assign
Short Description
afadfdafea...
Description
Technological University of the Philippines Ayala Blvd., corner San Marcelino St., Ermita Manila
College of Engineering Civil Engineering Department
CE 25-3D Elementary and Higher Surveying (Lec)
Assignment No.2 Theory of Errors and Measurements
Marquez, Jhyrelle A. 14-205-204 Date of Submission: January 6, 2015
Engr. Jesus Ray M. Mansayon Instructor
1. Given the dimensions of the following tracts of land: a.) b.) c.) d.) e.)
108.75 m by 76.82 m 940.08 m by 1296.73 m 13.36 m by 50.08 m 1258.30 m by 624.03 m 8476.55 m by 121.79 m
Determine the area of each tract in square meters, square kilometers, ares, and hectares. Given: a.) b.) c.) d.) e.)
108.75 m by 76.82 m 940.08 m by 1296.73 m 13.36 m by 50.08 m 1258.30 m by 624.03 m 8476.55 m by 121.79 m
Required: area in square meter area in square kilometer area in ares area in hectares Solution: ๐ด๐๐๐ = ๐ฟ๐๐๐๐กโ ร ๐๐๐๐กโ a.) ๐ด = 108.75๐2 ร 76.82๐2 = ๐๐๐๐. ๐๐๐ ๐๐ 1 ๐๐2
๐ด = 8354.175 ๐2 ร
1000000 ๐2
= ๐. ๐๐๐๐๐๐ ๐๐๐
๐ด = 8354.175 ๐2 ร
1 ๐๐๐ 100 ๐2
= ๐๐. ๐๐๐ ๐๐๐๐ ๐ด = 83.542 ๐๐๐๐ ร
1 โ๐๐๐ก๐๐๐ 100 ๐๐๐๐
= ๐. ๐๐๐๐ ๐๐๐๐๐๐๐๐
b.) ๐ด = 940.08๐ ร 1296.73๐ = ๐๐๐๐๐๐๐. ๐๐ ๐๐ ๐ด = 1219029.94 ๐2 ร
1 ๐๐2 1000000 ๐2
= ๐. ๐๐๐๐๐ ๐๐๐ ๐ด = 1219029.94 ๐2 ร
1 ๐๐๐ 100 ๐2
= ๐๐๐๐๐. ๐๐ ๐๐๐๐ 1 โ๐๐๐ก๐๐๐
๐ด = 12190.30 ๐๐๐๐ ร
100 ๐๐๐๐
= ๐๐๐. ๐๐๐ ๐๐๐๐๐๐๐๐ c.) ๐ด = 13.36๐ ร 50.08๐ = ๐๐๐. ๐๐๐๐ ๐๐ ๐ด = 669.0688 ๐2 ร
1 ๐๐2 1000000 ๐2
= ๐. ๐๐๐๐๐๐ ๐๐๐ ๐ด = 669.0688 ๐2 ร
1 ๐๐๐ 100 ๐2
= ๐. ๐๐๐๐๐๐ ๐๐๐๐ ๐ด = 6.690688 ๐๐๐๐ ร
1 โ๐๐๐ก๐๐๐ 100 ๐๐๐๐
= ๐. ๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐
d.) ๐ด = 1258.30๐ ร 624.03๐ = ๐๐๐๐๐๐. ๐๐๐๐๐ ๐ด = 785216.949 ๐2 ร
1 ๐๐2 1000000 ๐2
= ๐. ๐๐๐๐๐๐ ๐๐๐ ๐ด = 785216.949 ๐2 ร
1 ๐๐๐ 100 ๐2
= ๐๐๐๐. ๐๐๐ ๐๐๐๐ ๐ด = 7852.169 ๐๐๐๐ ร
1 โ๐๐๐ก๐๐๐ 100 ๐๐๐๐
= ๐๐. ๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐ e.) ๐ด = 8476.55๐ ร 195.42๐ = ๐๐๐๐๐๐๐. ๐๐๐๐ ๐ด = 1032359.02 ๐2 ร
1 ๐๐2 1000000 ๐2
= ๐. ๐๐๐๐๐๐ ๐๐๐ ๐ด = 1032359.02 ๐2 ร
1 ๐๐๐ 100 ๐2
= ๐๐๐๐๐. ๐๐ ๐๐๐๐ ๐ด = 10323.59 ๐๐๐๐ ร
1 โ๐๐๐ก๐๐๐ 100 ๐๐๐๐
= ๐๐๐. ๐๐๐๐ ๐๐๐๐๐๐๐๐
2. Following are the dimensions for length, width, and depth of five excavated borrow pits for a highway project. a.) b.) c.) d.) e.)
113.26 m, 35.48 m, and 18.60 m 50.08 m, 39.25 m, and 7.14 m 243.55 m, 76.19 m, and 24.66 m 42.055 m, 8.605 m, and 12.332 m 9.5 m, 6.3 m, and 4.9 m
Determine the volume of each pit in cubic meters.
Given: a.) b.) c.) d.) e.)
113.26 m, 35.48 m, and 18.60 m 50.08 m, 39.25 m, and 7.14 m 243.55 m, 76.19 m, and 24.66 m 42.055 m, 8.605 m, and 12.332 m 9.5 m, 6.3 m, and 4.9 m
Required: Volume in cubic meters. Illustration: Solution: ๐๐๐๐ข๐๐ = ๐ฟ๐๐๐๐กโ ร ๐๐๐๐กโ ร ๐ป๐๐๐โ๐ก a.) ๐ = 113.26๐ ร 35.48๐ ร 18.60๐ = ๐๐๐๐๐. ๐๐๐๐๐ ๐๐ b.) ๐ = 50.08๐ ร 39.25๐ ร 7.14๐ = ๐๐๐๐๐. ๐๐๐๐ ๐๐ c.) ๐ = 243.55๐ ร 76.19๐ ร 24.66๐ = ๐๐๐๐๐๐. ๐๐๐๐ ๐๐ d.) ๐ = 42.055๐ ร 8.605๐ ร 12.332๐ = ๐๐๐๐. ๐๐๐๐๐๐ ๐๐ e.) ๐ = 9.5๐ ร 6.3๐ ร 4.9๐ = ๐๐๐. ๐๐๐ ๐๐
3. Given the following numbers: 45.63, 5.700, 4010, 0.00037, 0.000940, 6.0090, 7.00, 9.5 x 108, 4.00 x 107, 2.604 x 1018 and 3.00 x 10-16. For each number, identify the significant figures. Tabulate values accordingly. Given: 45.63 5.700 4010 0.00037
0.000940 6.0090 7.00 9.5 x 108
4.00 x 107 2.604 x 1018 3.00 x 10-16
Required: significant figures of each number Illustration: Solution:
NUMBER 45.63 5.700 4010 0.00037 0.000940 6.0090 7.00 9.5 x 108 4.00 x 107 2.604 x 1018 3.00 x 10-16
SIGNIFICANT FIGURES 4, 5, 6,3 5, 7, 0 4, 1, 0 3, 7 9, 4, 0 6, 0, 9 7, 0 9, 5 4, 0 2, 6, 0, 4 3, 0
NUMBER OF SIGNIFICANT FIGURES 4 4 4 2 3 5 3 2 3 4 3
4. The three angles of a triangle were measured with the following results: A = 42ห 05สน, B = 115ห 38สน and C = 22ห 08สน. Determine the most probable value of each angle. Given: A = 42ห 05สน B = 115ห 38สน C = 22ห 08สน
Required: Most probable value of each angle (xห ) ๏ ๏ Illustration:
B 115ห 38สน A
42ห 05สน 22ห 08สน C
Solution:
โ
x
A
42ห 05สน
B
115ห 38สน
C
22ห 08สน
Total
179ห 51โ
e
๐ = ๐ด๐ฅ โ ๐๐ฃ = 179ห 51โ โ 180ห = +๐โฒ
c 1 9โฒ ร = +3โฒ 3 1 โฒ 9 ร = +3โฒ 3 1 9โฒ ร = +3โฒ 3
xห = ๐ + ๐ ๐๐ห ๐๐โ ๐๐๐ห ๐๐โ ๐๐ห ๐๐โ
5. The interior angles of a quadrilateral were observed to be: A = 100ห 35สน 40สบ, B = 118ห 44สน 15สบ, C = 80ห 54สน 35สบ, and D = 59ห 45สน 50สบ. Determine the most probable value of each of these angles. Given: A = 100ห 35สน 40สบ B = 118ห 44สน 15สบ C = 80ห 54สน 35สบ D = 59ห 45สน 50สบ Required: Most probable value of each angle (xห ) ๏ ๏ Illustration:
A 100ห 35สน 40สบ
D 59ห 45สน 50สบ
B
118ห 44สน 15สบ 80ห 54สน 35สบ
C Solution: โ
x
A
100ห 35สน 40สบ
B
118ห 44สน 15สบ
C
80ห 54สน 35สบ
D
59ห 45สน 50สบ
Total: 360ห 00โ 20โ
e
๐ = ๐ด๐ฅ โ ๐๐ฃ = 360ห 00โ 20" โ 360ห = โ๐๐"
c 1 20" ร = โ5" 4 1 20" ร = โ5" 4 1 20" ร = โ5" 4 1 20" ร = โ5" 4
xห = ๐ + ๐ ๐๐๐ห ๐๐โ ๐๐โ ๐๐๐ห ๐๐โ ๐๐โ ๐๐ห ๐๐โ ๐๐โ ๐๐ห ๐๐โ ๐๐โ
6. A surveying instructor sent all the 40 students in his class out to measure a distance between two points marked on a runway. The students working in groups of four came up with 10 different measurements as follows: 920.45, 921.05, 921.65, 920.25, 920.15, 921.85, 921.95, 920.45, 921.15, and 921.35 meters. Assuming these values are equally reliable and that variations result only from accidental errors, determine the relative precision of a single measurement and the relative precision of the mean. Given: 920.45 921.05 921.65 920.25
920.15 921.85 921.95 920.45
921.15 921.35
Required: relative precision of a single measurement (๐
๐๐ ) relative precision of the mean (๐
๐๐)
Illustration: x (m) Pt. 2
Pt. 1 Solution:
1 2 3 4 5 6 7 8 9 10
๐ (๐) 920.45 921.05 921.65 920.25 920.15 921.85 921.95 920.45 921.15 921.35
๐ = 10
๐ด๐ฅ = 9210.3
๐
xห (๐)
xห = ๐๐๐. ๐๐ ๐
(๐ฅ โ xห )2 (๐2 ) 0.3364 0.0004 0.3844 0.6084 0.7744 0.6724 0.8464 0.3364 0.0144 0.1024 ๐ด(๐ฅ โ xห )2 = 4.076
Computation xห =
๐ฎ๐
xห =
๐๐๐๐.๐
๐
๐๐
xห = ๐๐๐. ๐๐ ๐
๐ฃ=
๐ด(๐ฅโx ห )2 ๐โ1 4.076
๐ฃ = 10โ1
๐ฃ = ๐. ๐๐๐๐๐๐๐๐๐๐ ๐๐ ๐
๐ = ยฑโ๐ฃ
๐๐ = ยฑ
๐ = ยฑโ0.4528888889 ๐2
๐๐ = ยฑ
๐ = ยฑ๐. ๐๐๐๐๐๐๐๐๐๐ ๐
๐ = ยฑ๐. ๐๐๐๐๐๐๐๐๐๐ ๐
๐๐ธ๐ = ยฑ0.6745 ๐
๐๐ธ๐ = ยฑ0.6745 ๐๐
๐๐ธ๐ = ยฑ0.6745 (0.0629701991)
๐๐ธ๐ = ยฑ0.6745 (0.2128118627)
๐๐ธ๐ = ยฑ0.4539183993 ๐
๐๐ธ๐ = ยฑ0.01435416014 ๐
๐
๐๐ =
๐๐ธ๐
๐
๐๐ =
0.4539183993
๐น๐ท๐ =
xห 921.03 ๐ ๐๐๐๐.๐๐
, ๐๐๐
๐ ๐๐๐๐
โ๐ 0.0629701991 โ10
๐
๐๐ =
๐๐ธ๐
๐
๐๐ =
0.1435416914
๐น๐ท๐ =
xห 921.03 ๐ ๐๐๐๐.๐๐
, ๐๐๐
๐ ๐๐๐๐
7.
A line is measured on a windy day as 338.65 m. the same line measured 338.37 m on a calm day. If the latter measurement is given four times the reliability of the first, determine the most probable value of the measured line. Given: 338.65 m - windy day (Weight โ 1) 338.37 m - calm day (Weight โ 4) Required: Most probable value (xห ) Illustration:
338.65m (Windy day)
338.37m (calm day)
Pt. 2
Pt. 1
Pt. 1
Pt. 2
Solution:
Weather
๐ฅ (๐)
Weight
๐๐๐๐โ๐ก ร x (๐)
Windy
338.65
1
338.65
Calm
338.37
4
1353.48
5
1692.13
Total
xห =
๐ฎ๐
xห =
๐๐๐๐.๐๐
๐
๐
xห = ๐๐๐. ๐๐๐๐
8. An angle ABC is measured at different times various instruments and procedures. The results which are assigned certain weights, are as follows: 75ห 09สน 26สบ, weight of 4; 75ห 09สน 25สบ, weight of 3; 75ห 09สน 27สบ, weight of 1. Determine the most probable value of the angle measured. Given:
โ
x
weight
A B C
75ห 09สน 26สบ 75ห 09สน 25สบ 75ห 09สน 27สบ
4 3 1
Required: Most probable value of angle (xห ) Illustration: A
B
x
C
Solution
โ
๐ฅ (๐)
Weight
๐๐๐๐โ๐ก ร x (๐)
A
75ห 09สน 26สบ
4
300ห 37สน 44สบ
B
75ห 09สน 25สบ
3
225ห 28สน 15สบ
C
75ห 09สน 27สบ
1
75ห 09สน 27สบ
601ห 15สน 26สบ
8
601ห 15สน 26สบ
Total ๐ฎ
xห = ๐ xห =
601ห 15สน 26สบ ๐
xห = ๐๐ห ๐๐สน ๐๐. ๐๐สบ
9. Two sides and the included angle of a triangle were measured and the probable error of each value were computed as follows: a = 267.55 m ยฑ 0.05 m, b = 564.75 m ยฑ 0.06 m, and angle C = 57ห 15สน 45สบ. Determine the area of the triangle and the probable error of the area. Given: a = 267.55 m ๐๐ธ๐ด = ยฑ 0.05 m b = 564.75 m ๐๐ธ๐ = ยฑ 0.06 m C = 57ห 15สน 45สบ Required: Area (A) Probable Error of Area (๐๐ธ๐ด ) Illustration: B
C = 57ห 15สน 45สบ A b = 564.75 ยฑ 0.06 m
C
Solution: 1
๐ด = 2 ๐๐ sin ๐ถ 1
๐ด = 2 (267.55)(564.75) sin( 57ห 15สน 45สบ) ๐จ = ๐๐๐๐๐. ๐๐๐๐ ๐๐ธ๐ด = ยฑ๐โ(๐๐ธ) 1
๐๐ธ๐ด = ยฑ 2 sin ๐ถ โ(๐ ร ๐๐ธ๐ )2 + (๐ ร ๐๐ธ๐ )2 1
๐๐ธ๐ด = ยฑ 2 sin(57ห 15สน 45สบ)โ(267.55 ร 0.05)2 + (564.75 ร 0.06)2 ๐ท๐ฌ๐จ = ยฑ๐๐. ๐๐๐๐ ๐๐
10. A line AE is divided into segments for measurement with a tape. The result were AB = 134.10 m ยฑ 0.040 m, BC = 320.63 m ยฑ 0.055 m, CD = 173.73 m ยฑ 0.056 m, and DE = 160.85 m ยฑ 0.050 m. Determine the length of the line and the probable error of the measured length. Given: AB = 134.10 m; PEAB = ยฑ 0.040 m BC = 320.63 m; PEBC = ยฑ 0.055 m CD = 173.73 m; PECD = ยฑ 0.056 m DE = 160.85 m; PEDE = ยฑ 0.050 m Required: Length (L) Probable Error of the Length (PEL) Illustration: 134.10 ยฑ 0.040 m
A
320.63 ยฑ 0.055 m
B
173.73 ยฑ 0.056 m 160.85 ยฑ 0.050 m
C
Solution: ๐ฟ = ๐ด๐ต + ๐ต๐ถ + ๐ถ๐ท + ๐ท๐ธ ๐ฟ = 134.10 + 320.63 + 173.73 + 160.85 ๐ณ = ๐๐๐. ๐๐ ๐ ๐๐ธ๐ฟ = ยฑโ(๐๐ธ๐ด๐ต )2 + (๐๐ธ๐ต๐ถ )2 + (๐๐ธ๐ถ๐ท )2 + (๐๐ธ๐ท๐ธ )2 ๐๐ธ๐ฟ = ยฑโ(0.040)2 + (0.055)2 + (0.056)2 + (0.050)2 ๐ท๐ฌ๐ณ = ยฑ๐. ๐๐ ๐
D
E
11. The four approximately equal sides of a tract of land were measured and the measurements included the following errors: ยฑ 0.085 m, ยฑ 0.014 m, ยฑ 0.0175 m, and ยฑ 0.205 m, respectively. Determine the probable error for the total length (or perimeter) of the tract. Given: PE1 = ยฑ 0.085 m PE2 = ยฑ 0.014 m PE3 = ยฑ 0.0175 m PE4 = ยฑ 0.205 m Required: Probable Error (PEP) Illustration:
Solution: ๐๐ธ๐ = ยฑโ(๐๐ธ1 )2 + (๐๐ธ2 )2 + (๐๐ธ3 )2 + (๐๐ธ4 )2 ๐๐ธ๐ = ยฑโ(0.085 )2 + (0.014)2 + (0.0175)2 + (0.205)2 ๐ท๐ฌ๐ท = ยฑ๐. ๐๐๐ ๐
12. Two sides of rectangle were measured being 226.25 m ยฑ 0.03 m and 307.28 m ยฑ 0.04 m. Determine the area of the figure and the probable error of the area. Given: L = 226.25 m; PEL = ยฑ 0.03 m W = 307.28 m; PEW = ยฑ 0.04 m Required: Area (A) Probable Error of the Area (PEA) Illustration:
W = 307.28 ยฑ 0.04 m
L = 226.25 ยฑ 0.03 m
Solution: ๐ด = ๐ฟร๐
๐๐ธ๐ด = ยฑโ(๐ฟ ร ๐๐ธ๐ )2 + (๐ ร ๐๐ธ๐ฟ )2
๐ด = 226.25 ร 307.28
๐๐ธ๐ด = ยฑโ(226.2 ร 0.04)2 + (307.28 ร 0.03)2
๐จ = ๐๐๐๐๐. ๐๐ ๐๐
๐ท๐ฌ๐จ = ยฑ๐๐. ๐๐ ๐๐
13. Plane surveying is that type of surveying in which the earth is considered to be a flat surface. Distances and areas involved are of limited extent and the a.) approximate shape of the earth is considered b.) theoretical shape of the geoid is evaluated c.) exact shape of the earth is disregarded d.) shape of the earth is considered as geoid Plane surveying is the survey in which the earth surface is assumed to be plane and the curvature of the earth is ignored. The correct answer is c.
14. A photogrammetric survey makes use of photographs taken with specially designed cameras either from a.) a ship or an elevated ground station b.) the ground surface or underwater c.) a field or a laboratory environment d.) a map or a scaled drawing e.) airplanes or ground stations
Photogrammetric survey is a type of survey which makes use of photographs taken with specially designed cameras either from airplanes or ground stations. The answer is e.
15. The meter is now defined as a length equal to a.) 1/10,000,000 of the earthโs meridional quadrant b.) 650,736.37 wavelengths of the bright-red light produced by burning silver electrodes c.) 39.27 inches d.) 0.001 kilometers e.) 1,650,763.73 wavelengths of the orange-red light produced by burning krypton at a specified energy level in the spectrum.
The meter is now defined as a length equal to 1,650,763.73 wavelengths of the orange-red light produced by burning krypton at a specified energy level in the spectrum. The answer is e.
16. The sexagesimal units of angular measurement are the a.) grad, centesimal minute, and centesimal second b.) degree, minute, and second c.) radian and steradian d.) mil, grad, and radian e.) hours, minutes, and seconds
Degree, minute, and second are the sexagesimal units of angular measurement. The answer is b.
17. When rounded off to the nearest hundredth, 36.24445 becomes a.) 36.25 b.) 36.26 c.) 36.2 d.) 36.3 e.) 36.24
Answer: b
18. A line, known to be 150.000 m long, is measured five times with a steel tape in the following order: 150.004, 149.998, 149.997, 150.005, and 149.996 meters, respectively. The more accurate of the five measurements is the a.) 1st measurement b.) 2nd measurement c.) 3rd measurement d.) 4th measurement e.) 5th measurement Answer: b
19. If for particular measurement the probable error of the mean is 0.09 m and the most probable value of the measurement is 362.70 m, the relative precision would be expressed as a.) 1/4030 b.) 0.000248 c.) 1:362.70 d.) 1:0.09 e.) 1/363
Given: ๐๐ธ๐ = ยฑ 0.09 ๐ ๐ฅฬ
= 362.70 ๐ Required: Relative Precision (RP) Solution: ๐
๐ = ๐
๐ = ๐
๐ =
๐๐ธ๐ ๐ฅฬ
0.09 362.70 1 4030
Answer: letter a
20. The interior angles of a hexagon were observed and recorded as follows: A = 122ห 31สน 02สบ, B = 123ห 26สน 17สบ, C = 130ห 05สน 07สบ, D = 120ห 15สน 47สบ, E = 160ห 50สน 35สบ, and F = 62ห 53สน 07สบ. The discrepancy of the measurement is a.) 0สน 30สบ b.) 2สน 30สบ c.) 1สน 00สบ d.) 2สน 50สบ e.) 1สน 30สบ
Given: A = 122ห 31สน 02สบ B = 123ห 26สน 17สบ C = 130ห 05สน 07สบ D = 120ห 15สน 47สบ E = 160ห 50สน 35สบ F = 62ห 53สน 07สบ Required: Discrepancy (d) Illustration: B C 123ห 26สน 17สบ A
130ห 05สน 07สบ
122ห 31สน 02สบ 120ห 15สน 47สบ
62ห 53สน 07สบ
D
160ห 50สน 35สบ
F
E
Solution: โ A B C D E F TOTAL
x 122ห 31สน 02สบ 123ห 26สน 17สบ 130ห 05สน 07สบ 120ห 15สน 47สบ 160ห 50สน 35สบ 62ห 53สน 07สบ 720ห 01สน 55สบ
Computation ๐=6 โ ๐๐ = (๐ โ 2)180ห โ ๐๐ = (6 โ 2)180ห โ ๐๐ = 720ห
๐ = |720ห 01โฒ 55"| ๐
= ๐๐โฒ๐๐"
21. Five measurements were made to determine the length of a line and recorded as follows: 350.33, 350.22, 350.30, 350.27, 350.30 meters. If these measurements were given weights of 4, 5, 1, 4, and 6, respectively, the most probable value of the length measured is a.) 350.26 m b.) 350.29 m c.) 350. 30 m d.) 350.27 m e.) 350.28 m Given: 350.33 m (weight = 4) 350.22 m (weight = 5) 350.30 m (weight = 1) 350.27 m (weight = 4) 350.30 m (weight = 6) Required: Most probable value (๐ฅฬ
)
Illustration:
x
Pt. 1
Pt. 2
Solution
๐ฅ (๐)
Weight
๐๐๐๐โ๐ก ร x (๐)
350.33
4
1401.32
350.22
5
1751.10
350.30
1
350.30
350.27
4
1401.08
350.30
6
2101.80
20
7005.60
TOTAL
ฬ
๐ฅ = ๐ด ๐ฅฬ
=
(๐ร๐ฅ) ๐
7005.60 20
๐ฅฬ
= 350.28 ๐ Answer: letter e
22. The base and altitude of a triangular lot were measured with certain estimated probable errors as follows: b = 215.50 ยฑ 0.18 m and h = 69.40 ยฑ 0.16 m. The true area of the lot probably a.) is equal to 7514.52 sq m b.) is equal to 7441.18 sq m c.) falls between 7441.18 and 7477.85 sq m d.) falls between 7477.85 and 7514.52 sq m e.) falls between 7441.18 and 7514.52 sq m
Given: b = 215.50 m; PEb = ยฑ 0.18 m h = 69.40 m; PEh = ยฑ 0.16 m Required: True Area of the Lot (A)
69.40 ยฑ 0.16 m
Illustration:
215.50 ยฑ 0.18 m Solution: 1
๐๐ธ๐ด = ยฑ 2 โ(215.50 ร 0.16)2 + (69.40 ร 0.18)2
1
๐๐ธ๐ด = ยฑ18.34 ๐2
๐ด = 2 ๐โ ๐ด = 2 (215.50)(69.40)
1
๐ด = 7477.85 ๐2 Answer: The Area of the lot is ๐๐๐๐. ๐๐ ยฑ ๐๐. ๐๐ ๐๐ and it falls between 7451.51 m2 to 7496.19 m2.
View more...
Comments