B33 Olympiad Problems From All Over The World. 9th Grade Content Rasfoieste

July 9, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download B33 Olympiad Problems From All Over The World. 9th Grade Content Rasfoieste...

Description

 

D.M. BĂTINEŢU-GIURGIU  MARIN CHIRCIU   DANIEL SITARU  NECULAI STANCIU, OCTAVIAN STROE  ,

,

,

OLYMPIAD PROBLEMS FROM ALL OVER THE WORLD VOLUME 5 9th GRADE CONTENT

 

3

 

 

Dedicated to the International Mathematical Olympiad

 

4

 

 

Table of Contents INDEX OF PROPOSERS AND SOLVERS .................................................. 7

 

Chapter I. Problems ....................................................................................... 11

 

Chapter II. Solutions Solutions...................................................................................... ...................................................................................... 65

 

BIBLIOGRAPHY................................................................ BIBLIOGRAP HY......................................................................................... ......................... 305

 

5

 

 

INDEX OF PROPOSERS ND SOLVERS Abdallah Almalih, Syria Abdallah El Farissi, Algeria Abdelhak Maoukouf, Morocco

Bojan Bašić, Serbia Boris Colaković, Serbia Carlos Suarez, Ecuador

Abdelmalek Metidji,Turkey Algeria Abdilkadir Altintas, Abdul Aziz, Indonesia Abhay Chandra, India Abinash Mohapatra, India Adil Abdullayev, Azerbaijan Aditya Narayan Sharma, India Adrian Stan, Romania Agathoklis Theos, Greece Alexandar Ivanov, Bulgaria Ali Can Gullu, Turkey Anas Adlany, Morocco Andras Hrasko, United Kingdom Andrei Bara, Romania Andrei Bogdan Ungureanu, Romania Andriy Anikushin, Ukraine Andryi Gogolev, Ukraine Angel Plaza, Spain Anish Ray, Romania Anişoara Dudu, Romania Anouy Chakraborty, India Antonis Anastasiadis, Greece Athanasios Mplegiannis, Greece

Carmen Chirfot,Greece Romania Chris Kyriazis, Claudia Nanuti, Romania Clemens Heuberger, Austria Cornel Ioan Vălean, Romania Cristian Heuberger, Romania D. Basylev, Belarus D.M. Bătineţu-Giurgiu, Romania D. Odgerel, Mongolia Dan Griller, United Kingdom Dan Nanuti, Romania Dan Radu Seclaman, Romania Dana Heuberger, Romania Dang Thanh Tung, Vietnam Daniel Sitaru, Romania Danila Mysak, Ukraine Danilo Khilko, Ukraine Dat Vo, Vietnam David Monk, United Kingdom Dhanh Tang Tung, Vietnam Dimitris Kastriotis, Greece Dinh Tien Dung, Vietnam Do Huu Duc Thinh, Vietnam

Avishek Mishra, India B.Amarsanaa, Mongolia B. Bat-Od, Mongolia B. Battsengel, Mongolia B. Bayarjargal, Mongolia B. Bayasgalan, Mongolia B. Khoroldagva, Mongolia B. Sandagdorj, Mongolia B. Ulziinasan, Mongolia Babis Stergioiu, Greece Bedri Hajrizi, Kosovo Bernd Kreussler, Ireland

Do Quoc Chinh, Vietnam Dorin Marghidanu, Romania Duong Viet Hong, Vietnam Dušan Đjukić, Serbia E. Enkhzaya, Mongolia Ear Bunhpeng, Cambodia Erdene Natsagdorj, Mongolia Finbar Holland, Ireland Fotini Kaldi, Greece Francis Fregeau, Canada Francisco Javier Garcia Capitan, Spain G. Batzaya, Mongolia

Bogdan Rublyov, Ukraine

G. Bayrmagnai, Mongolia

 

7

 

Geanina Tudose, Romania George Apostolopoulos, Greece Gerhard Woeginger, Austria Gheorghe Alexe, Romania Gheorghe Boroica, Romania Gheorghe Szollosy, Romania Gordon Lessels, Ireland Hamza Mahmood, Pakistan Hasan Bostanlik, Turkey Henry Ricardo, USA Hoang Le Nhat Tung, Vietnam Horia Nicolcea, Romania Hung Nguyen Viet, Vietnam I. Voronovich, Belarus Ibrahim Abdulazeez, Nigeria Igor Soposki, Macedonia Ilkin Guliyev, Azerbaijan Ilko Brnetić, Croatia Imad Zak, Lebanon Ior Nagel, Ukraine Iuliana Traşcă, Romania Jack Smith, United Kingdom Jan Kucharik, Slovakia Jan Mazak, Slovakia Jaromir Simsa, Slovakia Jaroslav Svrcek, Slovakia Jim Leahy, Ireland José Luis Díaz-Barrero, Spain Karl Czakler, Austria Kays Tomy, Tunisia Kevin Soto Palacios, Peru

Le Viet Hung, Vietnam Lelia Nicula, Romania Leonid Bedratyuk, Ukraine Long Nhat, Vietnam Lucian Stamate, Romania Madan Beniwal, India Manish Moryani, India Manish Tayal, India Marian Dincă, Romania Marian Ursărescu, Romania Marin Chirciu, Romania Marius Drăgan, Romania Marjan Milanović, Serbia Mark Flanagan, Ireland Marko Radovanovik, Serbia Martin Lukarevski, Macedonia Martin Panak, Slovakia Matija Bucić, Croatia Mehmet Sahin, Turkey Menghor Thuo, India Michel Rebeiz, Lebanon Mihalcea Andrei Ştefan, Romania Mihaly Bencze, Romania Miroslav Marinov, Bulgaria Mithun Chakraborty, India Mohammed Hijazi, Iordania Mohammed Lamine, Morocco Munkhuu Tomorbaatar, Mongolia Myagmarsuren Yadamsuren, Mongolia  N. Argilsan, Mongolia Mon golia  N. Naboj, Croatia

Khalef Ruhemi, Khanh Hung Vu,Iordania Vietnam Khung Long Xang, Vietnam Kiran Kedlaya, USA Koczinger Éva, Romania Kovács Béla, Romania Kristina Ana Skreb, Croatia Kunihiko Chikaya, Japan Laurențiu Panaitopol, Romania Lazaros Zachariadis, Greece Le Khanh Sy, Vietnam Le Minh Cuong, Vietnam Le Van, Vietnam

 N. Plotnikov, Ukrai Ukraine  Nawar Alasadi, Iraqne  Neculai Stanciu, Romania  Nela Ciceu, Romania  Ngo Dinh Tuan, Vietnam Vie tnam  Ngo Minh Ngoc Bao, Vietnam Vi etnam  Nguyen Minh Triet, Vietnam V ietnam  Nguyen Minh Tri, Vietnam Viet nam  Nguyen Ngoc Tu, Vietnam  Nguyen Phuc Tang, Vietnam  Nguyen Thanh Nho, Vietnam  Nguyen Van Nho, Vietnam Vietna m  Nho Nguyen Van, Vietnam Vietna m

 

8

 

 Nicolae Nica, Romania  Nicolae Papacu, Romania  Nikola Adzaga, Croatia  Nikola Petrović, Serbia  Nirapada Pal, India  Nitin Gubani, India Indi a Octavian Stroe, Romania Oles Dobosevycs, Ukraine Omar Raza, Pakistan Pakawut Jiradilok, Thailand Patrik Bak, Slovakia Paul Jeffreys, United Kingdom Pavel Calabek, Slovakia Peter Novotny, Slovakia Petre Daniel Alexandru, Romania Pham Quoc Sang, Vietnam Pham Quy, Vietnam Phan Loc So'n, Vietnam Pryanka Banerjee, India Quang Minh Tran, Vietnam Radek Horenski, Slovakia Rahim Shabazov, Azerbaijan Rajeev Rastogi, India Rajsekhar Azaad, India Ravi Prakash, India Redwane El Mellas, Morocco Regragui El Khammal, Morocco Richdad Phuc, Vietnam Robert Toth, Slovakia Rosie Cates, United Kingdom Rovsen Pirguliyev, Azerbaijan

Shahlar Maharramov, Azerbaijan Shivam Sharma, India SK Abdul Halim, India SK Rejuan, India Sladjan Stanković, Macedonia Soumava Chakraborty, India Soumava Pal, India Soumitra Mandal, India Stanislav Chobanov, Bulgaria Steiner Barabbas, Tunisia Stephan Wagner, Austria Stephen Buckley, Ireland Stipe Vidak, Croatia Su Tanaya, India Subhajit Chattopadhyay, India Sumet Ketsri, Thailand T. Bazar, Mongolia T. Khulan, Mongolia Thanasis Xenos, Greece Theodoros Sampas, Greece Theresia Eisenkolbl, Austria Thomas Read, United Kingdom Titu Zvonaru, Romania Togrul Ehmedov, Azerbaijan Tom Bowler, United Kingdom Tom Laffey, Ireland Tonći Kokan, Croatia Tran Van Hien, Vietnam Ts. Bathuu, Mongolia Tuk Zaya, Mongolia U. Batzorig, Mongolia

Roxana Mihaela Stanciu, Romania Rozeta Atanasova, Macedonia Rustem Zeynalov, Azerbaijan Safal Das Biswas, India Said Ibnja, Morocco Sameer Shihab, Saudi Arabia Sanong Huayrerai, Thailand Saptak Bhattacharya, India Sarah El, Morocco Sarka Gergelitsova, Slovakia Şerban George Florin, Romania Seyran Ibrahimov, Azerbaijan Sh. Dorjsembe, Mongolia

Uche Okeke, Nigeria Trust UnitedEliezer Kingdom Mathematics V. Adiyasuren, Mongolia V. Kaskevich, Belarus V.N. Murty, USA Vadim Mitrofanov, Ukraine Vaggelis Stamatiadis, Greece Vasile Jiglău, Romania Vijay Rana, India Vitaly Senin, Ukraine Vladislav Yurushev, Ukraine Walter Janous, Austria Wasma Nayer, Pakistan

 

9

 

Wijit Yangjit, Thailand Yasiinski Vyacheslav, Ukraine Yen Tung Chung, Taiwan Yubal Barrios, Spain

 

Yubian Andres Bedoya Henao, Colombia Zhang Yun, China Trinh Quoc Huy, Vietnam David Bonclay, Vietnam

10

 

 

Chapter I Problems

  be a fixed real number. Determine all functions  f   :       satisfying  y) for all x, y  .  f (  f  f (  xx + y)f( x  x – y)) = x2 +  yf ( y W ALTER J ANOUS, A  AUSTRIAN NMO, 2017 1. Let

2. Let  M   be be

a set of 2017 positive integers. For every non-empty  A    M  M , we define  f (  A A) = { x  M   M  : : x is divisible by odd number of elements of A}. Find the minimum number of colors such that it is possible to paint all non-empty subset of  M  in   in such a way that, whenever  A    f f ( A  A), the sets  A and  f ( A  A) are in different colors.  ALEKSANDAR I VANOV, BULGARIAN NMO, 2017 3. Let

n be a positive integer and a1, a2, ..., a2n  be 2n distinct integers. Given that the equation  x  x – a1  x  x – a2 ...  x  x – a2n = ( n!)2 has an integer solution x = m, find m in terms

of a1, ..., a2n. 4. We

SINGAPORE, SMO, 2017

consider the real numbers x, y and z , which satisfy the system of equations:

 x   y  z   3 .   xy   yz    xz   2 

Compute max( x  x) + min( x  x). D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  5. Given

7 distinct positive integers, prove that there is an infinite arithmetic progression of positive integers a, a + d , a + 2d , ..., with a  d , that contains exactly 3 or 4 of the 7 given integers. SINGAPORE, SMO, 2017

6. Solve

the equation x2(2 – x)2 = 1 + 2(1 – x)2. FINBAR HOLLAND, IRELAND SHL, 2017

7. Show

that, for all  x,  y,  z , w, ( x  x  – w)( y  y –  z ) + ( y  – w)(  zz  –  x) + ( z   – w)( x  x  –  y) = 0 and sin(  xx – w)sin( y  y – z ) + sin( y  y – w)sin(  z  z  –  – x) + sin(  z  z  –  – w)sin( x  x – y) = 0. FINBAR HOLLAND, IRELAND SHL, 2017 = 4 n2 + 7n2  + 3 n + 6. Prove that if n is an integer, then  f (n) is not the cube of an integer. TOM L AFFEY , IRELAND SHL, 2017

8. Let  f (n)

 

11

 

each positive integer n, let c p = 2017n. Suppose that a function f  : :    satisfies the following two conditions: (i) f (m + n)  2017    f f (m)    f f (n + 325) for each positive integer m, n; (ii) 0 0, then:

  6 3 

a b

   2    6 3 b   a2

b c

 A



2 D ANIEL SITARU, RMM, ROMANIA

  c c2   2    6 3  2   15.   c   a a  D ANIEL SITARU, RMM, ROMANIA b2

 ABC , the following relationship holds: 1  (a  2 ab )(b  2

14

1 .    r  ab ) 18 D ANIEL SITARU, RMM, ROMANIA



 

29. If

in  ABC :

 a  , y  cos 1  b  , z  cos 1  c  ,  then:      bc ca ab  x y z  3 tan tan tan  .   2 2 2 9 D ANIEL SITARU, RMM, ROMANIA 

 x  cos 1 

30. In

 ABC , the following relationship holds: (a 2  b 2  c 2 ) a 2  b 2  c 2  6abc 6 cos A cos B cos C .   D ANIEL SITARU, RMM, ROMANIA 

31. Let

be n  * \ {1} și ak   , k    1, n.  Prove that: n



2

ak

ak21

 ak ak 1 

k 1

n

  ak ; an 1  a1 .   k 1

D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU,  ROMANIA, RMM SUMMER EDITION, 2016 32. Prove

that if a, b, c, d  >  > 0, then: a2 + b2 + c2 + d 2 = 1; abc + bcd   + + cda + dab =

1 .  2

a2

4   1  2bcd  5.   D ANIEL SITARU, ROMANIA, RMM SUMMER EDITION, 2016 33. If x, y, z  

 (0, ), then: x + y + z  +  +

1  x

3



1 y

3



1 3





12



3 3 D ANIEL SITARU, ROMANIA, RMM SUMMER EDITION, 2016

consider f ( x  x) =  x3  + bx2 + cx + d  with   with  f (2014) (2014) = 2013 and g ( x  x) =  x2  – 2 x + 2014 such that the equation  f ( g   g ( x  x)) = 0 doesn’t have real roots. Solve the equation  f ( x  x) = 0 knowing that it has three distinct natural numbers roots. D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  34. We

35. If

a, b, c > 0, (a + b)(b + c)(c + a) = a2b2c2, then: ab  bc

 

15



ca

 6.   D ANIEL SITARU, RMM, ROMANIA

 

36. If

a, b, c > 0, a2 + b2 + c2 = 3, then:

 6  37. In

b2 a2

3

c2



b2

3



 a  b  c )2 .    (  c2  3  D ANIEL SITARU, RMM, ROMANIA a2

 ABC , the following relationship holds: a4

b2

c4

2

tan 22  tan 22 tan 23  tan 23  48S  .   D ANIEL SITARU, RMM, ROMANIA  38. There

are 12 chairs which are aligned and labeled by numbers 1; 2; ...; 12 from left to right. A grasshopper can jump from one chair to another following the rule: from a chair with number k  it  it can jump to the chair with number n if and only if k  –  – n = = 5 or k   –– n = 8. It is known that grasshopper managed to do the jump so that it visited all chairs exactly once. What chair could be the initial position for the grasshopper? UKRAINIAN NMO, 2016 39. Let x, y, z  be  be

real numbers from segment [0; 1]. Prove that:  x – y)6 + ( y  y – z )6 + (  z  z  – x)6  6.  x5 + y5 + z 5) + ( x  x4 + y4 + z 4) + ( x ( x  Y  ASINSKII V YACHESLAV, UKRAINIAN NMO, 2016

40. Find

all real numbers x satisfying the following equation:  x + { x})2 – ( x  x + { x}) = 6[ x  x]{ x} – 1, ( x where [ x  x] and { x} denote the integer part and fractional part of x, respectively. NGUYEN VIET HUNG, V  VIETNAM, RMM A  AUTUMN EDITION, 2016 

41. A

convex quadrilateral  ABCD is inscribed in a circle. The lines  AD and  BC  meet   meet at point  E . Points  M   and  N   are taken on the sides  AD  and  BC , respectively, so that  AM   :  MD  =  BN   :  NC . Let the circumcircles of triangle  EMN  and   and quadrilateral  ABCD  intersect at point  X  and   and Y . Prove that either the lines AB, CD and  XY have a common  point, or they are all parallel. DUŠAN ĐJUKIĆ, SERBIAN NMO, 2017 42. Let p be

a prime. Show that

3

 3  p 5  is irrational. THAILAND NMO, 2017

all functions f   ::    which satisfy:  f (  f  f ( x  x) –  y  y)  xf   xf ( x  x) + f ( y  y) (1) for all real numbers x and y.

43. Find

 

16

THAILAND NMO, 2017

 

all functions f   :: +  + such that:  f ( xf   xf ( x  x) + f ( y  y)) = (  f  f ( x  x))2 + y (1) for all positive rational x, y.

44. Find

THAILAND NMO, 2017

all functions f :      such that for every positive integer m the following is true: If we denote by d 1, d 2, ..., d n all the divisors of number m, then:  f (d 1)   f   f (d n) = m.  f (d 2)  ...   f  P AVEL C ALABEK , CZECH & SLOVAK NMO, 2017

45. Find

46. Find

all triplets of integers (a, b, c) such that each of the fractions: a

b

,

c

,

 is an integer.

bc ca ab J AROSLAV S VRCEK , CZECH & SLOVAK NMO, 2017 47. Let  ABC  be  be

an acute triangle with altitude  AD. The bisectors of angles BAD, CAD  intersect side  BC   at  E ,  F , respectively. The circumcircle of triangle AEF  intersects   intersects sides  AB, AC  at  at G, H , respectively. Prove that lines EH , FG, and AD pass through a common  point.

P ATRIK B AK , CZECH & SLOVAK NMO, 2017

48. Let

n

a x

 x) = be  f   :     ,  f ( x





, where ak     0,   k   = 0, n.   If  f (4) = 8 and

k  0

 f (9) = 18, then find max(  ff (6)) and the value for which this maximum is achieved. D.M.B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  49. If

a, b, c > 0, a + b + c = 3, x  , then:



3

a sin 2 x

 

 3 b cos 2 x



3

b sin 2 x

 

 3 c cos2 c



3

 

c sin 2 x  3 a cos 2 x

4 

D ANIEL SITARU, RMM, ROMANIA 50. If x, y, z  >  >

0, then:  x 3

 y

3

y

x

y3

x

y

x3

 2  2  



x2 y2

 12  

y2 x2



D ANIEL SITARU, RMM, ROMANIA 51. If x, y, z  >  >

0, x + y + z  =  = 3, then:



3

 x

3

y



3

3

y

3

z



3

3 z  3

x



3

 24.  

D ANIEL SITARU, RMM, ROMANIA  

17

 

52. If

in  ABC  S  =  = 2, then: (2 s  a )( 2s  b )( 2s  c ) 1  .  ( 2  a sin A )(2  b sin B )(2  c sin C ) sin A sin B sin C   D ANIEL SITARU, RMM, ROMANIA 

53. In

acute  ABC , the following relationship holds: a2b2c2 sin 2 A sin 2 B sin 2C  cos  cos A cos B cos C   S 3.

D ANIEL SITARU, RMM, ROMANIA  54. In

 ABC , the following relationship holds: (ama  bmb  cmc )(am a ma3  bmb3  cmc3 )  (a  b  c)(ama4  bmb4  cmc4 ).   D ANIEL SITARU, RMM, ROMANIA

55. If

a, b, c > 0, then:

 56. If

3

(a  3b)( 2a  2b)(3a  b)  4.   ab  bc  ca D ANIEL SITARU, RMM, ROMANIA

a, b, c > 0, a2 + b2 + c2 = 3, then: a3

1  2 a  a 1

b3

c3

1  2 b  b 1

1  6.   2 c  c 1 D ANIEL SITARU, RMM, ROMANIA

57. In

 ABC , the following relationship holds: (a  b)4 64s 2  .  ab 3 D ANIEL SITARU, RMM, ROMANIA

58. If

a, b, c, d  >  > 0,

1 1 1 1     1,  then:

a

b

c 3

d  

a

 3 b  3 c  3 d  3 abcd .   D ANIEL SITARU, RMM, ROMANIA

59. If x, y, z  

 1, then: 1 3   1  ( x  1)( y  1) 3 xyz .    ANIEL ITARU  

 

18

D

S

  OMANIA

, RMM, R

 

60. In

 B  C 

 ABC ,  B > C . Let  D be the point on side  BC  such  such that  DAC  =  =

.  The

2 circumcircle of  ACD meets side AB again at E . The circumcircle of  ABD meets side   AC again at  F . The internal angle bisector of  BDE  meets   meets side  AB  at  P . The internal angle bisector of CDE  meets  meets side AC  at  at Q. Prove that PQ and AB are perpendicular. HONG K ONG ONG, PREIMO 2017, MOCK EXAM  61. Let 2a,

b, c2, d  be2positive 2 numbers satisfying Prove (a b + b c + c d  +  + d 2a)(real ab2 + bc2 + cd   + da2)  abcd   (a + =c)(1.b + d ))((acthat:  + bd  +  + 2). When does equality hold? HONG K ONG ONG, PREIMO 2017, MOCK EXAM 

62. Prove

the following inequality: 163 4  y + z ))(( z   z   +  x + y + z )3 x3 y3 z 3, where x, y, z  are [(  xx + y)( y + x)]    ( x  are positive real numbers. 27  ANDREI BOGDAN UNGUREANU, RMM WINTER EDITION, 2016 63. Prove

that if a, b, c, d   (0, ); 3 (ad  bc )  = ac + bd  0, then: d (a  b

3 )  c (b  a 3 )  4 4 abcd .   D ANIEL SITARU, RMM WINTER EDITION, 2016 

64. Prove

that in an ABC   acute-angled acute-angled triangle the following relationship holds:       2 S  cos   A   cos   B   cos   C   2 .   4  4  4   R D ANIEL SITARU, RMM WINTER EDITION, 2017

65. Prove

that in  ABC : a 2 (b 2  c 2  a 2 )3



2 2

bc

66. Let x1, x2,

 64 S 2 (1  cos 2 A  cos 2 B  cos2 C ).  

 

D ANIEL SITARU, RMM WINTER EDITION, 2016 

..., xn be positive real numbers such that

Find the minimum possible value of

1

1  x1



2 x2

 ... 

n xn



n(n  1)

2



 x22  ...  xnn .  

NGUYEN VIET HUNG, RMM SPRING EDITION, 2017 67. Prove

 

that for all x   we have cos(sin x) > sin(cos x).  ABDALLAH EL F ARISSI, RMM SPRING EDITION, 2017

19

 

68. Let

a, b   such that a + b > 0, then: n

 a  b   1 n a k b n  k   a n  b n .        2  2  n  1 k 0  ABDALLAH EL F ARISSI, RMM SPRING EDITION, 2017 69.  Call

a function  f   :       lively if  f (a  + b  – 1) =  f ( f (...) f (b)...))   for all a

a, b  .

times

A + 2018) = g ( A  A) + 1 holds for some A  2. Suppose that g  is  is a lively function such that g (  A 2017 a) Prove that g (n + 2017 ) = g (n) for all n  A  A + 2.  b) If g ( A  A + 20172017)  g    g (  A A), determine g (n) for n  A   A – 1. M ARKO R ADOVANOVIĆ, SERBIAN TST, 2017 70. A

n    n  square

is divided into unit squares. One needs to place a number of isosceles right triangles with hypotenuse 2, with vertices at grid points, in such a way that every side of every unit square belongs to exactly on triangle (i.e. lies inside it or on its boundary). Determine all numbers n for which this is possible.

DUŠAN ĐJUKIĆ, SERBIAN TST, 2017 71. Let  ABCD be a convex quadrilateral with  AC     BD BD. Prove that there exist points  P , Q,  R, S   on  AB,  BC , CD,  DA, respectively, such that  PR    QS   and the area of quadrilateral PQRS  is  is exactly half that of ABCD. THAILAND TST, 2017 72. Let

a and b be real numbers such that a + b = 1. Prove the following f ollowing inequality:

1  5a 2  5 2  b 2  9.   B. B ATTSENGEL, MONGOLIAN NMO, 2017 73. Let  ABCD be

 AD  =  BC and  AB    CD. Let O be the isosceles intersection of the an diagonals andtrapezoid let  M  be   bewith the midpoint of  AD. Circumcircle of  BCM   intersects AD again at K . Prove that OK  is  is parallel to AB. B. B AT-OD, MONGOLIAN NMO, 2017 74. The

altitudes  AD  and  BE   of acute triangle  ABC   intersect at  H . Let  F   be the intersection of  AB and a line that is parallel to the side   BC  and   and goes through the circumcenter of ABC . Let M  be  be the midpoint of AH . Prove that CMF = 90. G. B ATZAYA, MONGOLIAN NMO, 2017 75. Let  ABC  ABCD D be

a cyclic quadrilateral with circumcenter w, and E  be  be the intersection of the diagonals  AC and  BD. A line passing through  E intersects lines  AB,  BC   at  P , Q,

 

20

 

R  D respectively. Let R (  R  D) be the intersection point of w and circle that passes through  D, E  and  and tangents the line PQ at E . Prove that B, P , Q, R are cyclic. B. K HOROLDAGVA HOROLDAGVA, MONGOLIAN NMO, 2017

all functions f :    satisfying: (a – b)  f f (a + b) + (b – c)  f f (b + c) + (c – a)f(c + a) = 0 for all a, b, c  .

76. Find

MONGOLIAN NMO, 2017 77. Let  I  be  be

the center of triangle ABC . Let D be a point on side  BC , and E be a point

on ray  BC such that C   lies between  E   and  D  and

 BD



BE 

.   Let  H   be the feet of  DC EC   perpendicular from D to line IE . Prove that  AHE   = =  IDE . B. B ATTSENGEL, G. B ATZAYA, MONGOLIAN NMO, 2017 78. A

rectangle  R  is dissected into 2016 small rectangles with sides parallel to the sides of R. We call the vertices of those small rectangles nodes. A segment parallel to the sides of  R  is called basic if its two end points are nodes and  A there are no other nodes in the interior of it. Find the maximum and minimum of the number of basic segments among all possible dissections of  R. For example, in the figure on the right,  R  is  B dissected into 5 small rectangles with a total of 16 segments. The C segments AB and BC  are  are basic, while the segment AC  is  is not. CHINA NMO, 2017 positive real numbers such that a2  + ab  + b2 = 9. Find the maximal value of expression: (a + b)6 + (ab)5 + 2(ab)3 + (ab)2 – 17. GEORGE APOSTOLOPOULOS, RMM SUMMER EDITION, 2017 79. Let

a, b be

80. Let  ABC  be   be

an equilateral triangle inscribed in the circle (O) whose radius is  R. Prove that for an arbitrary point P  lies  lies on (O): 3 3 3  PA  PB  PC  4 6 2  3 216 .   3

 R NGUYEN VIET HUNG, RMM SUMMER EDITION, 2017

81. If

a, b, c, n > 0; n(ab + bc + ca) + 2abc = n3, then:

1 1 1 1    .  a  b  2n b  c  2 n c  a  2 n n M ARIN CHIRCIU, RMM SUMMER EDITION, 2017  

21

 

82. Prove

that if n  *; a > 1, then: (n + a – 1)(a – 1)n – 1  an. D ANIEL SITARU, RMM SUMMER EDITION, 2017

83. Let ABC  be  be

an acute triangle. Prove that: (a cot A)a(b cot B)b(c cot C )c  (2r )a + b + c. where a = BC , b = CA, c = AB, and r  is  is the in radius.  NGUYEN VIET HUNG, RMM A   AUTUMN EDITION, 2017 84. Let

a, b, c be positive real numbers. Prove that: a3

 b3 b3  c3 c 3  a 3 9abc    .  c 2  ab a 2  bc b 2  ca ab  bc bc  ca ca NGUYEN NGOC TU, RMM A  AUTUMN EDITION, 2017 85. Prove

that if a, b, c are the length’s sides in  ABC , then: sin2 a + sin2 b + sin2 c  4 sin s  sin(  ss – a)  sin(  ss – b)  sin(  ss –  c  c). D ANIEL SITARU, RMM A  AUTUMN EDITION, 2017 

0, with 2u  – v > 0 and , ,  are the measures of the angles of triangle sin  3  ABC , then   .  uv cyc u sin   v s in   sin  D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, RMM A  AUTUMN EDITION, 2017  86. If

u, v >

87. Let

a, b, c be positive real numbers, take: a b b c c  X  =  =  ,  Y  =  =  ,  Z   Z  =  = b a c b a 4

2

2

a

 .  c

2

Y  Z  3)( X  Y  Z   3) .   Prove that: X  + Y  + Z    2 ( X NGUYEN NGOC TU, RMM A  AUTUMN EDITION, 2017

unit squares of an  N     N  N  board   board are coloured black and white so that squares that share a side have different colours, and so that at least one corner square is coloured  black.  bla ck. In eeach ach step step we choo choose se a 2  2 square and change the colour of all four unit squares inside that square, so that white unit squares become black, black become grey, and grey become white. Determine all positive integers N  >  > 1 for which it is possible, using a finite number of steps, to achieve that all unit squares that were originally black become white, and all unit squares that were originally or iginally white become black. 88. The

 

22

CROATIAN NMO, 2017

 

89. If x, y, z  and  and

w are real numbers such that:  x2 + y2 + z 2 + w2 + x + 3 y + 5 z  +  + 7w = 4, determine the largest possible value of x + y + z   + + w.

CROATIAN NMO, 2017

90. Determine

the maximum value of the expression: sin x sin y sin z  +  + cos x cos y cos z .

CROATIAN NMO, 2017

all functions f   ::    such that:  f ( x  x + f ( y  y)) = f (  f  f ( y  y)) + 2 xf ( y  y) + x2  holds for all real numbers x and y. TONCI K OKAN OKAN, CROATIAN NMO, 2017 91. Determine

92. Let

a)

a, b, c be positive real numbers such that a + b + c = 1. Prove that:

1 1 1 1    ;  a  bc bc b  ca ca c  ab a b 4abc a

 b)

a  bc 93. Let

b



c



b  ca



1



cN ab 2 abc HUNG, RMM WINTER EDITION, 2017   GUYEN  VIET

a, b, c positive numbers such that a4 + b4 + c4 = 3. Prove that:

 a 3 b3 c 3   b 3 c 3 a 3   b5  c5  a5   a 5  b 5  c5   9.      NGUYEN NGOC TU, H A GIANG, V  VIETNAM  94. Let

a, b, c > 0 such that (a + b)(b + c)(c + a) = 8. Prove that: a a 1

95. Let

2b 2c 7  24  .  b 1 c 1 2 NGUYEN NGOC TU, H A GIANG, V  VIETNAM



m > 0 and F  be  be the area of the triangle ABC . Then: 2 2 2 a m bm  cm b

96. Solve

m

c



m



 2 3 F.  

 a a b D.M. B ĂTINEŢU-GIURGIU, ROMANIA, M ARTIN LUKAREVSKI, RMM WINTER EDITION, 2017

c

m

m

m

m

for real numbers: nn

( x12  x2 )

2

2

n

n

2

 n n ( x2  x3 )  ...  n n ( x 1  x )  n n( x  x1 )  n

n

4

n



n D ANIEL SITARU, RMM WINTER EDITION, 2017 

 

23

 

97. Inside

a circle of radius 1 (or on the circumference), one marks n points in such a way that the minimal distance between two marked points is as large as possible. Let d n be this distance between the two closest points. Is it true that d n  + 1  < d n for every natural number n  2? ESTONIAN NMO, 2017 98. Find all 2 2

 x  +  y)  f  f   (( xy  xy) = functions  f   :      that for all numbers  x and  y satisfy  f   (( x

= f (  xx  – y  + 1).

ESTONIAN NMO, 2017

the system of equations 3 x  + 7 y  + 14 z  =   = 252,  xyz   – u2 = 2016 for non-negative real numbers. ESTONIAN NMO, 2017 99. Solve

100. Find

all positive integers n such that a square can be cut into n square pieces. ESTONIAN NMO, 2017

1 1 1    .  Find the largest  x y z  3 and the smallest possible value of the expression x2 + y3 + z 3 + xyz . ESTONIAN NMO, 2017 101. Real

numbers x, y and  z  satisfy  satisfy x + y +  z = 4 and

102. Solve

1

for real numbers:  tan x tan y tan z  6  tan x tan y  tan x tan z  tan y tan z  11.     x  y  z    D ANIEL SITARU, RMM, ROMANIA 

103. Find x, y, z  

 (0, ) such that:  x  y  z  xyz    x  y  z   1 .    y 3 z 2 z 3 x 2 x 3 y 2 3  D ANIEL SITARU, RMM, ROMANIA

104. Solve

 

for real numbers: 1   2  y  2 x  1   2  y  x  1 2 y ( x  1) 3 .         1 2 1 4 3 3 3 4  y x x y  NGO MINH NGOC B AO, RMM, V  VIETNAM

24

 

105. Solve

the system of equations:

  x    y  z  1  4 xyz   (1).   4 4  xy  yz  zx  3  2  ( x  4 y  z ) HOANG LE NHAT TUNG, RMM, V  VIETNAM  106.

 Solve for integers:

107. Solve

 x(  y  z )  y 2  z 2  6  2 2  y ( z  x )  z  x  6 .  z ( x  y )  x 2  y 2  6  M ARIN CHIRCIU, RMM, ROMANIA

for real numbers:

cos 2 x  cot 3 y  tan 5 z  cot 3 y  cot 5 z  tan 2 x .    cot 5 z  cot 2 x  tan 3 y  D ANIEL SITARU, RMM, ROMANIA 108. Suppose

a sequence of integers x1, x2, ... satisfies the following conditions:  x  x1 = 1, x2 = x3 = ... = x13 = 0.  x  xn + 13 = xn + 5 + 2 xn (n = 1, 2, ...). Find the value of x144. J APAN NMO, 2017





109. Solve

the question in :  x

110. Solve

3

2

 2x  2x  3 

3

x

2

  x 4  3x 3  x  1  2  4 x  3x   7.  (1) 2 , RMM, V HOANG LE NHAT TUNG  VIETNAM 4

4

for real numbers:

 x 2  x .  2 ROVSEN PIRGULIEV, RMM, A  AZERBAIJAN 

arcsin[ x ]  arccos[x ] 

111. Solve

for real numbers: [tan x]  (cot x – [cot x]) = (tan x – [tan x])  [cot x] [*] – great integer function.  

ROVSEN PIRGULYEV, RMM, A   AZERBAIJAN  25

 

112. Prove

that: sin 2

113. Find A, B,

7 5  7 5  3  sin  sin 2  sin  sin 2  sin  .   18 18 18 18 18 18 4 GEORGE APOSTOLOPOULOS, RMM, GREECE

C   (0, ), A + B + C  =  =  such that: cos A | cos B |  cos B | cos A | 1  cos 2C 

 cos B | cos C |  cos C | cos B | 1  cos 2 A.   cos C | cos A |  cos A | cos C | 1  cos 2 B D ANIEL SITARU, RMM, ROMANIA

114. Solve

for real numbers:

27  x  2  3 y 1   y z 1 27  2  3 .   27 z  2  3x 1  SEYRAN IBRAHIMOV, RMM, A  AZERBAIJAN  115. For

each positive real number x, we define { x} to be the greater of x and 1 , with

{1} = 1. Find, with proof, all positive real numbers y such that 5 y{8 y}{25 y} = 1. D AN GRILLER, BRITISH NMO, 2017 116. Naomi

and Tom play a game, with Naomi going first. They take it in turns to  pick an integer from 1 to 100, each time selecting an integer which no one has chosen  before. A player loses the game if, after their turn, the sum of all the integers chosen since the start of the game (by both of them) cannot be written as the difference of two square numbers. Determine if one of the players has a winning strategy, and if so, which. TOM BOWLER, BRITISH NMO, 2017 117. If

m  [0, ); a, b, x, y, z   (0, ), then:  x 2 m  2 y 2m  2

(ay  bz )2 m  2 sec2 m

 18





z 2 m  2



3 . 4 m (a  b)2 m  2

  (ax  by )2 m  2 csc2 m 9 9 D.M. B ĂTINEŢU-GIURGIU, D ANIEL SITARU,  L A G ACETA DE L A RSME, 2017

(az  bx )2 m  2 csc2 m

118. Given

a positive integer n, define  f (0,  j) =  f (i, 0) = 0,  f  (1,   (1, 1) = n, and  f   ((i,  j) =  f (i  1, j )   f (i , j  1)   for all positive integers i and j, (i, j)  (1, 1). How many =     2 2     ordered pairs of positive integers (i, j) are there for which f   ((i, j) is an odd number? DUŠAN ĐJUKIĆ, SERBIAN NMO, 2016

 

26

 

119. Solve

for real numbers:  3 sin[ x ]  cos( x  [ x ])  2 ,  [*] – great integer function.  sin( x  [ x ])  cos[x ]  3  2 ROVSEN PIRGULIYEV, RMM, A  AZERBAIJAN 

120. Solve

121. If

for x > 0 the equation: 1 1 1 1  . e x   x   x  x  1 x 1 x  cot (e ) cot ( ) e ROVSEN PIRGULIYEV, RMM, A  AZERBAIJAN 

a, r   (0, ), then: n

 k 1

122. Find



  1   i 1   a i r    ( 1 )   

 (2a  (n  1)r )n ,  n  *.



D ANIEL SITARU, RMM, ROMANIA

all functions f   ::    such that:  f  (  xf  (  y) – f  (  x)) = 2 f ( x  x) + xy (1).  ( xf   ( y  ( x  VIETNAMESSE NMO, 2017

123. Prove

that in any a ny right-angled triangle the following inequality holds: ma mb mc 5  .  8 abc D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA 

all the functions f   :: *  [1, ), which satisfy the conditions: (i) f  (2)  (2) = 2; (ii) f  (  (n)   f f  (  (n + 1); (iii) f  (  (nm) = f (n)  f f   ((m). D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA 

124. Find

125. If x1, x2,

126. Let

be the sequences (an )n 2 , (bn )n 2 , (cn )n 2  defined: a 2

 

..., xn are real positive numbers, prove that: n  xk  1   1.    n 2  x1x2  ...  xn   k 1 ( x1  1)( x 2  1)  ...  ( xk   1) D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA 

 3, b  2, a 2

n 1

2

2

n

n

 a  2b , b

bn2

 2a b , c 

n 1

27

n n

n

an2

, n  2 .

2

bn2

 

Prove that the sequence (cn )n2  has all the terms natural numbers. D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  127. Solve

in    the equation: x2 – 2 x + 2 xy – 2 y + y2 = 3.

M ARIN CHIRCIU, ROMANIA  128. Solve

129. Let

for real numbers:  x 4  x  2 21  x  5 x 2  4 . M ARIN CHIRCIU, ROMANIA 

be a > 0. Solve for real numbers:  x a  x

130. In ABCD cyclic



a3  a2

 a  ax  (a  1) x 2  a . M ARIN CHIRCIU, ROMANIA 

 ABCD]. quadrilater, AB = a, BC  =  = b, CD = c, DA = d , S  –  – area [ ABCD 4S  sin A + sin B + sin C  +  + sin D   .  abcd 

D ANIEL SITARU, RMM, ROMANIA 131. In ABCD cyclic

quadrilater, AB = a, BC  =  = b, CD = c, DA = d , s – semiperimeter:     s   s   s  sin A sin B   1   1   1   1   .  a  b  c  d    D ANIEL SITARU, RMM, ROMANIA

132. In ABCD convexes

quadrilateral: AB = a, BC   = = b, CD = c, DA = d . Prove that:



a2

 b 2  c 2  2 3  AC  BD . D ANIEL SITARU, RMM, ROMANIA

133. If x, y, z

 [0, ), then:  x 2

134. If x, y, z  

 

 xy 3  y 3 

y2

 yz 2  z 2  x 2  xz  z 2 .   D ANIEL SITARU, RMM, ROMANIA

 (0, ), xyz  =  = 1, then:  x( x  x – 3( y  y + z ))))2 + (3 x – ( y  y + z ))))2( y  y + z )  27. D ANIEL SITARU, RMM, ROMANIA

28

 

135. If

a, b, c > 0, then: a b

136. If

b

c

c

a

  



137. If

2c(a 3  1)

ab



bc

.

c4





a2

 b2  c2



2a (b3  1) a 4 2b (c3  1) 2 HOANG LE NHAT TUNG, RMM, V  VIETNAM

a, b, c > a6 + b6 + c6 = 9, then:

 2 3  (a 138.

c4



cb ac b a GEORGE APOSTOLOPOULOS, RMM, GREECE

a, b, c > 0, a + b + c = 3, then: a4 b4 b4

ca

ab b  b 2 a )2



    1. b )2 (c3 a  a 3 c )2  D ANIEL SITARU, RMM, ROMANIA

bc

ca

(b3 c  c 3

Let be 0 < a < b < c. Prove that: (e

a b

e

ba

   )  2a  2c  3 

 139. If

b

ab



   a   D ANIEL SITARU, SSMA M AGAZINE, 2017

a, b, c > 0, a  b  c  a, then:

1 1 1 1 1 1 81       .  (a  b)2 (b  c )2 (c  a )2 ab bc ca 4(a 2  b 2  c 2 ) D ANIEL SITARU, RMM, ROMANIA 140. If

a, b, c > 0, a + b + c = 1, then: a3 + b3 + c3 + 6abc   a a

141. Prove

2

 2 bc

2

2

 b b  2 ac  c c  2 ab .   D ANIEL SITARU, RMM, ROMANIA 

that if x, y, z   [1, 2], then in  ABC : 2 3   a b c 16 s 3 abcxyz   x  y  z   3 .     D ANIEL SITARU, RMM, ROMANIA 

142. If x, y, z  

4  0 such that x3 + y3 + z 3 = 3 and n   ,  prove that: 3  x  n yn zn    3.   nx 2  1 ny 2  1 nz 2   1

M ARIN CHIRCIU, ROMANIA   

29

 

143. Solve

144. If

for real numbers:  2 x 2  a 2 x  arcsin  2 a r c s i n , where a > 1, a is given. 2 2 a a M ARIN CHIRCIU, ROMANIA 

a, b, c > 0 such that a + b + c = 1 and n  *, prove that: n 1

n 1

n 1

a b c 1  a n  1  b n  1  c n  3n 1 1 .   M ARIN CHIRCIU, OCTAVIAN STROE, ROMANIA  145. Let

O be circumcenter of ABC triangle. Prove that:          a 2  b 2  AO  AB  BO  BC  CO  CA 

 c2



2 M ARIN CHIRCIU, ROMANIA 

146.  Prove

that in any triangle  ABC   and for all positive real numbers  x,  y,  z   the following inequality holds:  y z x y z x y z xyz               3 .    ra rb rc   rb rc ra   rc ra rb  r   HUNG NGUYEN VIET, RMM, V  VIETNAM  147. Prove

that in any triangle ABC  the  the following relationship holds:  B

C

C

A

A

B

cot cot cot cot cot cot 2 2 2 2 2 2  2  cos A  cos B  cos C  .    A B C  2 2 2   cot cot cot 2 2 2 HUNG NGUYEN VIET, RMM, V  VIETNAM  148. Let  ABC  be   be

a triangle with a  =  BC , b  = CA, and c  =  AB. Let  A'B'C'  be   be another triangle with B'C'  =  = a ,  C'A'  =  = b , A'B' = c .  Prove that: 1  1  1  sin   A  sin  B  sin  C   cos A cos B cos C .   2  2  2  MEHMET Ș AHIN, RMM, TURKEY   acute-angled  ABC , the following relationship holds: 1 1  (sin 2 A  sinB )  sin 2 A  sin 2B    (tan A  tan B )(cot A  cot B ).  

149. In

 

30

D ANIEL SITARU, RMM, ROMANIA 

 

150.

Let be a, b, c  (1, ). Solve for real numbers:   x  x1  x  1x   1x x x  1x  2 2  a  b  c   a  b  c   (a  b  c )  .    M ARIN CHIRCIU, ROMANIA 

151. Let

be n  *. Find x  0 with the property: n 1

 

n 1

 n  (n  1) (n  1) x  n . M ARIN CHIRCIU, ROMANIA  152. Prove

that the sequence (an)n    1 defined by an 1 

an 1  an

2an 1  an

 has a term that is

the reverse of a perfect square, then the sequence (bn)n   1  defined by bn 

1 an

 contains

an infinity of perfect squares. D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  153. If

an = 1 + 2011n (n  ), then prove that:

a) (an)n  0 contains an infinity of perfect squares;  b) (an)n  0 contains an infinity of perfect squares; c) (an)n  0 contains an infinity of natural numbers having the form a2 +a + 1 (a  ). D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  154. If  f   :

    ,

such that for any 1 <  x    yy    z  z  we   we have  f   (( x  x) +  f   (( y  y) =  z ,  f   (( y  y) +

+  f   ((  z  z ) =  x,  f   (( z   z ) +  f  (  ( x  x) =  y and for any  z  >   > 2 we have  f   ((  z  z ) > 1 + triplets ( x  x, y, z ))..

 z 

2

, then find all the

D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA 

that if a  + b    0 such that a cos ax  + b  cos bx  = c cos cx  + d   cos  dx,   xx  , then a = c or a = d . D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA  155. Prove

156. Let

be n  * and k  , k   2. Solve the system:

2 n  x x   2 n y y  k 3  1  .   7 n  x  x   x  7 n y y y  k  1  M ARIN CHIRCIU, ROMANIA   

31

 

157. The

real positive numbers  x,  y,  z , n have the property that  xy,  yz ,  zx    n. Prove

that if: (n  x 2 )(n  y 2 ) (n  y 2 )(n  z 2 ) (n  z 2 )(n  x 2 ) 3n  xy  yz  zx    .  2 2 2 2 2 2 2n  x  y 2n  y  z 2n  z  x 2 M ARIN CHIRCIU, ROMANIA  158. If f   ::   ,

such that f  (ctg x) = sin 2 x + cos 2 x,  x  x  (0, ), then find f  ( x  x). D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, ROMANIA 

159. Prove

that for any triangle ABC  and  and all positive real numbers x, y, z  the  the following inequality holds: sin A sin B sin C   x y z       3.    y  z sin B sin C z  x sin C sin A x  y sin A sin B NGUYEN VIET HUNG, RMM, V  VIETNAM

160. In  ABC , the following relationship holds:

sin2  A  A cos4  A  A + sin2  B B cos4  B  B + sin2 C cos4 C   < <

4

.

9 D ANIEL SITARU, RMM, ROMANIA 161. In  ABC , the following relationship holds:

 1 1 1    b 2  bc  c 2 .  3        bcma  ha hb hc  D ANIEL SITARU, RMM, ROMANIA 162. Prove

that in any  ABC  the  the following relationship holds: ma mb mc ra rb rc



wa wb wc ha hb hc



. r 

D ANIEL SITARU, RMM, ROMANIA 

163. In  ABC , the following relationship holds:

2( AN   AN  2 + BN  2 + CN  2) + 42 Rr   4 s2 + 3r  ON    N  –  – Nagel’s point, O – circumcentre, s –  semiperimeter, r  –  – inradius, R – circumradius. D ANIEL SITARU, RMM, ROMANIA 164. In

 

acute triangle ABC , the following relationship holds: tan 4  A tan 4 B tan 4 C     tan A tan B tan C .   tan 3 B tan 3 C tan 3 C 

D ANIEL SITARU, RMM, ROMANIA

32

 

165.

In  ABC , the following relationship holds:  1 3 2 c o s c o s 1 6 s i n c o s  a B C A A .         3 r 

D ANIEL SITARU, RMM, ROMANIA 166. In  ABC , the following relationship holds:

(ma + r a)(mb + r b)(mc + r c)  8wawbwc. D ANIEL SITARU, RMM, ROMANIA  167. In  ABC , the following relationship holds:

ra2 a

168. In  ABC , I –



rb2 b



r c2   81r 2



c

.  2p D ANIEL SITARU, RMM, ROMANIA

incentre, the following relationship relationship holds: 2  AI 2  ma mb wa wb  mb mc wbwc  mcma wcwa .  

D ANIEL SITARU, RMM, ROMANIA  169. In  ABC , the following relationship holds:

 1  a

1

1 

 m7  m7  m7   m3  m3  m3   s 4 ,  s – semiperimeter. a

b

c

b

c



D ANIEL SITARU, RMM, ROMANIA 170. In  ABC , the following relationship holds:

 r a6    a3  16   3    2   9(a 2  b 2  c 2 )2 .    a   r a  D ANIEL SITARU, RMM, ROMANIA 171. Prove that

172. Prove

in any triangle the following relationship holds: 2 p 3 ( r  r )(r  r )(r  r )   .  a b b c c a 3  ADIL ABDULLAYEV, RMM, A  AZERBAIJAN 

that in any triangle the following relationship holds:



ra2

 1  6(4 R  r ) .  

cyc

 

 ADIL ABDULLAYEV, RMM, A   AZERBAIJAN  33

 

173. In  ABC , the following relationship holds:

 a 3     wa  2 3          4   wa  .    wa   a  D ANIEL SITARU, RMM, ROMANIA 174. Let S  =  =

{1, 2, ..., n}, n  2, and let f   :: S  S  be  be a bijective function distinct from n

the identity. Let u  =  | (k )  k |  and let it be the number of ordered pairs (a, b) of k 1 elements of S  such   such that a  >  f  (a) <  f  (b). Show that v  < u    2v, and that u  = 2v if and only if there do not exist positive integers a > b > c such that f  (a) ... >  xn    0, n   2, that satisfy a condition  x1  +  x2  + + ... + xn = n, prove an inequation:  x2 + x3 + ... + xn). 2(  xx1 x2 + x1 x3 + ... + x1 xn + x2 x3 + x2 x4 + ... + x2 xn + ... + xn – 1 xn)  n  ( x  VITALY SENIN, UKRAINIAN NMO, 2017

175. For

176.

  x, y   the equation is true:  Find all the functions f  : f     + f    (  f f  such that  x  x  ( y  y))) = y + f  (  f  f ( x  x)).  ( x  ANDRIY ANIUKUSHIN, UKRAINIAN NMO, 2017

a prime number. Prove that equation ax2 + bx + c = 0 does not have

177. Let abc  be

rational roots. JOSÉ LUIS DÍAZ-B ARRERO, B ARCELONA TECH, M ATH CONTEST, 2015 178. Let a, b, c be

three positive numbers such that ab + bc + ca = 3abc. Prove that: ab bc ca    3.   2 2 2 2 2 2 c(a  b ) a (b  c ) b (c  a )

JOSÉ LUIS DÍAZ-B ARRERO, B ARCELONA TECH, M ATH CONTEST, 2017  179. If

  , ,     0,   such that  +  +  =  and a  0, prove that: 2  2 a  tg  tg   a  tg  tg   a  tg  tg     9a  3 . M ARIN CHIRCIU, ROMANIA  2

180. If a, b, c  a

 + b2 + c2 = 2, then:  2 3 ab csc  bc csc  ca csc  4.   7 7 7

D ANIEL SITARU, RMM, ROMANIA

 

34

 

*

181. If n  

, n  2, a, b, c > 1, a + b + c = 3n + 1, then:



n

a

n

a

 



 n a  n a  18.   D ANIEL SITARU, RMM, ROMANIA

182. If m  , m  2,

then: m2

m  t an 2

  tan 2 11  tan 2 13  tan 2 21  2    3  m .   36 36 36 36  16  D ANIEL SITARU, RMM, ROMANIA

    0,  ,  then:  2 cos a sin a ccoos b sin a ssiin b 9 3    .  4 4 4 4 4 1  cos a 1  sin a cos b 1  sin a sin b 10 D ANIEL SITARU, RMM, ROMANIA

183. If a, b

184.

 If a, b, c, x  , then: a2 + b2 + c2 + (sin x + cos x + sin x cos x)(ab + bc + ca)  0. D ANIEL SITARU, RMM, ROMANIA a tetrahedron with  AOB =  BOC   = = COA = 90  and let P  be  be any  point inside the triangle  ABC . Denote, respectively, by d a, d b,  d c the distances from  P   to faces (OBC ), ), (OCA), (OAB). Prove that: 2 2 a) d a  db  d c2  OP 2 ;     OA  OB  OC   b) d a db d c  ;  27 3 c) OA  d a  OB  db3  OC  d c3  OP 4 .   185. Let OABC  be  be

NGUYEN VIET HUNG, RMM, V   VIETNAM 186. If x, y >

0; z   , then: x y ( x  y )2    6.   2 2 2 2 ( x sin z  y cos z )( x cos z  y sin z ) y x D ANIEL SITARU, RMM, ROMANIA

187. In  ABC :

sin 2  A sin 2 B sin 2 C 2s 2    2  4 5 1 6  sin 1 sin 1 sin 1 5 13 65  

35

 

sin 2  A sin 2 B sin 2 C 4s 2    2 .  1 1 1  tan 1 tan 1 tan 1 2 5 8

D ANIEL SITARU, RMM, ROMANIA  188. If a, b, c, d  >  >

0, then: (a + b)2(a + c)2(a + d )2(b + c)2(b + d )2(c + d )2  

 a 

3

bcd

3

 b 

3

cda

3

 c 

3

dab

3

 d 

3

abc

3

 . 

MIHÁLY BENCZE, RMM, ROMANIA  189. If a, b, c, x, y, z  >  >

0, a + b + c  3, then: 729 . 3 1 1 1    y  z    D ANIEL SITARU, RMM, ROMANIA

(ax + by + cz ))((ay + bz  +  + cx)(az  +  + bx + cy)  

190. If a, b, c >



3

0, a + b + c = 3, x  , then:

a sin 2 x

 

 3 b co s 2 x



3

b sin 2 x

 

 3 c cos 2 c



3

c sin 2 x

 



 3 a cos 2 x  4.  

D ANIEL SITARU, RMM, ROMANIA 191. If x, y  0, n  1, n  , AM  =  =

  y ,  GM  =  = 2

 xy ,  then:

2

 x n  y n  2n 2n     AM  GM  .   2   UCHE ELIEZER OKEKE, RMM, NIGERIA     ,  then:   2

192. If x, y, z     0,

2  2 2 2      x y l n ( 1 t a n ) l n ( 1 c o t ) l n      sin2 z .   D ANIEL SITARU, RMM, ROMANIA 193. Prove

 

cos x

that 2

sin x

 + 2

   2

2 1 2

,   x  x  .

IBRAHIM ABDULAZEEZ, RMM, NIGERIA  36

 

194. Prove that

in any triangle the inequality is true: 3 2n  3   (na – p)(nb – p)(nc – p)      , where n  2. 3   M ARIN CHIRCIU, ROMANIA 

195. Prove that

in any triangle the following inequality holds: 27n  1 2 2 n sin A   , where 1  n  3.   cos A  56 1   cos AM  ARIN CHIRCIU, ROMANIA 

196. Prove that

in any triangle the following inequality holds: n  R  k  r p2  (6n  3k  27)r 2    , where n  4 and k   1.  p 3 M ARIN CHIRCIU, ROMANIA 

197. Prove that

in any triangle the following inequality is true: n(a 2  b 2  c 2 )  k (ab  bc bc  ca ca ) 2  (m  m  m ) , b c n  k  3   a where n and k  are  are positive numbers with 2n  7k . M ARIN CHIRCIU, ROMANIA 

198. Prove that

in any triangle the following inequality is true: 3p a b c   2 , where 0  n  1. 3  2n  p  na p  nb p  nc M ARIN CHIRCIU, ROMANIA 

199. Prove that

in any triangle the following inequality holds:  p  n  r (4 R  r )3  (n  1)  p 2 ( R  r )( 4 R  r ) n , where    0. , ROMANIA  M ARIN CHIRCIU 4

200. Prove that

201. Prove

 

in any triangle the following inequality is true:  A ( p  b  nc)( p  c  nb ) n  sin  , where n  0. bc 2 M ARIN CHIRCIU, OCTAVIAN STROE, ROMANIA 

that if a, b, c, d , e, f ,  (0, ) and a + b + c = 2, d   + + e + f  =  = 3, then: a b c  d    c    f    9 .    a b  c  4       D ANIEL SITARU, RMM, ROMANIA

37

 

202.

 If x, y, z     0,  ,  then:  2 tan x tan y tan z  3    .  sin y  sin z sin z  sin x sin x  sin y 2 D.M. B ĂTINEŢU-GIURGIU, NECULAI STANCIU, RMM, ROMANIA

203. If n  , n  3, x, y  0, 3

3

 y 3  4

then:

x4

 y 4  ...  n

xn

 y n  (n  2) x 2  y 2 .   D ANIEL SITARU, RMM, ROMANIA 

204. If a, b, c  0,

then: a  ab  3 abc a  b  a  b  c   3   a     3 .   3 2    K IRAN IRAN K EDLAYA EDLAYA, RMM, USA

205. If a, b, c, d  >  >

0, x, y  , then: sin 2 x  cos2 x  sin 2 y  cos 2 y  a

b

2 .  d abcd   D ANIEL SITARU, RMM, ROMANIA 

c

206. If a, b, c, d

> 0, then: 4   2 3 3 4 4 5 3 2 3 3 4 4 5   4 2 3 3 4 4 5 5 2 3 3 4 4 5  1   2a b c d  2 b c d a   3 c d a b  4 d a b c    a       4672  .  3 UCHE ELIEZER OKEKE, RMM, NIGERIA 

207. If a, b, c  0,

then: a + b + c  



4

a

 4 b  4 abc .  

D ANIEL SITARU, RMM, ROMANIA 208. If

0  a < 3, 0  b < 5, 0  c < 7, then: 3 a  1  5 b  1  7 c  1  6.   D ANIEL SITARU, RMM, ROMANIA

209. If

0  a < b < c < d , then: 3 a  3 4 b  2 6 c  8 d  6 ab  12 abc  20 abcd .    D ANIEL SITARU, RMM, ROMANIA

 

38

 

210. If x, y, z  >  >

1 ,  then:  2 y  3 z  (4 x 2 y 2  1)(36 y 2 z 2  1)(9z 2 x 2  1) 1  2 2 2 2 .  2304 x y z ( x  2 y  3z ) D ANIEL SITARU, RMM, ROMANIA

0, 6 xyz  =  =

211.

2

 

 

 

 

 x   +  f ( x  x)  f  f ( y  y)) =  xf ( x  x  +  y) for all  Determine all y.functions f   :      satisfying  f ( x  x and real numbers MEMO, 2017 212. In  ABC , the following relationship holds: 3

 9ra rb r c  2 2 m  m m  m     a a b b  ra  rb  r c  .   D ANIEL SITARU, RMM, ROMANIA 213. In  ABC , the following relationship holds:

b4c7

c4 a7



a12

a 4b7



b12

3

 R .  D ANIEL SITARU, RMM, ROMANIA

c 12

214. In  ABC , the following relationship holds:

hb5 hc4



10

ha

215. In

hc5 ha4 10

hb



ha5 hb4 10

hc

 33

.  2S 2   D ANIEL SITARU, RMM, ROMANIA

acute-angled  ABC , the following relationship holds: 2 1  4 R  r   a b c    s  a   (m  w  h )  3 r 2 .   D ANIEL SITARU, RMM, ROMANIA 

216. In  ABC , K  –  –

Lemoine’s point. Prove that:  AK b2

 c2



BK c2

 a2



 mb  mc .  a 2  b2 a 2  b2  c2  ADIL ABDULLAYEV, RMM, A  AZERBAIJAN CK 



ma

217. In  ABC , the following equality holds:



3

a



3

b c 3



3

 3 3a  3 3b  3 3 3c  2.   D ANIEL SITARU, RMM, ROMANIA

 

39

 

218. Prove

that in any triangle the double inequality is true: 6 r a b c 3 R       , where n  0. n  2 R na  b  c nb  c  a nc  a  b 2( n  2) r   M ARIN CHIRCIU, ROMANIA 

219. Prove that

in any triangle the following inequality is true:  p 4  n  r (4 R  r )3  (n  1)  p 2 ( R  r )( 4 R  r ) , where n  0. M ARIN CHIRCIU, ROMANIA 

220. Prove

that in any ABC  triangle  triangle the following inequality is true: bc( p  na )  ca ( p  nb )  ab ( p  nc )  3R (3  2n ) p , where n  1. M ARIN CHIRCIU, ROMANIA 

221. Prove

that in any ABC  triangle  triangle the following double inequality inequa lity is true:

2

2

2

a (b  c  na )  b (c  a  nb )  c (a  b  nc ) 

  S 2

24(2  n ) 

, where n  1.

M ARIN CHIRCIU, ROMANIA  222. Prove

that in any ABC  triangle  triangle the following inequality holds: ha hb hh h h   9r   b c  c a  . ha  hb hb  hc hc  ha 2 M ARIN CHIRCIU, ROMANIA 

223. Prove that

224. In

in any triangle the following inequality holds: 2 4 r nr n 3    , where n  9.   p  4 R  r  9   M ARIN CHIRCIU, ROMANIA 

acute-angled  ABC , the following relationship holds: 1 3   sin 2 B  sin 2C  sin 2 A 3   sin2 A  2 3.    D ANIEL SITARU, RMM, ROMANIA 

225. Let ma, mb, mc be

the lengths of the medians of a triangle, and let wa,  wb, wc  be the lengths of the internal bisectors of the angle opposite of the sides of lengths a, b, c, 2  ma2 mb2 mc2   a  b  c    9.  respectively. Prove that:  2 4 wa  wb2  wc2 GEORGE APOSTOLOPOULOS, RMM, GREECE

 

40

 

Let  ABC  be   be an arbitrary triangle,  I a,  I b,  I c are excenters, r   is inradius, and  R  is circumradius of ABC . Prove that: 12r 3  P( I a I b I c )  6 R 3 ,  where P ( I   I a I b I c) is perimeter of ABC . MEHMET Ș AHIN, RMM, TURKEY 226.

227. Let a, b, and c be

the side lengths of a triangle ABC , with inradius r . Prove that: 4 4

228. In

4

4

 b2 B  c2 C   6  r .   t an tan tan 2 2 2 GEORGE APOSTOLOPOULOS, RMM, GREECE a

2  A

any triangle ABC , the following relationship holds:  A B C R 2R tan  tan  tan   1.   2 2 2 2  r r  GEORGE APOSTOLOPOULOS, RMM, GREECE 

229. In  ABC ,

the following relationship holds: 3 1 1 1  a b c  2          .  3 a b c b c ca c a ab a b       ( ) ( ) ( )   b c a c a b a b c     D ANIEL SITARU, RMM, ROMANIA

230. In  ABC ,

the following relationship holds: a

231. Prove

6

 b  c  8r s  6

6

2

a5

.   bc  c2 D ANIEL SITARU, RMM, ROMANIA

b2

that in any triangle ABC : ma



ma



b c

mc  





c

 a

a



 b



2 a 2 b 2 c where l a, l b, l c are internal angle bisectors from A, B, C , respectively. NGUYEN VIET HUNG, RMM, V  VIETNAM la

lb

l c

 

232. Prove

that in any ABC  triangle  triangle the following inequality holds: sin A sin B sin C  3    , m n  m sin B  n sin A sin B m sin C  n sin B sin C m sin A  n sin C sin A where 2m  n > 0.  ARIN HIRCIU   OMANIA

M  

41

C

,R

 

 

BIBLIOGR PHY 1. George Apostolopoulos, The Beauty of Proving , Athens, 2015, ISBN 978-960-6674-96-9. 2. Mariana Popescu, Daniel Sitaru, “Traian Lalescu” Contest. Geometry Problems ,  Lithography University of Craiova Publishing House, Craiova, 1985. 3. Daniel Sitaru,  Mathematical Statistics, Ecko Print Publishing, Drobeta-Turnu Severin, 2011, ISBN 978-606-8332-09-3. 978-606-8332-09-3. 4. Daniel –Sitaru, Claudia Nănuţi,  National Contest of Applied Mathematics – “Adolf  Haimovici” the County Stage , Ecko Print Publishing, Drobeta-Turnu Severin, 2011, ISBN 978-606-8332-11-6. 5. Daniel Sitaru, Claudia Nănuţi, “ National Contest of Applied Mathematics “Adolf  Haimovici” – the National Stage, Ecko Print Publishing, Drobeta-Turnu Severin, 2011, ISBN 978-606-8332-12-3. 6. Daniel Sitaru, Claudia Nănuți, Contest Problems,  Ecko Print Publishing, DrobetaTurnu Severin, 2011, ISBN 978-606-8332-22-2. 7. Daniel Sitaru, Claudia Nănuţi,  Baccalaureate – Problems – Solutions – Topics –  Scales, Ecko Print Publishing, Drobeta-Turnu Severin, 2011, ISBN 978-606-8332-18-5. 8. Daniel Sitaru,  Affine and Euclidiane Geometry Problems, Ecko Print Publishing, Drobeta-Turnu Severin, 2012, ISBN 978-606-8332-2 978-606-8332-29-1. 9-1. 9. Daniel Sitaru, Claudia Nănuţi, Bac  Baccal calaur aureat eatee – P Prob roblem lemss – T Test estss – T Topi opics cs – 20 201010-201 2013 3, Ecko Print Publishing, Drobeta-Turnu Severin, 2012, ISBN 978-606-8332-28-4. 10. Daniel Sitaru,  Hipercomplex and Quaternionic Geometry, Ecko Print Publishing, Drobeta-Turnu Severin, 2013, ISBN 978-606-8332-36-9. 11. Daniel Sitaru, Claudia Nănuţi,  Algebra Basis, Ecko Print Publishing, DrobetaTurnu Severin, 2013, ISBN 978-606-8332-45-1. 12. Daniel Sitaru, Claudia Nănuţi,  Mathematical Lessons, Ecko Print Publishing, Drobeta-Turnu Severin, 2013, ISBN 978-606-8332-47-5. 13. Daniel Sitaru, Claudia Nănuţi,  Basics of Mathematical Analysis, Ecko Print Publishing, Drobeta-Turnu Severin, 2014, ISBN 978-606-8332-50978-606-8332-50-5. 5. 14. Daniel Sitaru, Claudia Nănuți,  Mathematics Olympics, Ecko Print Publishing, Drobeta-Turnu Severin, 2014, ISBN 978-606-8332-51-2. 15. Daniel Sitaru, Claudia Nănuți, Giugiuc Leonard, Diana Trăilescu,  Inequalities, Ecko Print Publishing, Drobeta-Turnu Severin, 2015, ISBN 978-606-8332-59-8. 16. Radu Gologan, Daniel Sitaru, Leonard Giugiuc, 300 Romanian Mathematical Challenges, Paralela 45 Publishing House, Piteşti, 2016, ISBN 978-973-47-2270-9. 17. Daniel Sitaru,  Math Phenomenon, Paralela 45 Publishing House, Piteşti, 2016, ISBN 978-973-47-2271-6. 18. Daniel Sitaru, Algebraic Phenomenon, Paralela 45 Publishing House, Piteşti, 2017, ISBN 978-973-47-2523-6. 19. Daniel Sitaru, „Murray Klamkin’s Duality Principle for Triangle Inequalities”, The  Pentagon Journal , Volume 75, No. 2, Spring 2016. 20. Daniel Sitaru, Claudia Nănuți, “Generating Inequalities using Schweitzer’s Theorem”, Crux Mathematicorum, Volume 42, No. 1, January 2016. 21. Daniel Sitaru, Claudia Nănuți, “A ‘probabilistic’ Method for Proving Inequalities”, Crux Mathematicorum, Volume 43, No. 7, September 2017.

 

305

 

22. Daniel Sitaru, Mihaly Bencze, 699 Olympic Mathematical Challenges, Studis Publishing House, Iaşi, 2017. 23. Daniel Sitaru, Analit  Analitycal ycal Phenomenon Phenomenon, Cartea Românească Publishing House, Piteşti, 2018. 24. Daniel Sitaru, George Apostolopoulos, The Olympic Mathematical Marathon, Cartea Românească Publishing House, Piteşti, 2018. 25. Daniel Sitaru, Contest Problems, Cartea Românească Publishing House, Piteşti, 2018. 26. Dumitru Săvulescu, Marin Chirciu, Ștefan Alexe, Nicolae Dragomir, Tudor th Deaconu, Alice Raluca Petrescu,  Mathematics.   Manual for 9   grade, Ministry of Education and Research, Corint Publishing Publishing Hous House, e, Bucharest, 2004. 27. Marin Chirciu, Dum Dumitru itru Săvulescu, Tudor Deaconu, Nicolae Drag Dragomir, omir, th  Mathematics Manual for 12  grade, M1, Ministry of Education and Research, Common trunk + differentiate curriculum, Real profile, Mathematics-Informatics Specialization, Tiparg Publishing House, Pitești, 2007. th 28. Marin Chirciu,  Mathematics: Algebra, Geometry, Trigonometry, 9  grade, Tiparg Publishing House, Pitești, 2008. th 29. Marin Chirciu,  Mathematics: Algebra, Geometry, 9   grade, Tiparg Publishing House, Pitești, 2008. th 30. Marin Chirciu,  Mathematics: Algebra, Mathematical Analyze, 9   grade, Tiparg Publishing House, Pitești, 2008. th 31. Marin Chirciu,  Mathematics: Algebra, Mathematical Analyze, 12   grade, Tiparg Publishing House, Pitești, 2008. th 32. Petre Năchilă, Marin Chirciu, Cătălin Năchilă,  Algebra 10   grade, Paralela 45 Publishing House, Pitești, 2004. 33. Dan Brânzei, Gabriel Popa, Julieta Grigoraș, Marin Chirciu, Gheorghe Iurea, th Geometry and Trigonometry, 9  grade, Tiparg Publishing House, Pitești, 2004. th 34. Dan Brânzei, Marin Chirciu, Manuela Prajea, Octavian Stroe, Geometry, 10    grade, Tiparg Publishing House, Pitești, 2004. 35. Ștefan Alexe, Ștefan Alexe jr., Nicolae Angelescu, Marin Chirciu, Petre Năchilă, th Octavian Purcaru,  Mathematical Analyze, 12   grade, Tiparg Publishing House, Pitești, 2004. 36. Ioan Chera, Marin Chirciu, Nicolae Vizuroiu,  National Testing 2005, 99 tests of  Mathematics, Tiparg Publishing House, Pitești, 2004. 37. Dumitru Săvulescu and comp., Marin Chirciu, Elena Chirciu,  Mathematical Tests  for Baccalaureate 2005, 2005, M1, CABA Publishing House, Bucharest, 2004. 38. Elena Chirciu, Nicolae Dragomir, Alin Pop, Adela Povarnă, Daniel Văcaru, th Coordinator, Dumitru Săvulescu, Marin Chirciu,  Algebra, 9   grade, Tiparg Publishing House, Pitești, 2004. th 39. Marin Chirciu, Dan Zaharia,  Algebra 12   grade, Paralela 45 Publishing House, Pitești, 2004. th 40. Petre Năchilă, Marin Chirciu,  Algebra 10   grade, Paralela 45 Publishing House, Pitești, 2004. th 41. Ștefan Alexe, Marin Chirciu,  Algebra 9   grade, Mate 2000 Lyceum, Paralela 45 Publishing House, Pitești, 1999.  

306

 

42. Ștefan Alexe, Marin Chirciu, Sorin Peligrad, Sorin Simion,  Arge ș  Olympiads of  Mathematics, Gymnasium Gymnasium 1986-1989 1986-1989, Paralela 45 Publishing House, Pitești, 1999. 43. Ștefan Alexe, Marin Chirciu, Sorin Peligrad, Sorin Simion,  Arge ș  Olympiads of  Mathematics, Lyceum 1985-1989, Paralela 45 Publishing House, Pitești, 1999. 44. Mircea Becheanu, Dan Brânzei, Marin Chirciu, Vasile Gorgotă, Sorin Ulmeanu, th th  Mathematics in Scholar Contests, 9 -12   grades, 1998, Paralela 45 Publishing House, Pitești, 1998. 45. Mircea Becheanu, Dan Brânzei, Marin Chirciu, Vasile Gorgotă, Sorin Ulmeanu, th

th

 Inter-county  Inter-coun ty Contests of Mathematic Mathematics, s, 9 -12  grades, 1998, Paralela 45 Publishing House, Pitești, 1998. 46. Dan Brânzei, Niculae Ghiciu, Iaroslav Chebici, Marin Chirciu,  Mathematics in th th Scholar Contests, 5 -7   grades, 1997, Paralela 45 Publishing House, Pitești, 1997. 47. Dan Brânzei, Niculae Ghiciu, Iaroslav Chebici, Marin Chirciu,  Mathematics in th th Scholar Contests, 9 -12  grades, 1997, Paralela 45 Publishing House, Pitești, 1997. th 48. Dan Brânzei, Sebastian Anița, Marin Chirciu, Geometry, 9  grades, MATE-2000 Lyceum, Paralela 45 Publishing House, Pitești, 1997. 49. Ștefan Alexe, Marin Chirciu,  Arge ș Olympiads of Mathematics, Lyceum 1990-1995, GIL Publishing House, Zalău, 1995. 50. Marin Chirciu, Dragoș Constantinescu, Dumitru Săvulescu,  Mathematics in th th Scholar Contests, 5 -7   grades, 1995, Paralela 45 Publishing House, Pitești, 1995. 51. Marin Chirciu,  Inequalities with Sides and Radiuses in Triangle, from Initiation to  Performance, Paralela 45 Publishing House, Pitești, 2017. 52. Marin Chirciu, Trigonometrical Inequalities, Paralela 45 Publishing House, Pitești, 2016. 53. Marin Chirciu, Geometrical Inequalities, Paralela 45 Publishing House, Pitești, 2015. 54. Marin Chirciu, Algebraic Inequalities, Paralela 45 Publishing House, Pitești, 2014. th 55. Marin Chirciu, Marian Haiducu, Octavian Stroe,  Mathematics 8   grade, Algebra and Geometry. Notebook. Part I , Paralela 45 Publishing House, Piteşti, 2017. th 56. Ioan Chera, Marin Chirciu, Nicolae Vizuroiu,  Mathematics, 5  grade, Semester I , Tiparg Publishing House, Pitești, 2008. 57. Marin Chirciu, Sorin Ulmeanu, Daniel Jinga, Octavian Stroe, Daniel Văcaru, Viorel Popa, Ilie Dinulescu, Gheorghe F. Molea,  Mathematics, Scholar Contests 2009, th

th

Volume I, 9 -12  grades , Tiparg Publishing House, Pitești, 2010. 58. Marin Chirciu, “Regarding an Identity in Triangle from  Mathematical Courier   1/1925”, Mathematical Recreations, No. 1/2017. 59. Marin Chirciu, Daniel Sitaru, “Several Ways tto o Develop an Inequality”,  Mathematical Recreations, No. 2/2017, pp. 107-110. 60. Marin Chirciu, “Regarding the Problem X.446 from  RMT , No. 4/2016”,  Mathematical Magazine Magazine from Timi șoara, No. 2/2017, pp. 11-16. 61. Marin Chirciu, Daniel Sitaru, “Some Generalizations of Problems VIII.25 from  Romanian Mathematical Mathematical Magazine/18”, ELIPSA Magazine, No. 13/2016. 62. Marin Chirciu, “Regarding Some Inequalities from Crux Mathematicorum,  No. 8/1982”, Electronic Magazine Mateinfo.ro Mateinfo.ro, No. 10/2016. 63. Marin Chirciu, “Getting Some Inequalities in Any Triangle”,  Mathematical  Magazine of National College “Zinca Golescu”, Pitești, Paralela 45 Publishing House,

Pitești, 2000.  

307

 

64. Marin Chirciu, “About the Problem 27097 from GM , No. 6-7-8/2015”,  Electronic  Magazine Mateinfo.ro Mateinfo.ro, No. 5/2016. 65. Marin Chirciu, “Regarding an Inequality in Triangle from the Shortlist of ONM 2007”, Electronic Magazine Mateinfo.ro Mateinfo.ro, No. 8/2016. 66. Marin Chirciu, “Regarding an Inequality from Octogon Mathematical Magazine,  No. 1/2007”, Electronic Magazine Mateinfo.ro Mateinfo.ro, No. 9/2016. 67. Marin Chirciu, “About the Problem E:14956 from GM , No. 1/2016”, Shining the  Mind Magazine, No. 18/2016. 68. Marin Chirciu, “Regarding Inequality Given Azerbaijan 2016,Branch. TST, BMO”, No. 18, March 2017,inSSMR, Mehedinți  Romanian Mathema Mathematical tical Magazine,an 69. Marin Chirciu, “Extensions and Generalizations of a Problem from  RMT ,  No. 1/2013”, Mathematical Magazine from Timi șoara, No. 4/2013. 70. Marin Chirciu, “Gerretsen’s Inequality”,  Electronic Magazine Mateinfo.ro,  No. 7/2015. 71. Marin Chirciu, “Regarding the Problem X.446 from  RMT , No. 4/2017”,  Mathematical Magazine Magazine from Timi șoara, No. 2/2017. 72. Marin Chirciu, Daniel Sitaru, “6 Solutions and 6 Extensions for an Inequality”, Cardinal Magazine from Craiova, No. 2/2016-2017. 73. Marin Chirciu, Octavian Stroe, “About Some Inequalities from Mathematical Olympiad, Russia, 2003”, Mathematical Magazine Magazine from Timi șoara, No. 3/2016. 74. Bătinețu-Giurgiu M.D., Kofronis Anastasios, Stanciu Neculai, “Limits of Sequences and Functions from Certain Classes’’, The Teaching of Mathematics, Vol. XX, 1, 2017, 37-45. 75. Bătinețu-Giurgiu M.D., “Special Classes of Sequences”, Scientific Paper degree I, Bucharest University, 1990. 76. Bătinețu-Giurgiu M.D., “Sequences”, Albatros Publishing House, Bucharest, 1979. 77. Bătinețu-Giurgiu M.D., Gheorghiță V., Maftei V.I., Tomescu I., Vornicu F. “Olympiad Problems for Collegees (1950-1990), Science Publishing House, Bucharest, 1992. 78. Bătinețu-Giurgiu M.D., “A Method to Find the Limit of Traian Lalescu Sequence”, GM , no. 8-9/1990, pp. 214-218. 79. Bătinețu-Giurgiu M.D., “A Generalization of Traian Lalescuʼs Sequence. Methods”, GM , no. 8-9/1990, pp. 219-224. 80. Bătinețu-Giurgiu M.D., Bătinețu-Giurgiu Maria “Sequences and Functions of Lalescuʼs Type”, Creativity Seminar , vol. 7 (1997-1998), pp. 5-12, North University, Baia Mare, Romania. 81. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., “Sequences of Euler – Ioachimescu Type”, Creativity Seminar , vol. 7 (1997-1998), pp. 13-20, North University, Baia Mare, Romania. 82. Bătinețu-Giurgiu M.D., Ovidiu T. Pop “About Some Sequences”, Creative  Mathem  Mat hemati atics cs and Inform Informati atics cs, vol. 18 (2009), No. 1, pp. 76-83, Department of Mathematics and Computer Science, North University, Baia Mare, Romania. 83. Bătinețu-Giurgiu M.D., Daniel Sitaru, Neculai Stanciu, “About Ionescu-Nesbitt Inequality”, Romanian Mathematical Mathematical Magazine, No. 19, September 2017, pp. 18-19. 84. Ann D., “About a A.G. Ioachimescu Problem”, G.M., no. 9/1995, pp. 418-421. 85. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., “About Euler and A.G. Ioachimescu Sequences”, GM , no. 9/1995, pp. 430-431.

 

308

 

86. Bătinețu-Giurgiu M.D., Daniel Sitaru, Neculai Stanciu, “Aplications of Tsintsifasʼ Inequality”, Romanian Mathematical Mathematical Magazine, No. 19, September 2017, pp. 24-25, paper variant. 87. Bătinețu-Giurgiu M.D., Daniel Sitaru, Neculai Stanciu, “A Retrospective of the Ionescu-Nesbitt Inequality”,  Romanian Mathematical Magazine, Autumn Edition 2017 (www.ssmrmh.ro). 88. Bătinețu-Giurgiu M.D., Stanciu Neculai, Tica G.L., “About Mistery of Fibonacci and Lucasʼ Numbers”, Sitech Publishing House, Craiova, 2013, Romania. 89. Bătinețu-Giurgiu Bătinețu-Giurgiu M.D., M.D., “About “Lalescuʼs Sequences”,  RMT  , no., no. 1-2/1989, 90. Wallisʼ Sequence”, 2/1999,pp. pp.37-39. 3-5.  RMT  91. Bătinețu-Giurgiu M.D., “Lalescuʼs Operator Properties, Applications”,  Math  Magazine, Galați, no. 5/1989, pp. 22-27. 92. Bătinețu-Giurgiu M.D., Țena M., “About a Special Classes of Sequences Limits”,  Math Magazine, Galați, no. 9/1990, pp. 15-20. 93. Bătinețu-Giurgiu M.D., “Lalescuʼs Operators and Sequences”,  Math Magazine, Galați, no. 11/1992, pp. 7-13. 94. Bătinețu-Giurgiu M.D., “Lalescuʼs Sequences” and Eulerʼs Gamma Function. Lalescu-Euler Functions”, GMA, no. 1/1990, pp. 21-26. 95. Bătinețu-Giurgiu M.D., Bencze Mihaly, Neculai Stanciu, “Some Inequality with Fibonacci Numbers and Lucas Numbers of Bergstromʼs Type Inequality and Rodonʼs Type Inequality II”, Octogon Mathematical Magazine, vol. 25, No. 1, April 2017, pp. 65-89. 96. Bătinețu-Giurgiu M.D., Bătinețu-Giurgiu Maria, “Ioachimescuʼs Type Sequences”, GMA, no. 1, 1998, pp. 35-40. 97. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., “Convergence of Eulerʼs Sequences”, GMA, no. 4, 1998, pp. 266-273. 98. Bătinețu-Giurgiu M.D., “Wallisʼ Sequences”, GMA, no. 1, 2000, pp. 53-64. 99. Bătinețu-Giurgiu M.D., Ivășchescu N., Stanciu N., “About Some Problems from  Alpha Magazine, Math Magazine Alpha, No. 1/2017, pp. 12-13. 100. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., “About Convergence of Eulerʼs Sequences”, GMA, no. 4, 2001, pp. 221-229. 101. Bătinețu-Giurgiu M.D., Bencze M., Stanciu N., “Some Inequalities with Fibonacci  Numbers and Lucas Numbers of Berstromʼs and Radonʼs Type”, Octogon Mathematical  Magazine, vol. 24, No. 2, October 2016, pp. 493-512. 102. Bătinețu-Giurgiu M.D., Semenescu A., „Lalescuʼs Problem and the Reciprocal Theorem of Cesaro-Stolz”, GMA, no. 2, 2002, pp. 105-111. 103. Bătinețu-Giurgiu M.D., Stanciu N., “Other Generalization of a Problem from BMO”, Octogon Mathematical Magazine, vol. 24, No. 2, October 2016, pp. 578-581. 104. Bătinețu-Giurgiu M.D., Stanciu N., “Two Solutions of a Problem from the College Mathematics Journal . 105. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., “Couple of sequences EulerIoachimescu”,  Didactics Mathematics Seminar , “Babeș-Bolyai University, Seminar Cluj Napoca, vol. 14/2000, pp. 45-50. 106. Finta Zoltan, “About Some Properties of Lalescuʼs sequence”,  Didactics  Mathematics Seminar , “Babeș-Bolyai” University, seminar, Cluj-Napoca, vol. 14/2000,  pp. 73-76. 107. Bătinețu-Giurgiu M.D., “Inequalities Between Functions and Means”, Creativity in Math seminar , North University, Baia Mare, vol. 8 (1998-1999), pp. 33-44.  

309

 

108. Bătinețu-Giurgiu M.D., “Convergence Order of Euler, Ioachimescu sequences”, Creativity in Math, seminar, vol. 8 (1998-1999), pp. 45-54, North University Baia Mare. 109. Bătinețu-Giurgiu M.D., “Lalescuʼs Functions”, The 7th Conference of Mathematics and its Applications, Timișoara University, 1990, pp. 37-40. 110. Bătinețu-Giurgiu M.D., Stanciu N., “Solution problem 4106 from Crux  Mathematicorum”, MateInfo Magazin, August, 2016, p. 2. 111. Bătinețu-Giurgiu M.D., Ivășchescu N., Stanciu N., “About Some Problems from  Alpha Math Magazine Magazine”, year XXVI, No. 2/2016, pp. 99-11. 112. Science Bătinețu-Giurgiu M.D., Stanciu N., “Some Few Problems from ”, Cardinal No. 1/2016School of Mathematics Math Generalizations Magazine, yearofXXVII, 2017, pp. 4-6. 113. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., Stanciu N., “Sequences of Means Differences; Lalescuʼs Sequences”, 6-th Conferrence SSMR, “Lucian Blaga” University, Sibiu, 2003, pp. 109-120. 114. Bătinețu-Giurgiu M.D., Stanciu N., “About Problem 3941 from Crux  Mathematicorum”,  Mathematics and Informatics Magazine, Constanța, year XY, No. 3-4, September 2016, pp. 1-5. 115. Bătinețu-Giurgiu M.D., Stanciu N., “Nesbitt-Ionescu Type Inequalities, Some Generalizations of Problem 37, Math Prob Problems lems Journal  Journal , no. 4/2014, issue 5/2015, pp. 21-25. 116. Bătinețu-Giurgiu M.D., Stanciu N., “Solutions and Some Generalizations of Some Problems from Crux Mathematicorum”,  Romanian Mathematical Magazine, No. 17, September 2016, pp. 21-25. 117. Bătinețu-Giurgiu M.D., “Lalescuʼs Sequences and Analytics Geometry, 6th Conferrence SSMR, Sibiu, Publishing House, 2003, pp. 259-267. 118. Bătinețu-Giurgiu M.D., Stanciu N., “About Problem 4075, Crux Mathematicorum”,  Romanian Mathematical Mathematical Magazine, No. 17, September 2016, pp. 40-41. 119. Bătinețu-Giurgiu M.D., Stanciu N., “The Independence of Bergstromʼs Inequality”, Romanian Mathematical Mathematical Magazine, 2016, No. 19. 120. Bătinețu-Giurgiu M.D., Stanciu N., “Two Refinements of Ionescu, Weitzenbokʼs Inequality”, Romanian Mathematical Mathematical Magazine, No. 19/2016. 121. Bătinețu-Giurgiu M.D., Sitaru D., Stanciu N., “About Calculus of Some Limits for Famous Sequences”, Romanian Mathematical Mathematical Magazine, No. 19/2016. 122. Bătinețu-Giurgiu M.D., Popa A. Ștefan, “Hyperbolic Functions and Lalescuʼs Sequences”, 6th Conferrence of SSMR, Sibiu, 25 May 2002, “Lucian Blaga” Publishing House, University, pp. 130-139. 123. Bătinețu-Giurgiu M.D., “Methods for Functionsʼ Limits”,  Mat  Mathem hemati atical cal Educa Educatio tion n, vol. 5, No. 1/2009, pp. 35-40. 124. Bătinețu-Giurgiu M.D., Bencze M., Stanciu N., “A Generalization of First Problem BMO 2015”, Octogon Mathematical Magazine, vol. 24, No. 1, 2016, pp. 137-141. 125. Bătinețu-Giurgiu M.D., “About Ciorănescuʼs Double Inequality”,  Mathematical  Education, vol. 3, No. 1,2/2017, pp. 85-92. 126. Bătinețu-Giurgiu M.D., Bătinețu-Giurgiu Maria, “About Calculus of Eulerʼs Sequences Limits”, Mathematical Education, vol. 1, No. 2/2005, pp. 39-48. 127. Bătinețu-Giurgiu M.D., “Lalescuʼs Sequences and Lineʼs Equations”, Cardinal ,  No. 1/2002-2003, pp. 3-4. 128. Bătinețu-Giurgiu M.D., “Ianculescuʼs Sequences”,  Hunedoara Math Magazine, no. 2/2002, pp. 16-18.  

310

 

129. Bătinețu-Giurgiu M.D., Bencze M., “A generalization of the Bătinețu-Giurgiuʼs Sequence”, Octogon Mathematical Magazine, vol. 8, No. 1, 2000, pp. 195-197. 130. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., Bencze M., Bătinețu-Giurgiu M.D., “The Generalization of the Lalescuʼs Type Sequences”, Octogon Mathematical  Magazine, vol. 10, No. 2, October 2002, pp. 724-729. 131. Bătinețu-Giurgiu M.D., “A Geometrical Interpretation of Lalescuʼs Sequence”,  Arhimede Math Magazine Magazine, No. 5-6/2002, pp. 18-20. 132. Bătinețu-Giurgiu M.D., Bencze M., “A Geometrical Extension of Lalescuʼs Sequence”,  Arhimede MathM.D., Magazine Magazine , No.M., 9-10/2002, pp. 6-11. 133. Bătinețu-Giurgiu Bencze “Geometrical Interpretations of Lalescuʼs Sequence”, GM , no. 7-8/2002, pp. 264-270. 134. Bătinețu-Giurgiu M.D., Popa Șt., “Bătinețu-Giurgiu Sequences – Weighted Eliptical and Hyperbolical”, Arhimede Math Magazine Magazine, No. 5-6/2003, pp. 29-73. 135. Bătinețu-Giurgiu Maria, Bătinețu-Giurgiu M.D., Bencze M., “Eliptically and Hyperbolycall Pondered Lalescuʼs Functions”, Octogon Mathematical Magazine, vol. 11,  No. 1/2003, pp. 195-198. 136. Daniel Sitaru, “About Calculus of Some Definite Integrals”, GM , no. 10/1991,  pp. 361-362. 137. Bătinețu-Giurgiu M.D., “Some Consequences of Variabiles Changes”,  Arhimede  Math Magazine, vol. 4/2000, pp. 2-5. 138. Bătinețu-Giurgiu M.D., Bencze M., “On Some Primitives and Some Integrals”, Octogon Mathematical Magazine, No. 2/2000, pp. 471-475. 139. Megan M., “Dirichletʼs Functions”, GMA, no. 3/1999, pp. 166-182. 140. Bătinețu-Giurgiu M.D., “About Calculus”, GMA, no. 1/2004, pp. 21-23. 141. Bencze Mihaly, Daniel Sitaru, Marian Ursărescu, “Olympic Mathematical Energy”, Studis Publishing House, Iași, 2018.

 

311

 

 

COMENZI – CARTEA PRIN POŞTĂ  Telefon: 0756 075 341; 0756 075 342 E-mail: [email protected] [email protected] Adresa: Fraţii Goleşti nr. 130, cod poştal: 110174, Piteşti

www.cartearomaneasca.ro  Tipărit în România

 

312

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF