Bab 1 Solutions
Short Description
Download Bab 1 Solutions...
Description
Chapter 1
The properties of gases
Exercises 1.2(b) (a)Could 25 g of argon gas in a vessel of volume 1.5L exert a pressure of 2.0 bar at 30ºC if it behaved as a perfect gas? If not, what pressure would it exert?(b) what pressure would it exert if it behaved as a van der Waals gas? Solution: (a) The perfect gas law is
pV nRT
implying that the pressure would be
p
nRT V
All quantities on the right are given to us except n, which can be computed from the given mass of Ar.
n
so p
25g 0.626mol 39.95gmol 1 ( 0.626mol ) ( 8.31 102 Lbark -1mol -1 ) (30 273k) 10. 5bar 1.5L
not 2.0 bar. (b) The van der Waals equation is
p
RT a 2 Vm b Vm
so p
(8.31 102 LbarK 1 ) ( 30 273)K 10.4bar (1.5L / 0.626mol) 2
1
1.5(b) A sample of hydrogen gas was found to have a pressure of 125 kPa when the temperature was 23ºC, what can its pressure be expected to be when the temperature is 11ºC? Solution:The relation between pressure and temperature at constant volume can be derived from the perfect gas law
pV nRT so
p T and
pi p f Ti T f
The final pressure, then, ought to be
pf
piT f Ti
(125kPa) (11 273)K 120kPa (23 273)K
2
1.7(b) The following data have been obtained for oxygen gas at 273.15K. Calculate the best value of the gas constant R from them and the best value of the molar mass of O2. P/atm -1
Vm/Lmol -1
ρ/(gL )
0.750 000
0.500 000
0.250 000
29.8649
44.8090
89.6384
1.07144
0.714110
0.356975
Solution: All gases are perfect in the limit of zero pressure. Therefore the extrapolated value of pVm / T will give the best value of R. The molar mass is obtained from pV nRT= Which upon rearrangement gives M=
m RT M
m RT RT RT ρ V p p p
The best value of M is obtained from an extrapolation of
p
versus p to p= 0;the intercept is M/RT
Draw up the following table
( pVm / T ) /(L atm K -1 mol -1 )
p / atm
( / p ) /(g L-1 atm -1 ) 0.750 000 0.500 000 0.250 000 From Fig. 1.1(a)
0.082 0014 0.082 0227 0.082 0414
1.428 59 1.428 22 1.427 90
pVm 0.082 0615 L atm K -1 mol -1 T p 0 1.42755g L 1 atm -1 p p 0
From Fig. 1.1(b)
M RT ( 0.082 0615L atm K -1 mol -1 ) ( 273.15K) (1.42755g L 1 atm -1 ) p p 0
31.9987g mol 1 The value obtained for R deviates from the accepted value by 0.005 per cent. The error results from the fact that only three data points are available and that a linear extrapolation was employed. The molar mass, however, agrees exactly with the accepted value, probably because of compensating plotting errors. THE PROPERTIES OF GASES
3
1.8(b) At 100ºC and 120 Torr, the mass density of phosphorus vapour is 0.6388 Kgm-3 . What is the molecular formula of phosphorus under these conditions? Solution:The mass density is related to the molar volume Vm by
Vm=
M
Where M is the molar mass. Putting this relation into the perfect gas law yields
pVm RT so
pM RT
Rearranging this result gives an expression for M; once we know the molar mass, we can divide by the molar mass of phosphorus atoms to determine the number of atoms per gas molecule
M
RT 62.364 LTorr K -1 mol -1 [( 100 273)K] (0.6388gL-1 ) 124gmol 1 p 120Torr
The number of atoms per molecule is
124gmol 1 4.00 31.0gmol 1
4
1.10(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and 225 mg of neon. The partial pressure of neon at 300K is 66.5 Torr. Calculate(a) the volume and (b) the total pressure of the mixture. Solution: (a) The volume occupied by each gas is the same, since each completely fills the container. Thus solving for V from eqn 14 we have (assuming a perfect gas)
V
nJ RT pJ
n Ne
0.225g 20.18gmol-1
1.115 10 2 mol, V
pNe 66.5Torr,
T 300K
(1.115 10 2 mol) ( 62.36LTorr K -1 mol -1 ) ( 300K) =3.137 L 3.14 L 66.5Torr
(b) The total pressure is determined from the total amount of gas, n=nCH4+nAr+nNe.
