Aspen-Plus Ternary Mixture

April 30, 2017 | Author: Srinivas Bobby | Category: N/A
Share Embed Donate


Short Description

Download Aspen-Plus Ternary Mixture...

Description

I t d ti t A Introduction to Aspen Plus Pl Short Courses on Computer Applications for ChE Students

Speaker: JianKai Cheng (程建凱) p g (程建凱) [email protected] PSE Laboratory Department of Chemical Engineering Department of Chemical Engineering Nation Taiwan University

What What is Aspen Plus is Aspen Plus • Aspen Plus is a market‐leading process modeling tool  for conceptual design, optimization, and  performance monitoring for the chemical, polymer,  specialty chemical, metals and minerals, and coal  power industries.

Ref: http://www.aspentech.com/products/aspen-plus.cfm

2

What What Aspen Plus provides Aspen Plus provides • Physical Property Models – World’s largest database of pure component and phase equilibrium  data for conventional chemicals electrolytes solids and polymers data for conventional chemicals, electrolytes, solids, and polymers – Regularly updated with data from U. S. National Institute of Standards  and Technology (NIST)

• Comprehensive Library of Unit Operation Models – Addresses a wide range of solid, liquid, and gas processing equipment – Extends steady‐state simulation to dynamic simulation for safety and  d d l d l f f d controllability studies, sizing relief valves, and optimizing transition,  startup, and shutdown policies – Enables you build your own libraries using Aspen Custom Modeler  or  programming languages (User‐defined models)

3

Ref: Aspen Plus® Product Brochure

More Detailed More Detailed • Properties analysis – Properties of pure component and mixtures (Enthalpy,  density, viscosity, heat capacity,…etc) – Phase equilibrium (VLE, VLLE, azeotrope calculation…etc) – Parameters estimation for properties models (UNIFAC  method for binary parameters, Joback method for boiling  points etc) points…etc) – Data regression from experimental deta

• Process simulation P i l ti – pump, compressor, valve, tank, heat exchanger, CSTR, PFR,  di till ti distillation column, extraction column, absorber, filter,  l t ti l b b filt crystallizer…etc 4

What course Aspen Plus  can be employed for • • • • • • •

MASS AND ENERGY BALANCES PHYSICAL CHEMISTRY CHEMICAL ENGINEERING THERMODYNAMICS  CHEMICAL REACTION ENGINEERING CHEMICAL REACTION ENGINEERING UNIT OPERATIONS PROCESS DESIGN PROCESS CONTROL

5

Lesson Objectives Lesson Objectives • Familiar with the interface of Aspen Plus • Learn how to use properties analysis • Learn how to setup a basic process simulation

6

Problem Formulation 1: Calculation  the mixing properties of two stream 

Mole Flow kmol/hr WATER BUOH BUAC Total Flow kmol/hr Temperature C Pressure bar Enthalpy kcal/mol E t Entropy cal/mol-K l/ l K Density kmol/cum

1

2

3

4

10 0 0 10 50 0 1 ? ? ?

0 9 6 15 80 1 ? ? ?

? ? ? ? ? 1 ? ? ?

? ? ? ? ? 10 ? ? ?

Mass Balance E Energy B Balance l Enthalpy Entropy…

7

Problem Formulation 2:  Flash Separation 120 T-x T T-y

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

o

T=105 C P=1atm

T ( C)

115 110 105 100 0.0

What are flowrates and compositions of the two outlets?

0.2

0.4

0.6

xWater and yWater

0.8

1.0

Problem Formulation 3: Dehydration of  Acetic Acid by Distillation Column  ((Optional) p )

10 1.0

Duty ?

0.6 yWater

Reflux ratio ?

0.8

0.4 0.2 0.0 0 0 0.0

0.2

0.4

0.6

xWater

0.8

1.0

Outline • Startup in Aspen Plus (Basic Input) (45 min) – User Interface – Basic Input: Setup, Components, Properties. • Properties Analysis (1 hour) – Pure Component – Mixtures (phase equilibrium) • Running Simulation (1 hour) – Blocks (Unit Operations) – Streams (flow streams) – Results 10

Introduction to Aspen Plus – Part 1

Startup in Aspen Plus

11

Start with Aspen Plus Start with Aspen Plus A Aspen Pl Plus User U IInterface t f

12

Aspen Plus Startup Aspen Plus Startup

13

Interface of Aspen Plus Interface of Aspen Plus

ProcessFlowsheet Flowsheet Windows Process Windows

ModelLibrary Library (View||| Model yy) ) Model yy ((View| ModelLibrary Library

Stream

Status message

14

More Information More Information

Help for Commands for Controlling Simulations

15

Data Browser Data Browser • The Data Browser is a sheet and form viewer with a  hierarchical tree view of the available simulation  input, results, and objects that have been defined

16

Status Indicators Status Indicators

17

Basic Input Basic Input • The minimum required inputs to run a simulation  are: – – – – –

Setup Components Properties Streams Blocks

Property Analysis

Process Simulation

18

Setup – Specification Setup  – Setup   Run Type

Input mode

19

Setup – Run Type Setup  – Setup   Run Type Run Type

Description

Assay Data Analysis

A standalone assay data  A t d l d t analysis/pseudocomponents generation run

Flowsheet

A Flowsheet run (including sensitivity studies and  ( g y optimization). also include the following  calculations: Property estimation, Assay data  analysis and Property analysis

Use to

Analyze assay data when you do not want to  A l d t h d t tt perform a flowsheet simulation in the same run.  Fit physical property model parameters required  by Aspen Plus to measured pure component,  A standalone data regression run. Can contain  D t R Data Regression i property constant estimation and property analysis  t t t ti ti d t l i VLE, LLE and other mixture data. Aspen VLE LLE d th i t d t A Pl Plus  calculations. cannot perform data regression in a Flowsheet  run.  Prepare a property package for use with Aspen  C Custom Modeler, with third party commercial  M d l i h hi d i l engineering programs, or with your company's  Properties Plus A Properties Plus setup run in house programs.  You must be licensed to use Properties Plus. P f Perform property analysis by generating tables  l i b i bl A standalone property analysis run. Can contain  of physical property values when you do not  Property Analysis property constant estimation and assay data  want to perform a flowsheet simulation in the  analysis calculations. same run E i Estimate property parameters when you do not  h d want to perform a flowsheet simulation in the  Property Estimation A standalone property constant estimation run same run. 

Perform process simulations 20

Components – Specification Components  – Components  

IInput components t t with Component name or Formula

21

Input components Input components

Remark: If available, are

22

Specification To do this Find components in the databanks Define a custom component that is not in  a databank Generate electrolyte components and  reactions from components you entered Reorder the components you have  specified Review databank data for components  you have specified (Retrieved physical  property parameters from databanks ) property parameters from databanks.)

Click this button Find User Defined Elec Wizard Reorder Review

23

Find Components Find Components

Click “Find”

24

Find Components (cont Find Components (cont’d) d) Input Component name or Formula or p p CAS number

25

NIST Chemistry WebBook NIST Chemistry WebBook NIST Chemistry 

26

Properties Process type(narrow the number of Process type(narrow the number of methods available)

Base method: IDEAL NRTL UNIQAC UNIFAC Base method: IDEAL, NRTL, UNIQAC, UNIFAC…

27

Property Property Method Selection  – Property Method Selection   Method Selection – Assistant

Interactive help in choosing a property method

28

Assistant Wizard Assistant Wizard

Specify Component type Chemical Systems

Is the system at high pressure? (NO) Two liquid phases

29

Reference: http://www.et.byu.edu/groups/uolab/files/aspentech/

30

Thermodynamic Model – NRTL Thermodynamic Model – Thermodynamic Model 

NRTL

Vapor EOS Liquid gamma Liquid enthalpy Liquid volume Liquid volume

31

Modify Property Model Modify Property Model Check “Modify y Property p y Model”

Specify p y New Method Name

32

NRTL – Binary Parameters NRTL – NRTL  Binary Parameters

Click Cli k “NRTL” and d th then b built-in ilt i binary bi parameters t appear automatically if available.

33

Access Properties Models and  Parameters

Review Databank Data

34

Review Databank Data Review Databank Data Including: Ideal g gas heat of formation at 298.15 K Ideal gas Gibbs free energy of formation at 298.15 K Heat of vaporization at TB Normal boiling point Standard liquid volume at 60°F 60 F

….

Description of each parameter 35

Pure Component Databank Parameters Pure Component Databank Parameters

Help for Pure Component Databank Parameters

36

Pure Component  Temperature‐‐Dependent Properties Temperature

CPIGDP‐1

ideal gas heat capacity

CPSDIP‐1

Solid heat capacity

DNLDIP‐1

Liquid density

DHVLDP‐1

Heat of vaporization 

PLXANT 1 PLXANT‐1

Extended Antoine Equation Extended Antoine Equation

MULDIP

Liquid viscosity

KLDIP

Liquid thermal q conductivityy

SIGDIP

Liquid surface tension

UFGRP

UNIFAC functional group 37

Example: PLXANT Example: PLXANT‐‐1  (Extended Antoine Equation) Corresponding Model Click “↖?” and then click where you don’t know

?

38

Example: CPIGDP Example: CPIGDP‐‐1  (Ideal Gas Heat Capacity Equation) Corresponding Model

?

39

Summary

So far, we have finished the basic settings including setup, components, and properties. This is enough to perform properties analysis. l i

40

File File Formats in Aspen Plus Formats in Aspen Plus

File Type

Extension

Format

Description

Document

*.apw

Binary

File containing simulation input and results and i t intermediate convergence information di t i f ti

Backup

*.bkp

ASCII

Archive file containing simulation input and results

History

*.his

Text

Detailed calculation history and diagnostic messages

Problem  Problem Description

*.appdf appdf

Binary

File containing arrays and intermediate File containing arrays and intermediate convergence information used in the simulation 41 calculations

File Type Characteristics File Type Characteristics •





Binary files fl – Operating system and version specific – Not readable, not printable Not readable not printable ASCII files – Transferable between operating systems – Upwardly compatible – Contain no control characters, “readable” – Not intended to be printed N i d d b i d Text files – Transferable between operating systems Transferable between operating systems – Upwardly compatible – Readable, can be edited – Intended to be printed 42

Introduction to Aspen Plus – Part 2

Properties Analysis in Aspen Plus 43

Overview of Property Analysis Overview of Property Analysis Use this form Use this form

To generate To generate

Binary

Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue

Residue curve maps

Pure

Ternary Azeotrope

Ternary maps showing phase envelope, tie lines, and azeotropes Ternary maps showing phase envelope tie lines and azeotropes of ternary  of ternary systems This feature locates all the azeotropes that exist among a specified set of  components.  components

Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Ti li Tie lines, Vapor curve, Boiling point V B ili i Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  ( than three) is  also included. 44

Reminding • When you start properties analysis, you MUST  p y components , properties model, and  p p p specify corresponding model parameters. (Refer to  Part I) Part I)

45

Properties Analysis – Pure Component  Properties Analysis – Properties Analysis  Pure Component Use this form

To generate

Binary

Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue

Residue curve maps

Pure

Ternaryy Azeotrope

Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 

Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 46

Properties Analysis – Pure Component  Properties Analysis – Properties Analysis  Pure Component

47

Available Properties Available Properties Property (thermodynamic)

Property (transport)

Availability Free energy Constant pressure Constant pressure  Enthalpy heat capacity Heat capacity ratio Fugacity coefficient Constant volume heat Fugacity coefficient  Constant volume heat  Fugacity coefficient capacity pressure correction Free energy departure Vapor pressure  Free energy departure  Density pressure correction Enthalpy departure Entropy Enthalpy departure  Volume pressure correction py Enthalpy of  Sonic velocity Sonic velocity vaporization  Entropy departure

Thermal conductivity Surface tension Viscosity

48

Example1: CP (Heat Capacity) Example1: CP (Heat Capacity)

1. Select property (CP) 4. Specify p y range g of temperature p 2. Select phase 5 S 5. Specify if pressure Add “N-butyl-acetate”

3. Select component

6. Select property method 7. click Go to generate the results 49

Example1: Calculation Results of CP Example1: Calculation Results of CP

Data results

50

Example2: H (Enthalpy) Example2: H (Enthalpy)

1. Select property (H) 4. Specify range of temperature 2. Select phase 5. Specify pressure

3. Select component

6 S 6. Select l t property t method th d

7. click Go to generate the results

51

Example: Example: Calculation Results of H Calculation Results of H

Data results 52

Properties Analysis – Binary Components Properties Analysis – Properties Analysis  Binary Components Use this form

To generate

Binary

Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue

Residue curve maps

Pure

Ternaryy Azeotrope

Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 

Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 53

Properties Analysis – Binary Components Properties Analysis – Properties Analysis  Binary Components

Binary Component Properties Analysis Binary Component Properties Analysis Use this Analysis type To generate Temperature‐compositions diagram at  Txy constant pressure Pressure‐compositions diagram at  Pxy constant temperature Gibbs energy of mixing diagram as a  function of liquid compositions. The  A Aspen Physical Property System uses this  Ph i l P S hi Gibbs energy of mixing diagram to determine whether the  binary system will form two liquid phases  at a given temperature and pressure at a given temperature and pressure.

Example: T‐ Example: T‐XY Example: T 1. Select analysis y type yp ((Txy) y)

2. Select two component

2. Select phase (VLE, VLLE)

5. Specify pressure

3. Select compositions basis

6 Select property method 6. 4. Specify composition range 7. click Go to generate the results

Example: calculation result of T‐ Example: calculation result of T‐XY Example: calculation result of T

Data results

Example: Generate XY plot Example: Generate XY plot

Click “plot wizard” to generate XY plot

Example: Generate XY plot (cont Example: Generate XY plot (cont’d) d)

Shortcoming of Binary Analysis Shortcoming of Binary Analysis Water-BuOH 120

110

o

T ( C)

100

90

?

80

70 0.0

0.2

0.4

0.6

Mole Fraction (Water)

Bi Binary A l i cannott generate Analysis t LLE data d t below b l azeotrope. t

0.8

1.0

Property Analysis – Generic Property Analysis – Property Analysis  Use this form

To generate

Binary

Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue

Residue curve maps

Pure

Ternaryy Azeotrope

Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 

Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 61

Properties Analysis – Ternary Properties Analysis – Properties Analysis 

Ternary Map Ternary Map

1 Select three component 1. 4. Select phase (VLE, LLE) 2. Specify number of tie line

5. Specify pressure

3. Select property method

6. Specify temperature (if LLE is slected) 7. click Go to generate the results

Calculation Calculation Result of Ternary Map (LLE) Result of Ternary Map (LLE)

D t results Data lt

Property Analysis – Generic Property Analysis – Property Analysis  Use this form

To generate

Binary

Tables and plots of pure component properties as a function of temperature  and pressure Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue

Residue curve maps

Pure

Ternaryy Azeotrope

Ternary maps showing phase envelope, tie lines, and azeotropes of ternary  systems This feature locates all the azeotropes that exist among a specified set of  components. 

Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations. Properties analysis of multi‐components  (more  than three) is  also included. 65 Generic analysis is used if properties analysis of mixture is performed.

When to Use Generic Analysis When to Use Generic Analysis 

Enthalpy of Mixtures

?

Water-BuOH 120

110

o

T ( C)

100

90

70 0.0

?

?

80

Specific composition

LLE 0.2

0.4

0.6

Mole Fraction (Water)

0.8

1.0

66

Property Analysis – Generic Property Analysis – Property Analysis 

Select Property analysis

67

Add New Analysis Add New Analysis

Select Generic

68

Specification Specification of System of System

3. Specify component flow

. Select “flash calculation” or not

2. Select phase (VLE, LLE) 4 S 4. Specify if the th corresponding di composition iti

69

Determine Determine Adjusted Variables Adjusted Variables

Specify feed condition

Temperature Pressure Vapor fraction Mole flow Mass flow StdVol flow Mole fraction Mass fraction StdVol fraction Specify range of adjusted variables 70

Specify Property‐ Specify Property‐Sets for  Calculation Results

71

Add New Property‐ Add New Property‐Set (User‐ Add New Property Set (User‐Defined) Set (User

Select Physical Property

Description 72

Add New Property‐ Add New Property‐Set (cont Add New Property Set (cont’d) d) If the system requires VLLE calculation… calculation Select “Vapor” “1st liquid” “2nd liquid”

73

Specify Property‐ Specify Property‐Sets Specify Property

74

Run Properties Analysis Run Properties Analysis Click ► to generate the results

Check “simulation status” “Results Available” means convergency convergency. 75

Example1: Calculation of Enthalpy  Change for binary mixtures Change  for binary mixtures Molar ratio of Butanol/Water=1:1

o

Temperature = 50 C

-60000

-56000 -58000 Liquid Vapor

-64000

-60000

-66000 66000 -68000 -70000

Liquid Vapor

-62000 Enthalpy (cal/m E mol)

Enthalpy (cal//mol)

-62000

-64000 -66000 -68000 -70000 -72000 -74000

-72000

-76000 -74000 40

50

60

70

80 o

Temperature ( C)

90

100

-78000 0.0

0.2

0.4

0.6

0.8

1.0

Mole fraction of Water in BuOH and Water

76

Search Physical Properties for  Enthalpy of Mixtures (HMX)  Select HMX. Others are optimal.

Add Property-Set

77

Calculate of Enthalpy Change As  Calculate of Enthalpy Change As  Temperature Varies Temperature  Varies 1

2

3 4

78

Read Calculation Read Calculation Results Read  Calculation Results Results

79

Exercise o

Temperature = 50 C -56000 -58000 -60000 Liquid Vapor

Enthalpy (ccal/mol)

-62000 -64000 -66000 -68000 -70000 -72000 -74000 -76000 -78000 0.0

0.2

0.4

0.6

0.8

1.0

Mole fraction of Water in BuOH and Water

80

Example 2:  Example 2: Calculation of  Calculation of LLE  LLE  for Binary system for  Binary system Water-BuOH 120

110

o

T ( C)

100

90

80

70 0.0

0.2

0.4

0.6

0.8

1.0

Mole Fraction (Water)

81

Add Add New Property Add New Property‐ New Property‐Set (cont Set (cont’d) d)

Select “Vapor” “1st liquid” “2nd liquid”

Specify System, Variable and Property‐ Specify Specify System, Variable and Property System Variable and Property‐Set 1

2

Select Vapor-liquid-liquid

3 4

Calculation Results Calculation Results

Water-BuOH 120

110

o

T ( C)

100

90

80

70 0.0

0.2

0.4

0.6

Mole Fraction (Water)

0.8

1.0

Property Analysis Property Analysis – Property Analysis  – Conceptual Conceptual Design Design (Optional) Use this form

To generate

Binary

Tables and plots of pure component properties as a function of temperature  and pressure Txy Pxy or Gibbs energy of mixing curves for a binary system Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue

Residue curve maps

Pure

Ternary Azeotrope

Ternary maps showing phase envelope, tie lines, and azeotropes y p gp p , , p of ternary  y systems This feature locates all the azeotropes that exist among a specified set of  p components. 

Ternary diagrams in Aspen Distillation Synthesis feature: Azeotropes,  Ternary Maps Distillation boundary, Residue curves or distillation curves, Isovolatility curves,  Tie lines Vapor curve Boiling point Tie lines, Vapor curve, Boiling point Tables and plots of properties of either multi‐phase mixtures (for example,  VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures  Generic without flash calculations Properties analysis of multi‐components  (more  without flash calculations. Properties analysis of multi‐components (more than three) is  also included. 85

Conceptual Design Conceptual Design

Conceptual Design Conceptual Design • Conceptual design enables the user to: 1. Locate all the azeotropes (homogeneous and  heterogeneous) present in any multicomponent mixture 2. Automatically compute distillation boundaries and  residue curve maps for ternary mixtures id f t i t 3. Compute multiple liquid phase envelopes (liquid‐liquid  and vapor liquid liquid) for ternary mixtures and vapor‐liquid‐liquid) for ternary mixtures 4. Determine the feasibility of splits for distillation columns

Azeotrope Analysis Azeotrope Analysis

Azeotrope Analysis Azeotrope Analysis 1. Select components (at least two)

2. Specify pressure

3. Select property method 6. click Report to generate the results 4 Select phase (VLE 4. (VLE, LLE)

5. Select report Unit

Error Message Error Message

Close analysis input dialog box (pure or binary analysis)

Azeotrope Analysis Report Azeotrope Analysis Report

Ternary Maps Ternary Maps

Ternary Maps Ternary Maps 3 Select property method 3. 1. Select three components

4. Select phase (VLE, LLE)

2. Specify pressure

5. Select report Unit

6. Click Ternary Plot to generate the results

6. Specify temperature of LLE (If liquid-liquid envelope is selected)

Ternary Maps Ternary Maps Change pressure or temperature

Ternary Plot Toolbar: Add Tie line,, Curve,, Marker…

Introduction to Aspen Plus – Part 3

Running Simulation in Aspen Plus 95

Example 1: Calculate the mixing  properties of two stream 

Mole Flow kmol/hr WATER BUOH BUAC Total Flow kmol/hr Temperature C Pressure bar Enthalpy kcal/mol E t Entropy cal/mol-K l/ l K Density kmol/cum

1

2

3

4

10 0 0 10 50 0 1 ? ? ?

0 9 6 15 80 1 ? ? ?

? ? ? ? ? 1 ? ? ?

? ? ? ? ? 10 ? ? ?

96

Example 2: Flash Separation Example 2: Flash Separation 120 T-x T T-y

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

o

T=105 C P=1atm

T ( C)

115 110 105 100 0.0

What are flowrates and compositions of the two outlets?

0.2

0.4

0.6

xWater and yWater

0.8

1.0

Example 3: Dehydration of Acetic  Acid by Distillation Column (Optional) 10 1.0

Duty ?

0.6 yWater

Reflux ratio ?

0.8

0.4 0.2 0.0 0 0 0.0

0.2

0.4

0.6

xWater

0.8

1.0

Setup – Specification Setup  – Setup  

Select Flowsheet

99

Reveal Model Library Reveal Model Library

View|| Model Library or press F10

100

Model Library: Mixer/Splitter Model Library: Mixer/Splitter

Model

Description

Purpose

Use for

Mixer

Stream mixer

Combines multiple streams  into one stream

Mixing tees. Stream  mixing operations.  g p Adding heat streams.  Adding work streams

FSplit

Stream splitter Stream splitter

Divides feed based on splits  Divides feed based on splits specified for outlet streams

Stream splitters. Bleed  Stream splitters Bleed valves

SSplit

Substream splitter

Divides feed based on splits  Divides feed based on splits specified for each substream

Stream splitters. Perfect  Stream splitters Perfect fluid‐solid separators 101

Model Library: Pressure Changers Model Library: Pressure Changers

102

Model

Description Purpose Use for P Pump or hydraulic  h d li Changes stream pressure when the  Ch t h th Pumps and hydraulic  P d h d li Pump turbine power requirement is needed or  turbines known C Compressor or  Ch Changes stream pressure when  t h P l t i compressors,  Polytropic Compr turbine power requirement is needed or  polytropic positive  known displacement compressors,  isentropic compressors isentropic compressors,  isentropic turbines Changes stream pressure across  Multistage polytropic Mcompr Multistage  compressor or compressor or  multiple stages with intercoolers compressors, polytropic multiple stages with intercoolers.  compressors polytropic turbine Allows for liquid knockout streams  positive displacement  from intercoolers compressors, isentropic  compressors isentropic compressors, isentropic  turbines Valve pressure  Models pressure drop through a  Control valves and pressure  Valve drop valve changers Single segment  Models pressure drop through a  Pipe with constant diameter  Pipe pipe single segment of pipe (may include fittings) Multiple segment Models pressure drop through a  Models pressure drop through a Pipeline with multiple Pipeline with multiple  Pipeline Multiple segment  pipeline pipe or annular space lengths of different  diameter or elevation103

Adding a Mixer Adding a Mixer

Click “one of icons” and d then th click li k again i on the th flowsheet fl h t window i d Remark: The shape of the icons are meaningless

104

Adding Material Streams Adding Material Streams

Click “Materials” and then click again on the flowsheet window

105

Adding Material Streams (cont’d) Adding Material Streams (cont d)

When clicking the mouse on the flowsheet window window, arrows (blue and red) appear.

106

Adding Material Streams (cont’d) Adding Material Streams (cont d) When moving the mouse on the arrows, some description appears.

Blue arrow: Water decant for Free water of dirty water. water

Red arrow(Left) Feed (Required; one ore more if mixing material streams)

Red arrow(Right): Product (Required; if mixing material streams)

107

Adding Material Streams (cont’d) Adding Material Streams (cont d)

After selecting “Material Streams”, click and pull a stream line. Repeat it three times to generate three stream lines lines.

108

Reconnecting Material Streams  (Feed Stream) Right Click on the stream and select Reconnect Destination

109

Reconnecting Material Streams  (Product Stream)

Right Click on the stream and select Reconnect Source

B1

1

3

2

110

Specifying Feed Condition Specifying Feed Condition

Right Click on the stream and select Input

111

Specifying Feed Condition Specifying Feed Condition

You must specify two of the following conditions: Temperature p Pressure Vapor fraction

 You can enter stream composition in terms of component flows, fractions, or concentrations.  If you specify component fractions, you must specify the total mole, mass, or standard liquid volume flow. 112

Specifying Feed Condition (cont’d) Specifying Feed Condition (cont d) 1

2

113

Specifying Input of Mixer Specifying Input of Mixer

Right Click on the block and select Input

114

Specifying Input of Mixer (cont Specifying Input of Mixer (cont’d) d)

Specify Pressure and valid phase

The corresponding description about this blank: Outlet pressure if value > 0 Pressure drop if value ≦ 0 115

Run Simulation Run Simulation Click ► to run the simulation

Run

Start or continue calculations

Step

Step through the flowsheet one block at a time

Stop

Pause simulation calculations

Reinitialize

Purge simulation results

Check “simulation status” “Required q Input p Complete” p means the input p is ready y to run simualtion 116

Status Status of Simulation Results  of Simulation Results Message Results available

Means The run has completed normally, and results are  present. present

Results for the run are present. Warning  messages were generated during the  esu ts t a gs Results with warnings  calculations. View the Control Panel or History  l l i Vi h C l P l Hi for messages.  Results with errors 

Results for the run are present. Error messages  were generated during the calculations. View the  Control Panel or History for messages.

Input Changed

Results for the run are present, but you have  p , y changed the input since the results were  generated. The results may be inconsistent with  the current input. 117

Control Pannel Control Pannel Click here

1.A message window showing the progress of the simulation by displaying the most recent messages from the calculations 2.A status area showing the hierarchy and order of simulation blocks and convergence loops executed 118

Stream Results Stream Results

Right Click on the block and select Stream Results

119

Pull down the list and select “Full” to show more properties results.

Enthalpy and Entropy

Substream: MIXED Mole Flow kmol/hr WATER BUOH BUAC Total Flow kmol/hr Total Flow kg/hr Total Flow cum/hr Temperature C Pressure bar V Vapor Frac F Liquid Frac Solid Frac Enthalpy kcal/mol Enthalpy kcal/mol Enthalpy kcal/kg Enthalpy Gcal/hr Entropy cal/mol‐K Entropy cal/gm‐K Density kmol/cum Density kg/cum Average MW Average MW Liq Vol 60F cum/hr

1

2

3

10 0 0 10 180.1528 0.18582 50 2 0 1 0 ‐67.81 67.81 ‐3764.03 ‐0.6781 ‐37.5007 ‐2.0816 53.81564 969.5038 18 01528 18.01528 0.1805

0 9 6 15 1364.066 1.74021 80 1 0 1 0 ‐94.3726 94.3726 ‐1037.77 ‐1.41559 ‐134.947 ‐1.48395 8.619647 783.851 90 93771 90.93771 1.617386

10 9 6 25 1544.218 1.870509 70.08758 1 0 1 0 ‐83.7476 83.7476 ‐1355.82 ‐2.09369 ‐95.6176 ‐1.54799 13.36534 825.5604 61 76874 61.76874 1.797886 120

Change Change Units of Calculation Results Units of Calculation Results

121

Setup – Defining Setup – Setup  Defining Your Own Units Set  Your Own Units Set

122

Setup – Report Options Setup – Setup  Report Options

123

Stream Results with Format of  Mole Fraction

124

Add Pump Block Add Pump Block

125

Add A Material Stream Add A Material Stream

126

Connect Streams Connect Streams

127

Pump – Specification  Pump – Pump  Specification 1. Select “Pump” or “turbine” 2. Specify pump outlet specificati (pressure, power)

3. Efficiencies (Default: 1)

128

Run Simulation Run Simulation Click ► to generate the results

Check “simulation status” “Required q Input p Complete” p 129

Block Results (Pump) Block Results (Pump)

Right Click on the block and select Results

130

131

Streams Results Streams Results

132

Calculation Results  (Mass and Energy Balances)

1

2

3

Mole Flow kmol/hr WATER 10 0 10 BUOH 0 9 9 BUAC 0 6 6 Total Flow kmol/hr 10 15 25 Temperature C 50 0 80 70.09 0 09 Pressure bar 1 1 1 Enthalpy kcal/mol -67.81 -94.37 -83.75 E t Entropy cal/mol-K l/ l K -37.50 37 50 -134.95 134 95 -95.62 95 62 Density kmol/cum 969.50 783.85 825.56

4 10 9 6 25 71.20 1 20 10 -83.69 -95.46 95 46 824.29

133

Exercise

Mole Flow kmol/hr Water Ethanol Methanol Total Flow kmol/hr Temperature C Pressure essu e ba bar Enthalpy kcal/mol Entropy cal/mol-K Densityy kmol/cum

1

2

3

4

5

6

10 0 0 10 50 1 ? ? ?

0 5 0 15 70 1 ? ? ?

0 0 15 15 40 1 ? ? ?

? ? ? ? ? 1 ? ? ?

? ? ? ? ? 4 ? ? ?

? ? ? ? ? 2 ? ? ?

Please use Peng-Robinson EOS to solve this problem.

134

Example 2: Flash Separation Example 2: Flash Separation 120 T-x T T-y

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

o

T=105 C P=1atm

T ( C)

115 110 105 100 0.0

What are flowrates and compositions of the two outlets?

0.2

0.4

0.6

xWater and yWater

0.8

1.0

Input Components Input Components

Thermodynamic Thermodynamic Model: NRTL Thermodynamic Model: NRTL‐ Model: NRTL‐HOC

Vapor ESHOC Liquid gamma q g Liquid enthalpy Liquid volume

Check Binary Parameters Check Binary Parameters

Association parameters of HOC Association parameters of HOC

Binary Parameters of NRTL Binary Parameters of NRTL

Binary Analysis Binary Analysis

T‐xy plot 1. Select analysis type (Txy)

2. Select two component 3 Select compositions basis 3.

2. Select p phase (VLE, ( , VLLE))

5. Specify pressure 6. Select property method

4. Specify composition range 7. click Go to generate the results

Calculation Calculation Result of T Calculation Result of T‐ Result of T‐xy

Data results

Generate xy plot Generate xy Generate 

Generate xy plot (cont Generate xy Generate  plot (cont’d) d)

Flash Separation Flash Separation 120 T-x T T-y

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

o

T=105 C P=1atm

T ( C)

115 110 105 100 0.0

What are flowrates and compositions of the two outlets?

0.2

0.4

0.6

xWater and yWater

0.8

1.0

Add Block: Flash2 Add Block: Flash2

Add Material Stream Add Material Stream

Specify Feed Condition Specify Feed Condition

Saturated Feed (Vapor fraction=0) P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

Block Input: Flash2 Block Input: Flash2

Flash2: Specification Flash2: Specification

T=105 C P 1 t P=1atm

Required Input Incomplete Required Input Incomplete Connot click ► to run simulation

Close binary analysis window

Required Input Complete Required Input Complete Click ► to run simulation

Stream Results Stream Results

Stream Results (cont Stream Results (cont’d) d) 42.658 kmol/hr zwater=0.501 zHAc=0.409

Saturated Feed P=1atm F=100 kmol/hr zwater=0.5 zHAc=0.5

T=105 C P=1atm

57.342 kmol/hr zwater=0.432 zHAc=0.568

Review Distillation Separation Review Distillation Separation McCabe- Thiele Graphical Method

1 Rectifying section:

LR D xn 1  xD VR VR

Stripping pp g section:

LS B yn  xn 1  xB VS VS

0.6 y

yn 

0.8

0.4 02 0.2 0 0

02 0.2

04 0.4

06 0.6 x

08 0.8

1

Trade‐off Between  Trade‐ Capital Cost and Operating Cost

Shortcut Design: RR≈1.2×RRmin NT ≈ 2×NTmin

Distillation Separation Distillation Separation

RR ?

QR ?

• There are two degrees of  freedom to manipulate  d ll distillate composition and  d bottoms composition to  manipulate the distillate and manipulate the distillate and  bottoms compositions.  • If the feed condition and the  If the feed condition and the number of stages are given,  how much of RR and QR are  required to achieve the  specification. 

Add Block: Radfrac Add Block: Radfrac Add Block: 

Add Material Stream Add Material Stream

Flowsheet Connectivity for  Connectivity for RadFrac Connectivity for RadFrac

RadFrac numbers stages from the top down, starting with the condenser (or starting with the top stage if there is no condenser).

Connect Material Stream Connect Material Stream

Specify Feed Condition Specify Feed Condition

Saturated Feed (Vapor fraction=0) P=1.2atm F=100 kmol/hr zwater=0.5 zHAc=0.5

Block Input: Radfrac Block Input: Radfrac Block Input: 

Radfrac:: Configuration Radfrac: Configuration Radfrac : Configuration

Radfrac::: Streams (Feed Location) Radfrac: Streams (Feed Location) Radfrac Streams (Feed Location)

Types of Feed Stage Types of Feed Stage Use this convention To introduce a feed g Between stages, above the designated stage g , g g Above‐stage On‐stage On the designated stage On the designated stage, all‐liquid feed  On‐stage‐liquid On stage liquid which is never flashed On the designated stage, all‐vapor feed  On‐stage‐vapor g p which is never flashed which is never flashed To the decanter attached to the designated  Decanter stage

Radfrac:: Column Pressure Radfrac: Column Pressure Radfrac : Column Pressure

Run Simulation Run Simulation Click ► to run simulation

Check Check Convergence Status Convergence Status

Stream Results Stream Results

D

B

Change Reflux Ratio Change Reflux Ratio Click ► to run simulation

Increase RR from 2 to 2.5

D

B

Again… Again

You can iterate RR until the specification is achieved achieved.

Smarter Way Smarter Way

Aspen Plus provides a convenient function (Design Specs/Vary) which can iterate operating variables to meet the specification.

Add New Design Specs Add New Design Specs

Design Design Specs: Specification Specs: Specification

Input current mole purity first

Design Design Specs: Components Specs: Components

Design Design Specs: Feed/Product Streams Specs: Feed/Product Streams

Add New Very Add New Very

Very: Specifications Very: Specifications

Specify the range of the adjusted variable Not all variables cane be selected selected. In this case, only reflux ratio and reboiler duty can be used.

Selection of Adjusted Variables Selection of Adjusted Variables

The options of adjusted variables must correspond to the operating specification.

Run Simulation Run Simulation Click ► to run simulation

Check Check Convergence Status Convergence Status

Change Target of Mole Purity Change Target of Mole Purity Click ► to run simulation

Increase Target from 0.95229424 to 0.99

Check Check Convergence Status Convergence Status

D

B

Column Column Performance Summary Performance Summary

Summary of Condenser Summary of Condenser

I l d condenser Include d duty, d t distillate di till t rate, t reflux fl rate, t reflux fl ratio ti

Summary of Reboiler Summary of Reboiler Summary of 

I l d reboiler Include b il duty, d t bottoms b tt rate, t boilup b il rate, t boilup b il ratio ti

Column Profile: TPFQ Column Profile: TPFQ

Column Profile: Vapor Composition Column Profile: Vapor Composition

Column Profile: Liquid Composition Column Profile: Liquid Composition

Plot Wizard for Column Profile Plot Wizard for Column Profile

Plot Wizard for Column Profile (cont’d) Plot Wizard for Column Profile (cont d) After entering g the block,, “Plot” appears. pp

Plot Wizard Plot Wizard

Plot Types Plot Types

Steps Steps for Composition Plot for Composition Plot

Composition Profiles Composition Profiles

Temperature Profiles Temperature Profiles

INTRODUCTION TO ASPEN PLUS INTRODUCTION TO ASPEN PLUS

Some Tips and Others 202

Tips: Next Tips: Next

Invokes the Aspen Plus expert system. Guides you through the p required q to complete p your y simulation. steps Status message Flowsheet Not  Complete Required Input Not  C Complete l

Meaning Flowsheet connectivity is incomplete. To find out why, click  the Next button in the toolbar. Input specifications for the run are incomplete. Click Next  on the toolbar to find out how to complete the input  h lb fi d h l h i specifications, and to go to sheets that are incomplete.

203

Example:  Example: “NEXT” NEXT

204

Tips: “What’s Tips:  What s this this” Cli k “↖?” and Click d then th click li k where h you don’t d ’t know k

?

205

Tips: “What’s Tips:  What s this this”

?

206

Tips: Window Tips: Window

If you are using

You should

Workbook mode Flowsheet as Wallpaper p p Normal View

Click the Process Flowsheet tab Click the flowsheet in the background g Select the Process Flowsheet window

207

Help Topics Help Topics Go to “Help” p Select “Help Topics”

208

Help Topics Help Topics

Unit U it O Operation ti M Model d l Reference R f Manual M l Physical Property Methods and Models Physical Property Data Reference Manual

209

Help Topics Help Topics Calculation of Properties Using an Equation-of-State Property Method

210

File File Formats in Aspen Plus Formats in Aspen Plus

File Type

Extension

Format

Description

Document

*.apw

Binary

File containing simulation input and results and i t intermediate convergence information di t i f ti

Backup

*.bkp

ASCII

Archive file containing simulation input and results

History

*.his

Text

Detailed calculation history and diagnostic messages

Problem  Problem Description

*.appdf appdf

Binary

File containing arrays and intermediate File containing arrays and intermediate convergence information used in the simulation 211 calculations

File Type Characteristics File Type Characteristics •





Binary files fl – Operating system and version specific – Not readable, not printable Not readable not printable ASCII files – Transferable between operating systems – Upwardly compatible – Contain no control characters, “readable” – Not intended to be printed N i d d b i d Text files – Transferable between operating systems Transferable between operating systems – Upwardly compatible – Readable, can be edited – Intended to be printed 212

Access Aspen Plus Software Access Aspen Plus Software • Please contact  PC Teaching Assistant: Name: 侯冠宇 Phone: 02‐3366‐3005 Email: chemeng@ntu edu tw Email: [email protected] Office: 101 電腦教室

213

如何進入講義下載及填寫問卷

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF