Aspirin
November 14, 2018 | Author: Septa Rya | Category: N/A
Short Description
Download Aspirin...
Description
http://faryjackazz.blogspot.com/2009/03/rekristalisasi-pembuatan-aspirin-dan.html
REKRISTALISASI, REKRISTALISASI, PEMBUATAN ASPIRIN DAN PENENTUAN TITIK LELEH
1. TUJUAN PERCOBAAN 1. Melakukan teknik rekristalisasi dengan baik 2. Menentukan pelarut yang sesuai untuk rekristalisai 3. Menghilangkan Menghilangkan pengotor melalui teknik rekristalisasi 4. Melakukan pembuatan aspirin dengan cara asetilasi terhadap t erhadap gugus fenol 5. Menentukan titik leleh senyawa
2. KAJIAN TEORI 1. Rekristalisasi Rekristalisasi merupakan cara yang paling efektif untuk memurnikan zat – zat organik dalam bentuk padat. Oleh karena itu teknik ini secara rutin digunakan untuk pemurnian senyawa hasil sintesis atau hasil isolasi dari bahan alami, sebelum dianalisis lebih lanjut, misalnya dengan instrumebn spektoskopi seperti UV, IR, NMR, dan MS. Sebagai metoda pemurnian padatan, rekristalisai memiliki sejarah yang panjang seperti distilasi. Wa;aupun beberapa metoda yang lebih rumit t elah dikenalkan, rekristalisasi adalah metoda yang paling penting untuk pemurnian sebabkemudahannya sebabkemudahannya ( tidak perlu alat khusus ) dank arena keefektifannya. Ke depannya rekristalisasi akan tetap metoda standar untuk memurnikan padatan. Metoda ini sederhana, material padayan ini terlarut dalam pelarut yang cocok pada suhu tinggi ( pada atau dekat titik didih pelarutnya ) untuk mendapatkan jumlah
larutan jenuh atau dekat jenuh. Ketika larutan panas perlahan didinginkan, Kristal akan mengendap karena kelarutan padatan biasanya menurun bila suhu diturunkan. Diharapkan bahwa pengotor tidak akan pengkristal karena konsentrasinya dalam larutan tidak terlalu tinggi untuk mencapai jenuh. Walaupun rekristalisasi adalah metoda yang sangat sederhana, dalam prakteknya bukan berarti mudah dilakukan. Adapun saran – saran yang dibutuhkan untuk melakukan metoda kristalisai adalah sebagai berikut : 1. Kelarutan material yang akan dimurnikan harus memiliki ketergantungan yang besar pada suhu. Misalnya, ketergantungan pada suhu NaCl hamper dapat diabaikan. Jadi pemurnian NaCl dengan rekristalisasi tidak dapat dilakukan. 2. Kristal tidak harus mengendap dari larutan jenuh dengan pendinginan karena mungkin terbentuk super jenuh. Dalam kasus semacam ini penambahan Kristal bibt, mungkin akan efektif. Bila tak ada Kristal bibit, menggaruk dinding mungkin akan berguna. 3. Untuk mencegah reaksi kimia antara pelarut dan zat terlarut, penggunaan pelarut non polar lebih disarankan. Namun, pelarut non polar cenderung merupakan pelarut yang buruk untuk senyawa polar. 4. Umumnya, pelarut dengan titik didih rendah lebih diinginkan. Namun sekali lagi pelarut dengan titik didih lebih rendah biasanya non polar. Jadi, pemilihan pelarut biasanya bukan masalah sederhana
Adapun tahap – tahap yang dilakukan pada proses rekristalisasi pada umumnya, yaitu : 1. Memilih pelarut yang cocok Pelarut yang umum digunakan jika dirutkan sesuai dengan kenaikan kepolarannya kepolarannya adalah petroleum eter ( n-heksan , toluene, kloroform, aseton, etil asetat, etanol, methanol, dan air. Pelarut yang cocok untuk merekristalisasi suatu sampel zat tertentu adalah pelarut yang dapat melarutkan secara baik zat tersebut dalam keadaan panas, tetapi sedikit melarutkan dalam keadaan dingin. 2. Melarutkan senyawa ke dalam pelarut panas sedikit mungkin
Zat yang akan dilarutkan hendaknya dilarutkan dalam pelarut panas dengan volum sedikit mungkin, sehingga diperkirakan tepat sekitar titik jenuhnya. jenuhnya. Jika terlalu encer, uapkan pelarutnya sehingga tepat jenuh. Apabila digunakan kombinasi dua pelarut, mula – mula zat itu dilarutkan dalam pelarut yang baik dalam keadaan panas sampai larut, kemudian ditambahkan pelarut yang kurang baik tetes demi tetes sampai timbul kekeruhan. Tambahkan Tambahkan beberapa tetes pelarut yang baik agar kekeruhannya hilang kemudian disaring. 3. Penyaringan Larutan disaring dalam keadaan panas untuk menghilangkan pengotor yang tidak larut. Penyaringan larutan dalam keadaan panas dimaksudkan untuk memisahkan zat – zat pengotor yang tidak larut atau tersuspensi dalam larutan, seperti debu, pasir, dan lainnya. Agar penyaringan berjalan cepat, biasanya digunakan corong Buchner. Jika larutannya mengandung zat warna pengotor, maka sebelum disaring ditambahkan ditambahkan sedikit ( ± 2 % berat ) arang aktif untuk mengadsorbsi mengadsorbsi zat warna tersebut. t ersebut. Penambahan Penambahan arang aktif tidak t idak boleh terlalu banyak karena dapat mengadsorbsi senyawa yang dimurnikan. 4. Pendinginan filtrate Filtrat didinginkan pada suhu kamar sampai terbentuk Kristal. Kadang – kadang pendinginan pendinginan ini dilakukan dil akukan dalam air es. Penambahan umpan ( seed ) yang berupa Kristal murni ke dalam larutan atau penggoresan dinding wadah dengan batang pengaduk dapat mempercepat rekristalisasi. 5. Penyaringan dan pendinginan Kristal Apabila proses kristalisasi telah berlangsung sempurna sempurna,, Kristal yang diperoleh perlu disaring dengan cepat menggunakan corong Buchner. Kemudian Kristal yang diperoleh dikeringkan dalam eksikator. 2. Aspirin Aspirin ( asetosal ) adalah suatu ester dari asam asetat dengan asam salisilat. Oleh karena itu senyawa ini dapat dibuat dengan mereaksikan asam salisilat dengan
anhidrida asam asetat menggunakan asam sulfat pekat sebagai katalisator. Persamaan reaksinya :
Asam asetat dengan nama sistematik asam etanoat, CH 3COOH, merupakan cairan tidak berwarna, berbau tajam, dan berasa asam. Asam asetat larut dalam air dan pelarut organik lainnya. Di dalam air, asam asetat bertindak sebagai asam lemah. Asam asetat mendidih pada temperatur 118°C (245°F) dan meleleh pada 17°C (62°F). Asam asetat biasanya dibuat dengan memfermentasikan alkohol dengan bantuan bakteri, seperti Bacterium aceti. Untuk mendapatkan asam asetat yang berkonsentrasi tinggi, biasanya dibuat dengan oksidasi asetaldehida atau dengan mereaksikan methanol dengan karbon monoksida dengan bantuan katalis. Asam salisilat dapat ditemukan pada banyak tanaman dalam bentuk metal salisilat dan dapat disintesa dari fenol. Asam salisilat memiliki sifat-sifat: berasa manis, membentuk kristal berwarna putih, sedikit larut dalam air, meleleh pada 158,5°C – 161°C. Asam salisilat biasanya digunakan untuk memproduksi ester dan garam yang cukup penting. Asam salisilat menjadi bahan baku pembuatan aspirin. Sintesa asam salisilat yang terkenal adalah Sintesis Kolbe. Asam asetil salisilat atau yang lebih dikenal sekarang sebagai sebagai aspirin memiliki nama sistematik 2 – acetoxybenzoic acetoxybenzoic acid. Aspirin yang merupakan bentuk salah satu aromatic asetat yang paling dikenal dapat disintesa dengan reaksi esterifikasi gugus hidroksi fenolat dari asam salisilat dengan menggunakan menggunakan asam asetat. Aspirin memiliki sifat – sifat sebagai berikut : Mr = 180, titik leleh = 133,4°C, dan titik didih = 140°C. Pada pembuatan aspirin, reaksi yang terjadi adalah reaksi esterifikasi. Reaksi esterifikasi tersebut dapat dilihat dari gambar di atas, dengan penjelasan sebagai berikut :
Ester dapat terbentuk salah satunya dengan cara mereaksikan alkohol dengan anhidrida asam. Dalam hal ini asam salisilat berperan sebagai alkohol karena mempunyai gugus – OH, OH, sedangkan asam asetat glacial sebagai anhidrida asam. Ester yang terbentuk adalah asam asam asetil salisilat ( aspirin ). Gugus asetil ( CH3CO – ) berasal dari asam asetat, sedangkan gugus R-nya berasal dari asam salisilat. Hasil samping reaksi ini adalah asam asetat. Langkah selanjutnya adalah penambahan asam sulfat pekat yang berfungsi sebagai zat penghidrasi. Telah disebutkan di atas bahwa hasil samping dari reaksi asam salisilat dan asam asetat glacial adalah asam asetat. Jadi, dapat dikatakan reaksi akan berhenti setelah asam salisilat habis karena adanya asam sulfat pekat ini. Aspirin bersifat analgesik yang efektif sebagai penghilang rasa sakit. Selain itu, aspirin juga merupakan zat anti-inflammatory, untuk mengurangi sakit pada cedera ringan seperti bengkak dan luka yang memerah. Aspirin juga merupakan zat antipiretik yang berfungsi untuk mengurangi demam. Tiap tahunnya, lebih dari 40 juta pound aspirin aspirin diproduksi di Amerika Amerika Serikat, sehingga sehingga rata-rata penggunaan penggunaan aspirin mencapai 300 tablet untuk setiap pria, wanita serta anak-anak setiap tahunnya. Penggunaan Penggunaan aspirin secara berulang-ulang dapat mengakibatkan pendarahan pada lambung dan pada dosis yang cukup besar dapat mengakibatkan reaksi seperti mual atau kembung, diare, pusing dan bahkan berhalusinasi. Dosis rata-rata adalah 0.3-1 gram, dosis yang mencapai 10-30 gram dapat mengakibatkan kematian. 3. Titik Leleh Yang dimaksud titik leleh suatu senyawa ialah suhu dimana senyawa tersebut mulai meleleh. Senyawa – senyawa murni suhunya hampir tetap selama meleleh atau disebut juga mempunyai titik leleh yang tajam, misalnya 125,5° - 126° atau 180° 181°, sedangkan sedangkan untuk cuplikan yang sama tetapi tidak murni akan meleleh pada interval suhu yang lebar, missal 123° – 126° atau 176° – 180°. Pengotoran yang menyebabkan menyebabkan penurunan titik leleh ini mungkin sekali suatu bahan berbentuk resin yang tidak diidentifikasi atau senyawa lain yang mempunyai titik leleh lebih rendah atau lebih tinggi dari senyawa utamanya. Bila suatu senyawa A yang murni meleleh pada suhu 150° – 151° dan senyawa B murni meleleh pada suhu 120° – 121°, maka bila senyawa A ditambah senyawa B, campuran ini akan meleleh secara tidak tajam
pada daerah suhu di bawah 150°. Sebaliknya bila senyawa B ditambah sedikit senyawa A, campuran ini akan meleleh di atas suhu 120°. Kriteria kemurnian suatu zat adalah titik lelehnya yang tajam, disamping itu jika kita mempunyai senyawa – senyawa baku, maka ditentukan dengan menentukan titik leleh campuran. Mula – mula senyawa baku ditentukan titik lelehnya kemudian senyawa yang tidak diketahui dicampur dengan senyawa baku, l alu titik lelehnya ditentukan lagi. Bila titik leleh campuran sama dengan titik leleh senyawa baku, berarti senyawa yang tak diketahui itu sama dengan senyawa tersebut. Alat penentu titik leleh ada beberapa macam mulai yang manual hingga digital seperti thiele, Fisher John Melting point apparatus, blok logam atau dengan system digital. 1. Metode Ultrasonikasi
Pada prinsipnya metode ultrasonikasi merupakan metode yang dilakukan dengan cara mendispersi partikel penyusun dengan menggunakan gelombang suara. Dengan memasukkan energi suara tersebut maka partikel akan terdispersi dan dapat bergerak lebih cepat sehingga tumbukan antar partikel lebih cepat dan lebih banyak terjadi. Apabila tumbukan banyak terjadi tentu saja partikel-partikel tersebut dapat bergabung. bergabung. http://www.scribd.com/doc/76876595/Kompo http://www.scribd.com/do c/76876595/Komposit-kelompok-1#down sit-kelompok-1#download load
View more...
Comments