nCH 4
0.320 g 0.175 g 1.995 10 -2 mol nAr 4.38 10 3 mol 1 1 16.04 g mol 39.95 g mol
n (1.995 0.438 1.115) 10 2 mol 3.548 10 2 mol nJ RT ( 3.548 10 2 mol) ( 62.36LTorr K -1 mol-1 ) ( 300K) p [1] 212 Torr V 3.137L
5
1.13(b) Determine the ratios of (a) the mean speeds, (b)the mean kinetic energies of He atoms and Hg atoms at 25ºC. Solution:(a) The mean speed of a gas molecule is
8 RT c M
1
2
c ( He ) M ( Hg ) so c ( Hg ) M ( He )
1
2
200.59 4.003
1
(b) The mean kinetic energy of a gas molecule is
3 RT c M So
1
2
7.079 1 m c2 ,where c is the root mean square speed 2
2
1 m c2 is independent of mass, and the ratio of mean kinetic energies of He and Hg is 1. 2
6
1.14(b) The best laboratory vacuum pump can generate a vacuum of about 1 nTorr. At 25ºC and assuming that air consists of N2 molecules with a collision diameter of 395 pm, calculate (a) the mean speed of the molecules, (b) the mean free path, (c) the collision frequency in the gas. Solution: (a) The mean speed can be calculated from the formula derived in Example 1.6 1
8 (8.314JK -1 mol -1 ) ( 298K) 8 RT 2 c = c 3 -1 M ( 28.02 10 kg mol (b) The mean free path is calculated from
With d ( 3.95 10 2
10
kT 1
2 2 p
1
2
4.75 10 2 ms 1
[33]
m) 2 4.90 10 19 m 2
Then,
(1.381 10 23 JK -1 ) ( 298K) 4 104 m 5 1 1 atm 1.013 10 Pa 2 2 (4.90 10 19 m 2 ) (1 10 9 Torr) 1 atm 760 Torr
(c) The collision frequency could be calculated from eqn 31, but is most easily obtained from eqn 32, since
and c have already been calculated z
c 4.75c 1 10 2 s 1 4 4.46 10 m
Thus there are 100s between collisions, which is a very long time compared to the usual timescale apparatus used to generate the very low pressure.
7
1.16(b) At an altitude of 15 km the temperature is 217 K and the pressure 12.1 kPa. What is the mean free path of N2 molecules? (σ=0.43nm2) Solution: The mean free path is
kT 1
2 2 p
(1.381 10 23 JK 1 ) (217K)
= 2
1
2
0.43 (10
9
1
m) (12.1 10 Pa atm ) 2
3
4.1 10 7 m
1.17(b) How many collisions per second does an N2 molecule make at an altitude of 15 km?(See Exercise 1.16b for data.) 1
16 2 Solution: Obtain data from Exercise 1.17(a) is z p mkT Substituting 0.43nm , p 12.1 10 Pa , m ( 28.02u), andT 217K 2
3
we
z
obtain
4 (0.43 10 18 m 2 ) (12.1 10 3 Pa)
( 28.02) (1.6605 10
27
k g) 1.381 10 23 J K 1 ( 217 K )
1
2
=9.9×108s-1
8
1.21(b) Estimate the critical constants of a gas with van der Waals parameters a=1.32 atmL2mol-2 and b=0.0436Lmol-1. Solution: The critical constants of a van der Waals gas are
Vc 3b 3( 0.0436 Lmol1 ) 0.131 Lmol1 pc
a 1.32 atm L2 mol-2 25.7 atm 27b 2 27( 0.08206L atm K 1 )2
8a 8(1.32atmL2 mol 2 ) and Tc 109 K 27 Rb 27(0.08206L atm K 1 ) (0.0436 L mol1 )
1.22(b) A gas at 350K and 12 atm has a molar volume 12 per cent larger than calculated from the perfect gas law. Calculate (a) the compression factor under these conditions and (b) the molar volume of the gas. Which are dominating in the sample, the attractive or the repulsive forces? Solution: The compression factor is
Z
pVm Vm RT Vm . perfect
(a) BeacuseVm Vm . perfect 0.12Vm . perfect (0.12)Vm . perfect,we have Z 1.12 Repulsiveforces dominate. (b) The molar volumeis RT V (1.12)Vm . perfect (1.12) p (0.08206L atm K -1 mol-1 ) (350 K) 2.7 L mol1 V (1.12) 12 atm
9
1.24(b) The density of water vapour at 1.00 bar and 383 K is 0.5678 kg m-3.(a) Determine the molar volume Vm of water and the compression factor Z, from these data. (b) Calculate Z from the van der Waals equation with a=5.536L2atm mol-2 and b=0.03049L mol-1. Solution: (a)
Vm
M 18.015 g mol1 31.728 L mol1 ρ 0.5678 g mol1
pVm (1.00 bar) (31.728 L mol1 ) 0.9963 RT (0.083145L bar K 1 mol1 ) (383 K) RT a (b) Using p 2 and subsitituting into the expressionfor Z above we get Vm b Vm Z
Z
Vm a Vm b Vm RT 31.728 L mol-1 5.536L2 atm mol 2 0.9954 31.728 L mol-1 0.03049 L mol-1 31.728 L mol-1 0.03049L mol-1
Comment. Both values of Z are very close to the perfect gas value of 1.000, indicating that water vapour is essentially perfect at 1.00 bar pressure.
10
1.25(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate (a) the volume occupied by 3.2 mmol of the gas under these conditions and (b) an approximate value of the second virrial coefficient B at 300 K. Solution:
The molar volumeis obtained by solving Z Vm
pVm 34, for Vm,which yields RT
ZRT 0.08206 L atm K 1 ) (300 K) 1.059 L mol1 p 20 atm
(a) Then,V nVm (8.2 10 -3 mol) (1.059 L mol-1 ) 8.7 10 -3 L 8.7 mL (b) An approximate value of B can be obtainedfrom eqn 36 by truncationof the seriesexpansion pV B Vm m 1 Vm Z-1 RT
(1.059 L mol-1 ) 0.86 1 0.15 L mol-1
11
1.27(b) The critical constants of ethane are pc=45.6 atm, Vc=148 cm3 mol-1, and Tc=305.4 K. Calculate the van der Waals parameters of the gas and estimate the radius of the molecules. Solution:
The critical volumeof a van der Waals gas is Vc 3b
1 1 so b Vc 148 cm 3 mol1 49.3cm 3 mol1 0.0493 L mol1 3 3 By interpreting b as the cxcluded volumeof a mole of spherical molecules,we can obtain an estimate of molecularsize.The centresof spherical particles are excludedfrom a sphere whose radius is the diameterof those spherical particles (i.e.,twice their radius); that volumetimesthe Avogadro constant is the molar excluded volumeb 4π 2r 3 1 3b so r b N A 4πN 3 2 A 1 3(49.3 cm 3 mol1 ) r 2 4ππ(6.02 10 23 mol1 )
1
3
1
3
1.347 10 8 cm 1.94 10 -10 m
The critical pressureis pc
a 27b 2
so a 27 pc b 2 2748.20 atm 0.0493 L mol1
2
3.16 L2 atm mol 2
But this problem is overdetermined. We have anotherpiece of information 8a 27 Rb According to the constantswe have already determined, Tc should be
Tc
8 3.16 L2 atm mol 2 231 K 27 0.08206 L atm K 1 mol1 (0.0493 L mol1 ) However, the reportedTc is 305.4 K, suggestingour computed a/b is about 25 per cent lower than it
Tc
should be.
12
1.29(b) Suggest the pressure and temperature at which 1.0 mol of (a) H2S, (b)CO2, (c) Ar will be in states that correspond to 1.0 mol N2 at 1.0 atm and 25ºC. Solution:
Statesthat have the same reduced pressure,temperature, and volumeare said to correspond. The reduced pressureand temperature for N2 at 1.0 atm and 25C are pr
p 1.0 atm T (25 273) K 0.030 and Tr 2.36 pc 33.54 atm Tc 126.3 K
The corresponding statesare (a) For H 2S p pr pc (0.030) (88.3 atm) 2.6 atm T TrTc (2.36) (373.2 K) 881 K (Critical constantsof H 2S obtained from handbook of chem istry and physics.) (b)For CO 2 p pr pc (0.030) (72.85 atm) 2.2 atm T TrTc (2.36) (304.2K) 718 K (c) For Ar p pr pc (0.030) (48.00atm) 1.4 atm T TrTc (2.36) (150.72K) 356K
13
1.30(b) A certain gas obeys the van der Waals equation with a=0.76 m6 Pa mol-2. Its volume is found to be 4.00×10-4 m3 mol-1 at 288 K and 4.0Mpa. From this information calculate the van der Waals constant b. What is the compression factor for this gas at the prevailing temperature and pressure? Solution:
The van der Waals equationis p
RT a 2 Vm b Vm
which can be solvedfor b b Vm
RT 4.00 10 4 m 3 mol1 a p 2 Vm
The compression factor is Z
pVm 4.0 106 Pa 4.00 10 4 m 3 mol 1 0.67 RT 8.3145 J K 1 mol1 288 K
14
Problems Numerical problems 1.4 A meterological balloon had a radius of 1.0 m when released at sea level at 20°C and expanded to a radius of 3.0 m when it had risen to its maximum altitude where the temperature was -20°C. What is the pressure inside the balloon at that altitude? Solution:
pV nRT[12] implies that, with n constant,
p fVf Tf
piVi Ti
Solving for p f , the pressureat its maximumaltitude, yields p f Substituting Vi
4 ri 3 pf 3 3 4 r 3 f
Vi T f pi V f Ti
4 3 4 3 ri and V f r f 3 3
3 T f p ri T f p i i T r Ti i f 3
1.0m 253 K 2 1.0 atm 3.2 10 atm 3.0m 293 K
15
1.10 A vessel of volume 22.4 L contains 2.0 mol H2, and 1.0 mol N2 at 273.15 K initially. All the H2 reacted with sufficient N2 to form NH3. Calculate the partial pressure and the total pressure of the final mixture.4 Solution:
We assumethat no H2 remainsafter the reaction has gone to completion. The balanced equationis N 2 3H 2 2NH 3 We can draw up the following table
N2
H2
NH3
Total
Initial amount
n
n'
0
Final amount
n
0
2 n' 3
n n' 1 n n' 3
Specifically
0.33mol
0
1.33 mol
1.66 mol
Mole fraction
0.20
0
0.80
1.00
p
1 n' 3
8.206 10 2 L atm K 1 mol 1 273.15 K nRT 1.66 atm 1.66mol V 22.4 L
p(H 2 ) x(H 2 ) p 0
p(N 2 ) x(N 2 ) p 0.20 1.66 atm 0.33 atm
p(NH 3 ) x(NH 3 ) p 0.80 1.66 atm 0.33 atm
16
1.15 Calculate the molar volume of chlorine gas at 350 K and 2.30 atm using (a) the perfect gas law and (b) the van der Waals equation. Use the answer to (a) to calculate a first approximation to the correction term for attraction and then use successive approximations to obtain a numerical answer for part(b). Solution:
RT (8.206 10 2 L atm K 1 mol1 )(350 K) 12.5 L mol1 p 2.30 atm RT a RT (b)From p 2 39b, we obtain Vm brearrange39b Vm b Vm a p 2 Vm Then, with a and b from Table 1.6 (a)Vm
Vm
(8.206 10 2 L atm K 1 mol1 )(350 K) 5.622 10 2 L mol1 2 2 6.579L atm mol (2.30 atm) 1 2 (12.5 L mol )
28.7 2L mol1 5.622 10 2 L mol1 12.3 L mol1 2.34 Substitution of 12.3 L mol1 into the denominator of the first expressionagain resultsin
Vm 12.3 L mol1 , so the cycle of approximation may be terminated.
17
Chapter 2 The First Law:the concepts Exercises 2.4 (b) A sample consisting of 2.00 mol He is expanded isothermally at 22℃ from 22.8 L to 31.7 L (a) reversibly, (b) against a constant external pressure equal to the final pressure of the gas, and (c) freely(against zero external pressure). For the three processes calculate q,w,△U,and △H. Solution:For a perfect gas at constant temperature
U 0 so q -w For a perfect gas at constant temperature, H is also zero
dH d(U pV ) we have already noted that U does not change at constant temperature; nor does pV if the gas obeys Boyle’s law. These apply to all three cases below. (a) Isothermal reversible expansion
w nRTln
Vf Vi
-(2.00 mol) (8.3145J K -1 mol-1 ) (22 273) K ln
31.7 L 1.62 10 3 22.8 L
q w 1.62 10 3 J (b) Expansion against a constant external pressure
w pex V Where pex
in this case can be computed from the perfect gas law
pV nRT (2.00 mol) (8.3145J K -1 mol-1 ) (22 273) K (1000Lm 3 ) 1.55 105 Pa 31.7 L 5 - (1.55 10 Pa) (31.7 - 22.8)L and w 1.38 10 3 J 3 1000 L m 3 q w 1.38 10 J so p
(c)
Free expansion is expansion against no force, so w 0 , and q -w 0 as well.
18
2.6(b) A sample of argon of mass 6.56 g occupies 18.5 L at 305 K. (a) Calculate the work done when the gas expands isothermally against a constant external pressure of 7.7 kPa until its volume has increased by 2.5 L. (b) Calculate the work that would be done if the same expansion occurred reversibly. Solution :
aw pex V 7.7 10
Pa 2.5L 19 J 1000 L m 3
(b) w -nRTln
3
Vf Vi
2.5 18.5 L 6.56 g - 8.3145J K -1mol-1 305 K ln -1 18.5 L 39.95 g mol -52.8 J
19
2.8(b) A sample of 2.00 mol CH3OH(g) is condensed isothermally and reversibly to liquid at 64℃. The standard enthalpy of vaporization of methanol at 64℃ is 35.3 kJ mol-1. Find q,w,△U,and △H for this process.
Solution: q ΔH n( Δvap H ) 2.00 mol 35.3K J mol Θ
1
70.6 kJ
Because the condensation also occurs at constant pressure, the work is
w pex dV pV The change in volume from a gas to a condensed phase is approximately equal in magnitude to the volume of the gas
w p(- Vvapour) nRT 2.00mol 8.3145 kJ K -1mol-1 64 273K 5.60 103 J ΔU q w (-70.6 5 .60 )kJ -65.0kJ
20
2.11(b) The constant-pressure heat capacity of a sample of a perfect gas was found to vary with temperature according to the expression Cp,m/(JK-1)=20.17+0.4001(T/K). Calculate q,w,△U,and △H for 1.00 mol when the temperature of 1.00 mol of gas is raised from 0℃ to 100℃ (a) at constant pressure (b) at constant volume. Solution :
(a)At constant pressure q CpdT
100 273K
0 273K
20.17 ( 0.4001 )T / K dT J K 1
1 373K 20.17T 0.4001 T 2 / K J K 1 273K 2 1 20.17 373 273 0.4001 3732 2732 J 14.9 10 3 J H 2 1 w pΔΔ nRΔR 1.00 mol 8.3145JK mol1 100 K 831J ΔU q w 14.9 - 0.831 k J 14.1 k J (b) ΔU and ΔH depend only on temperature in perfect gases.Thus, ΔH 14.9k J and ΔU 14.1k J
as above. At constant volume,w 0 and ΔU q , so q 14 .1k J
21
2.13(b) A sample of nitrogen of mass 3.12 g at 23.0℃ is allowed to expand reversibly and adiabatically from 400 mL to 2.00 L. What is the work done by the gas? Solution: Reversible adiabatic work is
w CV T nC p ,m R T f Ti Where the temperatures are related by [solution to Exercise2.12b]
V Tf Ti i V f
1c
C p,m R (29.125 8.3145) J K 1 mol1 C where c v,m 2.503 R R 8.3145 J K 1 mol1
400 10 3 L So Tf 23.0 273.15 K 2.00 L
1 2.503
156 K
3.12 g and w 29.125 8.3145 J K 1 mol1 156 296 K 325 J -1 28.0 g mol
22
2.15(b) Calculate the final pressure of a sample of water vapour of mass 1.4 g that expands reversibly and adiabatically from an initial temperature of 300 K and volume 1.0 L to a final volume of 3.0 L. Take γ=1.3. Solution: For reversible adiabatic expansion
p f v f piVi
V so p f pi i V f
We need pi , which we can obtain from the perfect gas law
pV nRT
so
p
nRT V
1.4 g 0.08206 L atm K 1 mol1 300 K 1 18 g mol pi 1.9 atm 1.0 L
1.0 L p f 1.9 atm 3.0 L
1.3
0.46 atm
23
2.19(b) When 2.0 mol CO2 is heated at a constant pressure of 1.25 atm, its temperature increases from 250 K to 277 K. Given that the molar heat capacity of CO2 at constant pressure is 37.11 JK-1 mol-1, calculate q,△U,and △H . Solution:
ΔH q p C p ΔT nC p,m ΔT 2.0 mol 37.11 J K 1mol1 277 250 K 2.0 10 3 J mol1 ΔH ΔU Δ pV ΔU nRΔR
so
ΔU ΔH nRΔR
ΔU 2.0 10 3 J mol1 2.0 mol 8.3145 J K 1 mol1 277 250 K 1.6 10 3 J mol1
24
2.21 (b) A sample consisting of 2.5 mol of perfect gas at 220 K and 200 kPa is compressed reversibly and adiabatically until the temperature reaches 255 K. Given that its molar constant-volume heat capacity is 27.6 JK-1 mol-1, calculate q,w,△U,and △H,and the final pressure and volume. Solution: For adiabatic compression, q=0 and
w CV T 2.5 mol 27.6 K J 1 mol1 255 220 K 2.4 10 3 J ΔU q w 2.4 10 3 J ΔH ΔU Δ pV ΔU nRΔR
2.4 10 3 J 2.5 mol 8.3145 J K 1 mol-1 255 220 K 3.1 10 3 J The initial and final states are related by c
T V f T f V i Ti so V f V i i T f C 27.6 J K -1 mol1 where c V,m 3.32 R 8.314 J K 1 mol1 nRTi 2.5 mol 8.3145 J K 1 mol1 220 K Vi 0.0229 m 3 3 pi 200 10 Pa c
c
3.32
220 K 3 V f 0.0229 m 0.014 m 14 L 255 K nRTf 2.5 mol 8.3145 J K 1 mol1 255 K pf 3.8 105 Pa 3 Vf 0.014 m 3
25
2.24(b) Consider a system consisting of 3.0 mol O2 (assumed to be a perfect gas) at 25℃ confined to a cylinder of cross-section 22 cm2 at 820 kPa. The gas is allowed to expand adiabatically and irreversibly against a constant pressure of 1.0 atm. Calculate q,w,△U,and △H and △T when the piston has moved 15 cm. Solution: In an adiabatic process, q=0. Work against a constant external pressure is
w pex V 110 10
3
15 cm 22 cm 2 Pa 36 J (100 cm m 1 ) 3
ΔU q w 36 J
w CV ΔT nC p,m -RΔT
ΔT
so
w
nC p,m -R
36 J 0.57 K 3.0 mol 29.355 8.3145J K -1mol-1 H ΔU Δ pV ΔU nRΔR
36 J 3.0 mol (8.3145 J K -1 mol-1 ) 0.57 K 50 J
26
2.27(b) The standard enthalpy of formation of phenol -165.0 kJ mol-1. Calculate its standard enthalpy of combustion. Solution: The reaction is
C6 H 5 OH 7O2 6CO2 3H 2 O
c H 6 f H CO2 3 f H H 2 O f H C6 H 5 OH 7 f H O 2 6 393.51 3 285.83 165.0 70K J mol1 3053.6 kJ mol1
27
Θ
2.29(b) From the following data, determine Δf H for diborane, B2H6(g), at 298 K:
1B 2 H 6 g 3O2 g B 2O 3 s 3H 2Og 22Bs 3 O 2 g B 2O 3 s 2 3H 2 g 1 O 2 g H 2Og 2 Solution: We need f H
r H θ 1941 kJ mol1 r H θ 2368 kJ mol1 r H θ 241.8 kJ mol1
for the reaction
4 2Bs 3H2 g B 2H 6 g reaction(4) reaction(2) 3 reaction(3) - reaction(1) Thus, f H r H reaction(2) 3 r H reaction(3) r H reaction(1) 2368 3 241.8 1941K J mol1 1152K J mol1
28
2.32(b) When 2.25 mg of anthracene, C14H10(s), was burned in a bomb calorimeter the temperature rose by 1.35 K. Calculate the calorimeter constant. By how much will the temperature rise when 135 mg of phenol, C6H5OH(s), is burned in the calorimeter under the same conditions? Solution: For anthracene the reaction is
C14 H10 s
33 O 2 g 14CO2 g 5H 2Ol 2 5 ΔcU Θ Δc H Θ ng RT 26 ng - mol 2 Θ 1 Δc H 7163 k J mol ( Hand book of chem istry and physics ) 5 ΔcU Θ 7163 k J mol1 - 8.3 10 3 k J K -1 mol1 298K (assumeT 298 K) 2 1 -7157 k J mol 2.25 10 3 g 7157 k J mol1 q qV nΔcU Θ 1 172.23 g mol 0.0935k J
C
q T
0.0935 k J 0.0693 k J K 1 69.3 J K 1 1.35 K
When phenol is used the reaction is C 6 H 5 OHs Δc H Θ 3054 k J mol1 Table2.5
15 O 2 g 6CO2 g 3H 2 Ol 2
3 ng - mol 2
ΔcU Θ Δc H Θ ng RT ,
3 3054 k J mol1 8.314 10 3 k J K -1 mol1 298K 2 3050 k J mol1 135 10 3 g 3050 k J mol1 4.375 k J q 1 94.12 g mol q 4.375 k J ΔT 63.1 K C 0.0693 k J K 1 Comment. In this case ΔcU Θ and Δc H Θ differedby 0.1 per cent. Thus, to within 3 significant
figures,it would not have matteredif we had used Δc H Θ insteadof ΔcU Θ , but for very precise work it would.
29
2.35(b) Given that the standard enthalpy combustion of graphite is -393.51 kJ mol-1 and that of diamond is -395.41kJ mol-1, calculate the enthalpy of the graphitediamond transition. Solution: The difference of the equations is Cgr Cd
Δtrans H Θ 393.51 395.41kJ mol 1 1.90 kJ mol 1
30
2.39(b) Use standard enthalpies of formation to calculate the standard enthalpies of the following reactions:
aCyclopropaneg propeneg bHCl aq NaOHaq NaCl aq H 2Ol Solution:
( a ) Δr H Θ Δf H Θ propene , g Δf H Θ cycloropane , g 20.42 53.30k J mol1 32.88 k J mol1
b The met ionic reaction is obtainedfrom H aq Cl aq Na aq OH aq Na aq Cl aq H 2 Ol and is H aq OH aq H 2 Ol Δr H Θ Δf H Θ H 2 O, l Δf H Θ H , aq Δf H Θ OH , aq 285.83 0 229.99 k J mol1 55.84 k J mol1
31
2.40(b) Given the reactions(1) and (2) below, determine (a) Δr H
Θ
Θ
and ΔrU for reaction (3), (b)
Δf H Θ for both HI(g) and H2O(g) all at 298 K. Assume all gases are perfect.
1H 2 g I 2 g 2HI g 22H 2 g O 2 g 2H 2Og 34HI g O 2 g I 2 s 2H 2Og
r H θ 52.96 kJ mol 1 r H θ 483.64 kJ mol 1
Solution:
reaction3 reaction2 2reaction1 ( a ) Δr H Θ 3 Δr H Θ 2 2 Δr H Θ 1
483.64k J mol1 2 52.96k J mol1
-589.56k Jmol1 ΔrU Θ Δr H Θ ng RT
-589.56k Jmol1 3 8.314J K -1 mol1 298 K 1
1
-589.56k Jmol 7.43k J mol 582.13k J mol1
b Δf H Θ HI 1 52.96k J mol1 26.48k J mol1
2 1 Δf H Θ H 2O 483.64k J mol1 241.82k J mol1 2
32
Θ 2.44(b) Calculate Δr H and Δr U
Θ
Θ
at 298 K and Δr H at 348 K for the hydrogenation of ethyne
(acetylene)to ethane (ethylene) from the enthalpy of combustion and heat capacity data in Tables 2.5 and 2.6. Assume the heat capacities to be constant over the temperature range involved. Solution: The hydrogenation reaction is
1C 2 H 2 g H 2 g C 2 H 4 g
Δ r H Θ Tc ?
The reactions and accompanying data which are to be combined in order to yield reaction (1) and Are
2H 2 g 1 O 2 g H 2Ol
Δ C H Θ 2 285.83 k J mol1 2 3C 2 H 4 g 3O2 g 2H 2Ol 2CO2 g Δ C H Θ 3 1411k J mol1
4C 2 H 2 g 5 O 2 g H 2Ol 2CO 2 g
Δ C H Θ 4 1300k J mol1 2 reaction(1) reaction(2) - reaction(3) reaction(4) Hence,
aΔ r H Θ T Δ r H Θ 2 Δ c H Θ 3 Δ c H Θ 4 285.83 1411 1300k J mol1 175k J mol1
ΔrU Θ T Δr H Θ T Δng RT 26 Δ
g
-1
- 175k J mol1 2.48k J mol1 173k J mol1
bΔ r H 348 K Δ r H 298K Δ r C p 348K 298K Example2.7 Δ r C p v J C p ,m J 47 C p ,m C 2 H 4 , g C p ,m C 2 H 2 , g C p ,m H 2 , g Θ
Θ
J
43.56 43.93 28.82 10 3 k J K -1 mol1 29.19 10 3 k J K -1 mol1
Δ r H Θ 348K 175k J mol1 29.19 10 3 k J K -1 mol1 50K 1
176k J mol
33
Problems 2.2 An average human produces about 10MJ of heat each day through metabolic activity. If a human body were an isolated system of mass 65 kg with the heat capacity of water, what temperature rise would the body experience? Human bodies are actually open systems, and the main mechanism of heat loss is through the evaporation of water. What mass of water should be evaporated each day to maintain constant temperature? Solution: Good approximate answers can be obtained from the data for the heat capacity and molar heat of vaporization of water at 25℃.[Table 2.6 and 2.3]
C p ,m H 2O 75.3J K 1 mol1
vap H H 2 O 44.0k J mol1
nH 2 O
65 k g 3.6 10 3 mol 0.018 k g mol1 From ΔH nC p,m ΔT , we obtain ΔT
ΔH 1.0 104 k J 37 K nC p,m 3.6 10 3 mol 0.0753 k J K -1 mol1
m vap H M M ΔH 0.018k g mol1 1.0 104 k J m 4.09k g vap H 44.0k Jmol1
From ΔH n vap H
Comment: This estimate would correspond to about 30 glasses of water per day, which is much higher than the average consumption. The discrepancy may be a result of our assumption that evaporation of water is the main mechanism of heat loss.
34
Chapter 3 The First Law: the machinery Exersises 3.10(b) A vapour at 22 atm and 5℃ was allowed to expand adiabatically to a final pressure of 1.00 atm; the temperature fell by 10 K. Calculate the Joule-Thomson coefficient, µ, at 5℃, assuming it remains constant over this temperature range. Solution: The Joule-Thomson coefficient is the ratio of temperature change to pressure change under conditions of isenthalpic expansion. So
T ΔT 10 K μ 0.48 K atm1 Δp 1.00 22 atm p H
35
3.11(b) For a van der Waals gas, πT a
Vm
2
. Calculate U m for the isothermal reversible expansion of
argon from an initial volume of 1.00 L to 22.1 L at 298 K. What are the values of q and w? Solution:
U dU m dU m dT m dVm T Vm Vm dT 0 in an isothermalprocess, so
U m U m T,Vm
U a dU m m dVm 2 dVm Vm Vm T Vm2 Vm2 22.1 L mol -1 dV a a m U m dU m dV a 2 m -1 2 2 Vm1 m Vm1 m 1.00 L mol Vm Vm Vm
22.1L mol -1 1.00 L mol -1
a a 21.1a 0.95475 L mol-1 -1 -1 -1 22.1L mol 1.00 L mol 22.1L mol 2 2 a 1.345 atm L mol
1.01325 10
U m 0.95475 mol L1 1.345 atm L2 mol 2
0.2841 atm L2 mol 2
1m 3 1.01325 10 Pa atm 3 10 L 3 -1 130P am mol 130 J mol1 RT a w pex dVm and p 2 Vm b Vm
5
1
5
Pa atm1
for a van der Waals gas
RT a dVm 2 dVm q ΔU m so w Vm Vm b Thus q
22.1 L mol -1
1.00 L mol
-1
RT mol - 1 dVm RT lnVm b 122.00.1 LL mol -1 Vm b 22.1 3.22 10 2 8.314 J K -1 mol-1 298 K ln 2 1.00 3.22 10
7.7469 k J mol-1 w 7747 J mol-1 130 J mol-1 7617 J mol-1 7.62 k J mol-1
36
3.12(b)
The
volume
of
a
certain
liquid
V V ' 0.77 3.7 10 4 T/K 1.52 10 6 T/K
2
varies
with
temperature
as
Where V' is its volume at 298 K. Calculate its expansion coefficient, , at 310 K Solution: The expansion coefficient is
α
1 V
V' 3.7 10 4 K 1 2 1.52 10 6 T K 2 V V T p
V' 3.7 10 4 K 1 2 1.52 10 6 T/K K 1
T/K 1.52 10 T/K 2 3.7 104 K 1 2 1.52 106 310 K 1 1.27 103 K 1 2 0.77 3.7 10 4 310 1.52 10 6 310
V' 0.77 3.7 10
4
6
37
View more...
Comments