assign

August 21, 2017 | Author: jajhy8648 | Category: Surveying, Space, Geometry, Scientific Observation, Physics
Share Embed Donate


Short Description

afadfdafea...

Description

Technological University of the Philippines Ayala Blvd., corner San Marcelino St., Ermita Manila

College of Engineering Civil Engineering Department

CE 25-3D Elementary and Higher Surveying (Lec)

Assignment No.2 Theory of Errors and Measurements

Marquez, Jhyrelle A. 14-205-204 Date of Submission: January 6, 2015

Engr. Jesus Ray M. Mansayon Instructor

1. Given the dimensions of the following tracts of land: a.) b.) c.) d.) e.)

108.75 m by 76.82 m 940.08 m by 1296.73 m 13.36 m by 50.08 m 1258.30 m by 624.03 m 8476.55 m by 121.79 m

Determine the area of each tract in square meters, square kilometers, ares, and hectares. Given: a.) b.) c.) d.) e.)

108.75 m by 76.82 m 940.08 m by 1296.73 m 13.36 m by 50.08 m 1258.30 m by 624.03 m 8476.55 m by 121.79 m

Required: area in square meter area in square kilometer area in ares area in hectares Solution: ๐ด๐‘Ÿ๐‘’๐‘Ž = ๐ฟ๐‘’๐‘›๐‘”๐‘กโ„Ž ร— ๐‘Š๐‘–๐‘‘๐‘กโ„Ž a.) ๐ด = 108.75๐‘š2 ร— 76.82๐‘š2 = ๐Ÿ–๐Ÿ‘๐Ÿ“๐Ÿ’. ๐Ÿ๐Ÿ•๐Ÿ“ ๐’Ž๐Ÿ 1 ๐‘˜๐‘š2

๐ด = 8354.175 ๐‘š2 ร—

1000000 ๐‘š2

= ๐ŸŽ. ๐ŸŽ๐ŸŽ๐Ÿ–๐Ÿ‘๐Ÿ“๐Ÿ’ ๐’Œ๐’Ž๐Ÿ

๐ด = 8354.175 ๐‘š2 ร—

1 ๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘š2

= ๐Ÿ–๐Ÿ‘. ๐Ÿ“๐Ÿ’๐Ÿ ๐’‚๐’“๐’†๐’” ๐ด = 83.542 ๐‘Ž๐‘Ÿ๐‘’๐‘  ร—

1 โ„Ž๐‘’๐‘๐‘ก๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘Ž๐‘Ÿ๐‘’๐‘ 

= ๐ŸŽ. ๐Ÿ–๐Ÿ‘๐Ÿ“๐Ÿ’ ๐’‰๐’†๐’„๐’•๐’‚๐’“๐’†๐’”

b.) ๐ด = 940.08๐‘š ร— 1296.73๐‘š = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐ŸŽ๐Ÿ๐Ÿ—. ๐Ÿ—๐Ÿ’ ๐’Ž๐Ÿ ๐ด = 1219029.94 ๐‘š2 ร—

1 ๐‘˜๐‘š2 1000000 ๐‘š2

= ๐Ÿ. ๐Ÿ๐Ÿ๐Ÿ—๐ŸŽ๐Ÿ‘ ๐’Œ๐’Ž๐Ÿ ๐ด = 1219029.94 ๐‘š2 ร—

1 ๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘š2

= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ—๐ŸŽ. ๐Ÿ‘๐ŸŽ ๐’‚๐’“๐’†๐’” 1 โ„Ž๐‘’๐‘๐‘ก๐‘Ž๐‘Ÿ๐‘’

๐ด = 12190.30 ๐‘Ž๐‘Ÿ๐‘’๐‘  ร—

100 ๐‘Ž๐‘Ÿ๐‘’๐‘ 

= ๐Ÿ๐Ÿ๐Ÿ. ๐Ÿ—๐ŸŽ๐Ÿ‘ ๐’‰๐’†๐’„๐’•๐’‚๐’“๐’†๐’” c.) ๐ด = 13.36๐‘š ร— 50.08๐‘š = ๐Ÿ”๐Ÿ”๐Ÿ—. ๐ŸŽ๐Ÿ”๐Ÿ–๐Ÿ– ๐’Ž๐Ÿ ๐ด = 669.0688 ๐‘š2 ร—

1 ๐‘˜๐‘š2 1000000 ๐‘š2

= ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐Ÿ”๐Ÿ”๐Ÿ— ๐’Œ๐’Ž๐Ÿ ๐ด = 669.0688 ๐‘š2 ร—

1 ๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘š2

= ๐Ÿ”. ๐Ÿ”๐Ÿ—๐ŸŽ๐Ÿ”๐Ÿ–๐Ÿ– ๐’‚๐’“๐’†๐’” ๐ด = 6.690688 ๐‘Ž๐‘Ÿ๐‘’๐‘  ร—

1 โ„Ž๐‘’๐‘๐‘ก๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘Ž๐‘Ÿ๐‘’๐‘ 

= ๐ŸŽ. ๐ŸŽ๐Ÿ”๐Ÿ”๐Ÿ—๐ŸŽ๐Ÿ• ๐’‰๐’†๐’„๐’•๐’‚๐’“๐’†๐’”

d.) ๐ด = 1258.30๐‘š ร— 624.03๐‘š = ๐Ÿ•๐Ÿ–๐Ÿ“๐Ÿ๐Ÿ๐Ÿ”. ๐Ÿ—๐Ÿ’๐Ÿ—๐’Ž๐Ÿ ๐ด = 785216.949 ๐‘š2 ร—

1 ๐‘˜๐‘š2 1000000 ๐‘š2

= ๐ŸŽ. ๐Ÿ•๐Ÿ–๐Ÿ“๐Ÿ๐Ÿ๐Ÿ• ๐’Œ๐’Ž๐Ÿ ๐ด = 785216.949 ๐‘š2 ร—

1 ๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘š2

= ๐Ÿ•๐Ÿ–๐Ÿ“๐Ÿ. ๐Ÿ๐Ÿ”๐Ÿ— ๐’‚๐’“๐’†๐’” ๐ด = 7852.169 ๐‘Ž๐‘Ÿ๐‘’๐‘  ร—

1 โ„Ž๐‘’๐‘๐‘ก๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘Ž๐‘Ÿ๐‘’๐‘ 

= ๐Ÿ•๐Ÿ–. ๐Ÿ“๐Ÿ๐Ÿ๐Ÿ”๐Ÿ—๐Ÿ’๐Ÿ— ๐’‰๐’†๐’„๐’•๐’‚๐’“๐’†๐’” e.) ๐ด = 8476.55๐‘š ร— 195.42๐‘š = ๐Ÿ๐ŸŽ๐Ÿ‘๐Ÿ๐Ÿ‘๐Ÿ“๐Ÿ—. ๐ŸŽ๐Ÿ๐’Ž๐Ÿ ๐ด = 1032359.02 ๐‘š2 ร—

1 ๐‘˜๐‘š2 1000000 ๐‘š2

= ๐Ÿ. ๐ŸŽ๐Ÿ‘๐Ÿ๐Ÿ‘๐Ÿ“๐Ÿ— ๐’Œ๐’Ž๐Ÿ ๐ด = 1032359.02 ๐‘š2 ร—

1 ๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘š2

= ๐Ÿ๐ŸŽ๐Ÿ‘๐Ÿ๐Ÿ‘. ๐Ÿ“๐Ÿ— ๐’‚๐’“๐’†๐’” ๐ด = 10323.59 ๐‘Ž๐‘Ÿ๐‘’๐‘  ร—

1 โ„Ž๐‘’๐‘๐‘ก๐‘Ž๐‘Ÿ๐‘’ 100 ๐‘Ž๐‘Ÿ๐‘’๐‘ 

= ๐Ÿ๐ŸŽ๐Ÿ‘. ๐Ÿ๐Ÿ‘๐Ÿ“๐Ÿ— ๐’‰๐’†๐’„๐’•๐’‚๐’“๐’†๐’”

2. Following are the dimensions for length, width, and depth of five excavated borrow pits for a highway project. a.) b.) c.) d.) e.)

113.26 m, 35.48 m, and 18.60 m 50.08 m, 39.25 m, and 7.14 m 243.55 m, 76.19 m, and 24.66 m 42.055 m, 8.605 m, and 12.332 m 9.5 m, 6.3 m, and 4.9 m

Determine the volume of each pit in cubic meters.

Given: a.) b.) c.) d.) e.)

113.26 m, 35.48 m, and 18.60 m 50.08 m, 39.25 m, and 7.14 m 243.55 m, 76.19 m, and 24.66 m 42.055 m, 8.605 m, and 12.332 m 9.5 m, 6.3 m, and 4.9 m

Required: Volume in cubic meters. Illustration: Solution: ๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ = ๐ฟ๐‘’๐‘›๐‘”๐‘กโ„Ž ร— ๐‘Š๐‘–๐‘‘๐‘กโ„Ž ร— ๐ป๐‘’๐‘–๐‘”โ„Ž๐‘ก a.) ๐‘‰ = 113.26๐‘š ร— 35.48๐‘š ร— 18.60๐‘š = ๐Ÿ•๐Ÿ’๐Ÿ•๐Ÿ’๐Ÿ‘. ๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ– ๐’Ž๐Ÿ‘ b.) ๐‘‰ = 50.08๐‘š ร— 39.25๐‘š ร— 7.14๐‘š = ๐Ÿ๐Ÿ’๐ŸŽ๐Ÿ‘๐Ÿ’. ๐Ÿ”๐Ÿ”๐Ÿ—๐Ÿ” ๐’Ž๐Ÿ‘ c.) ๐‘‰ = 243.55๐‘š ร— 76.19๐‘š ร— 24.66๐‘š = ๐Ÿ’๐Ÿ“๐Ÿ•๐Ÿ“๐Ÿ—๐Ÿ. ๐Ÿ•๐Ÿ—๐Ÿ•๐Ÿ ๐’Ž๐Ÿ‘ d.) ๐‘‰ = 42.055๐‘š ร— 8.605๐‘š ร— 12.332๐‘š = ๐Ÿ’๐Ÿ’๐Ÿ”๐Ÿ. ๐Ÿ•๐Ÿ’๐Ÿ’๐Ÿ“๐Ÿ’๐Ÿ• ๐’Ž๐Ÿ‘ e.) ๐‘‰ = 9.5๐‘š ร— 6.3๐‘š ร— 4.9๐‘š = ๐Ÿ๐Ÿ—๐Ÿ‘. ๐Ÿ๐Ÿ”๐Ÿ“ ๐’Ž๐Ÿ‘

3. Given the following numbers: 45.63, 5.700, 4010, 0.00037, 0.000940, 6.0090, 7.00, 9.5 x 108, 4.00 x 107, 2.604 x 1018 and 3.00 x 10-16. For each number, identify the significant figures. Tabulate values accordingly. Given: 45.63 5.700 4010 0.00037

0.000940 6.0090 7.00 9.5 x 108

4.00 x 107 2.604 x 1018 3.00 x 10-16

Required: significant figures of each number Illustration: Solution:

NUMBER 45.63 5.700 4010 0.00037 0.000940 6.0090 7.00 9.5 x 108 4.00 x 107 2.604 x 1018 3.00 x 10-16

SIGNIFICANT FIGURES 4, 5, 6,3 5, 7, 0 4, 1, 0 3, 7 9, 4, 0 6, 0, 9 7, 0 9, 5 4, 0 2, 6, 0, 4 3, 0

NUMBER OF SIGNIFICANT FIGURES 4 4 4 2 3 5 3 2 3 4 3

4. The three angles of a triangle were measured with the following results: A = 42หš 05สน, B = 115หš 38สน and C = 22หš 08สน. Determine the most probable value of each angle. Given: A = 42หš 05สน B = 115หš 38สน C = 22หš 08สน

Required: Most probable value of each angle (xห‰ ) ๏€ ๏€  Illustration:

B 115หš 38สน A

42หš 05สน 22หš 08สน C

Solution:

โˆ 

x

A

42หš 05สน

B

115หš 38สน

C

22หš 08สน

Total

179หš 51โ€™

e

๐‘’ = ๐›ด๐‘ฅ โˆ’ ๐‘‡๐‘ฃ = 179หš 51โ€™ โˆ’ 180หš = +๐Ÿ—โ€ฒ

c 1 9โ€ฒ ร— = +3โ€ฒ 3 1 โ€ฒ 9 ร— = +3โ€ฒ 3 1 9โ€ฒ ร— = +3โ€ฒ 3

xห‰ = ๐’™ + ๐’„ ๐Ÿ’๐Ÿหš ๐ŸŽ๐Ÿ–โ€™ ๐Ÿ๐Ÿ๐Ÿ“หš ๐Ÿ’๐Ÿโ€™ ๐Ÿ๐Ÿหš ๐Ÿ๐Ÿโ€™

5. The interior angles of a quadrilateral were observed to be: A = 100หš 35สน 40สบ, B = 118หš 44สน 15สบ, C = 80หš 54สน 35สบ, and D = 59หš 45สน 50สบ. Determine the most probable value of each of these angles. Given: A = 100หš 35สน 40สบ B = 118หš 44สน 15สบ C = 80หš 54สน 35สบ D = 59หš 45สน 50สบ Required: Most probable value of each angle (xห‰ ) ๏€ ๏€  Illustration:

A 100หš 35สน 40สบ

D 59หš 45สน 50สบ

B

118หš 44สน 15สบ 80หš 54สน 35สบ

C Solution: โˆ 

x

A

100หš 35สน 40สบ

B

118หš 44สน 15สบ

C

80หš 54สน 35สบ

D

59หš 45สน 50สบ

Total: 360หš 00โ€™ 20โ€

e

๐‘’ = ๐›ด๐‘ฅ โˆ’ ๐‘‡๐‘ฃ = 360หš 00โ€™ 20" โˆ’ 360หš = โˆ’๐Ÿ๐ŸŽ"

c 1 20" ร— = โˆ’5" 4 1 20" ร— = โˆ’5" 4 1 20" ร— = โˆ’5" 4 1 20" ร— = โˆ’5" 4

xห‰ = ๐’™ + ๐’„ ๐Ÿ๐ŸŽ๐ŸŽหš ๐Ÿ‘๐Ÿ“โ€™ ๐Ÿ‘๐Ÿ“โ€ ๐Ÿ๐Ÿ๐Ÿ–หš ๐Ÿ’๐Ÿ’โ€™ ๐Ÿ๐ŸŽโ€ ๐Ÿ–๐ŸŽหš ๐Ÿ“๐Ÿ’โ€™ ๐Ÿ‘๐ŸŽโ€ ๐Ÿ“๐Ÿ—หš ๐Ÿ’๐Ÿ“โ€™ ๐Ÿ’๐Ÿ“โ€

6. A surveying instructor sent all the 40 students in his class out to measure a distance between two points marked on a runway. The students working in groups of four came up with 10 different measurements as follows: 920.45, 921.05, 921.65, 920.25, 920.15, 921.85, 921.95, 920.45, 921.15, and 921.35 meters. Assuming these values are equally reliable and that variations result only from accidental errors, determine the relative precision of a single measurement and the relative precision of the mean. Given: 920.45 921.05 921.65 920.25

920.15 921.85 921.95 920.45

921.15 921.35

Required: relative precision of a single measurement (๐‘…๐‘ƒ๐‘ ) relative precision of the mean (๐‘…๐‘ƒ๐‘š)

Illustration: x (m) Pt. 2

Pt. 1 Solution:

1 2 3 4 5 6 7 8 9 10

๐’™ (๐’Ž) 920.45 921.05 921.65 920.25 920.15 921.85 921.95 920.45 921.15 921.35

๐‘› = 10

๐›ด๐‘ฅ = 9210.3

๐’

xห‰ (๐’Ž)

xห‰ = ๐Ÿ—๐Ÿ๐Ÿ. ๐ŸŽ๐Ÿ‘ ๐’Ž

(๐‘ฅ โˆ’ xห‰ )2 (๐‘š2 ) 0.3364 0.0004 0.3844 0.6084 0.7744 0.6724 0.8464 0.3364 0.0144 0.1024 ๐›ด(๐‘ฅ โˆ’ xห‰ )2 = 4.076

Computation xห‰ =

๐œฎ๐’™

xห‰ =

๐Ÿ—๐Ÿ๐Ÿ๐ŸŽ.๐Ÿ‘

๐’

๐Ÿ๐ŸŽ

xห‰ = ๐Ÿ—๐Ÿ๐Ÿ. ๐ŸŽ๐Ÿ‘ ๐’Ž

๐‘ฃ=

๐›ด(๐‘ฅโˆ’x ห‰ )2 ๐‘›โˆ’1 4.076

๐‘ฃ = 10โˆ’1

๐‘ฃ = ๐ŸŽ. ๐Ÿ’๐Ÿ“๐Ÿ๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ–๐Ÿ— ๐’Ž๐Ÿ ๐œŽ

๐œŽ = ยฑโˆš๐‘ฃ

๐œŽ๐‘š = ยฑ

๐œŽ = ยฑโˆš0.4528888889 ๐‘š2

๐œŽ๐‘š = ยฑ

๐œŽ = ยฑ๐ŸŽ. ๐ŸŽ๐Ÿ”๐Ÿ๐Ÿ—๐Ÿ•๐ŸŽ๐Ÿ๐Ÿ—๐Ÿ—๐Ÿ ๐’Ž

๐œŽ = ยฑ๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ–๐Ÿ๐Ÿ๐Ÿ–๐Ÿ”๐Ÿ๐Ÿ• ๐’Ž

๐‘ƒ๐ธ๐‘  = ยฑ0.6745 ๐œŽ

๐‘ƒ๐ธ๐‘š = ยฑ0.6745 ๐œŽ๐‘š

๐‘ƒ๐ธ๐‘  = ยฑ0.6745 (0.0629701991)

๐‘ƒ๐ธ๐‘š = ยฑ0.6745 (0.2128118627)

๐‘ƒ๐ธ๐‘  = ยฑ0.4539183993 ๐‘š

๐‘ƒ๐ธ๐‘š = ยฑ0.01435416014 ๐‘š

๐‘…๐‘ƒ๐‘  =

๐‘ƒ๐ธ๐‘ 

๐‘…๐‘ƒ๐‘  =

0.4539183993

๐‘น๐‘ท๐’” =

xห‰ 921.03 ๐Ÿ ๐Ÿ๐ŸŽ๐Ÿ๐Ÿ—.๐ŸŽ๐Ÿ•

, ๐’”๐’‚๐’š

๐Ÿ ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ

โˆš๐‘› 0.0629701991 โˆš10

๐‘…๐‘ƒ๐‘š =

๐‘ƒ๐ธ๐‘š

๐‘…๐‘ƒ๐‘š =

0.1435416914

๐‘น๐‘ท๐’” =

xห‰ 921.03 ๐Ÿ ๐Ÿ”๐Ÿ’๐Ÿ๐Ÿ”.๐Ÿ’๐Ÿ•

, ๐’”๐’‚๐’š

๐Ÿ ๐Ÿ”๐Ÿ’๐ŸŽ๐ŸŽ

7.

A line is measured on a windy day as 338.65 m. the same line measured 338.37 m on a calm day. If the latter measurement is given four times the reliability of the first, determine the most probable value of the measured line. Given: 338.65 m - windy day (Weight โ€“ 1) 338.37 m - calm day (Weight โ€“ 4) Required: Most probable value (xห‰ ) Illustration:

338.65m (Windy day)

338.37m (calm day)

Pt. 2

Pt. 1

Pt. 1

Pt. 2

Solution:

Weather

๐‘ฅ (๐‘š)

Weight

๐‘Š๐‘’๐‘–๐‘”โ„Ž๐‘ก ร— x (๐‘š)

Windy

338.65

1

338.65

Calm

338.37

4

1353.48

5

1692.13

Total

xห‰ =

๐œฎ๐’™

xห‰ =

๐Ÿ๐Ÿ”๐Ÿ—๐Ÿ.๐Ÿ๐Ÿ‘

๐’

๐Ÿ“

xห‰ = ๐Ÿ‘๐Ÿ‘๐Ÿ–. ๐Ÿ’๐Ÿ๐Ÿ”๐’Ž

8. An angle ABC is measured at different times various instruments and procedures. The results which are assigned certain weights, are as follows: 75หš 09สน 26สบ, weight of 4; 75หš 09สน 25สบ, weight of 3; 75หš 09สน 27สบ, weight of 1. Determine the most probable value of the angle measured. Given:

โˆ 

x

weight

A B C

75หš 09สน 26สบ 75หš 09สน 25สบ 75หš 09สน 27สบ

4 3 1

Required: Most probable value of angle (xห‰ ) Illustration: A

B

x

C

Solution

โˆ 

๐‘ฅ (๐‘š)

Weight

๐‘Š๐‘’๐‘–๐‘”โ„Ž๐‘ก ร— x (๐‘š)

A

75หš 09สน 26สบ

4

300หš 37สน 44สบ

B

75หš 09สน 25สบ

3

225หš 28สน 15สบ

C

75หš 09สน 27สบ

1

75หš 09สน 27สบ

601หš 15สน 26สบ

8

601หš 15สน 26สบ

Total ๐œฎ

xห‰ = ๐’ xห‰ =

601หš 15สน 26สบ ๐Ÿ–

xห‰ = ๐Ÿ•๐Ÿ“หš ๐ŸŽ๐Ÿ—สน ๐Ÿ๐Ÿ“. ๐Ÿ•๐Ÿ“สบ

9. Two sides and the included angle of a triangle were measured and the probable error of each value were computed as follows: a = 267.55 m ยฑ 0.05 m, b = 564.75 m ยฑ 0.06 m, and angle C = 57หš 15สน 45สบ. Determine the area of the triangle and the probable error of the area. Given: a = 267.55 m ๐‘ƒ๐ธ๐ด = ยฑ 0.05 m b = 564.75 m ๐‘ƒ๐ธ๐‘ = ยฑ 0.06 m C = 57หš 15สน 45สบ Required: Area (A) Probable Error of Area (๐‘ƒ๐ธ๐ด ) Illustration: B

C = 57หš 15สน 45สบ A b = 564.75 ยฑ 0.06 m

C

Solution: 1

๐ด = 2 ๐‘Ž๐‘ sin ๐ถ 1

๐ด = 2 (267.55)(564.75) sin( 57หš 15สน 45สบ) ๐‘จ = ๐Ÿ”๐Ÿ‘๐Ÿ“๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ‘๐Ÿ’๐Ÿ ๐‘ƒ๐ธ๐ด = ยฑ๐‘˜โˆš(๐‘ƒ๐ธ) 1

๐‘ƒ๐ธ๐ด = ยฑ 2 sin ๐ถ โˆš(๐‘Ž ร— ๐‘ƒ๐ธ๐‘ )2 + (๐‘ ร— ๐‘ƒ๐ธ๐‘Ž )2 1

๐‘ƒ๐ธ๐ด = ยฑ 2 sin(57หš 15สน 45สบ)โˆš(267.55 ร— 0.05)2 + (564.75 ร— 0.06)2 ๐‘ท๐‘ฌ๐‘จ = ยฑ๐Ÿ๐Ÿ‘. ๐Ÿ”๐Ÿ”๐Ÿ๐Ÿ ๐’Ž๐Ÿ

10. A line AE is divided into segments for measurement with a tape. The result were AB = 134.10 m ยฑ 0.040 m, BC = 320.63 m ยฑ 0.055 m, CD = 173.73 m ยฑ 0.056 m, and DE = 160.85 m ยฑ 0.050 m. Determine the length of the line and the probable error of the measured length. Given: AB = 134.10 m; PEAB = ยฑ 0.040 m BC = 320.63 m; PEBC = ยฑ 0.055 m CD = 173.73 m; PECD = ยฑ 0.056 m DE = 160.85 m; PEDE = ยฑ 0.050 m Required: Length (L) Probable Error of the Length (PEL) Illustration: 134.10 ยฑ 0.040 m

A

320.63 ยฑ 0.055 m

B

173.73 ยฑ 0.056 m 160.85 ยฑ 0.050 m

C

Solution: ๐ฟ = ๐ด๐ต + ๐ต๐ถ + ๐ถ๐ท + ๐ท๐ธ ๐ฟ = 134.10 + 320.63 + 173.73 + 160.85 ๐‘ณ = ๐Ÿ•๐Ÿ–๐Ÿ—. ๐Ÿ‘๐Ÿ ๐’Ž ๐‘ƒ๐ธ๐ฟ = ยฑโˆš(๐‘ƒ๐ธ๐ด๐ต )2 + (๐‘ƒ๐ธ๐ต๐ถ )2 + (๐‘ƒ๐ธ๐ถ๐ท )2 + (๐‘ƒ๐ธ๐ท๐ธ )2 ๐‘ƒ๐ธ๐ฟ = ยฑโˆš(0.040)2 + (0.055)2 + (0.056)2 + (0.050)2 ๐‘ท๐‘ฌ๐‘ณ = ยฑ๐ŸŽ. ๐ŸŽ๐Ÿ ๐’Ž

D

E

11. The four approximately equal sides of a tract of land were measured and the measurements included the following errors: ยฑ 0.085 m, ยฑ 0.014 m, ยฑ 0.0175 m, and ยฑ 0.205 m, respectively. Determine the probable error for the total length (or perimeter) of the tract. Given: PE1 = ยฑ 0.085 m PE2 = ยฑ 0.014 m PE3 = ยฑ 0.0175 m PE4 = ยฑ 0.205 m Required: Probable Error (PEP) Illustration:

Solution: ๐‘ƒ๐ธ๐‘ƒ = ยฑโˆš(๐‘ƒ๐ธ1 )2 + (๐‘ƒ๐ธ2 )2 + (๐‘ƒ๐ธ3 )2 + (๐‘ƒ๐ธ4 )2 ๐‘ƒ๐ธ๐‘ƒ = ยฑโˆš(0.085 )2 + (0.014)2 + (0.0175)2 + (0.205)2 ๐‘ท๐‘ฌ๐‘ท = ยฑ๐ŸŽ. ๐Ÿ๐Ÿ–๐Ÿ‘ ๐’Ž

12. Two sides of rectangle were measured being 226.25 m ยฑ 0.03 m and 307.28 m ยฑ 0.04 m. Determine the area of the figure and the probable error of the area. Given: L = 226.25 m; PEL = ยฑ 0.03 m W = 307.28 m; PEW = ยฑ 0.04 m Required: Area (A) Probable Error of the Area (PEA) Illustration:

W = 307.28 ยฑ 0.04 m

L = 226.25 ยฑ 0.03 m

Solution: ๐ด = ๐ฟร—๐‘Š

๐‘ƒ๐ธ๐ด = ยฑโˆš(๐ฟ ร— ๐‘ƒ๐ธ๐‘Š )2 + (๐‘Š ร— ๐‘ƒ๐ธ๐ฟ )2

๐ด = 226.25 ร— 307.28

๐‘ƒ๐ธ๐ด = ยฑโˆš(226.2 ร— 0.04)2 + (307.28 ร— 0.03)2

๐‘จ = ๐Ÿ”๐Ÿ—๐Ÿ“๐Ÿ๐Ÿ. ๐Ÿ๐ŸŽ ๐’Ž๐Ÿ

๐‘ท๐‘ฌ๐‘จ = ยฑ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ ๐’Ž๐Ÿ

13. Plane surveying is that type of surveying in which the earth is considered to be a flat surface. Distances and areas involved are of limited extent and the a.) approximate shape of the earth is considered b.) theoretical shape of the geoid is evaluated c.) exact shape of the earth is disregarded d.) shape of the earth is considered as geoid Plane surveying is the survey in which the earth surface is assumed to be plane and the curvature of the earth is ignored. The correct answer is c.

14. A photogrammetric survey makes use of photographs taken with specially designed cameras either from a.) a ship or an elevated ground station b.) the ground surface or underwater c.) a field or a laboratory environment d.) a map or a scaled drawing e.) airplanes or ground stations

Photogrammetric survey is a type of survey which makes use of photographs taken with specially designed cameras either from airplanes or ground stations. The answer is e.

15. The meter is now defined as a length equal to a.) 1/10,000,000 of the earthโ€™s meridional quadrant b.) 650,736.37 wavelengths of the bright-red light produced by burning silver electrodes c.) 39.27 inches d.) 0.001 kilometers e.) 1,650,763.73 wavelengths of the orange-red light produced by burning krypton at a specified energy level in the spectrum.

The meter is now defined as a length equal to 1,650,763.73 wavelengths of the orange-red light produced by burning krypton at a specified energy level in the spectrum. The answer is e.

16. The sexagesimal units of angular measurement are the a.) grad, centesimal minute, and centesimal second b.) degree, minute, and second c.) radian and steradian d.) mil, grad, and radian e.) hours, minutes, and seconds

Degree, minute, and second are the sexagesimal units of angular measurement. The answer is b.

17. When rounded off to the nearest hundredth, 36.24445 becomes a.) 36.25 b.) 36.26 c.) 36.2 d.) 36.3 e.) 36.24

Answer: b

18. A line, known to be 150.000 m long, is measured five times with a steel tape in the following order: 150.004, 149.998, 149.997, 150.005, and 149.996 meters, respectively. The more accurate of the five measurements is the a.) 1st measurement b.) 2nd measurement c.) 3rd measurement d.) 4th measurement e.) 5th measurement Answer: b

19. If for particular measurement the probable error of the mean is 0.09 m and the most probable value of the measurement is 362.70 m, the relative precision would be expressed as a.) 1/4030 b.) 0.000248 c.) 1:362.70 d.) 1:0.09 e.) 1/363

Given: ๐‘ƒ๐ธ๐‘š = ยฑ 0.09 ๐‘š ๐‘ฅฬ… = 362.70 ๐‘š Required: Relative Precision (RP) Solution: ๐‘…๐‘ƒ = ๐‘…๐‘ƒ = ๐‘…๐‘ƒ =

๐‘ƒ๐ธ๐‘š ๐‘ฅฬ… 0.09 362.70 1 4030

Answer: letter a

20. The interior angles of a hexagon were observed and recorded as follows: A = 122หš 31สน 02สบ, B = 123หš 26สน 17สบ, C = 130หš 05สน 07สบ, D = 120หš 15สน 47สบ, E = 160หš 50สน 35สบ, and F = 62หš 53สน 07สบ. The discrepancy of the measurement is a.) 0สน 30สบ b.) 2สน 30สบ c.) 1สน 00สบ d.) 2สน 50สบ e.) 1สน 30สบ

Given: A = 122หš 31สน 02สบ B = 123หš 26สน 17สบ C = 130หš 05สน 07สบ D = 120หš 15สน 47สบ E = 160หš 50สน 35สบ F = 62หš 53สน 07สบ Required: Discrepancy (d) Illustration: B C 123หš 26สน 17สบ A

130หš 05สน 07สบ

122หš 31สน 02สบ 120หš 15สน 47สบ

62หš 53สน 07สบ

D

160หš 50สน 35สบ

F

E

Solution: โˆ  A B C D E F TOTAL

x 122หš 31สน 02สบ 123หš 26สน 17สบ 130หš 05สน 07สบ 120หš 15สน 47สบ 160หš 50สน 35สบ 62หš 53สน 07สบ 720หš 01สน 55สบ

Computation ๐‘›=6 โˆ ๐‘–๐‘‡ = (๐‘› โˆ’ 2)180หš โˆ ๐‘–๐‘‡ = (6 โˆ’ 2)180หš โˆ ๐‘–๐‘‡ = 720หš

๐‘‘ = |720หš 01โ€ฒ 55"| ๐’… = ๐ŸŽ๐Ÿโ€ฒ๐Ÿ“๐Ÿ“"

21. Five measurements were made to determine the length of a line and recorded as follows: 350.33, 350.22, 350.30, 350.27, 350.30 meters. If these measurements were given weights of 4, 5, 1, 4, and 6, respectively, the most probable value of the length measured is a.) 350.26 m b.) 350.29 m c.) 350. 30 m d.) 350.27 m e.) 350.28 m Given: 350.33 m (weight = 4) 350.22 m (weight = 5) 350.30 m (weight = 1) 350.27 m (weight = 4) 350.30 m (weight = 6) Required: Most probable value (๐‘ฅฬ… )

Illustration:

x

Pt. 1

Pt. 2

Solution

๐‘ฅ (๐‘š)

Weight

๐‘Š๐‘’๐‘–๐‘”โ„Ž๐‘ก ร— x (๐‘š)

350.33

4

1401.32

350.22

5

1751.10

350.30

1

350.30

350.27

4

1401.08

350.30

6

2101.80

20

7005.60

TOTAL

ฬ…๐‘ฅ = ๐›ด ๐‘ฅฬ… =

(๐‘Šร—๐‘ฅ) ๐‘Š

7005.60 20

๐‘ฅฬ… = 350.28 ๐‘š Answer: letter e

22. The base and altitude of a triangular lot were measured with certain estimated probable errors as follows: b = 215.50 ยฑ 0.18 m and h = 69.40 ยฑ 0.16 m. The true area of the lot probably a.) is equal to 7514.52 sq m b.) is equal to 7441.18 sq m c.) falls between 7441.18 and 7477.85 sq m d.) falls between 7477.85 and 7514.52 sq m e.) falls between 7441.18 and 7514.52 sq m

Given: b = 215.50 m; PEb = ยฑ 0.18 m h = 69.40 m; PEh = ยฑ 0.16 m Required: True Area of the Lot (A)

69.40 ยฑ 0.16 m

Illustration:

215.50 ยฑ 0.18 m Solution: 1

๐‘ƒ๐ธ๐ด = ยฑ 2 โˆš(215.50 ร— 0.16)2 + (69.40 ร— 0.18)2

1

๐‘ƒ๐ธ๐ด = ยฑ18.34 ๐‘š2

๐ด = 2 ๐‘โ„Ž ๐ด = 2 (215.50)(69.40)

1

๐ด = 7477.85 ๐‘š2 Answer: The Area of the lot is ๐Ÿ•๐Ÿ’๐Ÿ•๐Ÿ•. ๐Ÿ–๐Ÿ“ ยฑ ๐Ÿ๐Ÿ–. ๐Ÿ‘๐Ÿ’ ๐’Ž๐Ÿ and it falls between 7451.51 m2 to 7496.19 m2.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF