0 :9 :9 .4 :9 :9 .> 2> 2> ( 21 21 .4 26 26 .0 9= 9=) (9.29=.609)

=42.=44.=:1 =.011 2.=06.94= 120.:61 0 >> >> .4 >> >> .0 >? >? ( =. =. == == 9.9. 62 62 =) =) (0:?.0:>)

Cgs amtdvgs y pasdvgs be hgeb`a bxtraekbra jae sd`g mgevbrtd`gs a fgcdvdaegs ac tdpg `b mahfdg gfimdac vdibetb ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, qub bs `b Fs?,:? pgr R]@1.

 

^rästahgs jdpgtbmardgs `b vdvdbe`a be prdhbr ira`g ^rästahgs mge rbmursgs `b betd`a`bs fieaemdbras `b sbiue`g pdsg vbemd`gs ^r äs äs ta hg hg s ` b v dv db e` e`a s de i ar ara et et èa j dp gtgt bm bm arar da v be bem d` gs gs

^rästahgs ahgrtdzafcbs  

=?.>?9.96:

=?.12>.02?

^rästahgs jdpgtbmardgs `b vdvdbe`a be prdhbr ira`g

2>0.049

=21.60>

^rästahgs mge rbmursgs `b betd`a`bs fieaemdbras

09?.?40

614.12=

= .> ?0 ?0. =: =: >

1. 40 40 >. >. 91 912

`b sbiue`g pdsg be bkbmumdýe  

^r äs äs ta hg hg s ` b v dv db e` e`a s de i ar ara et et èa j dp gtgt bm bm arar da b e b kb mu mum dýe

 

^rästah ^rä stahgs gs jdp jdpgtb gtbmar mardgs dgs `b vdv vdvdbe dbe`a `a `b detb detbräs räs sgm sgmdac dac be bkbm bkbmumd umdýe ýe

:?.4:0 4 :0

-

 

0> .6 >> 0> >>. 6: 6: =

= :.:. ?? ?? 1. 1. 2? 2?0

 

6>14 6>

6>1:

 

Fs Fs

Fs

^rästahgs ah ahgrtdzafcbs ^rästahgs jdpgtbmardgs `b vdvdbe`a be prdhbr ira`g

 

^rästa ^rä stahgs hgs `b vdv vdvdbe dbe`a `a sde iar iaraet aetèa è a jdp jdpgtb gtbmar marda da rbp rbprgi rgirah raha`a a`a vdi vdibet betb

 

=?9.=?:.:?0

44.2:=.=2?

469.2=4

261.124

6?.021.4: 0 21.4:99

-

= 40 40 .9 0: 0: .= 4> 4>

1 >> >> .1 >0 >0 .2 12 12

 

6>14 6>

6>1:

 

Fs Fs

Fs

0.>:=.?02

6.>00.141

0 9.6 9.6?? 1

-

f. 2) 2) Ma rtrtbra rb rbprgira ha ha`a g rb rbbstrumtura`a vb vbemd`a ^rästahgs ahgrtdzafcbs  

^ räs rästa tahg hgss ` b vd vdvd vdbe be`` a sd sdee ia iara raee tèa è a j dp dp gtb gtbma mard rda rb rbpp rg rg ira iraha ha`` a vb vbee md` md`aa

 

0 .1=>.4>?

6.>00.141

 

6>14 6>

6>1:

 

Fs Fs

Fs

=.2>9.9?:

6.?:9.41=

26. >0 >01

-

= .224.:>4

6.?:9.41=

f.?) Martbra rbprgiraha`a g rbbstrumtura`a be bkbmumdýe    

^rästahgs ahgrtdzafcbs ^rästahgs `b vdvdbe`a sde iaraetèa jdpgtbmarda rbprgiraha`a be bkbmumdýe

^rbvdsdýe ibeärdma para demgfrafdcd`a` `b martbra pgr oamtgrbs `b rdbsig a`dmdgeac ^rbvds ^rb vdsdýe dýe ibe ibeärdm ärdmaa par paraa dem demgfr gfrafd afdcd`a` c d`a` `b mar martbr tbraa pgr gtr gtrgs gs rdbs rdbsigs igs

  PD^G @B MVÄ@DPG   BH^VB]AVDAC ^THB ^THB AIVG^BMRAVDG @I ^THB AIVG^BMRAVDG Eg @I H DM VG VG MV MV Ä@ Ä@ PD G @I H DM VG VG MV MV Ä@ Ä@DPG Eg @I H DM VG VG MV MV Ä@ Ä@DPG A IV IV G^ G^ BM BM RA RA VDVD G@I HDMVGM M VGMVÄ VÄ@D @DPG P GAI AIVG VG^B ^BMR MRAV AVDG DG Eg@I

MAVPBVA MGEPDEIBEPB Fs

 P G P A C B ]

MAVPBVA _DIBEPB Fs

1?9.::6 0 :>:>. =9=9 = 1 4=4=. 6>6> 6 -

Fs

( =. =. 21 21 =.=. =2 =2 1) 1)

( 6.6. ?: ?: 9. 9. 41 41= )

(1== >.2 (1 >.2:: 2.6 2.6== 0) 0)

(1== >.2 (1 >.2:: 2.6 2.6== 0) 0)

(69.00 (69 .00>.> >.>>>) >>)

(69.00 (69 .00>.> >.>>>) >>)

(= >? >? .1 .1 66 66 .6 .6 == == )

(644 >.> (6 >.>11 ?.4 ?.444 2) 2)

^VB_D]DÝE ^AVA MAVPBVA DEMGFVAFCB] BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs

MAVPBVA _BEMD@A Fs

6 2.2.0 0=0= :. 4444 9 .1 =4=4 0. >0>0 2 >.>.= ?0?0 6.90>. 9 0>.04: 0 4:

(6(61.169) (2 0.0.0 ?2?2 .: 2929 ) (1 6.6.> 0000 .1 9>9> ) (2 ?.?.4 2>2> ) (=.9 (= .9?2 ?2.6 .616 16))

2.>60.96: 11..9=?.99: 662.:94 1 .02?.410 42.:?6 4 6.6. 6?6? 4 66.2 66 .2?9 ?9

=.:6>.=44 :29.?69 2>0.049 =.>1:.9=: 49.?:6 : ?.?. 4:4: 0 -

(==.2>9.=00) (11.2??.9?>) (964.?>:) (=1.622.09=) (=02.?11) ( =>=> :.:. 4949 >)>) (=1. (= 1.>4>) > 4>)

:01.029 11.?:6.:?=.422 01.16:.:61

0=.9?>.>46

(10:.>4:.196)

@B MGE]RHG @I @B MGE]RHG Eg @I @B _D_DBE@A @B _D_DBE@A ]/IPÈA. JD^. @B _D_DBE@A ]/IPÈA. JD^. @I @ B_ D_ DB E@ E@A @ BD EP EP BV BV B]B] ] GM GM DA CJ D^. @B_D_D _ DBE@A B E@A@BDE DEPB PBVB VB]] ]G ]GMD MDAC A C ]/IPÈA I PÈA.. JD^.

-

?.262.6>9 1 69.119 ? .2 =?=? .6 ?1?1 9. 0404 6 9.9.0 6666 1. =1=1 6.6. >>>>0 .> =4=4 >. :>:> = .9 2:2: 4. 0000 10 .2 9=9= >. 0:0: ? 2.2.: 2?2? 2=9. 2= 9.??1. ? ?1.9?6 9 ?6 1.66? 1.66?.: .:4= 4= :46.99>.?09 =16.0:>.990 6=6=>.=6=.0== 40?.022.=?2 9.20?.0=2 1 :2:2 .1 >1 >1 .: 1= 1= :.449. 4 49.262 2 62

Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a. Ac =1 `b `dmdbhfrb `b 6>1:;

BH^VB]AVDAC ^THB ^THB AIVG^BMRAVDG @I ^THB AIVG^BMRAVDG Eg @I HDMVGMVÄ@DPG @I HDMVGMVÄ@DPG Eg @I HDMVGMVÄ@DPG AIVG^BMRAVDG @I HDMVGMVÄ@DPG AIVG^BMRAVDG Eg @I @B MGE]RHG @I @B MGE]RHG Eg @I @B _D_DBE@A

MAVPBVA MGEPDEIBEPB Fs

 P G P A C B ]

MAVPBVA _DIBEPB Fs

6?1.2:6 60?.1?6 -

^VB_D]DÝE ^AVA MAVPBVA DEMGFVAFCB] BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs

MAVPBVA _BEMD@A Fs

10.646 6?.=4?.=19 ?.=:2.6:1 1.4=:.1=2 =.91:.604 2:=.6=6 =21.60>

(22.462) (26.091.>>?) (4.::4.612) (=06) (6.4=>.140) (6:.104.2>1) (4.0>6.0=2) (260.2>0)

1.>>4.0:? 1>?.6=6 6:0.=?4 -

1.46:.9>: =0.>6= -

(69.20?.?:2) (?92.401) (=>2.464) (0 >.>.: >:>: )

2>9. 2> 9.900 9 00 11 11.>2 .>2?.= ?.==6 =6.1 .1=6 =6 6: 6:.4 .4=6 =6.6 .6>9 >9

01.= 01 .=04 04.0 .099 99

(1=1. (1= 1.446. 4 46.0:2) 0 :2)

@B _D_DBE@A ]/IPÈA. JD^. @B _D_DBE@A ]/IPÈA. JD^. @I @B _D_DBE@A @B DEPBVB] ]GMDAC JD^. @ B_ D_ BD E@ E@A @B D EP EP BVBV B]B] ] GM GM DA C] /IP ÈA .JD^.

-

4.=2>.64? ?.42: 029.04= ?.1?1.>=:.>>4 61.>41.?62 6.>61.?46.2=0 1.0>0.090 19.614.?12 26?.449.66: 4:9.?:> 92?.0>:.::1 =.=>2.?>= 69:.:09.:0? 969.4:6 6>9.>69.2:9 9.94: :=:.0?0.=>? 14.01=.606 6>=.>41.::0 1? .= 6=6= 6. 1111

Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a. Mcasdfimamdýe `b ca martbra `b mrä`dtgs y mgetdeibetbs pgr sbmtgr bmgeýhdmg ac qub pbrtbebmb bc `bu`gr y `bstdeg `bc mrä`dtg Ac =1 `b `dmdbhfrb `b 6>14; amtdvd`a` bmgeýhdma `bc `bu`gr   AMPD_D@A@ BMGEGHDMA  

f. 0) 0) Ma rtrtbra rb rbprgira ha ha`a g rb rbbstrumtura`a vd vd ib ibetb  

6>1:

Fs Fs

^rbvdsdýe bspbmèfima para martbra rbprgiraha`a g rbbstrumtura`a vdibetb ^rbvdsdýe bspbmèfima para martbra rbprgiraha`a g rbbstrumtura`a vbemd`a ^rbvdsdýe bspbmèfima para martbra rbprgiraha`a g rbbstrumtura`a be bkbmumdýe

  PD^G @B MVÄ@DPG  

f.6) Martbra vbemd`a

===.06?.???

1.1. 0:0: :.:. 1414 :.:. 0202 9

: .4 .4 49 49 .2 .2 6? 6? 11.6::.112.2??

 

 

1 .> :::: .6 ?>?> . =6=6 : 1 .6 ?9?9 .4 1616 .> =>=>

Fs

4.2>9.=?6.9?2

194.?2 194 .?21.9 1.9>6 >6 (1= (1=>.4 >.404. 04.>69) > 69) (11 (112.>9 2.>94.> 4.>>2) >2) (1.1:4.?0 1 :4.?01.> 1.>1?) 1?) 6.1:1.4: 6.1:1.4:1.= 1.=24 24 (26 (26?.> ?.>62.: 62.::0) :0)

F VBVB MJ MJ A AM AM RH RH RC RC A@ A@ A

6>1:

Fs Fs

^ rä rä stst ah ah gs gs j dp gt gt bm bm ar ar dg s ` b v dv db e` e` a b e p rdrd hb hb r i ra ra `g `g

 

1.>::. 1.> ::.6?>. 6 ?>.=6: = 6:

6>14 6>

 

- 2>>.>>>.>>> ?>.>>>. > >>.>>> > >> 6> 6>>.>.>>>. > >>.>>> > >> 24.:06. 0 6.?62 ? 62 090.?>>.0:6 ? >>.0:6

FVBMJA]D FVB MJA]DH^CB H ^CB (Amtdvg t dvg +Mg +Mget. et.- ^asdvg) d vg)

61:.:.=00. 61 = 00.=>? = >? 0.?=1. 0.? =1.291 2 91 =>0.>=9.=> > =9.=>22

1>.>>>.>>>

2.2. 1616 0.0. 1616 4.4. >4>4 ?

^rästahgs ahgrtdzafcbs vdibetbs

6>14 6>

Ac =1 `b `dmdbhfrb `b 6>14;

=6.:22.?==

  f.1) Martbra vdibetb

9.?24 1 1: 1: .: ?4 ?4 .? :> :>

Mcasdfimamdýe `b ca martbra `b mrä`dtgs y mgetdeibetbs, pgr tdpg `b mrä`dtg;

061.:2:.0>=

Faemgs y mgrrbspgesacbs `bc bxtbrdgr

19.12> 16 1. 16 1. 26 26 9. 9. ?? ?? 6

 

 

64.>1:.==>

Mubeta Mg Mgrrdbetb y `b Be Bemakb Be Betd`a`bs Fa Faemardas

^rg`um tgs `bvbeia`gs pgr mgfrar ma rt brbra rbprgira ha ha`a vbem d`a

 

 

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

=>4.:90.60>

1=.204.0> 2 04.0>1.4 1.414 14 1.969.>6 9 69.>61.? 1.?0: 0:

1>.>>>.>>>

 

Cgs bsta`gs fieaemdbrgs ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bstáe mghpubstgs pgr cgs sdiudbetbs irupgs;

=0.=0?.266

@D] ^GEDFDCD@A@ B] DE_BV] DE_ BV]DGEB D GEB] PBH PBH^GV ^GVAVD AVDA] A] MAVPBVA_DIB P BVA_DIBEPB E PB G PVPV A]A] M RBRB EPEP A]A] ^ GV GV M GF GF VAVA V DE_BV]D DE_ BV]DGEB G EB] ^BVH ^BVHAEBE AEBEPB] PB] GPVA] GPV A] G^BVAMDGE V AMDGEB] B] AMPD_A] D _A] M RBRB EP EP A]A] M GE GE PDPD EI EI BE PBPB ]

-

^ rg rg `u `u mtmt gs gs `b `b vb vb ei ei a` a` gs gs pg pg r m gf gf ra ra r m ar ar tb ra ra r bp bp rg rg ir ir ah ah a` a` a v di be be tb

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG]

14.921.00:

AMPD_G AMP D_GT MGE MGEPDE PDEIBEP IBEPBB

-

1 .1 >1 >1 .4 99 99

Bqudvacbetb be RO_s

=4.==?.:>0

HGEB@A;

-

90.192

0 .2 10 10 .6 2> 2>

-

61.?21.1>?

A +9 +9 6>6> @ DA ]

119.?:2.:?4

6:0.:9:

Oge`gs as asdiea`gs a ma makbrgs au autghátdmgs

1.1. >0>0 :.:. ?9?9 : 2. ?2?2

10>.>>>

9

 

1.1. 6262 1.1. 4>4> >.>. 4=4= 0 = .> ?4?4 .> :4:4 .4 2=2=

11?. :2 :2?.6?6

^rg`umtgs `bvbeia`gs pgr mgfrar martbra vbemd`a

?1.:92

Gfcdiamdgebs mge destdtumdgebs fismacbs

Fdccbtbs y hgeb`as bxtraekbras

-

A 4> 4> @ DA ]

0 4 9 .? :0:0 .6 ?=?=

^rg`um tgs `bvbeia`gs pgr mgfrar m arart brbra vdi be bet b

 

99?.?=:

===.06?.??2

A ?> ?> @ DA ]

0 = >.>. 4242 4.4. ==== >

 

922.299

11=.260.429

A 96 96 >@ DA ]

Fs

0>.>>9

1=2.6??.:62

9 1919 .= 1010 4. >1>1 = . >4 >4 2.2. >1>1 1.1. 1111 9 1 .9 1:1: >. :?:? .2 >0>0

A =? =? >@ DA ]

6>1:

Fs Fs

2.969

Fdccbtbs y hgeb`as eamdgeacbs

192.4: 192 .4:4.=1 4.=199 (4= (4=1.6 1.61?. 1?.99>) 9 9>) 6.=99. = 99.?4?.61 ? 4?.61?? (1.=9?.460 = 9?.460.?1 .?1=) =)

^CA[G A 1: 1: >@ DA]

6>14 6>

 

9=?.?=1

1=2.6 1= 2.6>=.6 > =.6:> :> 1: 1:.2.22> 2>.>.>>> >> - 1.29?.9?9.0= 9?9.0=:

]AC@G DEDMDAC Mgesgcd`a`g

 =2=.06?.???

A => => @ DA]

  f.9) ^rg`umtgs `bvbeia`gs `bvbeia`gs pgr mgfrar mgfrar martbra

Macmb Odeaemdbrg pgr pcazgs ac =1 `b `dmdbhfrb `b 6>1: VRFVG

f) Martbra (Mget.)

?.?. 1>1> :.:. 9>9> >.>. ?=?= =

? :. ?>?> .> >>>> ? .: ?>?> >. >>>> - =12. =12.690. 6 90.:>> : >> - = =>=> >. > >. > 1 9> >. > >. >>>> - ?>.>>>>. >>.>>> > >> 61 61>.>.>>>. > >>.>>> > >> 4.2:>. 4.2 :>.229 2 29 66.6606. 06.=?2 = ?2 644.146. 4 6.624 6 24 0?.>0:. 0 :.4=> 4 => 21?.:??:.:.2:9 2 :9 66?.>? 66? .>?0.4 0.44? 4?

Fs

Gfcdiamdgebs mge bc pûfcdmg

Mgesgcd`a`g

6 4 4 .: 6=6= .? ?=?=

6>1:

^asdvg

HGEB@A;

= 0 1.1. 9:9: 6.6. :?:? ?

6>14

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

904.:2>

Pgtac amtdvg VRFVG

^ái. 9

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

AIVDMRCPRVAT IAEA@BVDA MA[A ]DC_DMRC ]DC_DMRCPRVA PRVA T ^B]MA BZPVAMMDGE @B ^BPVGCBG MVR@G T IA] EAPRVAC HDEBVACB] HBPACDMG]T EG HBPACDMG] DE@R]PVDA HAEROAMPRVBVA ^VG@RMMDGE T @D]PVDFRMDGE @B BEBVIDA BCBMPVDMA IA] T AIRA MGE]PVRMMDGE _BEPA AC ^GV HATGVT HBEGV JGPBCB]T VB]PARVAEPB] PVAE]^GVPBACHAMBEAHDBEPGT MGHREDMAMDGEB] DEPBVHB@DAMDGEODEAEMDBVA ]BV_DMDG]DEHGFDCDAVDG]BH^VB]AVDACB]T @B ACQRDCBV A@HDED]PVAMDGE @BOBE]AT ]BIRVD@A@ ]GMDAC^RFCDMA GFCDIAPGVDA B@RMAMDGE ]BV_DMDG] ]GMDACB] MGHREACB]T ^BV]GEACB] ]BV_DMDG @B JGIAVB] ^VD_A@G] QRB MGEPVAPAE]BV_DMDG@GHB]PDMG ]BV_DMDG @B GVIAED[AMDGEB] T GVIAEG] BZPVAPBVVDPGVDACB] AMPD_D@A@B]APD^DMA]

 PGPACB]

MAVPBVA MGEPDEIBEPB Fs

MAVPBVA _DIBEPB Fs -

^VB_D]DÝE ^AVA MAVPBVA DEMGFVAFCB] BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs

MAVPBVA _BEMD@A Fs

2>4.6=4.4?> 6.::2.:?0

1.694.>9> 6.?6=

6.?2:.>42 09.4=>

(=.:1=.940) (29.=64)

-

1.6>=.0?4

1.:>2

-

(12.69>)

-

22.:>>.1=4 =.6>2.6:>.:20

26.?4? :.6??.21=

161.:>0 ?.9:?.>96

(2?=.216) (66.6>4.10?)

4.919.40:

-

-

(=6.>94) =6.>94)

1.190.1?=.94= =.091.=:: =.2?:.:6?.0?1 12.>?2.0=2 =.2?:.:6?.0?1 :?1.?0?.:=1 0.412.092

6.=44.014 19.006.?>> =.:14.901

(1=.4=6.412) (22.9>4.2?4) (12.:1:.91=) (14.0>?.=4?)

290.>49 11>.:1> 6.6>> -

1.=99.94:.60>

0.=4=.429

9.>10.1?:

120.=2>

?.::>.49=

-

04.=24

(1?9.616)

-

=>1.049.2>= =>1.049.2>=

1.>2?.462

1.=?9.022

(0.:??.91=)

 -

6=.?14.44> 9=.496.42? 0:>.2:?.>1=

01.4:9 61.?:0 6.01=.0=9

0?.>:6 2>.00> 1.:9?.2?0

(00>.?:9) (:?1.202) (4.0=?.>2?)

 -

14.=?2.:04

102.:6?

??.911

(212.:96)

-

-

-

-

-

-

1>.=99.116

-

1=.?26

(621.=?0)

:01.029 11.?:6.:?=.422 01.16:.:61

0=.9?>.>46

(10:.>4:.196)

Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a.

 

Bsta`gs Odeaemdbrgs

^ái. :

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

f) Martbra (Mget.)

f) Martbra (Mget.)

f) Martbra (Mget.)

Ac =1 `b `dmdbhfrb `b 6>14;

Ac =1 `b `dmdbhfrb `b 6>14; @bstdeg `bc mrä`dtg

  @B]PDEG @BC MVÄ@DPG   AIVDMRCPRVA T IAEA@BVDA AIVDMRCPRVA MA[A ]DC_DMRC ]DC_DMRCPRVA PRVA T ^B]MA BZPVAMMDGE @B ^BPVGCBG MVR@G T IA] EAPRVAC HDEBVACB]HBPACDMG HBPACDMG]] T EG HBPACDMG] DE@R]PVDA HAEROAM HAEROAMPRVBVA PRVBVA ^VG@RMMDGEET @D]PVDFRMDGE@BBEBVIDA ^VG@RMMDG BCBMPVDMA IA] T AIRA MGE]PVRMMDGE MGE]PVRMM DGE _BEPAAC ^GV HAT HATGV GV T HBEGV JGPBCB]T VB]PARV VB]PARVAEPB] AEPB] PVAE]^GVPB ACHAMBEAHDBEPG T MGHREDMAMDGEB] DEPBVHB@DAMDGEE ODEAEMDBVA DEPBVHB@DAMDG ]BV_DMDG] DEHGFDCDAVDG] BH^VB]AVDACB] T @B ACQRDCBV A@HDED]PVAMDGE ^RFCDMA @BOBE]A T ]BIRVD@A@ ]GMDAC GFCDIAPGVDA B@RMAMDGEE B@RMAMDG ]BV_DMDG] ]GMDACB] MGHREACB] T ^BV]GEACB] ]BV_DMDG @B JGIAVB] ^VD_A@G] QRB MGEPVAPAE ]BV_DMDG @GHB]PDMG ]BV_DMDG @B GVIAED[AMDGEB] T GVIAEG] BZPVAPBVVDPGVDACB] AMPD_D@A@B]] APD^DMA] AMPD_D@A@B PGPACB]

MAVPBVA MGEPDEIBEPB Fs -

MAVPBVA _DIBEPB Fs

MAVPBVA _BEMD@A Fs

226.4=?.11? 1.646.904 6.2=9.241 -

-

-

=:.2?:.692 0=.9>6 - =.>>9.0>1.0?9 9.=60.0=>

:4.162 ?.>>:.2=?

(19>.016) (1=.622.>9?)

:.220.??4 290.>49 6.2>>.916.20= =.10>.4:2 11>.:1> =.>0=.99?.69= 12.201.14> 6.6>> =>:.09?.690 =.9=:.21?

=.?:4.>== 1?.=91.>?= 6.:>>.=?=

(9.442) (:.11:.==2) (9=.4:?.629) (9.>:?.=:4)

- 1.6:2.>0:.462 2.=06.?=?

?.0:0.0>=

(12.:60.964)

-

-

(9.>12)

??=.>90.:=: 6.2:=.>9>

=.199.:>1

(19.:?2.62?)

-

(1.?>1)

120.=2>  -

1:.000

^AVA MAVPBVA ^VB_D]DÝE DEMGFVAFCB] BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs 6.:19.69= 6.:19.69= (=.469.06?) 09.4=> (2>.4?2)

0=1.6>9

?0>.6>:

-

-

1:.19:.?9:

21.61>

69.669

(00:.0?0)

-

604.?=0.?2? 6.>==.16>

6.609.==:

(9.=>:.=?9)

 -

6.:9=.941

=9.61=

-

(=4.::2)

-

-

-

-

-

:01.029 11.?:6.:?=.422 01.16:.:61

0=.9?>.>46

(10:.>4:.196)

 

PD^G @B MVÄ@DPG  

MAVPBVA MGEPDEIBEPB Fs

MAVPBVA _DIBEPB Fs

MAVPBVA _BEMD@A Fs

MVÄ@DPG]] ARP MVÄ@DPG ARPGCDQ GCDQRD@ RD@AFCB AFCB]] 0:9.==> 0:9.= => 1=.9?9.?= 1=.9 ?9.?=>> 1.94?? 1.94 IAVAE IA VAEPÈA PÈAJD^GPBM ^ GPBMAV AVDA DA :.6=6 :.6 =6 1.110. 1.1 10.=>?.>9 = >?.>922 1.?6 1.?60.> 0.>:1 :1 IAVAE IA VAEPÈA PÈA^VB ^VBE@ E@AV AVDA DA =02.:4 =02 .:422 0.:=9. 0.: =9.4?=.2? 4 ?=.2?44 1:.6>1.:: 6 >1.::44 O GE GE@G @B IAVA EP EP ÈA = 4= 4= .?> 1.1.= 66 66 1 :.:. 00 006 IAVAEPÈA ]GCD@AVDA I AV AV AE AE PÈPÈ A ^B ^BVV ]G ]G EA EA C 2.=>>. = >>.0??. 0 ??.066 0 66 61 61.. 19> 19>.. 2>? 2>? GPVA IAVAEPÈA 66.92:.4=9 116.1>9 11 ]DE IAVAEPDA (]GCA ODVHA) P GP A C B ] :01. :0 1.029 0 29 11.. ?:6 11 ?:6.. :?= :?=.. 422 422 01 01.. 16: 16:.. :61 :61 Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a.

^VB_D]DÝE ^AVA MAVPBVA DEMGFVAFCB] BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs 6.0>0. 6.0 >0.=94 = 94 (?.1>:.9> 1 >:.9>?) ?) 14.?>4.>? ? >4.>?44 (?6.=? (?6 .=??.6 ?.620) 20) 2 ?.?.> := := (6 >9 >9. 60 60: ) 61.. 29: 61 29:.. 401 401 ( 94. 94.1:0. 1 :0.924) 9 24) 111.?6> (6=1.6>2) 0=.. 9?> 0= 9?>.. >46 >46 ( 10: 10:.. >4: >4:.. 196 196))

Ac =1 `b `dmdbhfrb `b 6>1:; PD^G @B IAVAEPDA  

MAVPBVA MGEPDEIBEPB Fs

MAVPBVA _DIBEPB Fs

MAVPBVA _BEMD@A Fs

MVÄ@DPG] ARPGCDQRD@AFCB] 6::.66> 4.0>2.?4> 1=.1=2 IAVAEPÈA JD^GPBMAVDA :.6=6 1.>41.:14.?06 244.99> IAVAEPÈA^ VB VBE@AVDA 611.646 0.09=.4::.>92 12.:>?.1?: OGE@G @B IAVAEPÈA 62>.690.9=1 IAVAEPÈA ]GCD@AVDA IAVAEPÈA ^BV]GEAC 2.6>?.99>.?22 16.=29.?10 GPVA IAVAEPÈA 60.>9=.==4 122.26> ]DE IAVAEPDA (]GCA ODVHA) P GP A C B ] 2>9. 2> 9.900 9 00 11.> 11 .>2? 2?.= .==6 =6.1 .1=6 =6 6: 6:.4 .4=6 =6.6 .6>9 >9 Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a.

^VB_D]DÝE ^AVA MAVPBVA DEMGFVAFCB] BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs (1>) 1.:0>.=20 (2.2:9.>9=) 6>.=6:.=46 (2:.=14.4>=) (42.92?) 14.1>?.646 (?9.91>.>0:) 90.0=4 (694.?42) 01.= 01 .=04 04.0 .099 99 (1=1 (1 =1.4 .446 46.0 .0:2 :2))

Ac =1 `b `dmdbhfrb `b 6>1:; Amtdvd`a` bmgeýhdma `bc `bu`gr

  AMPD_D@A@ BMGEÝHDMA

MAVPBVA MGEPDEIBEPB

  AIVD AI VDMRC M RCPR PRVA VAT IA IAEA EA@B @BVD VDA MA[A ]D C_C_D MR MR CPCP RV RVA T ^ B]B] MA MA BZPVAMMDGE @B ^BPVGCBG MVR@G T IA] EAPRVAC H DEBV E BV ACB ACB]] H BPBPA CDM CDMGG] T EGH BPBPA CDM CDMGG ] DE@R DE @R]P ]PVD VDA HA HAER EROA OAMP MPRV RVBV BVAA ^VG@RMMDGEET @D]PVDFRMDGE@BBEBVIDA ^VG@RMMDG BCBMPVDMA IA] T AIRA MGE] MG E]PV PVRM RMMD MDGE GE _BEP _B EPAA AC ^GVHA HATG TGVV T HBE HBEGV GV JGPB JG PBCB CB]] T VB VB]P ]PAR ARVA VAEP EPB] B] PVAE]^GVPB ACHAMBEAHDBEPG T MGHREDMAMDGEB] DEPB DE PBVV HB@ HB@DA DAMM DG EODEAEM E AEMDB DBVV A ]BV_DMDG] DEHGFDCDAVDG] BH^VB]AVDACB] T @B ACQRDCBV A@HDED]PVAMDGE ^RFCDMA @BOBE]A T ]BIRVD@A@ ]GMDAC GFCDIAPGVDA B@RMAMDGE ]BV_DMDG] ]GMDACB] MGHREACB] T ^BV]GEACB] ]BV_DMDG @B JGIAVB] ^VD_A@G] QRB MGEPVAPAE ]BV_DMDG @GHB]PDMG ]BV_DMDG @B GVIAED[AMDGEB] T GVIAEG] BZPVAPBVVDPGVDACB] AMP D_D @A @A@ B]B] AP D^ DMA]  PG PGPA PACB CB]]

Fs

-

^AVA MAVPBVA MAVPBVA ^VB_D]DÝE DEMGFVAFCB] _BEMD@A BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs Fs Fs 2>1. 2> 1.6:>. 6 :>.0062 62 4> 4>0. 0.:=0 : =0 1.4=2. 4 =2.:14 : 14 (6.4 (6 .4=9 =9.0 .046 46)) =.=. 1144 1.1. 6>6> 0 1? .4 0>0> ( 6?6? .> 6262 )

MAVPBVA _DIBEPB

1.1.>20.?4?

1.:>2

2=.1 2= .166 66.6 .6?9 ?9 4:.? 4: .?69 69 1>.2 1> .20> 0> 6.469. 4 69.0=?. 0 =?.609 6 09 2.:42. : 42.1>2 1 >2 -

:.:69.464

169. 16 9.24> 2 4> ?.1>0. 1 >0.60? 6 0?

(1=.16=) (29? (2 9?.: .:22 22)) (19. (1 9.4:6. 4 :6.266) 2 66)

-

-

(6?.4??)

46.>12 46.> 12 1.>96. > 96.022. 0 22.?24 ? 24 6.>10. > 10.=6: = 6: 16=.>6 16= .>622 =.0 =.0?:. ?:.446.60 4 46.6099 11.:0?.24 : 0?.2499 6.6>> 6 >> :6 :66. 6.22=. 2 2=.1=1 1 =1 =.102. 1 02.44:4 :4

1.066. 0 66.220 2 20 19.9:9.62 9 :9.62?? =.942. 9 42.=2= = 2=

(11.2=>. (11. 2 =>.4?>) 4 ?>) (26.12 (26 .122.? 2.??:) ?:) (10. (1 0.69=. 6 9=.2>:) 2 >:)

6?.? 6? .?10 10 1.=61. = 61.1?>. 1 ?>.440 4 40 =.>60. > 60.4?9 4 ?9

9.>>?. > >?.22: 2 2:

(19. (1 9.940. 9 40.44?) 4 4?)

62=. 62 =.=2> = 2>

?.244. 2 44.29: 2 9:

-

-

(114. 1 14.11?) 1 1?)

-

6:4.2=:.>:9

:?>.900

:1=.22>

(0.>:9.12=)

 -

60.16=.:16

16.>>1

16=.?20

(04=.6:=)

-

9=.00=.=4>

14.4>?

?9.66=

(491.122)

-

02 ?.?. 0>0> 6.6. :4:4 0 1. >1>1 :.:. 0:0: ?

6. >6>6 4.4. >9>9 4

( :.:. =>=> =.=. ?6?6 4)4)

 -

1?.126.6?4

?4.944

4>.94=

(062.142)

-

-

-

-

-

4 .4 4949 .= >=>= 1 4.4. >1>1 4 2>9. 2> 9.900 9 00 11 11.> .>2? 2?.= .==6 =6.1 .1=6 =6 6: 6:.4 .4=6 =6.6 .6>9 >9

6 :.:. :?:? 6 01.= 01 .=04 04.0 .099 99

( 6969 0.0. :=:=4 ) (1=1 (1 =1.4 .446 46.0 .0:2 :2))

Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a. Ac =1 `b `dmdbhfrb `b 6>1:; @bstdeg `bc mrä`dtg

  @B]PDEG @BC MVÄ@DPG   AIVDMRC AIVD M RCPR PRVA VAT IA IAEA EA@B @BVD VDA MA[A MA [A ]DC_DM C _DMRC RCPR PRVA VAT ^B ^B]M ]MAA BZPVAMMDGE @B ^BPVGCBG MVR@G T IA] EAPRVAC H DEBV E BV ACB ACB]] H BPBPA CDM CDMGG] T EGH BPBPA CDM CDMGG ] DE@R DE @R]P ]PVD VDA HA HAER EROA OAMP MPRV RVBV BVAA ^VG@RMMDGEET @D]PVDFRMDGE@BBEBVIDA ^VG@RMMDG BCBMPVDMA IA] T AIRA M GE] GE]PV PVRM RMMM DG E _BEP _B EPAA AC ^GVHA HATG TGVV T HBE HBEGV GV JGPB JG PBCB CB]] T V B]P B]PAARV RVAA EPB EPB]] PVAE]^GVPB ACHAMBEAHDBEPG T MGHREDMAMDGEB] DEPB DE PBVV HB@ HB@DA DAMM DG EODEAEM E AEMDB DBVV A ]BV_DMDG] DEHGFDCDAVDG] BH^VB]AVDACB] T @B ACQRDCBV A@HDED]PVAMDGE ^RFCDMA @BOBE]A T ]BIRVD@A@ ]GMDAC GFCDIAPGVDA B@RMAMDGE ]BV_DMDG] ]GMDACB] MGHREACB] T ^BV]GEACB] ]BV_DMDG @B JGIAVB] MGEPVAPAE ]BV_DMDG @GHB]PDMG ^VD_A@G] QRB ]BV_DMDG @B GVIAED[AMDGEB] T GVIAEG] BZPVAPBVVDPGVDACB] AMPD_D@A@B]] APD^DMA] AMPD_D@A@B PGPA PG PACB CB]]

MAVPBVA MGEPDEIBEPB Fs -

^AVA MAVPBVA MAVPBVA ^VB_D]DÝE DEMGFVAFCB] _BEMD@A BE BKBMRMDÝE (1=4.>>+621.>1) Fs Fs Fs 200. 20 0.>06. > 06.6629 29 44 44=. =.1>1 1 >1 6.>12. > 12.?>1 ? >1 (=.> (= .>?? ??.1 .11= 1=)) 6.:6?. : 6?.269 2 69 (2.6 (2 .61? 1?))

MAVPBVA _DIBEPB Fs

-

-

-

=?.: =? .:=6 =6.? .?49 49 ?0.0 ?0 .01> 1> 1>.2 1> .20> 0> 6.9>9. 9 >9.0:2. 0 :2.2=9 2 =9 2.=>1. = >1.>61 > 61

2=.>44 2=.> 44 2.922. 9 22.:04 : 04

(16:.: (16: .:=9 =9)) (11. (1 1.100. 1 00.601) 6 01)

-

-

(::9)

46.> 46 .>12 12 6.012. 0 12.9:0. 9 :0.926 9 26 1.26>. 2 6>.02> 0 2> 16=.>622 6.: 16=.>6 6.:0:. 0:.2:4.2? 2 :4.2?44 16.=0?.66 = 0?.66?? 6.6>> 6 >> 6: 6:0. 0.>44. > 44.=6: = 6: 6.266. 2 66.66=4 =4

6.000. 0 00.0>> 0 >> 1?.:09.49 : 09.4911 6.2:4. 2 :4.0?: 0 ?:

(2.4 (2 .4?1 ?1.2 .2?0 ?0)) (?:.>=6.4 (?:.>= 6.4?1) ?1) (?.6 (? .6?4 ?4.0 .0=4 =4))

6?.? 6? .?10 10 1.=>=. = >=.91:. 9 1:.692 6 92 =.1:0. 1 :0.1>? 1 >?

?.2:4. 2 :4.=>6 = >6

(1=. (1 =.:21. : 21.?:>) ? :>)

-

62=. 62 =.=2> = 2> -

=0.990

?.40>.=>2

-

-

(2.> (2 .>19 19))

?02. ?0 2.09:. 0 9:.::9 : :9 1.?2:. ? 2:.>22 > 22

=1>. =1 >.9=9 9 =9

6.29:. 2 9:.99> 9 9>

(1?. (1 ?.1>0. 1 >0.>9=) > 9=)

 -

29>.941

:.>?:

-

(4.042)

-

19.6=4.696

0?.444

1>?.194

(212.:0?)

-

60 >.>. >?>? >.>. 6060 6 1. 6?6? 4.4. >1>1 2

6. =?=? :.:. :=:= :

( ?.?. :9:9 6.6. :>:> 9)9)

1:.219 -

-

(60.=>4) -

2>9. 2> 9.900 9 00 11 11.> .>2? 2?.= .==6 =6.1 .1=6 =6 6: 6:.4 .4=6 =6.6 .6>9 >9

01.= 01 .=04 04.0 .099 99

(1=1 (1 =1.4 .446 46.0 .0:2 :2))

 -

6.=1:.1:6 -

Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a. Mcasdfimamdýe `b martbra `b mrä`dtgs y mgetdeibetbs pgr tdpg `b iaraetèa, bsta`g `bc mrä`dtg y prbvdsdgebs

Ac =1 `b `dmdbhfrb `b 6>14 bc stgml `b martbra rbprgiraha`a `b Faemg ]gcd`ardg ].A. rbprbsbeta bc =,06% `bc tgtac `b ca martbra y ac =1 `b `dmdbhfrb `b 6>1: rbprbsbetafa bc >,40% @a`g bc vgcuhbe `b martbra y bc ira`g `b rbprgirahamdgebs, eg bxdstb ue bobmtg sdiedfimatdvg sgfrb cgs rbsucta`gs. f.1>) Cgs cèhdtbs cbiacbs prbstafcbs `b ca betd`a` qub sb bstafcbmbe be egrhas cbiacbs (Artèmucg E¾ 02? `b ca Cby E¾ =4= `b ]brvdmdgs Odeaemdbrgs g @.]. E¾ 60>>> y E¾ 600=4) Vbspbmtg a cgs cèhdtbs bstafcbmd`gs pgr ca cbidscamdýe vdibetb, Faemg ]gcd`ardg ].A. eg ja mgemb`d`g, ed haetdbeb mrä`dtgs mge irupgs prbstatardgs qub bxmb`ae `dmjgs cèhdtbs mge rbcamdýe a su ^atrdhgedg Ebtg, aspbmtgs sbñaca`gs be Egrhas Cbiacbs (Artèmucg E¾ 02? ` b ca Cby E¾ =4= `b ]brvdmdgs Odeaemdbrgs, @.]. E¾60>>> y E¾600=4). Bvgcumdýe `b cas prbvdsdgebs be cas ûctdhas trbs ibstdgebs; Mgemdcdamdýe `b prbvdsdgebs `b martbra (1=4+621+62=+622)

^rbvdsdýe dedmdac

6>14

6>1:

Fs

Fs

069.464.=4=

  - Mastdigs

6:.02:.?1:

=?.294.904

06.>?9.496

  - Vbmupbramdgebs

60.02>.426

2=.012.0>:

29.6?=.2:>

 + ^rbvdsdgebs mgestdtud`as

9?.6:9.==6

40.?>2.014

1>2.0:=.94>

0?6.>?4.?22

0=:.?41.:4=

0=0.>:1.?=1

^rbvdsdýe fieac

Ac =1 `b `dmdbhfrb `b 6>14;

m.1) Devbrsdgebs tbhpgrardas

MAVPBVA MAVPBVA MAVPBVA MAVPBVA MACDODMAMDÝE MGEPDEIBEPB % _DIBEPB % _BEMD@A % BE BKBMRMDÝE % Fs Fs Fs Fs A :01.0299 1>> 11.?99 :01.02 11.?99.049.4 .049.426 26 1>> - F =.690. =.6 90.>2> > 2> - ?:= ?:=.10 .10>> 6 M 6?=.0=2 6?=.0 =2 - 0.?9:.000 0.?9:.000 11 1.>=2 1.>=2.4=6 .4=6 6 @ =:.6>6 6 >6 - 6.1 6.16>. 6>.669> 9> 2 ===.>166 ===.>1 1 B 62?.064 62?.0 64 - 1>.:: 1>.:::.1=? :.1=? 6? 262.?>0 262.?>0 1 O 1.2==.::9 1.2== .::9 - 66.92 66.92:.:=1 :.:=1 2? 01.:? 01.:?2.200 2.200 4? :01.029 1>> 11.?:6.:?=.422 1>> 01.16:.:61 1>> 0=.9?>.>46 1>> Ac =1 `b `dmdbhfrb `b 6>1:;

^VB_D]DÝE ^AVA MAVPBVA MAVPBVA MAVPBVA MAVPBVA DEMGFVAFCB] % MACDODMAMDÝE MGEPDEIBEPB % _DIBEPB % _BEMD@A % BE BKBMRMDÝE % (1=4.>>+621.>1) Fs Fs Fs Fs Fs A 2>9.9000 1>> 11.>0? 2>9.90 11.>0?.1?:.: .1?:.::: :: 1>> - - (?=.= (?=.=1?.11: 1?.11:)) 0: F =.4>:. =.4 >:.010 0 10 - ?0: ?0:.2? .2?22 6 (14:.094) (14:.0 94) M =.?49.196 - 6.2>: =.?49.196 6.2>:.4?: .4?: 4 6>=.::1 6>=.::1 (1.6?=.>=9) (1.6? =.>=9) 1 @ =2>.:4 =2> .:4:: - 1.1 1.1:?. :?.?60 ? 60 0 =11.9699 =11.96 1 (460.? (46 0.?62) 62) 1 B 0=4.12> 0=4.1 2> - =.=29 =.=29.:9: .:9: 16 ==:.>?6 ==:.>?6 1 (=.60=.:0=) (=.60 =.:0=) 6 O 1.9?9.?1> 1.9?9 .?1> - 61.6= 61.6=>.196 >.196 9= 0>.04 0>.042.:>9 2.:>9 4: (?=.> (?=.>0?.=:= 0?.=:=)) 0:0: 2>9.900 1>> 11.>2?.==6.1=6 1>> 6:.4=6.6>9 1>> 01.=04.099 1>> (1=1.446.0:2) 1>> Mgembetramdýe mrb`dtdmda pgr eûhbrg `b mcdbetbs, be hgetgs y pgrmbetakbs Ac =1 `b `dmdbhfrb `b 6>14; MAVPBVA MAVPBVA MAVPBVA MAVPBVA E» @B % _DIBEPB % _BEMD@A % BE BKBMRMDÝE % ^VB]PAPAVDG] MGEPDEIBEPB Fs Fs Fs Fs 1 a 1> HATGVB] ? .0 6969 .4 9292 - 1 1a 2 >HATGVB] 1 :.:. >6>6 6.6. 10104 - 21 a 1>> HATGVB ] 1 9.9. 6:6: 4.4. 1:1:? - GPVG GP VG]] :01. :0 1.029 0 29 1> 1>>> 111. 1.?01. ? 01.160. 1 60.?02 ? 02 1> 1>>> 001. 1.16:. 1 6:.:61 : 61 1>> 1>> 0= 0=.9 .9?> ?>.> .>46 46 1>> 1>> PGPA PG PACC :01. :0 1.029 0 29 1> 1>>> 11 11.? .?:6 :6.: .:?= ?=.4 .422 22 1> 1>>> 01. 01.16:. 1 6:.:61 : 61 1> 1>>> 0= 0=.9 .9?> ?>.> .>46 46 1> 1>>> Ac =1 `b `dmdbhfrb `b 6>1:;

^VB_D]DÝE ^AVA DEMGFVAFCB] (1=4.>>+621.>1) % Fs ( 1010 .2 2>2> ) ( =2=2 .2 6969 ) ( 0>0> .? 6161 ) (10: (1 0:.> .>>9 >9.0 .090 90)) 1> 1>>> (10: (1 0:.> .>4: 4:.1 .196 96)) 1> 1>>>

^VB_D]DÝE ^AVA MAVPBVA MAVPBVA MAVPBVA MAVPBVA E» @B DEMGFVAFCB] ^VB]PAPAVDG] MGEPDEIBEPB % _DIBEPB % _BEMD@A % BE BKBMRMDÝE % (1=4.>>+621.>1) % Fs Fs Fs Fs Fs 1 a 1> HATGVB] ?.?:4.=0: - (2.164) 11 a 2> HATGVB] 1 4.012.:?? 14 - (0=.241) 21 a 1>> HATGVB] 1:.==4.=00 - (0>.2=:) GPVG GP VG]] 2>9. 2> 9.900 9 00 1> 1>>> 11 11.> .>11 11.: .::9 :9.2 .290 90 1> 1>>> 6: 6:.4 .4=6 =6.6 .6>9 >9 1> 1>>> 01 01.= .=04 04.0 .099 99 1>> (1=1 (1=1.4 .4>= >=.6 .669 69)) 1> 1>>> PGPA PG PACC 2>9. 2> 9.900 9 00 1> 1>>> 11 11.> .>2? 2?.= .==6 =6.1 .1=6 =6 1> 1>>> 6: 6:.4 .4=6 =6.6 .6>9 >9 1> 1>>> 01 01.= .=04 04.0 .099 99 1>> 1>> (1=1. (1=1.446. 4 46.0:2) 0 :2) 1> 1>>> Bvgcumdýe `b ca martbra `b mrä`dtgs y mgetdeibetbs be cas ûctdhas trbs ibstdgebs; 6>14 6>1: 6>19 ]dtuamdýe `b ca martbra Fs Fs Fs MAVPBVA _DIBEPB 11.6::.112.2?? 1>.42?.669.?19 4.:=2.1?0.:=0 MAVPBVA _BEMD@A =?.449.412 6?.:::.>1? =>.201.>>4 MAVPBVA BE BKBMRMDÝE 0>.6>>.6:= =:.??1.2?0 01.>69.::4 MA VPVP BV BVA V B^B^ VG VGI VA VAHA@A G V BBBB ]P]P VR VRM PR PRVA @A @A _ DIB EP EP B = 4040 .9 0:0:. =4=4 > 1 >>>> .1 >>00 .21 2 : >.>. 9494 2.2. 9?9? 4 MAVPBVA VB VB^VGIVAHA@A G VB VBB]PVRMPRVA@A _B _BEMD@A 0.1=>.4>? 6.>00.141 1.?>6.>46 MAVP BV BVA VB VB ^V ^VGI VA VAHA@A G VB VBB ]P]P VR VRM PR PRVA @A @A B E BKBK BM BMR MDMD ÝE ÝE = .2 2424. :>:> 4 6 .? :9:9 .41 = 1 .4 4242 .6 ==== MAVPBVA @DVBMPA 11.9?9.926.:?4 11.16?.?1=.:1? 4.441.16?.:6? MAVPBVA MGEPDEIBEPB :01.029 2>9.900 :44.4?4 Pgtac martbra 11.9?:.240.=6? 11.169.161.2?> 4.446.>6?.942 ^ VBVB _D_D ]D]D ÝE ÝE B ]^]^ BM BMÈ ODOD MA MA ^A VA VA D EM EM GF GFVAFD CDCD @A @A@ ( 1010 :.:. >4>4 ?.?. 4444 :):) ( 1=1= 1.1. 4444 1.1. 9?9? 1)1) ( 1=1=9 .2 2020 .2 ?:?: ) ^VB_D]DÝE IBEÄVDMA ^/DEMGFVAFDCD@A@ @B MAVPBVA ^/OAMPGVB] @B (1=> (1 =>.2 .2:2 :2.6 .6=0 =0)) (1 (1=> =>.2 .2:2 :2.6 .6=0 =0)) (1 (1>2 >2.? .?:4 :4.9 .9=: =:)) VDB]IGA@DMDGEAC ^VB_D] ^VB _D]DÝE DÝE IBEÄ IBEÄVDM VDMAA ^/DEMG ^/DEMGFV FVAFD AFDCD@A@ C D@A@ @B MAV MAVPBV PBVAA ^/GPVG ^/GPVG]] VDB]IG VDB]IG]] (69.00 (69 .00>.> >.>>>) >>) (69 (69.00 .00>.> >.>>>) >>) (69 (69.00 .00>.> >.>>>) >>) ^VB_D]DÝE B]^BMÈODMA ^AVA MGEPDEIBEPB] (1.19=) (960) (4?>) ^VB_D]DÝE IBEÄVDMA ^AVA MGEPDEIBEPB] ^VB_D]DÝE IB IBEÄVDMA _G _GCREPAVDA MÈMÈMCDMA (?=.1=:.2=0) (24.2>6.049) (2=.10=.246) ^VB_D]DÝE MÈMCDMA (?=.1=:.200) (24.2>6.2>9) (2=.10=.?>6) Pgtac prbvdsdgebs (0=6.0>>.0:=) (0>4.>66.96=) (=9?.496.0?>) Bvgcumdýe `b Deirbsgs y Iastgs fieaemdbrgs pgr martbra MAVIG MA VIG]] ^GV ^VB_D ^VB_D]DÝE ] DÝE B]^BMÈO B]^BMÈODM DMAA ^AVA ^AVA DEMGF DEMGFVAF VAFDCD DCD@A@ @ A@ @B MAVPBV MAVPBVAA (?2.4: (?2 .4:=.4 =.40>) 0>) (2? (2?.00 .006.4 6.49=) 9=) (2= (2=.22 .22?.2 ?.2>9) >9) MAVIG] ^GV@B^VB_D]DÝE IBEÄVDMA ^/DEMGFVAF. @B MAVPBVA ^/OAMPGVB] VDB]IG A@DMDGEAC MAVIG] ^GV ^VB_D]DÝE ^AVA AMPD_G] MGEPDEIBEPB] MAVIG] ^G ^GV ^V ^VB_D]DÝE IB IBEÄVDMA MÈMÈMCDMA ^VGG@R ^V @RMM PG PG ]^G ^GVV MA MA VPB VPBVV A(DEIV E IV B]G B]G]] ODE ODEAA EM EM DBVG B VG ])]) Bvgcumdýe `b mubetas `b gr`be m/Vbcamdýe a martbra  ^VG@RMPG] BE ]R]^BE]G CÈEBA] @B @B MV MVÄ@DPG GP GPGVIA@A] TEG RP RPDCD[A@A] MVÄ@DPG] MA]PDIA@G] ^GV DE]GC_BEMDA Bvgcumdýe `b ^rbstatardgs EÛHBVG @B ^VB]PAPAVDG]

 

(6.=26) (1>.=>1.>=4) 1.91=. 9 1=.920. 9 20.?=1 ? =1

  (60.:42.04?) (?.>=9) (1=.6?>.41=) 1.2?:. 2 ?:.146. 1 46.4=? 4 =?

  (0>.?06.9==) (?.6::) (11.69:.6?6) 1.002. 0 02.422. 4 22.=20 = 20

6>.01=.=:6 622.0?:.:>? 69?.12:.9>=

19.42>.:62 164.2:>.92? 62?.2=0.6?9

6>.=?9.96> 9?.6?6.:?4 664.1?1.604

6::.2:?

692.92:

6?>.094

Fs

0=0.>:1.?=1

m) DE_BV]DGEB] PBH^GVAVDA] T ^BVHAEBEPB]

^VB_D]DÝE ^AVA DEMGFVAFCB] (1=4.>>+621.>1) % Fs (91.1=9.?60 (91.1 =9.?60)) 0: (1:6.9:>) (1:6.9 :>) (1.100.:=4) (1.10 0.:=4) 1 (1.602.90 6 02.906) 6) 1 (4.>11.:16) (4.>1 1.:16) ? (?2.=92.=92 (?2.= 92.=92)) 0000 (10:.>4:.196) 1>>

6>19

0=:.?41.:4=

Mcasdfimamdýe `b martbra `b mrä`dtgs y mgetdeibetbs sbiûe ca macdfimamdýe `b mrä`dtgs, be hgetgs y pgrmbetakbs;

Bc prbsbetb mua`rg tahfdäe mgetbhpca ca martbra rbprgiraha`a. Mcasdfimamdýe `b ca martbra `b mrä`dtgs y mgetdeibetbs pgr sbmtgr bmgeýhdmg ac qub pbrtbebmb bc `bu`gr y `bstdeg `bc mrä`dtg

f.4) Bc ira`g `b rbprgirahamdgebs b dhpamtg sgfrb ca sdtuamdýe `b ca martbra y cgs rbsucta`gs

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bs ca sdiudbetb; 6>14

Fs

6 .0 12 12 .? 2: 2:

1 .4 24 24 .2 ?6 ?6

1.122.94>.>>>

:11.?>2.>>>

M ak ak a ` b A jg jg rrrr gs gs @bpýsdtgs a pcazg fikg

6>1:

Fs

Gpbramdgebs Detbrfaemardas

-

6>.>>>.>>>

^artdmdpamdýe be Oge`gs `b devbrsdýe

016.?>0.=?4

0>2.91:.?92

M ug ug ta s ` b p ar ar td mdmd pa pa md md ýe ýe O ge ge `g `g V AC AC a ob mtmt a` a` gs gs a b em em akak b c bi bi acac

6 =: =: .> 40 40 .9 0= 0=

6 ?9 ?9 .9 >0 >0 .9 2? 2?

^ rg `u `um tgs ` bv bv be bei a` a`g s pg r m gf gfr arar d ev ev brbr sdsd ge geb s t bh bh pg pg ra rdrd as as

= 6.6. 29 29 =.=. ?? ?? 9

= 1. 1. :? :?1 .? 0> 0>

1 .: .: 01 01 .0 9: 9: .0 .0 =9 =9

1 .2 .2 =: =: .: .: 04 04 .? .? == ==

@btaccb `b Devbrsdgebs Pbhpgrardas Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: (bxprbsa`g be fgcdvdaegs) @btaccb `b devbrsdgebs pgr tdpg y hgeb`a

=1/16/6>14 D hp hpgrt b Vb e` e`d hd hdb etet g

=1/16/6>1: D hp hpgrt b Vb e` e`d hd hdb etet g

1??.61>.426

6,16%

61>.:00.4?0

6,06%

6.01=.929

>,>>%

1.9==.?44

>,>>%

-

>,>>%

-

>,>>%

Devbrsdgebs be Betd`a`bs Odeaemdbras Fursátdcbs

::.661.191

6,6=%

:9.4:?.04>

6,29%

Devbrsdgebs `b @dspgedfdcd`a` Vbstrdeid`a

92.29?.>60

6,>2%

161.160.992

6,=0%

Pgtac Devbrsdgebs be Hgeb`a Eamdgeac

1 .?0 6.6.?: :.:.> 46 46

=, 60 60%

1.64 ?.?.1 >= >=. >6 >66

= ,64 %

Devbrsdgebs be Betd`a`bs Odeaemdbras `bc ^aès

Pgtac Devbrsdgebs be Hgeb`a Bxtraekbra Devbrsdgebs be Betd`a`bs Odeaemdbras `bc ^aès Devbrsdgebs Devbrsdge bs be Betd`a`bs Odeaemdbras `bc Bxtbrdgr

1.122.941.4>1

=,92%

:=1.:=>.:?=

=,?2%

Devbrsdgebs be Betd`a`bs Odeaemdbras Fursátdcbs

=60.=:=.144

6,46%

=19.9=6.1:2

0,4=%

Devbrsdgebs be Betd`a`bs Eg Odeaemdbras `bc ^aès

-

>,>>%

-

>,>>%

1?6.216.446

>,69%

10?.2=4.490

>,=2%

2.969

>,>>%

0>.>>9

>,>>%

Devbrsdgebs `b @dspgedfdcd`a` Vbstrdeid`a Pgtac Devbrsdgebs be Red`a`bs `b Oghbetg a ca _dvdbe`a Devbrsdgebs `b @dspgedfdcd`a` Vbstrdeid`a Pgtac Devbrsdgebs Pbhpgrardas

2.969

>,>>%

0>.>>9

>,>>%

1 .: >: >: .4 >0 >0 .9 91 91

= ,1 0% 0%

1 .2 >? >? .4 :9 :9 .4 4= 4=

= ,= 4% 4%

m. 6) Devbrsdgebs pbrhaebetbs Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb; 6>14

6>1:

Fs @bpýsdtgs a pcazg fikg

Fs -

11.>>>.>>>

Fgegs

::4.061

1.99:.:01

^artdmdpamdýe be máharas `b mghpbesamdýe

0:6.=:1

0:6.=:1

^artdmdpamdýe be furýs `b deogrhamdýe mrb`dtdmda

1.>=2.=62

4?0.262

Ammdgebs tbcboýedmas

1.6>9.064

1.6>9.06:

6 ?.?. :? :? ?. ?. 19 199

= >. >. 46 46= .6 0= 0=

1 2.2. 11 11 4. 4. 29 290

2 4. 4. 49 49? .= 9? 9?

-

=.?11.149

6. 92 92 >. >. 69 691

6 .? 41 41 .: 9? 9?

Pè tu cg s va cgr bs bs `b `b be be td `a `a `b `b s pr dva `a `a s e g fi ea ea em em db ra ra s ` bcbc pa pa ès Pètucgs vacgrbs `b betd`a`bs fieaemdbras `bc paès vbe`d`gs mge pamtg `b rbmghpra Pètucgs vacgrbs `b betd`a`bs eg fieaemdbras `bc paès vbe`d`gs mge pamtg `b rbmghpra Pè tu cg s va va cgr bs bs `b `b b et et d` a` a` bs bs `b `b c bx bx tb rdrd gr gr m ge ge gt gt ra ra s r bs bs tr dm mdmd ge ge bs bs Mugtas `b ^artdmdpamdýe Oge`g para Mrä`dtgs @bstdea`gs ac ]bmtgr ^rg`umtdvg y a _dvdbe`a `b Detbräs ]gmdac Mugtas `b ^artdmdpamdýe Oge`g M^_D] Mb`d`gs be Iaraetèa `b ^rästahgs `b Cdqud`bz `bc FMF ^rg`umtgs `bvbeia`gs pgr mgfrar devbrsdgebs be betd`a`bs fieaemdbras `bc paès ^rg`umtgs `bvbeia`gs pgr mgfrar devbrsdgebs be gtras betd`a`bs eg fieaemdbras ^rg`umtgs `bvbeia`gs pgr mgfrar devbrsdgebs `b `dspgedfdcd`a` rbstrdeid`a ^rbvdsdýe devbrsdgebs pbrhaebetbs

 

121

121

4 4.4. 00 00 =. =. 6: 6: >

0 1. 1. 00 00: .1 6> 6>

1?.>4>

9?2.604

1?2.=:1

6=?.:64

16?.62:

6.>11.92:

(9.0>0.2?=)

(9.0=4.1?2)

1 0> 0> .? 49 49 .1 92 92

1 04 04 .? 2: 2: .: >4 >4

 

Bsta`gs Odeaemdbrgs

^ái. 4

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA : - MGH^G]DMDÝ MGH^G]DMD ÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

m) DE_BV]DGEB] PBH^GVAVDA] T ^BVHAEBEPB] (Mget.)

o) Fdbebs `b usg y `bprbmdamdgebs amuhuca`as

d) Gf cdiamdgebs mge bc pûfcdmg

m. 6) Devbrsdgeb s pbrhaebetbs (Mget.)

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14, 6>1: y 6>19, bs ca sdiudbetb;

@btaccb `b Devbrsdgebs ^brhaebetbs Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: (bxprbsa`g be fgcdvdaegs) @btaccb `b devbrsdgebs pgr tdpg y hgeb`a Pgta cD ev evb rsrsdgeb s be Hgeb `a `a Bxtra ekekb rara G tr gsgs tètè tuc gsgs va va cg rb s `b `b B etet d` a` a` bsbs OdOd ea ea em em db ra s `b `b c ^a^a ès

Pbrrbegs (d)

=1/16/6>14

=1/16/6>1:

D hp hpg rtrt b

V be be `d`d hd hd be be tg

D hp hp grgr tb

V be be `d`dh db etet g

1>9.1??.>40

>,1:%

26.??9.49>

1,9:%

: :4 :4. 06 06 >

=, 4> 4> %

1 .9 9: 9: .: 01 01

= ,4 >% >%

6>14

6>1:

6>14

6>1:

Fs

Fs

Fs

Fs

Gfcdiamdg d iamdgebs ebs mge bc pû pûfcd fcdmg m g a ca vds vdsta ta

2:.6=0.22?

00.>04.?09

B`dfi B` dfimdg mdgss

1 >? >? .9 .9 :1 :1 .: 06 06

1 >? >? .9 .9 :1 :1 .: .: 06 06

Maka `b ajgrrgs

(@bprbmdamdýe amuhuca`a b`dfimdgs)

(6=.=2>.:00)

(6>.2?=.=00)

  Hgeb`a eamdgeac

_acgr ebtg

:=.0=>.44:

:?.61:.04:

  Hgeb`a bxtraekbra

Hgff dcd Hg dcdar ardg dg y be besb sbrb rbss

2 6.1 6.166 9.> 9.>== >

2 6.9 6.900 6.= 6.=11 2

 R ed`a` `b Oghbetg `b _dvdbe`a

(=?.=19.=:=)

(=6.4:?.290)

(@bprbmdamdýe amuhuca`a hgfdcdardg y besbrbs)

6>19 Fs

9.:4: 9.: 4:.9: .9:22

=.920 =.9 20.?9 .?966

11.949.= 9 49.=41 41

6.??9.1>2.6:>

6.:10.0=4.==9

6.=69.09>.=::

=62.4?=.?16

69?.0:6.696

6:6.409.?29

0:.::6

696.11=

016.:=4

@bpýsdtgs a pcazg fikg

G trgs r gs t ètèt ucuc gs gs vac vac grb grbss ` b Be Be td `a` `a`bs bs Eg Eg Ode ae ae mdmd bra brass ` bcbc ^aè ^aèss Devbrsdgebs be Betd`a`bs Odeaemdbras `bc Bxtbrdgr

6 .: 92 92 .2 0= 0= -

6 ,2 =% =% >,>>%

2 .2 01 01 .2 2= 2= -

1 ,9 =% =% >,>>%

_acgr ebtg

12.:>4.?09

14.922.901

  Hgeb`a eamdgeac

1.604.:64

1.0>2.==0

6.944.?>?

Bquu dp Bq dp gs gs b de dest staca acamd mdgg ebs ebs

2 4.1 4.1>> 4.= 4.=22 =

2 4.4 4.4== =.: =.:22 0

  Hgeb`a bxtraekbra

1.44=.446

6.?>0.>6?

=.>09.:2?

D evb evbrs rsdd ge ge bsbs be g tras r as Be Bett d` a` a` bsbs e g Ode ae ae mdmd bra brass ` bcbc ^aès

1 .6 >9 >9 .0 64 64

> ,> >% >%

1 .6 >9 >9 .0 64 64

> ,> >% >%

( @b @bprbmd am amdýe amuhuc a` a`a bqud pg pgs b dest acacamd ge gebs)

(0?. :: ::=.040)

(00.=46.194)

-

-

-

1>6.14=.9>6

>,>:%

00.10>.109

1,9>%

_acgr ebtg

16.662.:24

12.201.?92

Gfcdiamdgebs mg mge bc bc pû pûfcdmg rb rbstrdeid`as

?>.:::.>66

49.=>0.600

69.044.4>?

0>.?69.41=

=,=0%

1>1.01?.1?4

6,04%

Bqudpgs `b mghputamdýe

1>6.19:.?40

4?.66>.4::

Gfcdiamdge Gfcdi amdgebs bs mge bc pûfcdmg pûfcdmg a pcazg pcazg mge aegtamdý aegtamdýee be mubeta mubeta 0.?: 0.?:9.:? 9.:?4.0? 4.0?>>

2.12?.40 2.12 ?.400.>2 0.>244

0.?16.?2 0.?1 6.?22.?: 2.?:99

( @b @bprbmda mdmdýe amuhuc a` a`a bqud pg pgs `b mghputamd ýe ýe)

(:9. 04 04=.2=0)

(:=.914.=?2)

10.?:2.1?>

16.2>1.?6=

Devb rsdgebs `b `b @d @dspgedfdcd`a ` Vb ststrdeid`a Pgtac DeDevbrsdgebs be be Hg Hgeb`a Ea Eamdgeac G trgs r gs t èt ucuc gsgs vac vac grb grbss ` b Be Be td `a` `a`bs bs OdOd eae eaemd mdbr bras as `bc `bc ^aè ^aès De vbvb rs dg eb eb s b e B etet d` a` a` bsbs Eg Eg OdOd ea ea em em db ra s ` bcbc ^a ^a ès Devbrsdgebs `b @dspgedfdcd`a` Vbstrdeid`a ^artdm dpa mdmdýe be be Be Betd`a `b `bs OdOdeaemdbra s y Afi Afieb s Pgtac Devbrsdgebs ^brhaebetbs

1 2.2. 11 11 4.4. 29 29 0

6 ,: 6% 6%

1 1.1. >> >> >.>. >> >> >

1 ,? >% >%

6= .4 4> 4> .? == ==

=, ?9 ?9 %

6 2.2. =: =: 1.1. ?4 ?4 >

= ,: 0% 0%

-

> ,> > %

?=.2:9.29=

6,11%

1.219.9>?

> ,> > %

1.00?.4>?

>,>>%

109.940.>>9

1,>2%

120.>:0.1=4

6,62%

_acgr ebtg _bjèmucgs (@bprbmdamdýe amuhuca`a vbjèmucgs) _acgr ebtg Gfras `b artb

`) Gtras mubetas pgr mgfrar

Gfras be mgestrummdýe (dd) _acgrbs ebtgs

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb; 6>14

6>1:

Fs

Fs

=9.206.94:

=:.>?>.>4=

(=1.:=9.090)

(==.9=?.2:4)

2.9>2.=60

0.=6=.2>0

406.46:

:19.:?9

12.=21.=44

1.199.019

6>?.=:2.:91

1:0.=:2.496

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, ca `bprbmdamdýe maria`a ac rbsucta`g oub `b Fs6>.>49.1=9 y Fs6>.9:2.1>6, rbspbmtdvahbetb. (d) Ac =1 `b `dmdbhfrb `b 6>14, bc rufrg –Pbrrbegs‘ suordý suordý ue dhpgrtaetb demrbhbetg `bfd`g a qub Faemg ]gcd`ardg ].A. a`qudrdý uea prgpdb`a` be ca mdu`a` `b Bc Actg, zgea 16 `b Gmtufrb pgr Fs?.61>.>>> para bc ouemdgeahdbetg `b sus gfimdeas. Asdhdshg, be kuedg y aigstg `b bsta ibstdýe sb amtdvý ca mghpra `b `gs tbrrbegs be ca zgea ]ur `b ca mdu`a` `b Ca ^az pgr ue tgtac `b Fs9.490.4>4.

^aig ae aetdmdpa`g `b `bc dhpubstg a cas traesammdgebs ( d)

9>.?0:.092

?0.9??.9>1

Aetdmdpg m dpg pgr mgh mghpra pra `b fdb fdbebs ebs y sbr sbrvdmd vdmdgs g s (dd)

14.449.?1 4 49.?122

=.4>6. =.4 >6.>=2 > =2

2:0.??6

=4>.9>:

(dd) Bc rufrg –Gfras be Mgestrummdýe‘ ac =1 `b `dmdbhfrb `b 6>14 tahfdäe prbsbeta ue auhbetg sdiedfimatdvg mge rbspbmtg a ca ibstdýe 6>1:, `b bstas vardamdgebs cas hás dhpgrtaetbs `bfd`g a ca mgestrummdýe `b Aibemdas `bpgr Faemg ]gcd`ardgy].A. ufdma`as be ca mdu`a` `b sge Bc Actg, mgrrbspge`dbetbs a Aibemda _damja Fs=.9?:.206 Aibemda Fgcdvda pgr Fs0.=?=.912, asdhdshg sb dedmdý ca ahpcdamdýe `bc B`dfimdg `b Gfimdea Eamdgeac ufdma`g be ca mdu`a` `b Ca ^az zgea ]ae ^b`rg pgr Fs0.062.>6=.

Acqudcbrbs paia`gs pgr aetdmdpa`g Aetdmdpgs sgfrb avaemb `b gfras

1.046.?02

-

]biuu rg ]bi rg s p aia aia`` gs gs p gr gr ae aetd tdmdp mdpa` a`gg

6 .4 .4 >? >? .? .? ?1 ?1

6 .: .: ?6 ?6 .> .> 6: 6:

-

2.211.>>>

Gtrgs paigs aetdmdpa`gs (ddd) Mghdsdgebs pgr mgfrar

4=4.0>2

1.?99.2?9

Iastgs pgr rbmupbrar

1.=90.2=6

1.144.0:6

De`bhe De` bhedzam dzamdge dgebs bs rbm rbmcah caha`a a`ass pgr sde sdedbst dbstrgs r gs

6>14

6>1:

Fs

Fs

Dhpgrtbs betrbia`gs be iaraetèa

662.=26

61:.446

^apbcbrèa, ûtdcbs y hatbrdac `b sbrvdmdg (d)

6.4=?.0>4

6.9>=.=21

H bkbk gr gr as as b d es es ta ca mdmd ge ge bs bs b e d eh eh ub ub fc fc bs bs a cqu dc a` a`g s ( d )

1 .= 24 24. 92 92 4

1. :> :> 2. 2. ?= ?= 4

000.020

-

1.:06.:12

?.:11.604

(94:.64>)

1 >= >=. 6= 6= :.:. 40 40 0

: 2. 2. ?> ?>4 .: 9> 9>

Gpbramdgebs oubra `b jgra (ddd) Gtras partd`as pbe`dbetbs `b dhputamdýe (dv) ^rgirahas y apcdmamdgebs deogrhátdmas (v)

Mghpgsdmdýe `b paigs qub supbrae bc 2% mgrrbspge`dbetb a ca ibstdýe 6>14; (d) Ca sufmubeta –^aig Aetdmdpa`g `bc Dhpubstg a cas Praesammdgebs‘ mgrrbspge`b ac rbidstrg `bc dhpgrtb mghpbesafcb mge bc Dhpubstg a cas Praesammdgebs para ca ibstdýe 6>6> y bc sac`g pbe`dbetb `b mghpbesamdýe `b ca ibstdýe 6>14 qub bs rbidstra`a hbesuachbetb mge ca cdqud`amdýe `bc Dhpubstg a cas Praesammdgebs. (dd) Ca sufmubeta –Aetdmdpg pgr Mghpra `b Fdbebs y ]brvdmdgs‘ mgrrbspge`b a cgs sdiudbetbs aetdmdpgs< Fs=.906.:4> a Harda Rseayg y Kgsb Rseayg pgr mghpra `b fdbe dehubfcb be ca mdu`a` `b Bc Actg urfaedzamdýe _dcca Fgcdvar< Fs140.:02 aetdmdpgs a Hdiubc Mahpgs ]acia`g pgr rboammdýe y haetbedhdbetg `b `dvbrsas aibemdas y APHs be Vbidgeac Bc Actg< Fs1.40:.:>> a Gmtavdg Mrdspde ^gha ^gha pgr mghpra `b dehubfcb be ca cgmacd`a` `b _damja para ouemdgeahdbetg `b Aibemda Deiavd< Fs6.>6>.620 a Hatbg Egvdccg pgr mghpra `b fdbe dehubfcb be [gea ]atäcdtb `b ca mdu`a` `b Bc Actg< Fs2.0::.>>> a Mcau`da Qudetbrgs pgr mghpra `b dehubfcb para ouemdgeahdbetg `b Aibemda _dcca 1rg `b Hayg be mdu`a` `b ]aeta Mruz< Fs622.944 bhprbsa –A@]D A`vaemb` ]brvdmbs Det.‘ pgr sgpgrtb y haetbedhdbetg ^gstdcdge< Fs6>9.?44 bhprbsa –@APBM CP@A‘ pgr haetbedhdbetg y rbegvamdýe `b sgotwarb ]harebt Pgtac Marb y rbspbmtdvg sgpgrtb< Fs=0>.440 a bhprbsa –D]BM FGCD_DA ].V.C.‘ pgr rbegvamdýe `b cdmbemdas aetdvdrus ]gpjgs< Fs=.0:1.::9 bhprbsa –]GOPYAVB GEB FGCD_DA ].V.C.‘ pgr rbegvamdýe `b cdmbemdas Hdmrgsgot Betbrprdsb. Gtrgs aetdmdpgs vardgs pgr Fs6.=1?.009. Mghpgsdmdýe `b paigs qub supbrae bc 2% mgrrbspge`dbetb a ca ibstdýe 6>1:; (d) Ca sufmubeta –^aig Aetdmdpa`g `bc Dhpubstg a cas Praesammdgebs‘ mgrrbspge`b ac rbidstrg `bc dhpgrtb mghpbesafcb mge bc Dhpubstg a cas Praesammdgebs para ca ibstdýe 6>14 y bc sac`g pbe`dbetb `b mghpbesamdýe `b ca ibstdýe 6>1: qub bs rbidstra`a hbesuachbetb mge ca cdqud`amdýe `bc Dhpubstg a cas Praesammdgebs. (dd) Ca sufmubeta –Gtrgs ^aigs Aetdmdpa`gs‘ mgrrbspge`b a paigs pgr aetdmdpgs a< Fs622.944 a –A@]D‘ pgr ]gpgrtb y Haetbedhdbetg sgotwarb ^gstdccdge< Fs6.>= 2.:>> bhprbsa –AC^JA ]T]PBH] ].V.C.‘ pgr rbegvamdýe `b mgetratg sgotwarb Betbrprdsb Hdmrgsgot< Fs60>.??0 a bhprbsa –@APBM‘ pgr haetbedhdbetg y sgpgrtb `b sgotwarb ]hart Ebt Mdsmg< Fs004.>?6 bhprbsa –JD^BV ].A.‘ pgr mghpra `b cdmbemdas ]Y Mbetrac Jdpbr Mbetbr pcataogrha ^G] @gwecga`< Fs=00.2?? bhprbsa –DVBP FGCD_DA ].V.C.‘ pgr sbrvdmdg `b sgpgrtb y cdmbemdahdbetg `b aetdvdrus mgrpgratdvg ]gpjgs Mbetrac Detbrmbpt Z< Fs=11.:?> bhprbsa –AC^JA ]T]PBH] ].V.C.‘ pgr mghpra `b Cdmbemdas para susmrdpmdýe Hdmrgsgot G=?2 A@_ Pjrbat ^rgtbmtdge para aetdpjdsjdei be mgrrbg bcbmtrýedmg< Gtrgs aetdmdpgs vardgs Fs1.:9=.604. b) Fdbebs rbacdzafcbs Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb; 6>14

Fdbebs D eh ehubfcbs rbmdfd`gs be rbmupbram dýe `b mrä`d tgs Fdbebs oubra `b usg ^rbvdsdýe pgr `bsvacgrdzamdýe

6>1:

Fs

Fs

1.>20.240

1.>20. 24 242

16

1

(1.>20.226)

(1.>20.221)

20

02

:.404 :.4 04.09 .090.? 0.?=1 =1

9.9::. 9.9 ::.10:.4 1 0:.41> 1>

 k) Gfcdiamdgebs mge destdtum dgebs fismacbs Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb;

Gfcdiamdgebs mge Destdtumdgebs Odsmacbs

466.21>

1.6??.10=

9.2>2.409

16.2:?.=:6

Mghpgsdmdýe `b paigs qub supbrae bc 2% mgrrbspge`dbetb a ca ibstdýe 6>14; (d) ]ufmubeta –^apbcbrèa, –^apbcbrèa, ûtdcbs y hatbrdac `b sbrvdmdg‘ mgrrbspge`b a; –Ûtdcbs –Ûtdcbs `b Gfimdea‘ pgr Fs=26.24>< –^apbcbrèa y Ogrhucardgs‘ pgr Fs006.?::< –Hatbrdac `b Mghputamdýe‘ pgr Fs1>>.:92< –Hatbrdac `b Haetbedhdbetg‘ pgr Fs1.210< –Hatbrdac `b ]biurd`a`‘ pgr Fs12=.=49< –Hatbrdac `b Cdhpdbza‘ pgr Fs4.6?=< –Hatbrdac `b ^ufcdmd`a`‘ pgr Fs1.:9?.>:6< cgs hdshgs qub sge ccbva`gs ac iastg a hb`d`a `b su mgesuhg. (dd) ]ufmubeta –Hbkgras b destacamdgebs be dehubfcbs acqudca`gs‘, mgrrbspge`b a hg`dfimamdgebs be deorabstrumtura y a`aptamdýe para ouemdgeahdbetg `b gfimdeas `b Faemg ]gcd`ardg ].A. qub sge ahgrtdza`gs hbesuachbetb a partdr `b su demgrpgramdýe. (ddd) ]ufmubeta –Gpbramdgebs oubra `b jgra‘ pgr Fs000.020 qub mgrrbspge`b a mjbqubs rbmdfd`gs `b mcdbetbs oubra `b jgra.

6>14

6>1:

Fs

Fs

:.120.?12

129.>:2

:.120.?12

129.>:2

Bc sac`g `bc rufrg –Gfcdiamdgebs mge Destdtumdgebs Odsmacbs‘ ac =1 `b `dmdbhfrb `b 6>14 bstá mghpubstg pgr @bpýsdtgs pgr Prdfutgs Odsmacbs pgr Fs:.104.414 y Gfcdiamdgebs a traspasar ac PIE pgr mubetas deamtdvas pgr Fs0.?4?. l) Gfcdiamdgebs mge faemgs y betd`a`bs `b fieaemdahdbetg Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb; 6>14

Gfcdiamdgebs mge bc FMF a ^cazg Gfcd Gf cdiam iamdg dgee bs bs mg e be be td` td`a` a`bs bs fi eae eaemd mdbr bras as ` b sbi sbiuu e` e` g p dsg s g a p caz cazgg F@^

Marigs fieaemdbrgs `bvbeia`gs pgr paiar

00:.2>>

(1.160.?>=)

214.2 21 4.219. 19.2:> 2 :>

:.=4> :.= 4>.2? .2?2.> 2.>44 44

Odeaemdahdbetgs `b betd`a`bs `bc bxtbrdgr a pcazg

6.4=?. 6.4 =?.64: 6 4:

^rbvdsdýe bs bspbmèfima pa para mu mubetas pg pgr mg mgfrar `d `dvbrsas

24?.6 24 ?.6?: ?:.29 .2900

Ca mghpgsdmdýe `bc irupg, ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

21=.>>>

6.040. 6.0 40.:04 : 04

?=9.20 ?=9 .209.6 9.6=9 =9

Gfcdiamdge d iamdgebs bs mge Faemg Faemgss y gtras gtras betd`a`bs ` a`bs fieaemd fieaemdbras b ras `bc paès a pcazg

=.961. =.9 61.60? 6 0?

1.424. 1.4 24.420 4 20

Marigs Mar igs `bv `bvbei beia`g a`gss pgr pgr pai paiar ar gf gfcdi cdiamd amdgebs g ebs mge mge bc pûf pûfcdm cdmgg

i) Gtrgs amtdvgs

Mgetratgs aetdmrätdmgs

Gtras Gtr as par partd` td`as as pbe pbe`db `dbetb etbss `b mgf mgfrg rg

 R ed`a` `b Oghbetg `b _dvdbe`a

6>1:

Fs 1::.92=.6:>

Fs 01.00:.16>

= 0= 0= .0 .0 6? 6? .? .? ?? ??

= 2= 2= .0 .0 6? 6? .? .? ?? ??

1.2:=. 1.2 :=.91=.44 9 1=.4422

1.=?0. 1.= ?0.:1:.0= : 1:.0=66

1=.96>.>>>

-

1>=.0>2.>1=

9=.=24.?99

6 .6 .6 == == .> .> 1: 1: .4 .4 20 20

1 .: .: == == .> .> 26 26 .: .: 42 42

Faemg ]gcd`ardg ].A. mubeta mge cèebas `b mrä`dtg `b fieaemdahdbetg mge gtras betd`a`bs eamdgeacbs y bxtraekbras qub acmaezae a R]@ ?2.6>1.920< tbedbe`g ue sac`g pgr utdcdzar `b R]@ :.4:1.216 ac =1 `b `dmdbhfrb `b 6>14 y `b R]@ 4.26=.9:? be ca ibstdýe 6>1:. Be ca ibstdýe 6>14 ca –Mgrpgramdýe Ae`dea `b Oghbetg‘ (MAO) `bsbhfgcsý bc dhpgrtb `b R]@ 6.>>>.>>> a oavgr `b Faemg ]gcd`ardg ].A. be macd`a` `b prästahg, sbiûe mgetratg E¾0>62/6>14 `b obmja 11 `b gmtufrb `b 6>14, bc hdshg tdbeb vdibemda `b ue añg y sbrá paia`brg be `gs mugtas `b R]@ 1.>>>.>>> ma`a uea hás cgs detbrbsbs `bvbeia`gs ac vbemdhdbetg. c) Gtras mubetas pgr paiar Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb; 6>14

Mjbqubs `b Ibrbemda Amrbb`grbs fismacbs pgr rbtbemdgebs a tbrmbrgs

6>1:

Fs

Fs

?.:21.6=6

=.?2>.=>4

1.11?.>?9

1.1?:.>94

=12.690.:>>

61:.=00.=>?

A mrmrbb`grbs pgr marias sgmda cbs rb tbed`as a tbrmbrgs

6. 4? 4?6.26>

=.69=.994

A mrmrbb`grbs pgr marias sgmda cbs a marig `b c a betd `a `a `

=. :9 :99.4:2

0.6:1.6>9 04>.011

Amrbb`grbs fismacbs pgr dhpubstgs a marig `b ca betd`a` (d)

(dv) ]ufmubeta –Gtras partd`as pbe`dbetbs `b dhputamdýe‘ mghpubstg pgr< –^artd`as pbe`dbetbs idrgs‘ a sbr rbbhfgcsa`gs pgr cas bhprbsas rbhbsa`gras< –Vda Odeaemdac ]brvdmbs‘ Fs461.?>0< –Faemg Bsta`g Mjdcb‘ Fs0.994< –Hgeby Irah‘ pgr Fs162.4=>< –Ca Madxa‘ pgr Fs:?.200< –^artd`as pbe`dbetbs pgr tarkbtas `b `äfdtg eg mcdbetbs‘ pgr Fs9>=.:4:, gtras partd`as pbe`dbetbs `b dhputamdýe pgr Fs?>.

@dvd`be`gs pgr paiar

0:2.>04

Amrbb`grbs pgr mghpra `b fdbebs y sbrvdmdgs

:02.2?0

?=?.161

=.4?1.91?

?.120.:0?

(v) ]ufmubeta –^rgirahas y apcdmamdgebs deogrhátdmas‘ mgrrbspge`b mgrrbspge`b ac vacgr ebtg `b ahgrtdzamdýe pgr mghpra `b ]gotwarb @ata ^rbvbetdge `b –DEIBMGV^‘ pgr Fs44.990< mghpra `b cdmbemdas pbrpbtuas Hdmrgsgot `b –AC^JA ]T]PBH]‘ pgr Fs19>.9:9< mghpra `b sgotwarb ^G] `b –JD^BV ].A.‘ pgr Fs1=:.??>< mghpra `b cdmbemdas Mdsmg @EA A`vaetaib `b –@APBM CP@A‘ CP@A‘ pgr Fs 01=.=2:< gtrgs vardgs pgr Fs44.4=1.

^rgvdsdýe para fbebfimdgs sgmdacbs (dd)

Mghpgsdmdýe `b paigs qub supbrae bc 2% mgrrbspge`dbetb a ca ibstdýe 6>1:; (d) ]ufmubeta –^apbcbrèa ûtdcbs y hatbrdac hatbrdac `b sbrvdmdg‘ mgrrbspge`b a; –Ûtdcbs `b Gfimdea‘ Gfimdea‘ pgr Fs2=9.022< –^apbcbrèa y Ogrhucardgs‘ pgr Fs?=4.?=9< –Hatbrdac `b Mghputamdýe‘ pgr Fs199.4:1< –Hatbrdac `b Haetbedhdbetg‘ pgr Fs6.601< –Hatbrdac `b ]biurd`a`‘ pgr Fs16=.2>>< –Hatbrdac `b Cdhpdbza‘ pgr Fs16.14?< –Hatbrdac `b ^ufcdmd`a`‘ pgr Fs1.61>.=01< cgs hdshgs qub sge ccbva`gs ac iastg a hb`d`a `b su mgesuhg. (dd) ]ufmubeta –Hbkgras b destacamdgebs be dehubfcbs acqudca`gs‘, mgrrbspge`b a hg`dfimamdgebs be deorabstrumtura y a`aptamdýe para ouemdgeahdbetg `b gfimdeas `b Faemg ]gcd`ardg ].A. qub sge ahgrtdza`gs hbesuachbetb a partdr `b su demgrpgramdýe. (dv) ]ufmubeta –Gtras partd`as pbe`dbetbs `b dhputamdýe‘ mghpubstg pgr< –^artd`as pbe`dbetbs idrgs‘ a sbr rbbhfgcsa`gs pgr cas bhprbsas rbhbsa`gras< rbhbsa`gras< –Vda Odeaemdac ]brvdmbs‘ Fs1.:?9.:??< –Ca Madxa‘ Fs4=.69>< –Mbma‘ Fs1=.41=< –Faemg Bsta`g Mjdcb‘ Fs9.919< –^artd`as pbe`dbetbs pgr tarkbtas `b `äfdtg eg mcdbetbs‘ pgr Fs1.64:.200< –Gtras partd`as pbe`dbetbs `b dhputamdýe‘ pgr Fs=.2>>.>>> mgrrbspge`dbetb a –DFGC]A Aibemda `b Fgcsa ].A.‘ para apbrtura `b @^O rbiucardza`g be 6 `b bebrg `b 6>14< gtrgs vardgs pgr Fs64.4=4. (v) ]ufmubeta –^rgirahas y apcdmamdgebs deogrhátdmas‘ mgrrbspge`b ac sac`g `bspuäs `b ahgrtdzamdýe pgr mghpra `b ]gotwarb @ata ^rbvbetdge `b ca bhprbsa –Deibmgrp ].A.‘ pgr Fs=44.>4?< mghpra `b Cdmbemdas ^brpbtuas Hdmrgsgot `b –Acpja ]ystbh ].V.C.‘ pgr Fs641.=0=< mghpra `b Cdmbemdas Hdmrgsgot Prub R^ Apbrtura `b –Acpja ]ystbh ].V.C.‘ pgr Fs1:1.9??< mghpra ` b sgotwarb Iatbway `b ca bhprbsa –@]GOP CP@A‘ pgr Fs1>=.91?< mghpra `b sgotwarb ^.G.]. `b ca bhprbsa –Jdpbr ].A.‘ pgr Fs6>6.?29< gtrgs vardgs Fs:9.2?2. j) Od`bdmghdsgs mgestdtud`gs (Eg Apcdma)

Deirbsgs `dobrd`gs Amrbb`grbs vardgs

^rgvdsdýe para dhpubstgs Gtras prgvdsdgebs (ddd) Oaccas `b maka Gpbramdgebs pgr cdqud`ar ^artd`as pbe`dbetbs `b dhputamdýe

6.922.4:2

2.9:2.069

:9.662.:1:

40.204.::4

0.212.41?

1.462.=>?

1?.=::.1?9

16.469.629

-

1?>

=.42>.290

2.1>:.?=0

=4.?1?

-

0 2> 2> .6 21 21 .> >4 >4

= 2: 2: .6 42 42 .9 =1 =1

Mghpgsdmdýe `b rufrgs qub supbrae bc 2%, mgrrbspge`dbetb a ca ibstdýe 6>14; (d) Ca sufmubeta –Amrbb`grbs –Amrbb`grbs fismacbs pgr dhpubstgs dhpubstgs a marig `b ca betd`a`‘ mghpubstg pgr Dhpubstg a cas Praesammdgebs Praesammdgebs Fs0.:=1.:??< @äfdtg Odsmac pgr Fs1.6?0.906< Dhpubstg a cas Rtdcd`a`bs `b cas Bhprbsas pgr ^aiar pgr Fs120.2:4.>4?< Acèmugta A`dmdgeac ac Dhpubstg a cas Rtdcd`a`bs `b cas Bhprbsas pgr ^aiar Fs120.2:4.>4?. (dd) Ca sufmubeta –^rgvdsdýe para fbebfimdgs sgmdacbs‘ mghprbe`b< –^rgvdsdýe para prdha bxtragr`dearda‘ pgr Fs004.416 y –^rgvdsdýe para de`bhedzamdýe‘ pgr Fs:?.992.4>?< para jgerar gfcdiamdgebs sgmdacbs mge bhpcba`gs. (ddd) Ca sufmubeta –Gtras ^rgvdsdgebs‘ mghpubstg pgr< ^rgvdsdýe para paig `b ]brvdmdgs Fásdmgs mghg bebrièa pgr^rgvdsdýe Fs=?6.644< sbrvdmdg tbcboýedmg pgr sbrvdmdg `b cdhpdbza pgrbcämtrdma Fs61>.2=?< ]biurg `b @bsiravahbe pgr Fs4?=.:16< Fs==1.41?< ^rgvdsdýe para paig trdhbstrac APM pgr Fs1>4.=0:< ^rgvdsdýe para paig `b Aiudeac`gs, ^rdhas b De`bhedzamdýe pgr Fs22?.2=4< ^rgvdsdýe para ‘Oge`g `b ^rgtbmmdýe ac Ajgrrdsta‘ (O^A) muartg trdhbstrb Ibstdýe 6>14 pgr Fs1>.464.?49< prgvdsdýe para paig `b jgras bxtra sbrvdmdg `b sbiurd`a` Fs041.0>0 a –^gcdmèa Eamdgeac‘< prgvdsdýe para paig ` b @didtacdzamdýe `b Bxpb`dbetbs Fs=:>.>>> a –^gcysdstbhas‘< –^rgvdsdýe para prgpaiae`a y pufcdmd`a`‘ pgr Fs0>4.:1>< prgvdsdýe para sbrvdmdg `b dhprbsdgebs a –@atbm Ct`a‘ pgr Fs601.=?:< prgvdsdýe para prgirahas `b rbspgesafdcd`a` sgmdac bhprbsardac pgr Fs6=1.=1>< prgvdsdýe para paig a bhprbsa macdfima`gra `b rdbsig pgr Fs690.0>>< Gtras prgvdsdgebs vardas Fs:42.96:.

 

Bsta`gs Odeaemdbrgs

^ái. 1>

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

c) Gtras mubetas pgr paiar (Mget.)

g) Gfcdiamdgebs sufgr`dea`as

q.6) Iastgs fieaemdbrgs

Mghpgsdmdýe `b cgs rufrgs qub supbrae bc 2%, mgrrbspge`dbetb a ca ibstdýe 6>1:;

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

(d) ]ufmubeta –Amrbb`grbs fismacbs fismacbs pgr dhpubstgs a marig `b ca betd`a`‘ mghpubstg mghpubstg pgr Dhpubstg a cas Praesammdgebs Fs0.0>=.941< @äfdtg Odsmac pgr Fs:66.42>< Dhpubstg sgfrb cas Rtdcd`a`bs `b cas Bhprbsas pgr paiar Fs1>?.22:.9:=< Acèmugta A`dmdgeac ac Dhpubstg sgfrb cas Rtdcd`a`bs `b cas Bhprbsas pgr paiar Fs1>?.22 :.9:6.

Fgegs sufgr`dea`gs M arar ig ig s `b vb vb ei ei a` a` gs gs p gr gr pa ia ia r gf cd ia ia mdmd ge ge bs bs s uf uf gr gr `d`d ea ea `a `a s

(dd) ]ufmubeta –^rgvdsdýe para fbebfimdgs sgmdacbs‘ sgmdacbs‘ mghprbe`b< –^rgvdsdýe para prdhas‘ pgr Fs004.416 y –^rgvdsdýe para de`bhedzamdýe‘ pgr Fs40.>44.499< para jgerar gfcdiamdgebs sgmdacbs mge bhpcba`gs. (ddd) Ca sufmubeta –Gtras ^rgvdsdgebs‘ mghpubstg pgr< –^rgvdsdýe para paig `b ]brvdmdgs Fásdmgs‘ pgr Fs1.0:?.06=< –^rgvdsdýe ]biurg `b @bsiravahbe‘ pgr Fs62?.00:< –^rgvdsdýe para paig trdhbstrac APM‘ pgr Fs40.=??< –Apgrtb Oge`g `b ^rgtbmmdýe ac Ajgrrdsta‘ (O^A) muartg trdhbstrb Ibstdýe 6>1: pgr Fs1>.60>.246< prgvdsdýe para paig

Eghfrb `b `bc ^r ^rgiraha ]de ^rgiraha (1)

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

Fs

Fs 1.190

6 4. 4. ?? ?? 4. 4. 19 19>

64 .? ?4 ?4. 19 19 >

?=.1=:.2=0

24.2>6.049

^rbvdsdýe ibeärdma mèmcdma

?=.1=:.200

24.2>6.2>9

?00.>>>

09?.>>>

960

1 2? 2? .2 41 41 .0 66 66

1 04 04 .1 2> 2> .: 4: 4:

Be ca ibstdýe 6>1:, Faemg ]gcd`ardg ].A. rbacdzý ca traesobrbemda `b ca sufmubeta 62=.>1 –^rbvdsdgebs Ibeärdmas _gcuetardas‘ mge afgeg a ca sufmubeta `b rbsucta`gs 2=6.>? –@dshdeumdýe `b ^rbvdsdýe Ibeärdma _gcuetarda para ^är`d`as Outuras aûe eg D`betdfima`as‘< pgr ue dhpgrtb `b Fs69.00> .>>>< mge bc gfkbtg bxmcusdvg b drrbvgmafcb `b ogrtacbmbr bc Mapdtac ^rdhardg `bc Faemg a traväs `b ca rbdevbrsdýe `b utdcd`a`bs, sbiûe Egta `b –Eg Gfkbmdýe‘ A]OD/@]V DD/V-6?14?1/6>1: `b obmja ? `b `dmdbhfrb `b 6>1: y mgeogrhb a cg `dspubstg pgr ca Kueta Ibebrac Bxtragr`dearda `b Ammdgedstas be su rbuedýe `bc 62 `b gmtufrb `b 6 >1:. e) _acgrbs be mdrmucamdýe

2>>.>>>.>>>

Marigs `bvbeia`gs pgr paiar fgegs

6>1: Fs 2>>.>>>. >> >>>

9.?0:.::4

9.===.===

2>9.?0:.:: 2>9.? 0:.::44

2>9.===.== 2>9.= ==.====

]ac`g =1/16/6>14

]ac`g =1/16/6>1:

F ge ge gs gs F ae ae mg mg ]g ]g c ” B hd hd sdsd ýe ýe 1

1 9> 9> .> >> >> .> >> >>

1 9> 9> .> >> >> .> >> >>

 (1) Fgegs Faemg]gc  (1) Fgegs Faemg]gc DD (6)

F ge ge gs gs F ae ae mg mg ]g ]g c ” B hd hd sdsd ýe ýe =

1 ?> ?> .> >> >> .> >> >>

1 ?> ?> .> >> >> .> >> >>

Fgee gs Fg gs Fa Faee mg mg ]g ]g c DD ” Bh Bhds dsdý dýee 1

1 9> 9> .> .> >> >> .> .> >> >>

1 9> 9> .> .> >> >> .> .> >> >>

Marigs `bvbei `bvbeia`gs a`gs pgr paiar fgeg fgegss

9.?0:.::4 9.?0: .::4

9.===.=== 9.=== .===

]ac`g Pgtac _acgrbs be Mdrmucamdýe

2>9.?0:.::4

2>9.===.===

E gh gh fr fr b ` b c a Bh Bh dsds dý e

=. 9= 9= :. :. :: ::4

==0.::?.22 ==0.: :?.22??

6?=.9=:.:: 6?=.9 =:.::44

]ac`g ]ac`g =1/16/6>14 =1/16/6>1:

Eghfrb `b `b ca Bh Bhdsdýe Fgegs ]ufgr`dea`gs Faemg]gc D

?>.>>>.>>>

?>.>>>.>>> ?>.>>>.>>> 9 >.> >.>>> >.> >.>>> > 9 >>.> .>>> >.> >.>>> > 9 >.> >.>>> >.> >.>>> > 9 >.> >.>>> >.> >.>>> > 9 >. >. >> >> >. >. >> >> >

-

0.::?.22? 0.::? .22?

=.9=:.::4 =.9=: .::4

==0.:: ==0 .::?.2 ?.22? 2? 6?= 6?=.9= .9=:.: :.::4 :4

Fakg bc eûhbrg `b rbidstrg A]OD/@]_-B@-F]G->>2/6>1= sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC D‘. Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b Fs?>.>>>.>>>.>>, a ue pcazg `b 9 añgs (6.26> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc 2.2>%. Ca p brdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 10 mgeogrhb ac mrgegiraha `b paigs. (6) Bc (6)  Bc =1 `b gmtufrb `b 6>1=, hb`daetb Vbsgcumdýe E» A]OD E» 969/6>1=, ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD aprgfý y autgrdzý ca bhdsdýe `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC DD‘.   Fakg bc eûhbrg `b rbidstrg rbidstrg A]OD/@]_-B@-F]G->=6/6>1= A]OD/@]_-B@-F]G->=6/6>1= sb autgrdzý b desmrdfdý desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC DD‘.

ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 12 mgeogrhb ac mrgegiraha `b paigs. (=) Bc (=)  Bc 6= `b egvdbhfrb `b 6>19, hb`daetb Vbsgcumdýe E» A]OD E» 1=?1/6>19, ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD aprgfý y autgrdzý bc ^VGIVAHA @B BHD]DGEB] @B FGEG] ]RFGV@DEA@G] FAEMG]GC 6, sbiûe bc eûhbrg `b rbidstrg A]OD/@]_]M-^BF-F]G->>4/6>19.

 Fgegs Faemg]gc ” Bhdsdýe 1

 Fgegs Faemg]gc ” Bhdsdýe =



Fakg bc eûhbrg `b rbidstrg A]OD/@]_-B@-F]G->1>/6>1= sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] FAEMG]GC ” BHD]DGE =‘. Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b Fs1?>.>>>.>>>.>>, a ue pcazg `b : añgs (6.::> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc 2.>>%. Ca pbrdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 1? mgeog rhb ac mrgegiraha `b paigs.

Fgegs ]ufgr`dea`gs Faemg]gc 6 ” Bhdsdýe 6

  Fakg bc eûhbrg `b rbidstrg A]OD/@]_]M-B@-F]G->16/6>1: A]OD/@]_]M-B@-F]G->16/6>1: sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC 6 ” BHD]DGE 6‘. Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b 9>.>>>.>>>.>>, a ue pcazg `b ?.2 añgs (6.=0> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc 2.6>%. Ca p brdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 1= mgeogrhb ac mrgegiraha `b paigs.

Fakg bc eûhbrg `b rbidstrg A]OD/@]_-B@-F]G->1?/6>11 sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] FAEMG]GC ” BHD]DGE 1‘, 

Fgegs ]ufgr`dea`gs Faemg]gc 6 ” Bhdsdýe =

  Fakg bc eûhbrg `b rbidstrg A]OD/@]_]M-B@-F]G->61/6>14 A]OD/@]_]M-B@-F]G->61/6>14 sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC 6 ” BHD]DGE =‘. Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b 9>.>>>.>>>.>>, a ue pcazg `b ?.9 añgs (6.0>> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc 2.2>%. Ca pbrdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y bc ûctdhg mupýe a vbemdhdbetg< ca ahgrtdzamdýe `b mapdtac 1>>% be bc mupýe 10, mgeogrhb ac mrgegiraha `b paigs.   Ac =1 `b `dmdbhfrb `dmdbhfrb `b 6>14 Faemg ]gcd`ardg ].A. rbidstra be bc rufrg 696.>1 `b –Gfcdiamdgebs ]ufgr`dea`as‘ ue tgtac `b Fs==>.>>>.>>>.

 Fgegs Faemg]gc DD ” Bhdsdýe 1



Fakg bc eûhbrg `b rbidstrg A]OD/@]_-B@-F]G->1?/6>10 sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] FAEMG]GC DD ” BHD]DGE 1‘. Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b Fs19>.>>>.>>>.>>, a ue pcazg `b 4 añgs (=.60> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc ?.>>%. Ca pbrdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 1: mgeog rhb ac mrgegiraha `b paigs.

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

Cas bhdsdgebs vdibetbs, bstáe sukbtas ac muhpcdhdbetg `b cgs mghprghdsgs fieaemdbrgs qub sb `btaccae a mgetdeuamdýe, cgs muacbs sge rbvdsa`gs y `doue`d`gs be ogrha trdhbstrac. @bs`b ca bhdsdýe `b cgs fgegs, Faemg ]gcd`ardg ].A. ja muhpcd`g mge cgs mghprghdsgs fieaemdbrgs a`qudrd`gs. Bc mácmucg `b cgs hdshgs ac =1 `b `dmdbhfrb `b 6>14 bs bc sdiudbetb;

6>14

6>1:

Fs

Fs

G fc fc di di am am dg dg eb eb s m ge ge b hp hp rb rb sa sa s p ûf ûf cd ma ma s p gr gr m ub ub et et as as ` b a jg jg rrrr gs gs

6 22 22 .4 42 42 .2 1> 1>

-

Gfcdiamdgebs mge bhprbsas pûfcdmas a pcazg fikg mge aegtamdýe be mubeta

=22.49=.2:1

-

9.6:1.=2>

-

?14.62>.00 ?14.6 2>.0011

-

Marigs `bvbeia`gs pgr pai arar gfcd ia iamd ge gebs mge b hp hprbsas pûfcd ma mas

Ac =1 `b `dmdbhfrb `b 6>14 cgs sac`gs bxpubstgs be mua`rg prbmb`betb mgrrbspge`be a `bpýsdtgs bobmtua`gs pgr ca betd`a` –Ibstgra ^ûfcdma `b ca ]biurd`a` ]gmdac‘. q) Deirbsgs y Iastgs Odeaemdbrgs

De`dma`gr `b Cdqud`bz (DC) * De`dma`gr `b Mgfbrtura (DM) *

`dm-14 10.12%

DC ≢ 2>.>>%

9?.?0%

DM ≢ 1>>.>>%

2?>.2=%

* ^rghb`dg `b cgs ûctdhgs trbs hbsbs

Ac mdbrrb `bc =1 `b `dmdbhfrb `b 6>14 y 6>1:, Faemg ]gcd`ardg ].A. haetdbeb Fs2>> hdccgebs be gfcdiamdgebs pgr vacgrbs be mdrmucamdýe (Fgegs ]bedgr) ac mgrtb `b ahfas ibstdgebs. Ca mubeta amrbb`gra `ge`b sb bxpgebe bstas gfcdiamdgebs bs ca partd`a 6?1.>6 –Fgegs rbprbsbeta`gs pgr aegtamdgebs be mubeta‘.

=1/ 16 16/ 6> 6>1 4 @btaccb HE HB RO_ AmtdvgsOdeaemdbrgs @dspgedfdcd`a`bs Devbrsdgebs Pbhpgrardas =,60% 6,16% Devbrsdgebs ^brhaebetbs =,=0% >,1:% Martbra Fruta 1?,4:% 16 16,0:% ^asdvgsOdeaemdbrgs Gfc diamdgebs mge bc pûfc dmg - mubetas `b ajgrrg 6,29% >,>=% Gfcdiamdgebs mge bc pûfcdmg - a pcazg =,46% 6,69% G fcfc di di am am dg eb eb s m ge ge F ae ae mg mg s y B et et d` d` a` a` bs bs ` b O de ae ae mdmd ah ah db et et g = ,0 44% % 6 ,: 6% 6%

HE

= 1/ 1/ 16 16 /6 /6 >1 >1: HB RO_

-

=,64% 1,:?% 6,0:% 1,:6% 6, 1?,9?% 11 1? 11,?>%

-

-

6, => =>% >, >2 >2% =,::% 6,06% = ,0 =% =% > ,> >>% %

-

r) Vbmupbramdgebs `b amtdvgs fieaemdbrgs Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb; 6>14 Fs Vbmupbramdgebs `b amtdvgs fieaemdbrgs mastdia`gs Vbmupbramdgebs `b mapdtac Vbmupbramdgebs `b detbrbsbs Vbmupbramdgebs `b gtrgs mgembptgs @dshdeumdýe `b prbvdsdýe para mrä`dtgs @dshd @ds hdee umd umdýý e ` b p rbvd rbvdsdý s dý e bs bspp bmèfi bmèfima ma p ara ara de demg mgff raf rafdcd dcd` a` a` ` b mart martbr braa @dshdeumdýe `b `b pr prbvdsdýe p/ p/gtras mu mubetas p/ p/mgfrar @dshdeumdýe `b prbvdsdýe para amtdvgs mgetdeibetbs @dshdeumdýe `b pr prbvdsdýe ibeärdma vg vgcuetarda pa para pär`d`as outuras aûe eg d`betdfima`as @dshdeumdýe `b prbvdsdýe ibeärdma mèmcdma @dshdeumdýe `b pr prbvdsdýe para devbrsdgebs tbhpgrardas @ dsds hd hd eu eu mdmd ýe ýe ` b p rb rb vdvd sdsd ýe ýe p ar ar a d ev ev br br sdsd ge ge bs bs pb pb rh rh ae ae be be tb s fi ea ea em em db ra ra s  

6>1: Fs

2.=:2.9?2 6.>69.:16 10=.:>>

2.?12.4?> 1.?69.>=> 1=?.>?4

6 1.0 1.066 >.> >.>:: 0 1.=?:.660 1.4>= -

6 2.0 2.066 ?.1 ?.1== ? 1.160.:>2 ?.1?: 69.00>.>>>

=.>6:.4?2 : 6? 6? .> 46 46 =0 .6 >6 >6. ?0 ?0 2

20=.1>2 6>.?19 1 .> >1 >1 .4 6= 6= ? 6.6. 40 40 1. 1. :1 :1=

s) Marigs pgr demgfrafdcd`a` y `bsvacgrdzamdýe `b amtdvgs fieaemdbrgs

M ar ar ig igs p /p rb vdvd sdsd ýe ýe b sp spb mèmè fim fim a p/ p/ de mg mg fr fra fd fd cd `a `a ` `b `b m ar ar tb ra ra Marigs p/prbv. Ibeärdma p/demgfrafdcd`a` `b martbra pgr oamtgrbs `b rdbsig a`dmdgeac Marigs p/prbvdsdýe para gtras mubetas pgr mgfrar Marigs p/prbvdsdýe para amtdvgs mgetdeibetbs Marigs p/prbvdsdýe ibeärdma mèmcdma ^är`d`as pgr devbrsdgebs tbhpgrardas ^är`d`as pg pgr devbrsdgebs pb pbrhaebetbs fie fieaemdbras Mastdig `b prg`umtgs pgr martbra ^är`d`as pgr partd`as pbe`dbetbs `b dhputamdýe

6>14 Fs ( ?2 ?2 .4 := :=. 40 40 >)>)

6>1: Fs ( 2? 2?. 00 00 6. 6. 49 49= )

-

(60.:42.04?)

(1.9>?.102) (6.=26) (1>.=>1.>=4) (9:0.4>9) (60.01>.12>) (6>>) (1>> =.1 (1 =.1:: :.9 :.9== =) =)

(1.6:2.4>=) (?.>=9) (1=.6?>.41=) (61=.140) (9.?9?.6>9) (19.204.101) (166 1.= (1 1.=66 4.: 4.:?? 0) 0)

t) Gtrgs deirbsgs y iastgs gpbratdvgs t.1) Gtrgs deirbsgs gpbratdvgs Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb;

Mghdsdgebs pgr sbrvdmdgs (d)

6>14 Fs 22.21>.6>>

6>1: Fs 0=.:46.02:

Iaeaemdas pgr gpbramdgebs `b mahfdg y arfdtrakb (dd) Deirbsgs pgr fdbebs rbacdzafcbs Deirbsgs pg pgr devbrsdgebs pb pbrhaebetbs eg eg fie fieaemdbras Deirbsgs pgr iastgs rbmupbra`gs

11.>90.?4= 1.:06.20: :4>.?4= 6>0.=46

9.0>2.::> 1.0=0.661 ?::.:1: 6=0.6?4

Deirbsgs pgr ca ibebramdýe `b Mrä`dtg Odsmac D_A D ei ei rb rb sg sg s p gr gr m gh gh pb pb es es am am dý e ` bcbc DP a tra vä vä s `b c p ai ai g ` bcbc DR B ( d d) Gtrgs deirbsgs gpbratdvgs `dvbrsgs

4>1.09? 2 .0 2= 2=. ?4 ?4 4 1.?9=.=?1 99 .2 21 21. >? >? 6

9:1.>02 4= :. :. 26 269 1.=0:.912 2 ?.?. 96 96 =. =. 4= 4==

(d) Ac =1 `b `dmdbhfrb `b 6>14 ca sufmubeta –Mghdsdgebs pgr ]brvdmdgs‘ bstá mghpubsta pgr Mghdsdgebs pgr idrgs, traesobrbemdas y ýr`bebs `b paig pgr Fs0.?09.?90< Mghdsdgebs pgr Vbmau`amdgebs Prdfutardas pgr Fs?.420.0>4< Mghdsdgebs pgr Parkbtas `b @äfdtg pgr Fs1.6?1.?2:< Mghdsdgebs pgr gpbramdgebs be APH eg prgpdgs Fs6:>.?=:< Mghdsdgebs pgr ]biurgs Fs=>.42=.?:4< Mghdsdgebs pgr sbrvdmdgs `b mgfraezas Fs4.0=1.42> y Mghdsdgebs pgr sbrvdmdgs faemardgs vardgs pgr Fs1.4:>.1:6. (dd) Ac =1 `b `d mdbhfrb `b 6>14 ca sufmubeta –Iaeaemdas pgr gpbramdgebs `b mahfdg y arfdtrakb‘ pgr Fs11.>90.?4= rbidstra cgs deirbsgs prgvbedbetbs `b cas gpbramdgebs `b mahfdg y arfdtrakb. (ddd) Ac =1 `b `dmdbhfrb `b 6>14 ca sufmubeta –Deirbsgs pgr mghpbesamdýe `bc DP a traväs `bc paig `bc DRB‘ pgr Fs2.02=.?44 rbidstra cgs deirbsgs prgvbedbetbs pgr ca mghpbesamdýe `bc DRB mge bc Dhpubstg a cas Praesammdgebs< be muhpcdhdbetg `b cg de`dma`g be bc Bsqubha E¾6> `bc Haeuac `b Mubetas para Betd`a`bs Odeaemdbras `b A]OD. t.6) Gtrgs iastgs gpbratdvgs

q.1) Deirbsgs fieaemdbrgs

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb; 6>14 Fs

Mghprghdsg MA^ ≢ 11 11.>>%

6>1: Fs (6=4.099.614) (2?? .4 (2 .4 99 99 .1 .1 :? :? ) ( 1. 1. 4= 4= >. >. =2 =22 ) (==.?11.111) (16.610.966) (106.?=?) (=00 0.= (= 0.=22 =.6 =.666 4) 4)

Cas tasas `b rbe`dhdbetg y mgstg `b amtdvgs y pasdvgs mgrrbspge`dbetbs a cgs de irbsgs y iastgs fieaemdbrgs ac =1 `b `dmdbhfrb `b 6>14 y 6>1: sge cas sdiudbetbs;

p) Gfcdiamdgebs mge bhprbsas pûfcdmas

(6) Bc 64 `b hayg `b 6>10, hb`daetb Vbsgcumdýe E» A]OD E» =?4/6>10, ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD aprgfý y autgrdzý bc ^VGIVAHA @B BHD]DGEB] @B FGEG] FAEMG]GC DD, sbiûe bc e ûhbrg `b rbidstrg A]OD/@]_-^BF-F]G->>1/6>10.

6>14 Fs (6?2.>6=.1=0) (?00 .0 (? .0 :0 :0 .: .: 9? 9? ) ( 6. 6. 2> 2> 0.0. 90 90 1)1) (6:.912.22?) (12.::9.??9) (14.294.4>=) (=44 ?.1 (= ?.144 2.: 2.:99 9) 9)

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb;

Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b 9>.>>>.>>>.>>, a ue pcazg `b ?.2 añgs (6.=0> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc ?.>>%. Ca p brdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 1= mgeogrhb ac mrgegiraha `b paigs.



Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b Fs19>.>>>.>>>.>>, a ue pcazg `b 1> añgs (=.?>> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc ?.>>%. Ca pbrdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca ahgrtdzamdýe `b mapdtac, 1>>% be bc mupýe 6> mgeog rhb ac mrgegiraha `b paigs.

Fgegs  ]ufgr`dea`gs Fgegs ]ufgr`dea`gs  Faemg]gc 6 ” Bhdsdýe 1

Marigs pgr gfcdiamdgebs mge bc pûfcdmg Marig Mar igss p gr gr g fcd fcdiam iamdg dgee bs bs mge mge fae faemg mgss y be be td` td`a` a`bs bs `b `b fi eae eaemd mdahd ahdbetg b etg M ar ar ig igs pg pgr gt gt ra ra s m ub ub et et as as pg pgr pa pa ia ia r y mg mg hd hd sdsd ge ge bs bs fie fie ae ae mdmd br bra s Marigs pgr vacgrbs be mdrmucamdýe Marigs pgr gfcdiamdgebs sufgr`dea`as Marigs pgr gfcdiamdgebs mge bhprbsas pûfcdmas

  Fakg bc eûhbrg `b rbidstrg A]OD/@]_]M-B@-F]G->64/6>19 A]OD/@]_]M-B@-F]G->64/6>19 sb autgrdzý b desmrdfdý be bc Vbidstrg `bc Hbrma`g `b _acgrbs `b A]OD, ca bhdsdýe `b Fgegs `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC 6 ” BHD]DGE 1‘.



(1) Bc 69 `b sbptdbhfrb `b 6>11 , hb`daetb Vbsgcumdýe E» A]OD E» ?40/6>11, ca Autgrd`a` `b (1) Bc ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD aprgfý y autgrdzý bc ^VGIVAHA @B BHD]DGEB] @B FGEG] FAEMG]GC, sbiûe bc eûhbrg `b rbidstrg A]OD/@]_-^BF-F]G->11/6>11. A]OD/@]_-^BF-F]G->11/6>11.

De`dma`grbs Odeaemdbrgs Mgbfimdbetb `b `b A`bmuamdýe ^atrdhgedac (MA^) *

?>.>>>.>>>

(1) Bc (1)  Bc 14 `b obfrbrg `b 6>1=, hb`daetb Vbsgcumdýe E» A]OD E» 4:/6>1=, ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD aprgfý y autgrdzý ca bhdsdýe `beghdea`a –FGEG] ]RFGV@DEA@G] FAEMG]GC D‘.



E gh gh fr fr b ` bcbc ^r ^r gi gi ra ra ha ha

6?>.>>>.>>>

0 .: :? :?. 22 22 ?

  Cgs FGEG], sge fgegs gfcdiamdgeacbs y rb`dhdfcbs a pcazg fikg, sbrdb ûedma, pgr ue hgetg `b Fs?>.>>>.>>>.>>, a ue pcazg `b 9.2 añgs (6.9>> `èas macbe`ardg, mghputafcbs a partdr `b ca obmja `b bhdsdýe) y a uea tasa `b detbräs eghdeac, aeuac y fika `bc ?.>>%. Ca pbrdg`dmd`a` y bc paig `b detbrbsbs sb rbacdzaráe ma`a 1:> `èas macbe`ardg y ca

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

Fgegs rbprbs be bet a` a`gs pgr aegtamd ge gebs be mubet a

==>.>>>.>>>

]ac`g ` g Pg Pgtac tac Gfcdiamdge d iamdgebs bs ]uf ]ufgr` gr`dea` dea`as as

6>1:

6>14 Fs

Fs

Marigs `bvbei `bvbeia`gs a`gs pgr paiar gfcdia gfcdiamdgebs mdgebs sufgr sufgr`dea`a `dea`ass

^rbvdsdýe bspbmèfima para amtdvgs mgetdeibetbs ^rbvdsdgebs ibeärdmas vgcuetardas para pär`d`as outuras aûe eg d`betdfima`as ^rbvdsdýe ib ibeärdma vg vgcuetarda mè mèmcdma Gtras ^rbvdsdgebs

Fs

Fgegs ]ufgr`dea`gs Faemg]gc DD Fgee gs Fg gs ]u ]uff gr` gr`de dea` a`gg s Fa Faee mg mg ]g ]g c 6 - Bh Bhds dsdý dýee 1 ^rgiraha `b Bhdsdgebs `b Fgegs ]ufgr`dea`gs Fge Fge gs gs ]u ]uff gr` gr`de dea` a`gg s Fa Faee mg mg ]g ]g c 6 - Bh Bhds dsdý dýee 6 Faemg]gc 6 (=) F ge ge gs gs ] uf uf gr gr `d `d ea ea `g `g s F ae ae mg mg ]g ]g c 6 - B hd hd sdsd ýe ýe =

h) ^rbvdsdgebs

6>14

6>1:

]de ^rgiraha (6)

`b bxtra sbrvdmdg `b sbiurd`a`Fs6=>.01? Fs66>.669a a–^gcysdstbhas‘< –^gcdmèa Eamdgeac‘< paravardas paig `b jgras @didtacdzamdýe `b Bxpb`dbetbs Gtrasprgvdsdýe prgvdsdgebs Fs=4:.9:2.

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: , bs ca sdiudbetb;

6>14

^rg`umtgs pgr devbrsdgebs tbhpgrardas

6>1: Mghdsdgebs pgr sbrvdmdgs (d(d)

Fs

22.620.?4:

0:.=>1.494

^rg`umtgs pgr martbra vdibetb

1.91=.>96.26:

1.2?9.2=:.:24

^rg`umtgs pgr martbra vbemd`a

014.>0:

=40.=1:

^rg`umtgs pgr martbra be bkbmumdýe ^rg`umtgs pg pgr devbrsdgebs pb pbrhaebetbs fie fieaemdbras Mghdsdgebs `b martbra y mgetdeibetb

6?=.>24

624.92:

1.62?.>6=

=.404.024

=:.6==

64.204

1 .9 .9 9> 9> .= .= >= >= .2 .2 :4 :4

1 .? .? 6> 6> .0 9= 9= .4 .4 66 66

Mgstg `b fdbebs rbacdzafcbs Mgstg `b vbeta fdbebs rbmdfd`gs be rbmupbramdýe `b mrä`dtgs Mgstg `b vbeta `b fdbebs oubra `b usg Mgstg `b haetbedhdbetg `b fdbebs rbacdzafcbs Mgestdtumdýe `b prbvdsdýe pgr tbebemda Mgestdtumdýe `b prbvdsdýe pgr `bsvacgrdzamdýe ^är`d`as pgr devbrsdgebs be gtras betd`a`bs eg fieaemdbras Iastgs gpbratdvgs `dvbrsgs (d(dd)

6>14 Fs (1=.44>.>?>)

6>1: Fs (10.>2:.?>:)

  (1) (6.14=) (69.>2?) (6) (=?.269) (?.??4.6=1) ( 6> 6> .9 62 62 .> 9> 9> )

(1?2.=41) (1.4:4) (?4.?>1) (20.=:9) (6?.>:>) (?.1=1.>24) ( 6> 6> .2 >9 >9 .1 12 12 )

 

Bsta`gs Odeaemdbrgs

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.

EGPA : - MGH^G]DMDÝE @B CG] VRFVG] @B CG] B]PA@G] ODEAEMDBVG] (Mget.)

EGPA 4 ” ^APVDHGEDG (Mget.)

t) Gtrgs deirbsgs y iastgs gpbratdvgs (Mget.)

y) ^atrdhgedgs autýeghgs

m) Vbsbrvas

t.6) Gtrgs iastgs gpbratdvgs (Mget.)

Ca mghpgsdmdýe `bc Irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bs ca sdiudbetb;

(d) Ac =1 `b `dmdbhfrb `b 6>14 ca sufmubeta –Mghdsdgebs pgr ]brvdmdgs‘ bstá mghpubsta pgr Mghdsdgebs pgr idrgs, traesobrbemdas y ýr`bebs `b paig pgr Fs6.>96.109< Mghdsdgebs Idrgs Hgeby Irah pgr Fs2:0.6:1< Mghdsdgebs pgr Parkbtas `b @äfdtg _dsa pgr Fs=.194.?96< Mghdsdgebs Máharas `b Mghpbesamdýe pgr Fs46?.>2= y Mghdsdgebs @dvbrsas pgr Fs9.669.4>9. (dd) Ac =1 `b `dmdbhfrb `b 6>14 ca sufmubeta –Iastgs Gpbratdvgs @dvbrsgs‘ bstá mghpubsta pgr bc rufrg ^är`d`as pgr Gpbramdgebs `b Mahfdg y Arfdtrakb pgr Fs?.022.?21 y Gtrgs Iastgs Gpbratdvgs @dvbrsgs pgr Fs61=.2:>. u) Deirbsgs y iastgs bxtragr`deardgs y `b ibstdgebs aetbrdgrbs u.1)  Ca mghpgsdmdýe `b deirbsgs bxtragr`deardgs ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca u.1)  sdiudbetb; 6>14 Deirbsgs bxtragr`deardgs

Fs 6.204.>=?

Fs 0.691.606

6.204.>=?

0.691.606

u.6) Ac mdbrrb `bc =1 `b `dmdbhfrb `b 6>14 y 6>1: bc rufrg `b Iastgs Ibstdgebs Aetbrdgrbs eg prbsbeta sac`g. v) Ia stgs `b a`hdedstramdýe Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

Iastgs `b pbrsgeac (d)

6>14

6>1:

Fs

Fs

(02?.10=.62>)

(2>2.6?2.1:4)

(90.1>0.100)

(9?.6?>.91:)

(0.??6.=>4)

(2.126.611)

(62.:?4.169)

(64.>2>.1>?)

(?.= (? .=:: 9.6 9.611 >)>)

(6.4 (6 .4:: =.6 =.644 :) :)

Haetbedhdbetg y rbparamdgebs

(1=.242.?:2)

(10.14:.:1?)

@bprbmdamdýe y `bsvacgrdzamdýe `b `b fdfdbebs `b `b us usg

(6>.>49.1=9)

(6>.9:2.1>6)

(6.?>>.1:0)

(6.420.6=?)

]brvdmdgs mgetrata`gs (dd) ]biurgs Mghuedmamdgebs y trasca`gs Dhpp ubs Dh ubstg tgss

Ahgrtdzamdýe `b `b ma marigs `d`dobrd`gs y amtdvgs detaeidfcbs Iastgs egtardacbs y ku`dmdacbs Acqudcbrbs Bebrièa bcämtrdma, aiua y macboammdýe ^apbcbrèa, ûtdcbs y hatbrdacbs `b sbrvdmdg ]usmrdpmdgebs y aficdamdgebs

(6.10?.49=)

(6.?4>.006)

(6=.49:.4==)

(6=.?40.4>0)

(9.1=6.224)

(:.>26.9::)

(1>.20=.:62)

(1>.9:0.242)

(=42.21?)

(01:.226)

^rgpaiae`a y pufcdmd`a`

(9.=:?.=>0)

(12.>66.1:2)

Iastgs `b rbprbsbetamdýe

(0.>11)

(26.?>0)

(10.614. 6 14.664) 6 64)

(16.?1=.4 (16.? 1=.4=6) =6)

(092.>==)

(240.=>1)

(0.>4:.0?4)

(0.=>2.:2=)

Apgrtbs bs Autg Autgrd`a` rd`a` `b ]upbrvdsdýe vdsdýe `bc ]dstb ]dstbha ha Odeae Odeaemdbrg mdbrg Apgrtbs gtras betd`a`bs @geamdgebs Huctas t as Autgrd g rd`a` ` a` `b ]up ]upbrvd brvdsdýe s dýe `bc ]ds ]dstbh tbhaa Ode Odeaem aemdbr dbrgg

(69=.2 (69 =.22? 2?))

(6.?16) ? 16)

 ( 0 2.2. 1: 1: 4.4. ?9 ?9 1)1)

( 0> 0> .9 94 94 .? 66 66 )

Iastgs be mghuedmamdýe y pufcdmamdgebs be prbesa

(602.0=2)

(699.?2?)

@dvbrsgs

(4>?.?>1)

(=02.1>6)

(966 >.0 (9 >.022 2.1 2.1?? 1)1)

(999 ?.6 (9 ?.6:: 0.: 0.:66 0) 0)

Apgrtbs ac Oge`g `b Vbbstrumturamdýe Odeaemdbra (OVO) - Art.169 CFBO (ddd)

(d) Ac =1 `b `dmdbhfrb `b 6>14 ca sufmubeta –Iastgs `b ^brsgeac‘ rbidstra cgs iastgs `bvbeia`gs be bc pbrèg`g pgr mgembptg `b rbtrdfumdgebs ac pbrsgeac, `drbmtgrbs y sèe`dmgs< cas marias sgmdacbs mgrrbspge`dbetbs, cgs detbrbsbs y rbmarigs grdidea`gs pgr marias sgmdacbs< cgs rbordibrdgs, uedogrhbs, mapamdtamdýe y gtrgs sbrvdmdgs ac pbrsgeac. (dd) Ac =1 `b `dmdbhfrb `b 6>14 ca sufmubeta –]brvdmdgs Mgetrata`gs‘ bstá mghpubsta pgr iastgs `bvbeia`gs be bc pbrèg`g pgr mgembptg `b sbrvdmdgs mgetrata`gs `b mghputamdýe Fs1:.?42.:=2, sbiurd`a` Fs62.01>.020, asbsgrèa cbiac bxtbrea Fs9=>.:46, au`dtgrda bxtbrea Fs216.=:9, sbrvdmdg `b cdhpdbza Fs4.0?0.99=, mgesuctgrèas mgetrata`as Fs1.4?>.11: y gtrgs sbrvdmdgs mgetrata`gs Fs19.=64.?:2. (ddd)Ac (ddd) Ac =1 `b `dmdbhfrb `b 6> 14 ca sufmubeta –Apgrtbs ac Oge`g `b Vbbstrumturamdýe Odeaemdbra (OVO)‘ rbidstra bc iastg `bvbeia`g `bvbeia`g pgr apgrtbs `b Fs02.1:4.?91. w) Mubetas mgetdeibetbs Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb; 6>14 Fs

94.>49 06:.?09 2>9.900

x) Mu betas `b gr`be

6>14 Fs

Iaraetèas rbmdfd`as Iaraetèas jdpgtbmardas Gtras iaraetèas prbe`ardas @bpýsdtgs be ca betd`a` fieaemdbra Gtras iaraetèas Mubetas `b rbidstrg Cèebas `b mrä`dtg gtgria`as y eg utdcdza`as Cèebas `b mrä`dtg gftbed`as y eg utdcdza`as Mjbqubs `bc bxtbrdgr @gmuhbetgs y vacgrbs `b ca betd`a` Mubetas demgfrafcbs mastdia`as ^rg`umtgs be suspbesg Gtras mubetas `b rbidstrg Mubetas `bu`gras `b fi`bdmghdsgs

Mubetas Amrbb`gras `b cgs ^atrdhgedgs Autýeghgs Mgestdtud`gs mge Vbmursgs ^rdva`gs; ^atrdhgedg Ebtg Deirbsgs Mubetas `b `b Gr Gr`be Mgetdeibetbs Amrbb`gras

6?.2:=.?01 10 9.9 10 9.966 1.4 1.411 9 6>6.4?0 1 90 90 .2 >: >: .2 66 66

1:.6>9.?1? 1 9: 9: .4 .4 10 10 .2 .2 :9 :9 121.?:9 1 49 49 .6 9= 9= .: 4> 4>

6?.691.4?2 210.?0> 109.961.419 1 90 90 .2 >: >: .2 66 66

19.4:6.10? =99.129 19:.410.2:9 1 49 49 .6 9= 9= .: 4> 4>

6>14 Fs Oge`g `b Iaraetèa OGIAM^ Mubetas @bu`gras `b cgs ^atrdhgedgs Autýeghgs Mgestdtud`gs mge Vbmursgs ^rdva`gs; Devbrsdgebs Pbhpgrardas Mart Ma rtbr braa Iastgs

6>1: Fs

6>1: Fs ?0.92? ?0.92? ?0

?1.>?6 ?1.>?6

6.:64.1>>.949 ?.19?.1?1.9>: =1.296.66= 641.22?.:9? 4 .= 6: 6: .= 41 41 .? >0 >0

6.92>.061.242 2.9>6.2==.4?0 14.94:.262 66=.2?=.2:: : .? 4? 4? .= 19 19 .? 96 96

622.0?:.:>? ?1.?1=.190 1.2>6 1.94:.>?9.6=0 6:1.996.600 6>.01=.=:6 1?.406.2>= =?2.?::.046 6 .9 44 44 .4 ?9 ?9 .= =9 =9 16.16:.06 1 6:.06=.? =.?49 49

164.2:>.92? ?2.===.190 1.2>6 1.?94.?09.921 6?1.29=.=?6 19.42>.:62 12.:=4.9:> =11.??=.=22 6 .0 :1 :1 .2 4> 4> .2 >2 >2 11.199.4? 1 99.4?4.6 4.6=4 =4

Ac =1 `b `dmdbhfrb `b 6>14 cas mubetas `b gr`be sb jae demrbhbeta`g be Fs42>.020.02: mge rbspbmtg a ca ibstdýe 6> 1:, bsta vardamdýe mgrrbspge`b prdemdpachbetb ac de mrbhbetg be Iaraetèas jdpgtbmardas pgr Fs9:.?94.6>6< Gtras iaraetèas prbe`ardas pgr Fs09=.?69.900 y @gmuhbetgs y vacgrbs `b ca betd`a` pgr Fs11:.014.0:=.

@b amubr`g mge cg `dspubstg pgr ca cbidscamdýe vdibetb y cgs bstatutgs `b Faemg ]gcd`ardg ].A., `bfb `bstdearsb uea suha eg deobrdgr ac 1>% `b cas utdcd`a`bs cèqud`as y rbacdza`as `b ma`a bkbrmdmdg ac oge`g `b rbsbrva cbiac, jasta acmaezar bc 2>% `bc mapdtac sgmdac. Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 1 `b harzg `b 6>14 aprgfý ca prgpubsta `bc @drbmtgrdg sgfrb bc tratahdbetg `bc rbsucta`g mgrrbspge`dbetb a ca ibstdýe 6>1:, `bstdeae`g a Vbsbrva Cbiac bc hgetg `b Fs6?.::1.1?1. Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 6: `b o bfrbrg `b 6>1: aprgfý ca prgpubsta `bc @drbmtgrdg sgfrb bc tratahdbetg `bc rbsucta`g mgrrbspge`dbetb a ca ibstdýe 6>19, `bstdeae`g a Vbsbrva Cbiac bc hgetg `b Fs69.19=.0:2. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bc sac`g `b ca mubeta asmdbe`b a Fs149.666.21? y Fs19>.=01.=22, rbspbmtdvahbetb. dd)  Gtras rbsbrvas gfcdiatgrdas dd)  Ac =1 `b `dmdbhfrb `b 6>14 y 6>1 :, sb tdbeb be ca sufmubeta –Gtras rbsbrvas eg `dstrdfudfcbs‘, bc sac`g ebtg `b Fs1>.6?=.110 rbsucta`g `b ca rbvbrsdýe y rbmcasdfimamdýe `b cgs dhpgrtbs grdidea`gs pgr ca rbbxprbsdýe `b cgs rufrgs eg hgebtardgs be ouemdýe `b ca vardamdýe `b ca RO_,, mgrrbspge`dbetb ac pbrè  RO_ pbr è g`g g`g mghprbe`d`g betrb bebrg y aigstg `b 6>> : ca hdsha qub oub destrud`a hb`daetb Mdrmucar ]F/2:2/6>>: `b obmja 69 `b aigstg `b 6>>: pgr ca A]OD. ddd) Vbsbrvas vgcuetardas

Mubetas Amrbb`gras `b cgs ^atrdhgedgs Autýeghgs Mgestdtud`gs mge Vbmursgs ^rdva`gs; ^atrdhgedg Ebtg Deirbsgs Mubetas `b `b Gr Gr`be Mgetdeibetbs Amrbb`gras

66.>0:.410 11?? :.4 :.499 >.= >.=11 9 1?>.9=4 1 41 41 .1 94 94 .4 9> 9>

1=.9=?.116 1 >> >> .2 .2 26 26 .4 .4 := := 1>>.=9> 1 10 10 .= :4 :4 .0 ?2 ?2

61.:>>.0?1 0>4.146 1?:.49>.=19 1 41 41 .1 94 94 .4 9> 9>

1=.?10.04= 661.44> 1>>.226.4:6 1 10 10 .= :4 :4 .0 ?2 ?2

Vbidstrgs mgrrbspge`dbetbs a Oge`gs `b Iaraetèa –OGIA_D]^‘ y –OGIAM^‘, destrud`gs hb`daetb Vbsgcumdýe Hdedstbrdac E¾>26 `b ? `b obfrbrg `b 6>12 y Vbsgcumdýe Hdedstbrdac E¾?=0 `b 66 `b kucdg `b 6>1?, bhdtd`gs pgr bc Hdedstbrdg `b Bmgeghèa y Odeaezas ^ûfcdmas. EGPA 4 ” ^APVDHGEDG Ca mghpgsdmdýe `bc Irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bs ca sdiudbetb;

Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 1 `b harzg `b 6>14 aprgfý qub partb `b ca utdcd`a` mgrrbspge`dbetb a ca ibstdýe 6>1: pgr Fs1=?.?61.9>> sba `bstdea`g ac Mapdtac ^aia`g, mge afgeg traesdtgrdg a ca sufmubeta =0=.>1 Vbsbrvas _gcuetardas Eg @dstrdfudfcbs, para su pgstbrdgr mapdtacdzamdýe. Be obmja 66 `b afrdc `b 6>14 y be fasb a ca marta A]OD/@]V D/V-9===4/6>14 `b obmja 11 `b afrdc `b 6>14 sb prgmb`dý a ca mapdtacdzamdýe `b Fs1=?.?61.9>> mgetra Vbsbrvas _gcuetardas eg @dstrdfudfcbs, dhpgrtb prgvbedbetb `b cgs rbsucta`gs amuhuca`gs `b ca ibstdýe 6>1:. Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 6: `b obfrbrg `b 6>1: aprgfý qub partb `b ca utdcd`a` mgrrbspge`dbetb a ca ibstdýe 6>19 pgr Fs1=2.:?9.0>> sba `bstdea`g ac Mapdtac ^aia`g, mge afgeg traesdtgrdg a ca sufmubeta =0=.>1 Vbsbrvas _gcuetardas Eg @dstrdfudfcbs, para su pgstbrdgr mapdtacdzamdýe. Be obmja 60 `b hayg `b 6>1: y be fasb a ca marta A]OD/@]V DD/V-:?>?9/6>1: `b obmja 6? `b afrdc `b 6>1: sb prgmb`dý a ca mapdtacdzamdýe `b Fs1=2.:?9.0>> mgetra Vbsbrvas _gcuetardas Eg @dstrdfudfcbs, dhpgrtb prgvbedbetb `b cgs rbsucta`gs amuhuca`gs `b ca ibstdýe 6>19. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: ca mubeta qub`ý sde sac`g.

6>14 Fs

6>1: Fs

^atrdhgedg Mapdtac Map dtac sgm sgmdac dac Apgg rtbs Ap rtbs e g Map Mapdta dtacdz cdza` a`gg s Vbsb Vb sbrv rvas as

1.19=. 1.1 9=.6>?.:> 6 >?.:>>> 1 .? .? :4 :4 .2 .2 =2 =2 6> 9.0 6> 9.0:: 2.? 2.?== >

1.>=?. 1.> =?.2:2.1> 2 :2.1>>> 1 .? .? :4 :4 .2 .2 =2 =2 1 :> :> .? .? >0 >0 .0 .0 ?4 ?4

Vbsucta`gs Vbsucta `gs Amuh Amuhuca uca`gs `gs Pgtac `bc patrdhgedg

==0.:? ==0 .:?=.> =.>:1 :1 1.919.602.>0?  

6?:.:1 6?: .:11.? 1.?>4 >4 1.0:9.?4>.91=

a) Mapdtac sgmdac Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 1 `b harzg ` b 6>14 aprgfý ca prgpubsta `bc @drbmtgrdg sgfrb bc tratahdbetg `bc rbsucta`g mgrrbspge`dbetb a ca ibstdýe 6>1:, `bstdeae`g a Vbsbrva Cbiac bc hgetg `b Fs6?.::1.1?1, y be muhpcdhdbetg ac @.]. =9?0 `b obmja 6 `b bebrg `b 6>14, mgrrbspge`b qub bc sbds pgr mdbetg (?%) `bc hgetg `b cas Rtdcd`a`bs Ebtas `b ca ibstdýe 6>1: bqudvacbetb a Fs1?.16:.?4: sba `bstdea`g trbs pgr mdbetg (=%) ac –Oge`g `b Iaraetèa `b Mrä`dtgs `b _dvdbe`a `b Detbräs ]gmdac‘ bqudvacbetb a Fs:.>?0.=04 y bc rbstaetb trbs pgr mdbetg (=%) ac Oge`g `b Iaraetèa `b Mrä`dtgs para bc ]bmtgr ^rg`umtdvg bqudvacbetb a Fs:.>?0.=04< asdhdshg, mapdtacdzar ca suha `b Fs1=?.?61.9>>, `bstdea`g a demrbhbetar bc Mapdtac ^aia`g, mge afgeg traesdtgrdg a ca suf mubeta mgetafcb =0=.>1 `b –Vbsbrvas _gcuetardas _gcuetardas Eg @dstrdfudfcbs‘, jasta mgemcudr bc tráhdtb a`hdedstratdvg detbreg y aetb ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD. Ca suha rbstaetb `b Fs:4.1:>.>2 > sb `bstdeb para su `dstrdfumdýe be `dvd`be`gs a cgs Ammdgedstas `b amubr`g a sus rbspbmtdvas partdmdpamdgebs be bc Mapdtac ]gmdac. Ca Kueta Ibebrac Bxtragr`dearda `b Ammdgedstas mbcbfra`a be obmja 1 `b harzg `b 6>14 rbsgcvdý auhbetar bc Mapdtac ^aia`g `b Faemg ]gcd`ardg ].A. pgr ue hgetg `b Fs1=? .?61.9>>, mge cg muac bc eubvg Mapdtac ^aia`g `b ca ]gmdb`a` acmaeza a ca suha `b Fs1.19=.6>?.:>> mghpubstg pgr 11.9=6.>?: ammdgebs mge ue vacgr `b Fs1>> ma`a uea, sbiûe Pbstdhgedg `bc Amta `b ca Prdiäsdha Egvbea Kueta Ibebrac Gr`dearda `b Ammdgedstas E¾94/6>14. Be obmja 66 `b afrdc `b 6>14 y be fasb a ca marta A]OD/@]V D/V-9===4/6>14 `b obmja 11 `b afrdc `b 6>14 sb prgmb`dý a ca mapdtacdzamdýe `b Fs1=?.?61.9>> mgetra Vbsbrvas _gcuetardas eg @dstrdfudfcbs, dhpgrtb prgvbedbetb `b cgs rbsucta`gs amuhuca`gs `b ca ibstdýe 6>1:, mge cg muac bc Mapdtac ^aia`g `b Faemg ]gcd`ardg ].A. asmbe`dý a Fs1.19 =.6>?.:>>. Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 6: `b obfrbrg `b 6>1: aprgfý ca prgpubsta `bc @drbmtgrdg sgfrb bc tratahdbetg `bc rbsucta`g mgrrbspge`dbetb a ca ibstdýe 6>19, `bstdeae`g a Vbsbrva Cbiac bc hgetg `b Fs69 .19=.0:2, y be muhpcdhdbetg ac @.]. =>=? `b 6: `b `dmdbhfrb `b 6>1? bc sbds pgr mdbetg (?%) `bc hgetg `b cas Rtdcd`a`bs Ebtas `b ca ibstdýe 6>19 bqudvacbetb a Fs1?.=>0.>:: `bstdea`g ac muhpcdhdbetg `b ca Ouemdýe ]gmdac

Ca Kueta Ibebrac Bxtragr`dearda `b Ammdgedstas mbcbfra`a be obmja 6: `b obfrbrg `b 6>1: y be muhpcdhdbetg `bc Art. 1> `bc Bstatutg `b Faemg ]gcd`ardg ].A., pgr `bmdsdýe ueáedhb rbsubcvb y aprubfa bc auhbetg `bc Mapdtac ^aia`g y ca mgrrbspge`dbetb bhdsdýe `b Ammdgebs pgr ue hgetg `b Fs1=2.:?9.0>>, mge cg muac bc eubvg Mapdtac ^aia`g `b ca ]gmdb`a` acmaeza a ca suha `b Fs1.>=?.2:2.1>> mghpubstg pgr 1>.=?2.:21 ammdgebs mge ue vacgr `b Fs1>> ma`a uea< sbiûe cg rbsubctg be ca Kueta Ibebrac Gr`dearda `b Ammdgedstas `b 6: `b obfrbrg `b 6>1:. Be obmja 60 `b hayg `b 6>1: y be fasb a ca marta A]OD/@]V DD/V-:?>?9/6>1: `b obmja 6? `b afrdc `b 6>1: sb prgmb`dý a ca mapdtacdzamdýe `b Fs1=2.:?9.0>> mgetra Vbsbrvas _gcuetardas eg @dstrdfudfcbs, dhpgrtb prgvbedbetb `b cgs rbsucta`gs amuhuca`gs `b ca ibstdýe 6>19, mge cg muac bc Mapdtac ^aia`g `b Faemg ]gcd`ardg ].A. asmbe`dý a Fs1.>= ?.2:2.1>>.

Ca mghpgsdmdýe `bc irupg ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, bs ca sdiudbetb;

_acgrbs y fdbebs rbmdfd`gs be mustg`da Gtrgs vacgrbs y fdbebs rbmdfd`gs be mustg`da  

Oge`g `b Iaraetèa OGIA_D]^ Mubetas @bu`gras `b cgs ^atrdhgedgs Autýeghgs Mgestdtud`gs mge Vbmursgs ^rdva`gs; Devbrsdgebs Pbhpgrardas Mart Ma rtbr braa Iastgs

6>1: Fs

`b cgs ]brvdmdgs Odeaemdbrgs< asdhdshg, afgeg traesdtgrdg a ca suf mubeta mgetafcb =0=.>1 `b Vbsbrvasmapdtacdzar vgcuetardasFs1=2.:?9.0>> eg `dstrdfudfcbs,mge jasta mgemcudr bc tráhdtb a`hdedstratdvg detbreg y aetb ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg (A]OD). Ca suha rbstaetb `b Fs46.=:4.:=2 sb ` bstdeb para su `dstrdfumdýe be `dvd`be`gs a cgs Ammdgedstas.

6>1: Fs

:2.4?= 922.040 :01.029

d)   Vbsbrva cbiac d)

6>14 Fs

6>1:

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, cgs rbidstrgs be ca mubeta Deirbsgs bxtragr`deardgs mgrrbspge`be a ca ahgrtdzamdýe `bc deirbsg `dobrd`g pgr ca mgcgmamdýe sgfrb ca par `b Fgegs bhdtd`gs pgr Faemg ]gcd`ardg ].A.

Fgcbtas `b iaraetèa @b sbrdb`a` `b prgpubsta @b muhpcdhdbetg `b mgetratg

^ái. 11

Faemg ]gcd`ardg ].A.

ac =1 `b `dmdbhfrb `b 6>14 y 6>1:

Ca Autgrd`a` `b ]upbrvdsdýe `bc ]dstbha Odeaemdbrg - A]OD hb`daetb Marta Mdrmucar/A]OD/@E^/  MM-6=?/6>1: `b obmja 1> `b bebrg `b 6>1:, bstafcbmb ca mapdtacdzamdýe `b muae`g hbegs bc mdemubeta pgr mdbetg (2>%) `b cas Rtdcd`a`bs Ebtas mgrrbspge`dbetbs a ca ibstdýe 6>1 9. Bc vacgr patrdhgedac prgpgrmdgeac `b ma`a ammdýe ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bs `b Fs10?,=9 y Fs10=,26 rbspbmtdvahbetb. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bc sac`g `b ca mubeta Mapdtac ]gmdac bs `b Fs1.19=.6>?.:>> y Fs1.>=?.2:2.1>> rbspbmtdvahbetb. f) Apgrtbs Eg Mapdtacdza`gs

`) Vbsucta`gs amuhuca`gs Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 1 `b harzg `b 6>14, aprgfý ca prgpubsta `bc @drbmtgrdg sgfrb bc tratahdbetg `bc rbsucta`g mgrrbspge`dbetb a ca Ibstdýe 6>1:, hdshg qub sb `dstrdfuyý `b ca sdiudbetb haebra; bc 1>% para mgestdtumdýe `b Vbsbrva Cbiac Fs6?.::1.1?1< bc ?% `bstdea`g ac muhpcdhdbetg `bc @.]. =9?0 `b Ouemdýe ]gmdac pgr ue dhpgrtb tgtac`b`bMrä`dtgs Fs1?.16:.?4:, `b cgs trbs pgr mdbetg (=%) `bstdea`g acy –Oge`g `b Iaraetèa `b _dvdbe`a `bmuacbs Detbräsbc]gmdac‘ bqudvacbetb a Fs:.>?0.=04 bc rbstaetb trbs pgr mdbetg (=%) `bstdea`g ac –Oge`g `b Iaraetèa `b Mrä`dtgs para bc ]bmtgr ^rg`umtdvg‘ bqudvacbetb a Fs:.>?0.=04< asdhdshg, sb `dspusg Fs:4.1:>.>2> para `dstrdfumdýe `b @dvd`be`gs y Fs1=?.?61.9>> para demrbhbetg `bc Mapdtac ^aia`g, mge afgeg traesdtgrdg a ca suf mubeta mgetafcb =0=.>1 `b Vbsbrvas vgcuetardas eg `dstrdfudfcbs, jasta mgemcudr bc tráhdtb aetb ca A]OD. Ca Kueta Ibebrac Gr`dearda `b Ammdgedstas mbcbfra`a be obmja 6: `b obfrbrg `b 6>1:, aprgfý ca prgpubsta `bc @drbmtgrdg sgfrb bc tratahdbetg `bc rbsucta`g mgrrbspge`dbetb a ca Ibstdýe 6>19, hdshg qub sb `dstrdfuyý `b ca sdiudbetb haebra; bc 1>% para mgestdtumdýe `b Vbsbrva Cbiac Fs69.19=.0:2< bc ?% `bstdea`g ac muhpcdhdbetg `bc @.]. =>=? `b Ouemdýe ]gmdac Fs1?.=>0.>::< asdhdshg, sb `dspusg Fs46.=:4.:=2 para `dstrdfumdýe `b @dvd`be`gs y Fs1=2.:?9.0>> para demrbhbetg `bc Mapdtac ^aia`g, mge afgeg traesdtgrdg a ca suf mubeta mgetafcb =0=.>1 `b Vbsbrvas vgcuetardas eg `dstrdfudfcbs, jasta mgemcudr bc tráhdtb aetb ca A]OD. Bc sac`g `bc rbsucta`g amuhuca`g ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bs `b Fs==0.:?=.>:1 y Fs6?:.:11.?>4, rbspbmtdvahbetb. EGPA 1> - ^GE@BVAMDÝ ^GE@BVAMDÝE @B AMPD_G] T ]RODMDBEMDA ^APVDHGEDAC Ca pge`bramdýe `b amtdvgs ac =1 `b `dmdbhfrb `b 6>14 y 6>1: a edvbc mgesgcd`a`g bs ca sdiudbetb; Ac =1 `b `dmdbhfrb `b 6>14; Mý`dig Matbigrèa D Matbigrèa DD Matbigrèa DDD Matbigrèa D_ Matbigrèa _

Eghfrb Amtdvgs mge rdbsig `b >,>>% Amtdvgs mge rdbsig `b >,1>% Amtdvgs mge rdbsig `b >,6>% Amtdvgs mge rdbsig `b >,2>% Amtdvgs mge rdbsig `b >,92%

Ma tbigrèa _ D APmGtdvPgsAmCgeB r]d bs bsig `b 1,>>%  1 >% sgfrb Amtdvg Mghputafcb   Mapdtac Vbiucatgrdg  Bxmb`betb (@äfimdt) ^atrdhgedac   Mgbfimdbetb `b ]ufimdbemda ^atrdhgedac

]ac`g Amtdvg Mgbfimdbetb `b Vdbsig Fs :24.>94.?>4 >,>> >,1> 1.?>=.44>.494 >,6> 019.6>4.442 >,2> >,92 4:>==..9094:9..6?94?= 1101..94>

1,>>

Amtdvg Mghputafcb Fs =6>.94:.14? 6>:.?>0.44: 4=>6=..40>4>9..:?:4=9 1161..04> 1.60=.64>.>:4 1.949.=62.2:? 220.>=2.049 10,0?%

Ac =1 `b `dmdbhfrb `b 6>1:; Mý`dig

Eghfrb

Matbigrèa D Matbigrèa DD Matbigrèa DDD Matbigrèa D_ Matbigrèa _ Ma tbigrèa _ D

Amtdvgs mge rdbsig `b >,>>% Amtdvgs mge rdbsig `b >,1>% Amtdvgs mge rdbsig `b >,6>% Amtdvgs mge rdbsig `b >,2>% Amtdvgs mge rdbsig `b >,92% Am tdvgs mge rd bs bsig `b 1,>>% PGPACB]  1 >% sgfrb Amtdvg Mghputafcb   Mapdtac Vbiucatgrdg  Bxmb`betb (@äfimdt) ^atrdhgedac   Mgbfimdbetb `b ]ufimdbemda ^atrdhgedac

]ac`g Amtdvg Mgbfimdbetb `b Vdbsig Fs 4>4.900.??> >,>> >,1> 1.6:9.:>=.411 >,6> 011.?00.::4 >,2> >,92 11. 62 621.?14.929 1,>> 1=.:?>.:1=.619

Amtdvg Mghputafcb Fs 629.2?>.9:6 6>2.:66.002 11. 62 621.?14.929 11.912.>>6.4:0 1.191.2>>.64: 1.241.4:=.4=2 06>.0:=.?=9   1=,24%

EGPA 11 - MGEPDEIBEMDA]

d) Apgrtb s drrbvgmafcbs pbe`dbetbs `b mapdtacdzamdýe

Faemg ]gcd`ardg ].A. `bmcara qub, ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, eg tdbeb mgetdeibemdas prgfafcbs sdiedfimatdvas `b edeiuea eaturacbza.

Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, ca mubeta eg prbsbeta sac`g.

EGPA 16 - JBMJG] ^G]PBVDGVB]

dd) @geam dgebs eg mapdtacdzafcbs

Mge pgstbrdgrd`a` ac =1 `b `dmdbhfrb `b 6>14, eg sb jae prg`umd`g jbmjgs g mdrmuestaemdas qub aobmtbe be ogrha sdiedfimatdva cgs prbsbetbs bsta`gs fieaemdbrgs.

Be obmja 14 `b harzg `b 6>1> hb`daetb egtas –YGMMR ” R]AD@/Fgcdvda >04/6>1>‘, –YGMMR ” R]AD@/Fgcdvda >2>/6>1>‘ y –YGMMR ” R]AD@/Fgcdvda >21/6>1>‘ Ygrc` Mguemdc go Mrb`dtRedges, Dem., `ae`g muhpcdhdbetg ac mgevbedg firha`g mge Faemg ]gcd`ardg ].A. autgrdza ca mgesgcd`amdýe `b cgs oge`gs asdiea`gs pgr Fs=4?.9=2 mge rbidstrg be ca mubeta `b @geamdgebs eg Mapdtacdzafcbs. Bstb dhpgrtb mgrrbspge`b a cgs prgybmtgs `b Aibemda Hývdc, cgs hdshgs qub sb bemubetrae be cas rbidgeacbs `b ]aeta Mruz, Mgmjafahfa y Bc Actg mge uea asdieamdýe `b Fs1=6.602 ma`a uea. Bc Mgesbkg ]upbrdgr `bc OGE@B]DO, bhdtdý ca Vbsgcumdýe E» >>6/6>>2, autgrdzae`g ca patrdhgedacdzamdýe `b rbmursgs `b asdstbemda tämedma, sbiûe mgetratg `b prästahg `b 6= `b gmtufrb `b 6>>6, rbmursgs qub sb rbidstrarge be ca mubeta –@geamdgebs eg Mapdtacdzafcbs‘ pgr Fs1.646.:>> be obmja 4 `b kuedg `b 6>>2. Ac =1 `b `dmdbhfrb `b 6>14 y 6>1: bc sac`g `b ca mubeta asmdbe`b a Fs1.?:4.2=2.

EGPA 1= - MGE]GCD@AMDÝ MGE]GCD@AMD ÝE @B B]PA@G] ODEAEMDBVG] Ac =1 `b `dmdbhfrb `b 6>14 y 6>1:, eg bxdstbe devbrsdgebs be gtras betd`a`bs qub rbprbsbetbe partdmdpamdýe sdiedfimatdva `b mapdtac, pgr cg taetg , eg bxdstbe bobmtgs para rbacdzar mgesgcd`amdýe.

  WWWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWW WWWWWWWWWWWWWWWWWWWWWWWWW   Jberry Arae`a V. Ebcsge Egiacbs H. Lurt Lgbedisobst ].   KbobEamdgeac `b Mgetafdcd`a` Ibrbetb Eamdgeac `b Gpbramdgebs a.d. Ibrbetb Ibebrac

WWWWWWWWWWWWWWWWWWWWWWWWW Dieamdg Aiudrrb R. ]èe`dmg

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF